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Abstract

We consider a model of recommendation systems, where each member from a given set of players
has a binary preference to each element in a given set of objects: intuitively, each player either likes
or dislikes each object. However, the players do not know their preferences. To find his preference
of an object, a player may probe it, but each probe incurs unit cost. The goal of the players is
to learn their complete preference vector (approximately) while incurring minimal cost. This is
possible if many players have similar preference vectors: such a set of players with similar “taste”
may split the cost of probing all objects among them, and share the results of their probes by
posting them on a public billboard. The problem is that players do not know a priori whose taste is
close to theirs. In this paper we present a distributed randomized peer-to-peer algorithm in which
each player outputs a vector which is close to the best possible approximation of the player’s real
preference vector after a polylogarithmic number of rounds. The algorithm works under adversarial
preferences. Previous algorithms either made severely limiting assumptions on the structure of the
preference vectors, or had polynomial overhead.
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1 Introduction

Recommendation systems come up on a daily basis in many human activities, such as buying a book,
renting a movie, choosing a restaurant, looking for a service provider, etc. Abstractly, one can think
of users and objects, and the task of a recommendation system is to predict which of the objects each
user would like. To do that, recommendation algorithms use reports of past experience of the user
in question and reports of others. The key difficulty in making a recommendation is the diversity of
opinions regarding objects. There are many possible sources for such diversity, e.g., differing personal
tastes of humans, different users may not have the same objects accessible to them, some users may be
dishonest, etc. Even when no inherent diversity appears to exist, various time-variable factors (such
as noise, weather, mood) may create diversity as a side effect. The main challenge in recommendation
systems is how to overcome diversity: Intuitively, a set of users with similar preferences should be able
to collaborate (perhaps implicitly) by sharing the load of exploring the object space on one hand, and
benefit from sharing the results of their experience on the other hand. The difficulty is that users do
not know a priori which of the other users share their opinions.

Intuitively, it appears that arbitrary diversity is unmanageable, and one has to make strong as-
sumptions in order come up with algorithmic results for recommendation systems. Indeed, most
existing approaches restrict diversity somehow, e.g., by assuming that most users fall in one of a few
“well-separated types,” or by assuming a simple stochastic generative model for user preferences. Such
assumptions are hard to justify, but superficially, they seem unavoidable. In this paper we present
novel algorithmic tools that show that effective (near optimal) collaboration by cooperative agents
is possible even with unrestricted diversity. Our guarantees are relative rather than absolute: the
quality of a recommendation to a user depends on the number of users with similar opinions. In other
words, without relying on any assumption about user preferences, our algorithm provides high-quality
recommendations to users whose preferences are close to the preferences of many other users, while
esoteric users will receive lower-quality recommendations.

Let us first briefly describe the model we study. User preferences are represented by a matrix
where rows represent users, and columns represent objects. An entry (i, j) represents the opinion
of user i about object j. It is assumed that user opinions are fixed (i.e., do not change over time),
but are unknown to the users at the beginning. In this paper we consider the goal of reconstructing
the preference matrix. To facilitate information sharing, it is assumed that the system maintains a
shared billboard where all past experience is reported (similar, say, to eBay’s feedback records, where
users post the results of their transactions). We distinguish between two variants of recommendation
systems: interactive and non-interactive, which differ in the way data is assumed to be obtained from
the users. More specifically, these models are as follows.

Interactive recommendation system. In this model, the basic step of an algorithm is to
reveal a grade (user preference) of a user for an object, where the user and the object are chosen by
the algorithm. Revealing a grade models the action of a user testing a product, called probing. Each
probe is assumed to incur cost, and the goal is to minimize the worst-case cost to a user [4, 6]. This is
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the model we shall consider in this paper. To illustrate this model, consider advertisement placement.
Probing takes place each time the advertiser provides a user with an advertisement for some product:
if the user clicks on this advertisement, the appropriate matrix entry is set to 1, and if the user does
not click, it is set to 0. In any case, the corresponding matrix entry is revealed. Many scenarios, for
example tracking a dynamic environment by unreliable sensors, or estimating message latencies in a
peer-to-peer network [1] fall under this “interactive” framework.

Non-interactive recommendation system. This model received much attention, see, e.g.,
[10, 11]. Intuitively, while the main question algorithms for the interactive model have to answer is
what to sample, the main question algorithms for non-interactive model answer is how to interpret
given results of prior sampling. Some assumptions must be made about the known samples in the
non-interactive model (on top of the assumptions about the preferences). Typically, it is assumed
that the matrix is generated by a low-entropy random process, and that the given probe results are
generated by some probability distribution which reflects the users’ preferences.

1.1 Problem Statement and Results

In this paper we focus on the interactive model, and present a solution with polylogarithmic cost
to interactive recommendation systems that finds all preferences with precision comparable to the
best possible for the given probing budget, while making no assumptions on user preferences. Our
execution model is synchronous, i.e., time progresses in global steps called rounds, where in each round
each player makes a probe. In this model, we use “time” and “cost” interchangeably.

Statement of the problem. There are n players and m objects; each player has an unknown 0/1
grade for each object. The algorithm proceeds in parallel rounds: in each round, each player reads
the shared billboard, probes one object, and writes the result of the probe on the billboard. The task
of the algorithm is for each player to output a vector as close as possible to that player’s original
preference vector (under the Hamming distance metric). Formally, we have the following input-output
relation.

Definition 1.1 (Problem Find Preferences) Let dist(x, y) denote the Hamming distance between x

and y.

• Input: A set P of n players, and a vector v(p) ∈ {0, 1}m for each player p.

• Output: Each player p outputs an estimate w(p) ∈ {0, 1}m.

• Goal: Minimize dist(w(p), v(p)) for each player p.

