Independent Sets in Hypergraphs with
Applications to Routing Via Fixed Paths

Noga Alon?, Uri Arad?, and Yossi Azar®

! Department of Mathematics and Computer Science, Tel-Aviv University.
noga@math.tau.ac.il t

2 Dept. of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel.
uria@math.tau.ac.il

3 Dept. of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel.
azar@math.tau.ac.il }

Abstract. The problem of finding a large independent set in a hyper-
graph by an online algorithm is considered. We provide bounds for the
best possible performance ratio of deterministic vs. randomized and non-
preemptive vs. preemptive algorithms. Applying these results we prove
bounds for the performance of online algorithms for routing problems
via fixed paths over networks.

1 Introduction

The problem of finding the maximum independent set in a graph is a funda-
mental problem in Graph Theory and Theoretical Computer Science. It is well
known that the problem is N P-hard ([18]), and that even the task of finding a
rough approximation for the size of the maximum independent set is N P-hard
([4]). The intensive study of this problem includes the design and analysis of ap-
proximation algorithms ([10], [3]) and the investigation of online algorithms. The
performance ratio of such an algorithm is the (worst case) ratio between the size
of the maximum independent set, and the size (or expected size, when dealing
with a randomized algorithm) of the independent set found by the algorithm.
In the online version of the maximum independent set problem the input
graph is not known in advance, and the vertices arrive online. Here each vertex
arrives with its incident edges towards previously presented vertices and the
algorithm has to make an online decision if to add the vertex to the independent
set. The adversary has the freedom to build the graph in any way he chooses.
The online algorithms can be deterministic or randomized. In addition, they
can be non-preemptive or preemptive, where a preemptive algorithm may discard
previously selected vertices (but may not pick a vertex that has already been
discarded). This results in four basic online variants of the problem.

! Supported in part by the Israel Science Foundation, and by a USA-Israel BSF grant.
! Research supported in part by the Israel Science Foundation and by the US-Israel
Binational Science Foundation (BSF).

Here we extend the study of the online independent set problem from the
domain of graphs to that of hypergraphs. We consider the case of k-uniform
hypergraphs, where the hypergraph is not known in advance, and vertices are
presented along with their edges. The first part of the paper contains lower and
upper bounds for the performance ratio (usually called the competitive ratio) of
online algorithms for these problems.

Besides being interesting in their own rights, the results on the performance
of online algorithms for the hypergraph maximum independent set problem have
nice applications in obtaining lower bounds for the performance of online algo-
rithms for routing over networks via fixed paths. These applications are obtained
by an on-line reduction, a notion that differs from the usual reduction and works
in the online setting.

In the online routing problems considered here a network graph is given in
advance and the algorithm is presented with requests for calls over given paths
in the network. We refer to the throughput version of the problem in which each
call is accompanied by a required bandwidth, and must be either allocated this
bandwidth, or rejected. The goal is to maximize the weighted number of calls
(that is, the total bandwidth) accepted by the network. Routing received a lot
of attention recently with various results. We explore the relation between the
hypergraph independent set problem and the routing problem, obtaining lower
bounds for the performance of online algorithms for both. This relation also
captures randomized and preemptive algorithms.

1.1 Independent sets in graphs and hypergraphs

The offline version of the problem is defined as follows. Given a hypergraph
G = (V, E), find a maximum subset of V' such that the vertex induced subgraph
on it does not contain any edge.

In the online version of the problem, vertices are presented one by one along
with edges which connect them to previously presented vertices. The online
algorithm must decide for each vertex, as it is presented, whether to accept it
or not. The accepted set must induce an independent set at all times. The goal
is to maximize the size of the selected set.

We consider deterministic or randomized algorithms. Our discussion will al-
low both preemptive and non-preemptive algorithms. In the preemptive version
of the problem, the algorithm may discard previously selected vertices. However,
a vertex which has been discarded, at any time, can not be returned to the set.

