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Linear expanders have numerous applications to theoretical computer science. Here we show 
that a regular bipartite graph is an expander ifandonly if  the second largest eigenvalue of its adjacency 
matrix is well separated from the first. This result, which has an analytic analogue for Riemannian 
manifolds enables one to generate expanders randomly and check efficiently their expanding proper- 
ties. It also supplies an efficient algorithm for approximating the expanding properties of a graph. 
The exact determination of these properties is known to be coNP-complete. 

1. Introduction 

Let G = (V, E)  be a graph. For  a subset X of  V put 

N(X) = {vCV: vxCE for some x~X}. 

An (n, d, c)-expander is a bipartite graph on the sets of  vertices 1 (inputs) and O (out- 
puts), where [I[=[Ol=n, the maximal degree of a vertex is d, and for every set 
XC=l of cardinality IXl=~<-n/2, 

(1.1) [N(X)I ~ (1 + c ( l  --c~/n)). ct. 

It is a strong (n, d, c)-expander if  (1.1) holds for all XC=I. A family of  linear expand- 
ers of density d and expansion c is a set {Gi}?=l, where G i is an (hi, d, c)-expander, 
ni--*~ and ni+l/nu-*l as i ~ .  

Such families are the subject of  an extensive literature. They form the main 
component  in the recent parallel sorting network of Ajtai, Koml6s and Szemer6di [2]. 
They also form the basic building block used in the construction of  graphs with spe- 
cial connectivity properties and small number  of  edges (see, e.g. [13]). An example of  
a graph of  this type is an n-superconcentrator (s. c.) which is a directed acyclic graph 
with n inputs and n outputs such that for every 1 <-r<-n and every two sets A of r 
inputs and B o f t  outputs there are r vertex disjoint paths from the vertices of  A to the 
vertices ofB.  A family of  linear s.c.-s of  density k is a set {G,}~=I where G, is an n-s.c. 
with ~_(k+o(1))n edges. Superconcentrators are relevant to computer science in 
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several ways. They have been used in the construction of graphs that are hard to 
pebble (see [21], [26], [27]), in the study of lower bounds ([32]) and in the establish- 
ment of time space tradeoffs for computing various functions ([1], [19], [31]). 

It is not too difficult to prove the existence of a family of strong linear expan- 
ders (and hence of a family of linear s.c.-s) using the so-called "probabilistic construc- 
tion". In fact, one can show that almost every graph in a properly chosen class of 
graphs (e.g., the class of all d-regular bipartite graphs on n inputs and n outputs, for 
d_~3) is a strong (n, d, c)-expander for some c=c(d). (See, e.g. [7], [13], [24], [25]). 
However, an explicit construction is much more difficult. The first such construction 
was given by Margulis [22] and improved in [17], where a family of strong linear 
expanders of density 7 and expansion (2-1/3)/2 is explicitly described and used to 
construct a family of linear s.c.-s of density-~ 271.8. See also [3, 4] for a more general 
construction and for better s.c.-s. 

The explicit construction is, however, a rather poor substitute for the proba- 
bilistic one. Thus, for example, almost every 7-regular bipartite graph has better 
expansion properties than the one constructed in [17]. Hence, it has been suggested 
by several authors (cf. [9]) to generate expanders randomly, and then check if the ge- 
nerated graphs have the desired expansion properties. However, as proved in [9], even 
the problem of checking if a given graph is an (n, d, 0)-expander is coNP-complete. 
Thus, the random generation method seems to be impractical. 

Our main result here implies that this method is, in fact, practical. We prove 
a very close relationship between 2(G) - -  the second smallest eigenvalue of a certain 
matrix associated with a graph G - -  and its expansion properties. For example we 
show that a regular graph G is a strong expander if and only if 2(G) is well separated 
from 0. The "if" part is not too difficult and is somewhat similar to a result of Tanner 
[30]. The "only i f "  part is much trickier and is the discrete analogue of a theorem 
of Cheeger [12] on Riemannian manifolds. In fact, we can prove this part (at least for 
3-regular graphs) by associating, as in [11], Riemannian manifolds with graphs and 
by using Cheeger's theorem. However, we prefer to give here a direct elementary 
proof that requires only combinatorial reasoning and linear algebra. Since there are 
several efficient algorithms to compute eigenvalues of matrices (see, e.g. [28]), one 
can really apply our results to generate expanders randomly and then check their 
expansion properties. 

Our methods are fruitful not only for generating expanders randomly. We also 
show here how they supply an efficient way of generating graphs with higher amount 
of expansion from expanders with weaker expansion properties. In [3] we combine 
similar methods with results of Kazhdan on group representations to obtain many 
new examples of strong linear expanders. In [5] we apply these methods together with 
the Fourier analysis method of [17] and the methods of [20] to obtain better explicit 
expanders than those previously known which enable us to construct an explicit fa- 
mily of linear s.c.-s of density asymptotic to 122.74, better than the previous known 
constructions. Finally, we have recently found a way of applying our methods to the 
problem of designing fault tolerant processor arrays, discussed in [29] . This will 
appear somewhere else. 