We note that entries of the input vector v(p) can be revealed only by player p (using probes), but the
output vector w(p) is posted on the billboard and is readable by all players.

Evaluating the algorithms. Intuitively, our goal is as follows. Call a set of players with similar
preferences a virtual community (for some measure of similarity). We would like to show that even in
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the worst case, players who are members of a sufficiently large virtual community need only a small
number of samples to reconstruct (approximately) all their preferences. Obviously, the larger is the
community we are considering, the more leverage we get from other members of that community,
and thus preference reconstruction for this community is faster. On the other hand, the larger is the
community, the larger are internal disagreements between members of the community, and the larger
is the error. Our approach is that the probing budget defines the size of the community. For example,
a linear probing budget of m means that the player can “go it alone”and probe all objects, while
constant (or poly-logarithmic) probing budget means that the player must leverage probes of a large
community. Naturally, it is best to pick the tightest (smallest radius) community of the required size.
This could have been easily accomplished if each player had access to an oracle that produces a list of
players in decreasing similarity of taste, but building such an oracle is, essentially, the task we wish to
accomplish. In fact, our algorithm can continuously reconstruct all such sub-communities in parallel,
refining clusterings on-the-fly, as time goes on and probing budget is increasing.

What is the best possible output for a given probing budget, i.e., number of probing rounds?
Consider first an ideal situation: If all players had identical preference vectors, then by dividing the
workload equally, all of them can output perfect results in O(m/n) time units. More generally, if the
disparity (i.e., Hamming distance) between all preference vectors were bounded by some known value
D, then it can be shown that the players can output a vector with O(D) errors within O(m/n) time,
and then reach full accuracy after time of m. The latter case corresponds to the following scenario.
There exists a subset of players P ∗ of cardinality n∗ and internal disparity d∗. Imagine that these
players are perfectly coordinated (in particular, each of them knows the identities of all members in
the set), and their common goal is to find their preference vectors as efficiently as possible. The best
one could hope for in general is that they can reach disparity of O(d∗) within τ = m/n∗ rounds. This
consideration leads us to define the following concept. Given a time bound τ , and a set of players P ∗,
we define the set stretch of P ∗ as the ratio between the maximal current number of errors of a player
in P ∗ and the diameter of the set of preference vectors of P ∗ (using the Hamming distance measure).

More formally, given vectors of equal length, let dist(x, y) denote the number of coordinates in
which they differ (i.e., the Hamming distance between them). Recall that for a player p, v(p) denotes
his input vector and w(p) denotes his output vector. Let wt(p) denote the output of player p at time
t. Now, for an arbitrary subset P ∗ ⊂ P and a given time step t, define

D(P ∗) def= max {dist(v(p), v(q)) | p, q ∈ P ∗} diameter

∆t(P ∗) def= max
{
dist(wt(p), v(p)) | p ∈ P ∗} discrepancy

ρt(P ∗) def= ∆t(P ∗)
D(P ∗) stretch

Using the definition of stretch, we state our result.

Theorem 1.1 (Main result) Suppose that m = Ω(n). Let P ∗ be any set of players with |P ∗| = Ω(n).
Then there exists a distributed algorithm such that with probability 1 − n−Ω(1), after t = (log n)O(1)

rounds the output of each player in P ∗ has constant stretch, i.e., ρt(P ∗) = O(1).
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A more precise statement is given later (Theorem 5.4). Intuitively, we show that users can predict
their preferences for objects they never tried, with confidence that grows with the number of probes
executed. The absolute quality of the results depends on how esoteric are the preferences of the user,
but constant stretch can be attained in polylogarithmic time. We note that previous results either
made strong assumptions about the input, or forced polynomial cost on all or some users.

Our techniques and paper organization. We present our solution in increasing order of com-
plexity. Algorithm Zero Radius, described in Section 3.2, solves the problem for the special case
of communities of users with identical preferences. This algorithm and its proof are quite simple;
it is a modification of work published in [3]. In Section 4 we present Algorithm Small Radius,
which uses Zero Radius as a subroutine. Algorithm Small Radius works for any distribution of
the preference vectors, but the probing cost in Small Radius is polynomial in the diameter of the
collaborating set. This property makes Small Radius suitable for the case where many users have
close preferences. We note that straightforward recursion does not work, because (similarly to metric
embedding problems) the error grows exponentially with the depth of the recursion. The crux to
the efficiency of this algorithm is a non-trivial combinatorial result that we prove in Lemma 4.1. In
Section 5, we present Algorithm Large Radius, which uses both Small Radius and Zero Radius

as subroutines, and brings down probing cost to poly-logarithmic in the diameter of the collaborating
set. It reduces general instances to the zero- and low-diameter case, by first partitioning the object
set and then clustering the subsets. All the above algorithms assume that the size and diameter of the
collaborating set are known; this assumption is removed in Section 6. Some related work is surveyed
in Section 2, and the high-level algorithm with some basic building blocks are described in Section 3.

2 Related work

Interactive model. Our paper essentially generalizes and improves much of the vast amount of
the existing work on multi-agent learning and interactive collaborative filtering. The first algorithmic
theory approach is due to Drineas et al. [6], who defined the model we use in this paper. The goal in
[6] is to provide a single good recommendation to each user, but the algorithm in fact reproduces the
complete preferences of most users. The basic idea is to adapt the SVD technique to the competitive
model; this adaptation comes at the price of assuming further restrictions on the preference vectors.
Specifically, in addition to assuming the existence of a big gap between two consecutive singular values
of the preference matrix (which is inherent to the SVD technique), the algorithm of [6] requires that
the preference vectors of users belonging to different types are nearly orthogonal, and that the allowed
noise is tiny: each preference vector is obtained by its corresponding canonical vector plus a random
noise, which is a vector of m independent random variables with 0 mean and O(1/(m + n)) variance.
Recently, it has been shown that the problem of finding a good object for each user can be solved by
very simple combinatorial algorithms without any restriction on the preference vectors [4]: for any set
P of users with a common object they all like, only O(m + n log |P |) probes are required overall until
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all users in P will find a good object (w.h.p.). The result closest to our work is [3], where algorithms
are given for the case where many users have identical preference vectors (see Section 3.2). We note
that when the preference matrix is arbitrary, the case where user preferences may be concentrated in
sets of positive diameter is much harder than dealing with sets of diameter 0.