Deterministic, non-preemptive algorithms for the online graph independent
set problem have been considered before. A well known folklore result states
that any deterministic algorithm has a competitive ratio £2(n) when the graph
is not known in advance. Here we provide tight bounds for the competitive ratio
of deterministic non-preemptive, randomized non-preemptive and deterministic
preemptive algorithms for graphs as well as for hypergraphs. We also obtain
upper and lower bounds for the randomized preemptive case. Note that our
upper bound for the randomized preemptive case for hypergraphs is obtained
using a polynomial time algorithm, and its performance bound matches the

bound of the best known polynomial time approximation off-line algorithm that
can be obtained using the methods of [9] (see also [17], [3]). To the best of our
knowledge, this is the first online algorithm for the hypergraph independent set
problem that achieves sub-linear competitive ratio. Note that by the result of
[16] following [4], one cannot hope to obtain a much better bound even by an
off-line polynomial time algorithm, unless NP have polynomial time randomized
algorithms.

It is interesting to note that our polynomial time algorithm does not rely
on the special properties of independent sets in uniform hypergraphs, but on
the fact that being an independent set is a hereditary property. A property of
subsets of a universe U is hereditary, if for every subset A C U that satisfies it,
every subset of A has the property as well. Hence, the same algorithm and upper
bound hold for any hereditary property. In particular the upper bound holds for
independent set in arbitrary hypergraphs, which are not necessarily uniform.

A related version of the online independent set problem deals with the model
in which a graph (or a hypergraph) is known in advance to the algorithm, and
a subset of vertices of it is presented by the adversary in an online manner. The
goal here is also that of finding a large independent set, and the performance
is measured by comparing it to the maximum size of an independent set in
the induced subgraph on the presented vertices. It is quite easy to show that
an §2(n°) lower bound holds for deterministic algorithms when the graph is
known in advance where ¢ < 1 is some fixed positive number. Bartal, Fiat and
Leonardi [8] showed that an §2(n®) lower bound still holds when randomization
and preemption are allowed.

1.2 Routing via fixed paths

Our results for the online hypergraph independent set problem can be applied
in the study of the problem of (virtual circuit) routing over networks. Here the
network graph is known in advance, and each edge has a known capacity. The
algorithm is presented with requests for calls over the network with a certain
required bandwidth. The algorithm either allocates this bandwidth on a path or
rejects the call. The goal is to maximize the throughput (total bandwidth) of the
accepted calls. Clearly, one may allow to use randomization and preemption. In
the preemptive case accepted calls may be preempted, but preempted or rejected
calls cannot be re-accepted. Obviously, calls preempted by an algorithm are not
counted for the value of the throughput of this algorithm.

Two different versions for routing via fixed paths can be considered. In the
first, the algorithm is presented with a request consisting of a source and a
destination node, and must assign a route with the required bandwidth over the
network to accept the call, while in the second version, each request includes a
path to be routed over the network, and the algorithm may only decide to accept
or reject the call.

There are numerous results for the virtual circuit routing problem for both
versions (for surveys see [11, 15]). The competitive ratio of any deterministic
(non-preemptive) algorithm has been shown to have an 2(n) lower bound when

the bandwidth request could be as large as the capacity. On the other hand, an
O(log n)-competitive deterministic routing algorithm has been shown for general
networks when all bandwidth requirements are bounded by the network capacity
over logn [2].

A lot of research has been invested to overcome the small capacity require-
ments for special networks such as lines, tress, meshes [13, 14, 7, 5, 6, 12, 1].
However, the problem of deciding whether randomized or preemptive algorithms
can achieve poly-logarithmic bound for large bandwidth requests over general
networks remained open. A major step has been taken by [8] that showed an
2(n°) lower bound for randomized preemptive online routing algorithms on gen-
eral networks. Their lower bound holds for requests of maximal bandwidth, i.e.
unit bandwidth for each request in a unit capacity network. The lower bound
was proved by a reduction from the online maximum independent set problem
in a known graph to the problem of routing calls over a network. The reduction
does not extend for unit bandwidth and capacity k networks. In fact, it is still
a major open problem to show a lower bound even for capacity 2.