For our purposes, it seems convenient to deal with magnifiers, the nonbipartite 
analogues of expanders. These are defined in Section 2, where we also establish the 
close relationship between eigenvalues and magnifiers. In Section 3 we observe that 
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this relationship implies a similar one between eigenvalues and expanders. In Section 
4 we show how to generate expanders (and magnifiers) randomly. As a byproduct we 
obtain some new results on eigenvalues of random regular graphs. Section 5 contains 
some concluding remarks and open problems. 

2. Magnifiers, eigenvalues and enlargers 

An (n, d, c)-magnifier is a graph G-~(V, E) on n vertices, with maximal degree 
dsuch that for every set X ~  V that satisfies IXl<-n/2, [N(X)-X[>--c .IX] holds. 
The (extended) double cover of a graph G = (V, E), where V= {vl, v2 . . . . .  v, } is the 
bipartite graph H o n  the sets of inputs X--- {xl . . . . .  x,} and outputs Y= {yl . . . . .  Y,} 
in which xiEX and y jEY are adjacent iff i= j  or vivsEE. (Notice that fits is the 
usual double cover of G plus the perfect matching (x i Yi)~=l .) 

The following obvious lemma reveals the tight connection between magnifiers 
and expanders. 

Lemma 2.1. The double cover of  an (n, d, c)-magnifier is an (n, d + l ,  c)-expander. II 

In this section we show the close relation between eigenvalues and magnifiers. 
Let G=(V,E)  be a graph, lVl=n. The adjacency matrix A~=(a,v)~cv, o~v of  G 
is a 0 - I  matrix where a ,v=l  iff uvEE. Put Q~=diag (d(v))v~v-As, where d(v) 
is the degree of the vertex vE V. Let 20_21-z(G)=22 . . . .  <-2,_1 be the eigenvalues 
of Q~ each appearing according to its multiplicity. One can easily check that 20=0 
and the constant vector is its corresponding eigenvector. Moreover, 2~=2(G)=>0 
with equality iff G is not connected. The matrix QG is commonly used in graph theory 
in finding the number of spanning trees of G (see, e.g., [8, Ch. 6]) and its spectrum was 
investigated by various authors ([3], [6]; [14], [15]). It is, in some sense, the discrete 
analogue of the Laplace operator and the main results we obtain here have analytic 
analogues to Riemannian manifolds. Here we restrict our attention to 2=2(G), 
which turns out to describe the expansion properties of G. An (n, d, s)-enlarger is a 
graph on n vertices with maximal degree dand 2->s. 

The following lemma is proved by Milman and the present author in [3] using 
elementary linear algebra. 

Lemma 2.2. ([3, Theorem 2.5]) Let G=(V, E) be a graph on n vertices and put 
2=2(G). Suppose A, B~= V are disjoint sets of  vertices and let Q=o(A, B ) > I  be the 
distance between them. I f  d is the maximal degree of  a vertex of  G, a= l A ]In and 
b = ]B [In then 

b < - ( 1 - a )  l+-dao  • I 

(Actually we can prove a slightly stronger result, but we omit it to avoid too compli- 
cated statements.) 

Corollary 2.3. Ever), (n, d, s)-enlarger is an (n, d, c)-magnifier, where c=2e/(d + 2s). 

Proof. Let G=(V, E) be an (n, d, s)-enlarger. Suppose XC= V, IX[<=n/2. We have 
to show that IN(ag-xW>=clXl. By Lemma 2.2, with A=X,  B = V - ( X U N ( X ) ) ,  



86 N. ALON 

O=o(A, B ) ~ 2  and 

1 

Thus 

2 = 2 (G)_-> e we obtain 

IXl + IN(X)-Xl = ~ (l ----~-)/(1 +~- ~ - "  2 2 ) 

IN(X) - X 1 = , 
d+4~  IX[ 

n 

2g 
and for [Xl~n/2 this implies ] N ( X ) - X I ~  d+2e IXl=clXt' as needed. [ 

The last corollary states that every enlarger is a magnifier. Our next lemma, 
which is the main result of this section, shows that the converse is also true, namely, 
that a magnifying graph G has a relatively large 2=).(G). 

Lemma 2.4. Let G=(V, E) be an (n, d, c) magnifier. Then ).(G)~c2/(4+2c2), i.e., 
G is an (n, d, ~)-enlarger, where e = c2/(4 + 2c~). 