Non-interactive model. The effectiveness of provable algorithms in the non-interactive model
relies on the (usually, implicit) assumption that most user preference vectors can be approximated by
a low-rank matrix; basically, this assumption means that there are a few (say, constant) “canonical”
preference vectors such that most user preference vectors are linear combinations of the canonical
vectors. Under this assumption, algebraic or clustering techniques can reconstruct most preference
vectors with relatively few errors, based on the scarce available data.

Specifically, there are systems that use principal component analysis [7] or singular value decom-
position (SVD) [13]. Papadimitriou et al. [12], and Azar et al. [5] rigorously prove conditions under
which SVD is effective. It turns out that SVD works well when there exists a very significant gap
between the kth and the (k + 1)st largest singular values, where k is the number of canonical vectors
in the underlying generative model.

Other generative processes that were considered in the passive model include simple Markov chain
models [10, 11], where users randomly select their “type,” and each type is a probability distribution
over the objects.

Worst-case (non-stochastic) input is considered in the works by Goldman et al. [8], [9] where, the
algorithm is requested to learn a relation represented as a 0/1 matrix. In a basic step, the algorithm
must predict the value of an entry in the matrix; then that entry is revealed, and the algorithm is
charged one unit if the prediction was wrong. By contrast, our model we require that prediction
becomes perfect after small number number of errors.

Our model charges one unit every time a grade is revealed; moreover, a prediction algorithm
gets to know the true answer regardless of whether the prediction is correct, while in our model, most
estimates are never exposed. Assuming random sampling pattern and this (much weaker) performance
measure, the algorithms in [8, 9] still suffer from polynomial overhead (which might be best possible
under the circumstances) even in the simple “noise-free” case where all the players in a large (constant
fraction) community are identical.

3 The High-Level Algorithm and Basic Building Blocks

Simplifying assumptions and notation. Throughout the description of the algorithm, we shall
consider a set P ∗ of players with “similar taste.” Formally, we assume that there are two parameters
log n

n ≤ α ≤ 1 and D ≥ 0, such that |P ∗| ≥ αn (i.e., |P ∗| ≥ log n), and D(P ∗) ≤ D. P ∗ is called an
(α, D)-typical set, and its members are (α, D)-typical players, or just typical, when α and D are clear
from the context. In general, there may be multiple, overlapping typical sets of typical players.
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For the most part, we describe an algorithm that works with known α and D. This assumption
is lifted in Section 6. To simplify the description, we also assume, without loss of generality, that
m = Θ(n) (if m < n we can add dummy objects, and when m > n we can let each real player simulate
dm/ne players of the algorithm.) If the assumption that log n

n ≤ α does not hold then the player is
better off by just probing all objects on his own.

The main algorithm. Our solution consists of three algorithms, depending on value of D, as
specified in Fig. 1. Algorithms Zero Radius, Small Radius and Large Radius are specified in
Sections 3.2, 4 and 5, resp.

(1) If D = 0 apply procedure Zero Radius with all players and all objects, using known α.

(2) If D = O(log n)) apply procedure Small Radius with all players and all objects, using known α.

(3) Otherwise (i.e., D ≥ Ω(log n)), apply procedure Large Radius, using known α and D.

Figure 1: Main algorithm for known α and D (see Section 6).

3.1 The Choose Closest problem: Algorithm Select

One of the basic building blocks we use is a little algorithm solving a problem which can be formulated
as follows.

Definition 3.1 (Problem Choose Closest)

• Input: a set V of k vectors and a player p with preference vector v(p).

• Output: a vector w∗ ∈ V such that dist(w∗, v(p)) ≤ dist(w, v(p)) for all w ∈ V .

The algorithm we describe below requires an additional input parameter:

• Additional input: A distance bound D ≥ 0 such that for some w ∈ V , dist(w, v(p)) ≤ D.

Given D, this task can easily be implemented by player p at the cost of probing k(2D + 1)
coordinates; we present a slightly more efficient algorithm in Figure 2. The algorithm uses the following
notation.

Notation 3.2 For given vectors v, u ∈ {0, 1, ?}m, d̃(u, v) denotes the number of differing coordinates
in which both u and v have entries that are not ?. d̃I(v, u) def= d̃(v|I , u|I) is the restriction of d̃ to the
coordinate set I.

The algorithm uses an abstract Probe action that, when invoked by a player p ∈ P on an object
o ∈ O, returns the value of o for p. Its properties are summarized in the following theorem.

Theorem 3.1 If V contains a vector at distance at most D from v(p), then Procedure Select outputs
the lexicographically first vector in V among the vectors closest to v(p). Moreover, the total number
of times Probe is invoked is (unconditionally) never more than k(D + 1).
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(1) Repeat

(1a) Let X(V ) be set of coordinates on which some two vectors in V differ.

(1b) Execute Probe on the first coordinate in X(V ) that has not been probed yet.

(1c) Remove from V any vector with more than D disagreements with v(p).

Until all coordinates in X(V ) are probed or X(V ) is empty.