Interestingly, we show a reduction between the independent set problem with
an unknown graph and the fixed paths routing problem. Our reduction does
extend for the case of capacity k. Specifically, we show a reduction from the
independent set problem in a k uniform hypergraph to the fixed paths routing
problem in a network of capacity k — 1. This enables us to obtain lower bounds
for the latter problem by using our lower bounds for the performance of online
algorithms for the hypergraph independent set problem. The reduction holds
also for randomized and preemptive algorithms.

Our result covers the gap between the known results for unit bandwidth
and logarithmic bandwidth by giving a lower bound that approaches the known
results as the bandwidth grows from 1 to logn.

1.3 The presented results
We show the following,

— For the Independent Set problem in k-uniform hypergraphs with n vertices,
e A O(%) tight lower bound for the competitive ratio of deterministic,
deterministic preemptive or randomized non-preemptive algorithms.
e An Q(’%/z) lower bound for the competitive ratio of randomized pre-
emptive algorithms.
e An O(lo’;n) upper bound for the competitive ratio of randomized pre-
emptive algorithms.
— For the fixed paths routing problem over a network of N vertices with ca-

pacity k — 1,

e An ﬂ(%ﬂ‘) lower bound for the competitive ratio of deterministic, de-
terministic preemptive or randomized non-preemptive algorithm.
e An .Q(Nl/k(m) lower bound for the competitive ratio of randomized pre-

emptive algorithms.

2 Independent sets in k-uniform hypergraphs

As mentioned in the introduction, the algorithmic problem discussed in this
section is the following. Given a k-uniform hypergraph G = (V, E), with V =
{v1,v2,...,vn} and E C 2V (Ve € E, |e| = k), find a subset V' C V of maximum
cardinality such that for all v;,, vi,,..., v, € V' (vi;,viy,...,0,) ¢ E.

In the online version, the vertices are presented one by one, along with the
edges which connect them to previously presented vertices.

2.1 A tight lower bound for online deterministic or randomized
algorithms

Since G is a k-uniform hypergraph, any set of k—1 vertices forms an independent
set. Therefore an upper bound of %5 =O(%) is trivially achievable. We now
prove an £2(%) lower bound.

Theorem 1. Any deterministic or randomized non-preemptive algorithm for the
hypergraph independent set problem in a k-uniform hypergraph on n vertices has
a competitive ratio 2(%).

Proof. We use the online version of Yao’s lemma by evaluating the performance
of deterministic algorithms on a probability distribution on the inputs. Define
the following probability distribution on the input sequences:

— Vertices are presented in pairs.

— One vertex of each pair will be selected randomly and marked as a “good”
vertex, the other vertex will be marked as “bad”.

— A set of k vertices containing a vertex from the current pair is an edge iff it
contains at least one “bad” vertex from a previous pair.

Clearly, once the online algorithm picked one “bad” vertex, it can no longer
pick more than k — 2 additional vertices. Note that, crucially, the two vertices
in each pair are indistinguishable when they are presented. Therefore, whenever
the online algorithm picks a vertex, the probability it is “bad” is %, regardless
of the history. The expected number of vertices the algorithm picked until the
first “bad” vertex is picked, is 2. Hence the expected size of the independent set
it finds is at most 2+ (k — 2) = k. The offline algorithm, on the other hand, can

always pick all “good” vertices, yielding a competitive ratio of £2(%).
2.2 A tight lower bound for online deterministic preemptive
algorithms

Theorem 2. Any deterministic preemptive algorithm for the hypergraph inde-
pendent set problem for k-uniform hypergraphs on n vertices has a competitive
ratio 2(%).