(2) Let Y be the set of coordinates probed by p throughout the algorithm. Find the set of vectors
U ⊆ V closest to v(p) on Y , i.e.,

U =
{
v ∈ V | ∀u ∈ V : d̃Y (v, v(p)) ≤ d̃Y (u, v(p))

}
.

Output the lexicographically first vector in U .

Figure 2: Algorithm Select using distance bound D, executed by player p.

Proof: Any vector removed from V in Step 1c is at distance more than D from v(p). Among the
vectors remaining in V in Step 2, all distinguishing coordinates were probed, so their distances from
v(p) are precisely computed, up to a common additive term. Therefore, the output made in Step 2 is
trivially correct by assumption that the closest vector is at distance at most D. To bound the total
number of probes in Select, consider the total number of disagreements between v(p) and all vectors
of the input set V . By definition of X, each probe exposes at least one such disagreement. Since no
vector remains in V after finding D + 1 coordinates on which it disagrees with v(p), we get that the
total number of probes is at most k(D + 1).

Remark: To ensure that the result of Select is completely defined by its input, we require that
Select disregards probes done before its execution.

3.2 Exact types solution: Algorithm Zero Radius

Below we present, for completeness, an algorithm for the special case of D = 0, i.e., the case where typ-
ical players completely agree on all coordinates. This task is carried out by Algorithm Zero Radius.
The algorithm, presented in Figure 3, is a slight generalization of an algorithm given in [3]. In the
variant we use here, the algorithm uses the abstract Probe action. Another slight generalization is
that the set of allowed values for an object is not necessarily binary. The implementation of Probe
depends on the context: for simple objects we use the primitive probing action as an implementation;
for compound objects (defined within the context of algorithm Large Radius in Section 5), Probe
is implemented by Select with an appropriate distance bound.

For this algorithm, and using Theorem 3.1, we have the following result (see [3] for full details).

Theorem 3.2 Suppose that there are at least αn players with identical value vectors, and that they all
run Algorithm Zero Radius. Then with probability 1− n−Ω(1) all of them output the correct vector.
The algorithm terminates unconditionally after O( log n

α

⌈
m
n

⌉
) invocations of procedure Probe.
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(1) If min(|P |, |O|) < 8c ln n
α , player p invokes Probe for all objects in O, outputs their values, and

returns. (c > 0 is a constant controlling the probability of success.)

(2) (Otherwise) Partition randomly P = P ′ ∪ P ′′ and O = O′ ∪ O′′ (each player is assigned with
probability 1/2 to P ′ and probability 1/2 to P ′′, and similarly with the objects). The partition
is known to all players in P . Let P ′ be the half that contains p, and let P ′′ be the other half.

(3) Recursively execute Zero Radius(P ′, O′). (Upon returning, values for all objects in O′ were
output by all players in P ′, and values for all objects in O′′ were output by all players in P ′′.)

(4) Scan the billboard. Let V be a set of vectors for O′′ such that each vector in V is voted for by at
least α/2 fraction of the players in P ′′. Compute Select on V with distance bound 0. Output
the result vector for all objects in O′′ and return. (If V = ∅, Zero Radius fails.)

Figure 3: Algorithm Zero Radius executed by player p. P is the set of players and O is the set of
objects.

Proof Sketch: (adapted from [3].) Let PT denote the set of players with identical preference vectors.
Using the Chernoff bound (see, e.g., [2], Appendix A) and the union bound, it is straightforward to
show that in each invocation of Zero Radius with |P | ≥ 8c ln n

α , we have, with probability at least
1 − n−Ω(1), that |P ∩ PT | ≥ α|P |/2. Therefore, barring events of very low probability, the output is
proved correct by induction on the level of recursion and by correctness of Algorithm Select.

To analyze the cost, we note that probes are done in Step 1 (the basis of the recursion) and
Step 4 (recursive step). Step 1 is executed at most once by each player, and its cost is O

(⌈
m
n

⌉ log n
α

)
invocations of Probe per player: this is true because the recursive halving maintains |O| ≈ |P | · m

n , so
if n < m we have that the recursion stops when |P | = O( log n

α ), in which case |O| = O(m
n ·

log n
α ); and

when n ≥ m, each the recursion stops when |O| = O( log n
α ), and therefore each player probes O( log n

α )
objects. Consider now other recursive calls of Zero Radius. Each such invocation entails a call to
Select with O(1/α) candidate vectors and distance bound 0, for a total cost of O(1/α) invocations
of Probe by Theorem 3.1. Since the depth of the recursion is upper bounded by O (log n), we have
that the total number of invocations of Probe done in Step 4 by each player, throughout the execution
of the algorithm, is upper bounded by O

(
log n

α

)
.

4 Algorithm Small Radius

In this section we describe Algorithm Small Radius. We assume that α and D are given, and the
goal is that all these players will output a vector which differs from their input vector by at most
O(D). The running time of the algorithm is polynomial in D, and hence it is suitable only for small
D values (in the main algorithm, Algorithm Small Radius is invoked with D = O(log n)).

The algorithm proceeds by repeating the following process K times (we always set K = O(log n)):
The object set O is partitioned into s = O(D3/2) random parts denoted Oi, and all players run
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(1) For each t ∈ {1, . . . ,K} do:

(1a) Partition O randomly into s = 100D3/2 disjoint subsets: O = O1 ∪O2 ∪ · · · ∪Os.

(1b) For each i ∈ {1, . . . , s}: all players apply procedure Zero Radius to the objects of Oi using
parameter α/5; let Ui be the set of vectors s.t. each is output by at least αn/5 players.

(1c) Each player p applies procedure Select to Ui with distance bound D, obtaining vector
ui(p) for each i ∈ {1, . . . , s}. Let ut(p) denote the concatenation of ui(p) over all i.

(2) Each player p applies procedure Select with distance bound 5D to the vectors u1(p), . . . , uK(p)
computed in Step 1c and outputs the result w(p).