Proof. We define the following input sequence:

— Vertices are presented in steps. In each step there are 2k — 2 vertices such
that any subset of k of them is an edge.

— At most k — 1 vertices from each step will be selected as “bad” vertices, all
the other vertices will be marked as “good”.

— A set of k vertices that contains vertices from the current step and previous
steps is an edge if it contains at least one “bad” vertex from a previous step.

The deterministic algorithm may choose at most k—1 vertices from each step.
The adversary will mark them as “bad” and all other vertices (at least £ — 1) as
“good”. Therefore all the vertices which may be selected by the online algorithm
are “bad”, and may be replaced, by preemption, only by other “bad” vertices.
By the construction of the sequence the online algorithm may hold a maximum
of k— 1 vertices at any time without having an edge (at most k£ — 1 from one step
or at most k — 1 from several steps). However, the optimal algorithm will collect
all “good” vertices, thus creating an independent set of at least 7 vertices.

2.3 A lower bound for online randomized preemptive algorithms

We prove a lower bound of Q(%) for the competitive ratio of any randomized
preemptive on-line algorithm. We make use of Yao’s lemma to establish a lower
bound for any deterministic algorithm on a given probability distribution, thus
yielding a lower bound for the randomized case.

Theorem 3. Any randomized preemptive on-line algorithm for the online in-
dependent set problem for k-uniform hypergraphs on n vertices has competitive

ratio ﬂ(%)

Proof. Define the following probability distribution on the input sequences. Each
sequence will be constructed of vertices, presented in steps. Each step consists
of [vertices, with a total of n vertices in all steps. Each step will be generated
according to the following distribution:

— At step j, | vertices are presented such that any subset of k& of them is an
edge.

— One vertex chosen uniformly at random will be marked as a “good” vertex,
while all others will be marked as “bad”.

— A set of k vertices that contains vertices from the current step and previous
steps is an edge iff it contains at least one “bad” vertex from a previous step.

For the proof, we reveal at the end of each step, which is the “good” vertex,
thus giving the algorithm the opportunity to immediately discard all “bad”
vertices, at the beginning of the next step. Note that all the vertices in each step
look indistinguishable given all the history since they participate in exactly the
same edges. Thus, there is no way for the algorithm to distinguish between the
“good” and the “bad” vertices before the step ends. Therefore, at the end of
each step, the algorithm may hold any number of “good” vertices from previous
steps, plus a set of at most &k — 1 additional vertices. Some of these additional

vertices may be “bad” vertices from previous steps, and some may belong to the
current step. The probability of the algorithm to select each “good” vertex in
a step is at most %, regardless of previous selections. The expected benefit of
the algorithm is thus:

kE—1 k
E(ON)g%-T—Hc—lg 7—2+k
On the other hand, the optimum algorithm OPT may pick all the “good”
vertices, giving a benefit of at least 7. Choosing, optimally, I = y/n we get a

competitive ratio of ﬂ(%)

2.4 A sublinear upper bound

Here we present a randomized, preemptive algorithm for the independent set
problem in an arbitrary (not necessarily uniform) hypergraph and show that its
competitive ratio is O(n/logn). The algorithm also runs in polynomial time.

Given an input sequence of n vertices, the algorithm divides the sequence
into groups of y vertices each. Each of these groups will be called a phase. At
the beginning of each phase we uniformly select at random £ distinct vertices
of that phase. During the phase we pick all selected vertices, as long as they
induce an independent set. If they do not induce an independent set, then the
phase fails, and we drop all the vertices but one. If the phase succeeds we stop.
Otherwise, we start another phase and replace the one remaining vertex with
the first selected vertex of the next phase. We assume that the portion of the
maximal independent set size, z, is known in advance (i.e. the set contains n/z
vertices). Later we use an appropriate weighted version of classify and randomly
select to relieve this restriction.

Claim. For each 4 < z < logn define § = ﬁgg"—z and y = 4Bz. Then our

algorithm picks an independent set of size 8 with high probability, or there is
no independent set of size 7 in the graph.

Proof. We assume that there is an independent set in the graph, consisting of
at least 7 vertices. We distinguish between phases with a lot of vertices from
the set, and those with few vertices from the independent set. Phases with more

than Z vertices are good phases. There are at least 2:—y good phases, otherwise

the total number of vertices in the independent set is less than 2:—y ‘y+ ’;1 =1

in contradiction to the size of the independent set. From each good set we select

B vertices at random. Since y = 48z, each of these vertices has a conditional
probability greater than y/2+_ﬂ = ﬁ of being a vertex from the independent
set, given that all the previously selected vertices are from the independent set.

Therefore the probability of failure is less than 1 — (ﬁ)ﬂ, for each good phase.

Since we have 32y good phases, the total probability of failure is bounded by

(1 - (ﬁ)ﬂ) 7. As 8= ﬁg;—m and y = 40z, we get that the probability of failure

is less than

1 ﬁ 1 ﬁ _nl/2 0.49
—\8 _ - ey -n
(1-r) 7 < (1-im) T < B <

Theorem 4. There exists a randomized preemptive algorithm which achieves
a competitive ratio of O(@) for the independent set problem in an arbitrary
hypergraph on n vertices.

Proof. We use classify and randomly select. Divide the range of from 4 to logn
into classes by powers of two, and assign a probability to each such class. For
the class of 217! < z < 2! we assign probability proportional to %
Using the above algorithm for the chosen class we get an algorithm for which:

— If OPT(0) < Z%, then ON(c) > 1 and the competitive ratio is at most

n — logmn?
Togn*
— IfOPT(0) = 2 > 2., then E(ON(0)) > 2(*£2). O(j%2) = 2(*%"), and

again the competitive ratio is at most O(lo’;n).

Note that if the length of the sequence is unknown we may use a technique
similar to the standard doubling techniques by selecting an initial value for n and
then squaring its value if the sequence turns out to be too long. Squaring ensures
that only a small portion of the independent set will be processed using a wrong
value of n, while having the wrong value for n (by at most a power of 2) will
only add a constant factor to the competitive ratio. To avoid the sequence from
ending just as we update the value of n, we use a simple boundary smoothing
technique, such as randomly selecting a multiplicative factor between 1 and 2,
and multiplying the updated value by this factor.

3 Routing via fixed paths in constant capacity networks

We next show a reduction from the independent set problem for k-uniform hy-
pergraphs to routing with fixed paths over a k¥ — 1 bandwidth network. The
reduction step translates vertices into paths over the given graph, while making
sure that any hyperedge results in an inconsistent set of calls. The reduction
yields lower bounds for the routing problem.

Note that while the hypergraph was unknown to the algorithm in the inde-
pendent set problem, the network structure is known in advance in the case of
routing. The process of adding a new (unknown) vertex of the hypergraph while
revealing the edges which connect it to previously presented vertices, corresponds
to the process of presenting a new path, to be allocated over the network.

A vertex v is called the completing vertez of an edge e, if all the other vertices
of e were presented before v, and thus the edge e was revealed at the appearance
of v.

3.1 The reduction step

Let G = (V, E) be a k-uniform hypergraph, with V = {c1,¢a,...,¢cn}, and as-
sume the vertices are presented in this order. We construct a graph G' = (V', E'),
where each edge has capacity k£ — 1 and a set of paths P = {p1,p2,...,DPn}, such
that

1. Each vertex ¢; € V corresponds to the path p;.
2. For every set of paths p;,, pi, - - -, Pi,, there exists an edge e € E’ such that
e € p;;,Vj if and only if (¢;,, ¢i5, ..., ¢i,) € E.