Figure 4: Algorithm Small Radius. α and D are given, K is a confidence parameter.

Algorithm Zero Radius on each Oi object set (Step 1b). However, Algorithm Zero Radius is
guaranteed to succeed only if there are sufficiently many players that fully agree. To this end, we
show that with constant probability, a random partition of O will have, in all Oi parts simultaneously,
many (but not all) typical players fully agreeing. Therefore, one of the K independent executions of
the exact algorithm will succeed in all parts with probability at least 1 − 2−Ω(K). However, in each
part there may be many typical players whose preferences are not shared by many others exactly, and
may therefore have arbitrary results in that part, because Theorem 3.2 does not apply in that case.
To solve this problem, in Step 1c we force each player to adopt, for each i, the closest of the popular
vectors in Oi. Then, in Step 2, each player chooses the closest result among the vectors produced in
the K iterations. Since the typical players differ on the O objects, they will not all choose the same
vector in Step 1c; however, we prove that all their chosen vectors lie within O(D) distance from each
other.

4.1 Analysis of Small Radius

We now state the properties Algorithm Small Radius. There are a few points which are not obvious.
First, in Step 1b we use Algorithm Zero Radius which is guaranteed to work only if there are at
least αn/5 players who completely agree on all objects. It turns out that for s = O(D3/2), there is
a constant probability that all instances of Zero Radius are successful in any given iteration. The
following lemma proves this crucial fact in more general terms.

Lemma 4.1 Let V be a set of M binary vectors on a set O of coordinates, and suppose that dist(v, v′) ≤
d for any v, v′ ∈ V . Let O = O1 ∪ O2 ∪ · · · ∪ Os be a random partition of O into s pairwise disjoint
sets, where each coordinate j ∈ O is chosen, randomly and independently, to lie in a uniformly chosen
Oi. Call the partition successful if for every i ∈ {1, . . . , s} there is a set Ui ⊂ V of size |Ui| ≥ M/5,
and such that u|Oi = u′|Oi for all u, u′ ∈ Ui. Then, the probability that the partition is not successful

is at most
103 · 55

6!
d3

s2
. In particular, if s ≥ 100d3/2 then this probability is smaller than 1/2.
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Proof: Let X be the random variable whose value is the number of ordered 6-tuples (i, v1, v2, v3, v4, v5),
where 1 ≤ i ≤ s, v1, . . . , v5 ∈ V , and

for each 1 ≤ j < k ≤ 5, the vectors vj , vk differ on Oi. (1)

For a fixed i, 1 ≤ i ≤ s, and for fixed distinct vectors v1, . . . , v5 ∈ V , the probability that the tuple
(i, v1, v2, ..., v5) satisfies (1) can be bounded as follows. Note, first, that there are at most

(5
2

)
d = 10d

coordinates in which some pair of the vectors vj differ. In order to satisfy (1), Oi has to contain at
least 3 such coordinates (as, by the pigeonhole principle, at least two of the vectors will agree on each
pair of coordinates). Therefore, the required probability is at most(

10d

3

)
1
s3

<
103d3

6s3
.

By linearity of expectation, the expected value of X satisfies

E(X) ≤ sM5 · 103d3

6s3
=

103M5d3

6s2
.

On the other hand, if there exists some i such that no set of M/5 of the vectors completely agree
on Oi, then the number of ordered 5-tuples of vectors v1, . . . , v5 so that each pair of them differs on
Oi is at least

M · 4M

5
· 3M

5
· 2M

5
· M

5
=

4! M5

54
.

It follows that if the partition is not successful, then the value of the random variable X is at least
4! M5

54 , and hence, by Markov’s Inequality, the probability this happens does not exceed

E(X)/
4! M5

54
≤ 103 · 55

6!
d3

s2
.

To deal with our case, let us first introduce the following standard notation.

Notation 4.1 Given a vector v and a subset S ⊂ O of coordinates, let v|S denote the projection of v

on S. Similarly, let dist|S denote the Hamming distance applied to vectors projected on S.

Lemma 4.1, applied to our setting with M = αn, implies the following immediate corollary.

Corollary 4.2 For s = Θ(D3/2), the following holds with probability at least 1 − 2−Ω(K) after the
execution of Step 1 of Algorithm Small Radius: there exists an iteration t0 ∈ {1, . . . ,K} in which for
each i ∈ {1, . . . , s} there exists a set of players Gi ⊆ P ∗ satisfying |Gi| ≥ αn/5 and v(p)|Oi = v(p′)|Oi

for any p, p′ ∈ Gi.

By the correctness condition of Algorithm Zero Radius, Corollary 4.2 implies that after Step 1b
of Algorithm Small Radius, w.h.p., there exists an iteration t0 such that for each i ∈ {1, . . . , s} there
exists a vector ut0

i which is identical to the vector of all players in a set Gi ⊆ P ∗ with |Gi| ≥ αn/5.
However, the Gis may be different for each i. Moreover, note that it is possible to have more than
one such Gi for any given part Oi. In Step 1c, the algorithm “stitches” a vector ut for O from the ut

i

components for Oi. We can now prove that in a successful iteration, any vector produced in Step 1c
by a typical player is close to the vectors produced by all typical players.
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Lemma 4.3 Consider a partition O1, . . . , Os of O. Suppose that for each i ∈ {1, . . . , s} there exists
a vector ui and a set Gi ⊆ P ∗ with |Gi| ≥ αn/5 such that v(p)|Oi = ui for any p ∈ Gi. Let u be any
vector satisfying u|Oi = ui for all i ∈ {1, . . . , s}. Then distO(u, v(p)) ≤ 5D for any player p ∈ P ∗.

Proof: Fix a value vector v∗ of a player in P ∗. We count the sum of the distances from the vectors of
the players in P ∗ to v∗ in two different ways. First, by the precondition of Algorithm Small Radius,∑

p∈P ∗
distO(v(p), v∗) ≤ |P ∗| ·D . (2)

On the other hand,

∑
p∈P ∗

distO(v(p), v∗) =
∑

p∈P ∗

s∑
i=1

distOi(v(p), v∗)

≥
s∑

i=1

∑
p∈Gi

distOi(ui, v
∗)

≥
s∑

i=1

|P ∗|
5
· distOi(ui, v

∗)

=
|P ∗|
5
· distO(u, v∗) . (3)

Eqs. (2,3) together imply distO(u, v∗) ≤ 5D.

We summarize the properties of Algorithm Small Radius as follows:

Theorem 4.4 Suppose that there exists a set P ∗ of at least αn players such that dist(v(p), v(p′)) ≤
D for any p, p′ ∈ P ∗. Let w(p) be the output vector of player p ∈ P ∗ after running Algorithm
Small Radius. Then with probability at least 1− 2−Ω(K), distO(v(p), w(p)) ≤ 5D for every p ∈ P ∗.
Furthermore, the total number of probing rounds is O

(
K m

αnD3/2(D + log n)
)
.

Proof: By Corollary 4.2, with probability at least 1 − 2−Ω(K) at least one of the iterations satisfies
the premise of Lemma 4.3. Using Theorem 3.1 (correctness of Select), the correctness claim fol-
lows. Regarding complexity, consider a single iteration of Step 1. In such an iteration, procedure
Zero Radius is invoked s = O(D3/2) times, each time with all n users and m/s objects. By Theorem
3.2, the cost of a single invocation of Zero Radius in Step 1b is O(

⌈
m/s
n

⌉
· log n

α ). It follows that the
total cost incurred by Step 1b in a single iteration is

O

(
s ·
⌈
m/s

n

⌉
· log n

α

)
= O

(
(
m

n
+ D3/2) · log n

α

)
.

In addition, in Step 1c, each iteration contains s applications of Select, each time with a bound D

and at most O(1/α) candidates, totaling O(D5/2/α) probes in each iteration. Therefore the total cost
of Step 1 throughout the execution of Small Radius is upper bounded by

O

(
K ·

(
m

n
+ D3/2) · log n

α
+ (D5/2/α

))
≤ O

(
K

m

αn
D3/2(log n + D)

)
.

Since Step 2 entails only O(KD) probes, the overall complexity is dominated by Step 1.
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(1) Randomly partition the objects into cD/ log n disjoint subsets O` for 1 ≤ ` ≤ cD/ log n, where
c is an appropriate constant. The partition is done by assigning each object independently and
uniformly to one of the object subsets.
Assign randomly the players to cD/ log n subsets P` for 1 ≤ ` ≤ cD/ log n. Each player is
assigned to

⌈
D
αn

⌉
subsets.

(2) For each ` ∈ {1, . . . , cD/ log n}, the players of P` apply procedure Small Radius to objects O`

with frequency parameter α/2 and confidence parameter K = O(log n).
Let v`(p) denote the output of a player p ∈ P` on O`.

(3) All players apply procedure Coalesce to each of the sets of vectors {v`(p) | p ∈ P`} produced
in Step 2.
The result of this step is, for each O`, a set B` of at most O(1/α) vectors of {0, 1, ?}(m log n)/(cD).

(4) Apply procedure Zero Radius with all players, where each “object” for the algorithm is a set
O` of primitive objects (see Step 1), with possible values from the B` vectors (computed in
Step 3). Flatten the resulting vector of vectors to obtain the final output.

Figure 5: Algorithm Large Radius for known α, D.

5 Algorithm Large Radius

In this section we assume that α and D are known. Algorithm Large Radius, presented in Figure
5, deals with the case of D > log n, and it uses, as subroutines, Algorithms Zero Radius and
Small Radius.

The main idea in Algorithm Large Radius is to transform the input instance so that we can
apply Algorithm Zero Radius to the new instance. To do that, we need to somehow aggregate
objects in a way that all players of P ∗ will agree on the result of each aggregate, and to implement
probing an aggregate efficiently. Specifically, we do it as follows.

The algorithm starts (in Step 1) by randomly chopping the object set into small parts denoted O`

and the player set into corresponding parts denoted P`. The number of parts is such that w.h.p., the
distance between any two (α, D)-typical players on the objects of O` is bounded by O(log n). In Step
2, each player set P` applies procedure Small Radius to the object set O`. When all invocations of
procedure Small Radius return, each player in P` has a complete output vector for O`, and, w.h.p.,
the output vectors of any two (α, D)-typical players from P` differ in only O(log n) coordinates of O`.
Relying on this property, in Step 3 we run a basic clustering algorithm called Coalesce on the results
for O`. The outcome of Algorithm Coalesce, for each object set O`, is a collection B` of only O(1/α)
possible value vectors (“candidates”), such that for each `, there is exactly one candidate which is the
closest to all typical players on O`. This comes at the price of possibly blowing up the radius of each
candidate from 0 (a simple binary vector) to O(log n/α), represented by a vector with “don’t care”
entries (denoted ?). This key property allows us to apply Algorithm Zero Radius in Step 4 by all

12



(1) A← ∅.

(2) While V 6= ∅ do

(2a) Remove from V all vectors v with |ball(v,D) ∩ V | < αn.

(2b) Let v be the lexicographically first vector v ∈ V .

(2c) A← A ∪ {v}; V ← V \ ball(v,D).

(3) Let B ← A.