Note that the reduction we present is an on-line reduction, and not a standard
reduction. In the on-line reduction the network, and the paths are built as the
algorithm advances, without knowing what are the actions of the algorithm, and
how the sequence will continue, while in a regular “offline” reduction the whole
sequence in known in advance. Moreover, in a standard reduction, any input
sequence might result in a completely different image, even if the sequences have
a common prefix. In an on-line reduction, on the other hand, we must allow
any prefix to be completed in every possible way without restricting it by the
reduction process itself.

G’ consists of 2n+2 (}) vertices, and 2n(}) + (Z)z edges. First we construct
a graph with (Z) independent edges. Each edge has a unique label (i1, %2, . . ., %)
where i; < 4;41V7, ¢ is called the last coordinate in the edge label. We refer
to these edges as restricting edges. We assign a left and a right vertex to each
restricting edge. The right end of each edge is connected to the left end of every
other restricting edge, we refer to these edges as connecting edges. We then add
two sets of vertices s; and t; 2 = 1...n with s; connected to all left ends, and %;
connected to all the right ends (see Figure 1).

For each vertex ¢; we assign the following path p;; starting from s;, we pass
through all edges containing ¢ in their label not as their last coordinate, and
through all the edges labeled (1,4%2,...,%) with ¢ as the last coordinate of the
label if and only if (¢;,, iy, -..,¢i) € E. Note that ¢; is the completing vertex
of the edge (ci,, ¢iy, - --,¢i). Finally we connect the last edge to the vertex ¢;.
Starting from s;, the path will enter each edge through its left vertex, and leave
through its right vertex.

To complete the reduction we prove the following lemma,

Lemma 1. In the resulting graph, for every set of paths p;,, pi,,...,Di,, there
ezists an edge e € E' such that e € p;,,Vj if and only if (c;,,ci,,...,ci,,) € E.

Proof. We first show that each connecting edge is used by at most k — 1 different
paths. Each path passing through a connecting edge must pass through the
restricting edges connected to it. A path p; uses a certain restricting edge only
if its index is one of the coordinates in the label of that edge, but two restricting
edges may share at most k¥ — 1 coordinates. Thus no connecting edge is used
more than k& — 1 times.

Therefore, we limit our attention to restricting edges. Consider the paths
going through the restricting edge e € E' whose label is (71,42, ...,%). All the

10

(1.2,3.....k-1, k)

(123 k lk+l‘f

- P
Phe - ,,4 /

(123 k 1k+2‘f

s -
s

2 (123... kk+1)

(n-k+1.....n-2,n-1,n)

Fig. 1. The structure of G'. Labeled edges are the restricting edges, dashed lines rep-
resent connecting edges.

paths pi,,pi,,...,Pi,_, pass through the edge, as their index is not the last
coordinate in the edge label. Therefore, all edges are used to their maximum
capacity by the paths corresponding to the first £ — 1 coordinates in their label.
According to our construction, the last path p;, goes through this edge if and
only if (¢i,, ¢y, - - -, €y,) € E, thus creating an inconsistency.

3.2 The resulting lower bounds

Theorem 5. The following lower bounds hold for the online routing problem
with fized paths, over a network with N vertices and constant capacity k — 1.

— Any deterministic, deterministic preemptive or randomized non-preemptive
N1/)

on-line algorithm has competitive ratio 2(~

— Any randomized preemptive on-line algomthm has competitive ratio £2(Nl/k(zh)).
Proof. By the above lemma, any online algorithm for the fixed paths routing
problem over a network with capacity k — 1, is also an algorithm for the inde-
pendent set problem over a k-uniform hypergraph. Each path selected matches
a vertex in the hypergraph, and vice-versa. Moreover, any independent set in
the hypergraph defines a set of consistent paths in the network, and any set of
consistent paths defines an independent set. Therefore, any algorithm(online or
offline) which achieves a value of A(c) for the network routing problem, may
be used to build an independent set of the same size in the hypergraph. Thus,
any lower bound on the competitive ratio for the independent set problem for a

11

k-uniform hypergraph with n vertices, is also a lower bound for the competitive
ratio for the routing problem on a k — 1 capacity network with N = @(n*)
vertices.