(4) While there are two distinct vectors v, v′ ∈ B with d̃(v, v′) ≤ 5D do:

(4a) Define a vector v∗ by v, v′ as follows: If v and v′ have the same value for an object j, let
the value of v∗ for j be their common value. If v and v′ disagree on j, let the value of v∗

for j be ?.

(4b) B ← B \ {v, v′} ∪ {v∗}.

(5) Output B.

Figure 6: Algorithm Coalesce.

players, where the “objects” are actually complete O` sets, and the possible values for each such object
are the B` vectors computed in Step 4. The abstract Probe(O`) action used in Zero Radius in this
case is implemented by applying Select to the vector set B`, with distance bound O(log n). When
the algorithm ends, any two typical players will have the same output vector, which may include up
to O(D

α ) “don’t care” entries (if the output must be binary, we may set ? entries arbitrarily).

We first present Algorithm Coalesce (Step 3).

5.1 Algorithm Coalesce

The problem we solve here is the following. It is a pure clustering problem: all input vectors are
readable by all users.

• Input: A multiset V of n vectors, each in {0, 1}m; a distance parameter D; a frequency param-
eter α.

• Output: A set U of at most 1/α vectors from {0, 1, ?}m.

The requirement is that if there exists a subset VT ⊆ V of size at least αn satisfying dist(v, v′) ≤ D

for all v, v′ ∈ VT , then there exists a unique vector v∗ ∈ U such that (1) v∗ is the closest in U to any
vector in VT , and (2) the number of ? coordinates in v∗ is small (specifically at most 5D/α).

Note that this problem does not involve probing at all and hence in our case, all players have the
same input. Pseudo code of the algorithm to solve this problem is presented in Figure 6. It uses the
notation ball(v,D) def= {u | d̃(v, u) ≤ D} to denote the ball in the distance metric d̃ which ignores
coordinates with ? entries (see Notation 3.2).

13



To analyze Algorithm Coalesce, we use use the following concept. For each vector removed from
B in Step 4b (denoted v, v′ in Figure 6), there is a unique vector that is added to B (denoted v∗ there).
Extending this relation transitively in the natural way, we define for each vector v ∈ A a vector rep(v)
that appears in the final output set. Using this concept, we have the following lemmas.

Lemma 5.1 For any input vector v ∈ V and any u ∈ A, d̃(v, rep(u)) ≤ dist(v, u).

Proof: By definition, the d̃ measure ignores ? entries. The lemma follows from the observation that
u and rep(u) agree on all coordinates except the ? coordinates in rep(u).

Lemma 5.2 For any v ∈ VT there exists a vector u in the output set such that d̃(v, u) ≤ 2D.

Proof: Observe first that there must be a vector v1 ∈ A such that ball(v1, D) ∩ ball(v,D) 6= ∅:
otherwise, the vector v would have been added to A in Step 2 since by assumption, |ball(v,D)| ≥ αn.
For that vector v1 we have dist(v1, v) ≤ 2D by the triangle inequality. Therefore, by Lemma 5.1,
d̃(v, rep(v1)) ≤ 2D.

We summarize with the following statement.

Theorem 5.3 The output of Algorithm Coalesce contains at most 1/α vectors. There is exactly
one vector v∗ in the output set which is closest to all vectors of VT , and d̃(v∗, v) ≤ 2D for any vector
v ∈ VT . Moreover, the number of ? entries in v∗ is at most 5D/α.

Proof: Regarding the size of the output set, note that by Step 2, each vector in A represents a disjoint
set of size at least αn vectors from a set whose total size is n, and hence B starts at Step 3 with size at
most 1/α; the claim about the size follows, since Step 4 may only reduce the size of B. The distance
claim follows from Lemma 5.2. To see uniqueness, suppose that there were vectors u, u′ ∈ B and
v, v′ ∈ VT such that u is the closest to v and u′ is the closest to v′. Then by the triangle inequality
d̃(u, u′) ≤ d̃(u, v)+ d̃(v, v′)+ d̃(v′, u′) ≤ 5D. But by the stopping condition of the while loop of Step 4,
d̃(u, u′) ≤ 5D iff u = u′. Finally, regarding the number of ? entries in v∗, note that Step 4 is performed
at most |A| ≤ 1/α times, and each iteration adds at most 5D ? entries.

Note that the output of Algorithm Coalesce is deterministic (the order in which vectors are
merged in Step 4 is immaterial). Since there is no probing and all players have the same input, all
players will have the same output.

5.2 Analysis of Large Radius

We summarize the properties of the main algorithm (Fig. 1) in the following theorem.

Theorem 5.4 Suppose that the algorithm is given 0 < α ≤ 1 and D ≥ 0 such that there exists a set
of players P ∗ ⊆ P with |P ∗| ≥ αn satisfying dist(v(p), v(p′)) ≤ D for any p, p′ ∈ P ∗. Then w.h.p., the
output vector w(p) of each player p ∈ P ∗ satisfies dist(w(p), v(p)) = O(D/α). The number of probes
performed by each player throughout the execution of the algorithm is O

(⌈
m
n

⌉
· log7/2 n

α2

)
.

To prove Theorem 5.4 we first prove the following immediate properties of the random partitions
of Step 1.
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Lemma 5.5 With probability at least 1 − n−Ω(1), the following properties hold for each 1 ≤ ` ≤
cD/ log n:

• |O`| = Θ(m log n
D ).

• |P`| = Ω( log n
α ).

• |P` ∩ P ∗| = Θ(α|P`|).

• For any two typical players p, p′ ∈ P` ∩ P ∗, distO`
(v(p), v(p′)) = O(log n).

Proof: By the Chernoff bound. For the partition of objects, note that the expected size of O` is
m log n

cD = Ω(log n) since D ≤ m always; for the partition of players, the expected number of players
in P` is n

cD/ log n ·
⌈

D
αn

⌉
= Ω( log n

α ). The expected number of typical players in P` is Ω(log n), and the
expected number of objects in O` on which any two typical players differ is at most D

cD/ log n = O(log n).