Using the lower bounds found for the k-uniform hypergraph problem, we get
the following set of lower bounds:

— The competitive ratio of any deterministic, deterministic preemptive or ran-
domized non-preemptive algorithm is £2(%) = Q(%ﬁ .
— The competitive ratio of any randomized preemptive on-line algorithm, is
nll/?

Q) = o,

Note that the lower bound becomes smaller than log N for k = ©(log N). This
conforms with the O(log N) competitive algorithm of [2] for k = @(logn).

References

[1] R. Adler and Y. Azar, Beating the logarithmic lower bound: randomized preemp-
tive disjoint paths and call control algorithms, Proc. 10th ACM-SIAM Symp. on
Discrete Algorithms, 1999, pp. 1-10.

[2] B. Awerbuch, Y. Azar, and S. Plotkin, Throughput-competitive online routing,
34th IEEE Symposium on Foundations of Computer Science, 1993, pp. 32—40.

[3] N. Alon and N. Kahale, Approzimating the independence number via the -
function, Math. Programming 80 (1998), 253-264.

[4] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and
intractability of approzimation problems, Proc. of the 33rd IEEE FOCS, IEEE
(1992), pages 14-23.

[5] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén, Competitive non-preemptive
call control, Proc. of 5th ACM-SIAM Symposium on Discrete Algorithms, 1994,
pp. 312-320.

[6] B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani, On-line admission control
and circuit routing for high performance computation and communication, Proc.
35th IEEE Symp. on Found. of Comp. Science, 1994, pp. 412-423.

[7] A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and B. Schieber, Bandwidth
allocation with preemption, Proc. 27th ACM Symp. on Theory of Computing,
1995, pp. 616-625.

[8] Y. Bartal, A. Fiat, and S. Leonardi, Lower bounds for on-line graph problems
with application to on-line circuit and optical routing, Proc. 28th ACM Symp. on
Theory of Computing, 1996, pp. 531-540.

[9] B. Berger and J. Rompel, A better performance guarantee for approzimate graph
coloring, Algorithmica 5(1990),459-466.

[10] R. Boppana and M. M. Halldorsson, Approzimating mazimum independent sets
by ezcluding subgraphs, BIT 32 (1992), 180-196.

[11] A. Borodin and R. El-Yaniv, Online computation and competitive analysis, Cam-
bridge University Press, 1998.

[12] R. Canetti and S. Irani, Bounding the power of preemption in randomized schedul-
ing, Proc. 27th ACM Symp. on Theory of Computing, 1995, pp. 606-615.

[13] J.A. Garay and L.S. Gopal, Call preemption in communication networks, Proceed-
ings of INFOCOM 92 (Florence, Italy), vol. 44, 1992, pp. 1043-1050.

12

[14] J. Garay, 1. Gopal, S. Kutten, Y. Mansour, and M. Yung, Efficient on-line call
control algorithms, Journal of Algorithms 23 (1997), 180-194.

[15] S. Leonardi, On-line network routing, Online Algorithms - The State of the Art
(A. Fiat and G. Woeginger, eds.), Springer, 1998, pp. 242-267.

[16] J. Hastad, Clique is hard to approzimate within n'~¢, Proc. 37*"* IEEE FOCS,
IEEE (1996), 627 — 636.

[17] T. Hofmeister and H. Lefmann, Approzimating mazimum independent sets in
uniform hypergraphs, Proc. of the 23"¢ International Symposium on Mathemati-
cal Foundations of Computer Science, Lecture Notes in Computer Science 1450,
Springer Verlag (1998), 562-570.

[18] R. Karp, Reducibility among combinatorial problems, Plenum Press, New York,
1972, Miller and Thatcher (eds).