Proof of Theorem 5.4: Let 1 ≤ ` ≤ cD/ log n. By Lemma 5.5, with probability at least 1−n−Ω(1),
there are at least Ω(α|P`|) players from P ∗ in P`, and the distance between any two of them on O` is
at most λ

def= min(D,O(log n)). It therefore follows from Theorem 4.4 that with probability at least
1 − n−Ω(1), after Step 2 is done, distO`

(v`(p), v(p)) ≤ λ for any p ∈ P ∗ ∩ P`. Next we note that by
Theorem 5.3, after executing Step 3, there exists exactly one vector v` among all O(1/α) vectors of
B` which is the closest to any player p ∈ P ∗, and furthermore, that d̃O`

(v`, v(p)) ≤ O(log n). This
means that the preconditions for Theorem 3.2 hold, and hence, with probability at least 1 − n−Ω(1),
all players in P ∗ will output the vector composed of the v` components.

Regarding complexity, note that Steps 1 and 3 do not involve any probing. Consider Step 2. Let
us consider Algorithm Small Radius in context: denote by n′ and m′ the number of players and
objects (respectively) in the invocation of Small Radius. Algorithm Small Radius is invoked with
n′ = O(log n/α) players and m′ = O(m log n/D) objects in Step 2 of the main algorithm. (We have
n′

m′ ≥ n
m). Also, the confidence parameter is K = O(log n), and distance bound is D = O(log n). It

follows from Theorem 4.4 that after Step 2 of the main algorithm, the vector w(p) adopted by a player
p ∈ P` satisfies distO`

(v(p), w(p)) ≤ O(log n), and that the total number of probing rounds is at most
O
(

log n
α log3/2 n log n

)
= O

(
log7/2 n

α

)
. Next, consider Step 4. Algorithm Zero Radius is invoked with

n players and D/ log n < n objects. Since each logical probe of this invocation consists of O(1/α)
primitive probes, we conclude from Theorem 3.2 that the total number of probes per player in this
step is O( log n

α2 ).

6 Coping with unknown distance bound D

Our main algorithm (Figure 1) so far required knowing D for a given α. We now describe how to
extend it to the case of unknown α and D. First, note that for any given α and a player p, there
exists a minimal D = Dp(α) such that at least an α fraction of the players are within distance D from
p. So suppose for now that α is given and D is not known. In this case we run O(log n) independent
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versions of the main algorithm (sequentially or in parallel): in the ith version, it is run with Di = 2i.
We also run another version with D = 0. From all O(log n) resulting output vectors w(p), we select
(using procedure Choose Closest described in Section 6.1) the vector that appears to be closest to its
input vector v(p) and output it.

The search procedure increases the running time of the algorithm by an O(log n) factor, and
decreases the quality of the output by a constant factor, as compared to the algorithm that assumes
known α and D.

Next we discuss how to choose α. The idea is as follows. Let the running time τ be given. From τ ,
we can compute the smallest value ατ the algorithm can “afford” for the parameter α without breaking
the given time bound. Finally, using repeated doubling (and paying a constant factor increase in the
running time), we can lift of the requirement that the running time is given. More specifically, we run
the algorithm in phases, where in phase j, we run the algorithm with τ = 2j for all possible O(log m)
values of D, and then choose, using RSelect, the best result produced in this phase and output it.
This way we obtain an “anytime algorithm,” i.e., an algorithm whose output quality at any time t is
close to the best possible in t time units.

6.1 Solving Choose Closest without a distance bound

1. For any pair of distinct vectors v, v′ ∈ V in turn do:

(a) Let X be the set of coordinates on which non-? values for v and v′ differ.

(b) Probe randomly c log n coordinates from X (if |X| < c log n, probe all coordinates in X).

(c) Declare v′ “loser” if it disagrees with v(p) on 2/3 or more of the probed coordinates; declare v

“loser” if it disagrees with v(p) on 2/3 or more of the probed coordinates; otherwise none is declared
loser.

2. Output any vector with 0 losses.

Figure 7: Algorithm RSelect for the Choose Closest problem.

We give an alternative algorithm for solving Choose Closest, which we call below RSelect.
RSelect solves the same problem as Select, with a few important differences outlined below.

In Select, a bound D on the distance of v(p) to the set is given as input, and the number of
probes is linear in D. In RSelect, no such bound is given, and the number of probes per input
vector is O(log n), irrespective of the distance between the vectors. On the other hand, Select is
deterministic and guaranteed to produce the closest vector, while RSelect is randomized, and is only
guaranteed w.h.p. to be close to the closest vector.

Pseudo-code for the Algorithm RSelect is given in Figure 7, and its properties are summarized
in the theorem below.
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Theorem 6.1 Let V be a set of equal-length vectors over {0, 1, ?}, and fix a player p. Let D =
min

{
d̃(v(p), v) | v ∈ V

}
. With probability at least 1− n−Ω(1), Algorithm RSelect outputs a vector u

such that d̃(u, v(p)) = O(D). The number of probes executed by RSelect is O(|V |2 log n).

Proof: The complexity bound is obvious. For correctness, let u0 be the vector in V which is closest
to v(p). By the Chernoff bound, the probability that u0 loses against any other vector is 1− n−Ω(1).
Therefore there is at least one vector with 0 losses (w.h.p.). Also, if d̃(u′, v) ≥ cD for some u′ ∈ V ,
then the probability that u′ is declared a loser against u0 is also 1−n−Ω(1). Hence only a vector whose
distance from v(p) is at most O(D) may have 0 losses. The result follows.
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