Proof. Recall that 2 = 2 (G) is the second smallest eigenvalue of the symmetric matrix 
Q=Qa=diag(d(v))-Aa.  Let f :  V~R be the corresponding eigenvector. Since 
the eigenvectors of Q are orthogonal and the eigenvector of the 0-eigenvalue is 
(1, 1 . . . . .  1); 

f ( v )=O,  (and f ¢ 0 ) .  
v E V  

Put V ÷ ---{rE V: f (v)>0},  V- = V -  V +. Without loss of generality we can assume 
that 0 <  IV + [~n/2 (otherwise rep lacefhy  - f ) .  Let E(V +, V +) denote the set of 
all edges uvEE where u, vE V ÷. Similarly put E(V +, V - ) =  {uvEE: uE V +, vE V-I .  
We also define g: V ~ R  by 

[f(v) if vEV + 
g(v) = [0 otherwise. 

By the definitions of 2, f :  (Qf)(v)=)f(v) for all vE V. Hence 

(Qf)(v).f(v) 

Z f2(v) 
v E V  + 

However, 

(Of)(v).f(v) = .~ (d(v)f2(v) - • f(v)f(u)) = 
v6 v + vE V + uE N(v) 

= Z (f(u) --f(v)) ~ + Z f(u) .  (f(u) -f(v)) 
uv E E(V +, V + ) uvE E(V *,  V - )  

Clearly 

===" Z (g(u)--g(v)) ~" 
uvE E 

f2(v) = ,~ g2(v)= ,~  g2(v). 
v £ V  ÷ v E V +  v E V  



EIGENVALUES AND EXPANDERS 87 

Thus 

(2.1) 
Z (g(u)--g(v)) ~ 

Z 
v E V  

We now show that the magnifying properties of  G supply a lower bound to the 
right-hand side of inequality (2.1). This is done using the max-flow rain-cut theorem. 
Consider the network Nwi th  the vertex set {s, t }UXUY where s is the source, t is 
the sink and X =  V + , Y= V are disjoint sets of vertices. The arcs of our network and 
their capacities are given by : 

(a) For  every uE2" the arc (s, u) has capacity 1 +c. 
(b) For  every uEX, vE Y the arc (u, v) has capacity 1 if uvEE or u = v  and 

0 otherwise. 
(c) For  every vE Y the arc (v, t) has capacity 1. 

We claim that the value of the rain-cut of this network is (1 +c)  • IV + I. Inde- 
ed, the cut consisting of all the (s, u) arcs (uE V +) has this capacity. For  any other cut 
(7, put U= {uE V + ; C does not contain the arc (s, u)}. The set of neighbours of  U, 
N(U) in Y, satisfies by the magnifying properties of our graph, IN(U)I =>(1 +c)]U I. 
For every yEN(U) our cut must contain some arc incident with v, and all these arcs 
are distinct and have capacity 1. Hence the total capacity of C is =>(1 +c)] V + - UI + 
+[N(U)]=>(I +c)[V + ] proving our claim. By the max-flow min-cut theorem there 
exists an orientation E of  the set of edges E of  G and a function h: E ~ R  such that: 

(i) ONh(u,v)=<l for all (u,v)EE. 

(ii) Z h(u,t') = ~; 
if u ~ V  + 

~,; (u, v) E E otherwise 

(iii) ~ h(u,v)~  1 for all vEV. 
u;(u ,v)EE 

(2.2) 

It is easy to check that if g: V+R is the function defined above then 

h2(u, v)(g(u)+g(v)) 2 <- 2 Y~. he(u, v).(g=(u)+g2(v)) 
(u, r) E E (u, v) ~ E 

= 2 Z g 2 ( u ) ' (  Z h2(u,v) + Z h2(v,u)) ~ 
uE V v; (u,v) E E v;(v,u)E/~ 

and 

(2.3) 

<= 2 ( 2 + c  2) ~Y g2(u), 
u E V  

Z h(u,v)'(g~'(u)-g=(v)) = Zg2 (u ) ' (  2 h(u ,v)-  Z h(v,u)) >= 
(u,v) E E ~*~ V v; (n,v) E E v; (v,u) ~ E 

=>c Z g2(.). 
uEV 
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Combining inequalities (2.1), (2.2) and (2.3) with the Cauchy--Schwarz inequality 
we conclude that 

Z (g(u)- g(v)) 
uvE E 2 >  

X 
vE V 

.~ (g(u)-g(v)) 2" 
(u ,v)EE 

v E V  (tt, v)E E 

( ~ h(u,v)lgZ(u)-g2(v)l) 2 

(u,v)E E 

2.  (2 + c~). ( z~ g2 (v))2 
t,E V 

Z h2( u, v)(g(u)+g(v)) z 
(u ,v )EE  

h z (u, v) (g (u) + g (v)) 2 

2 h(u, v)(gZ(u)-g~(v)) 12 
I (~, v) ~ r, >= c2/(4 + 2C). 

J -- 4+ 2c~ z~ g2(v) 
vE V 

This completes the proof. II 

As mentioned above, the matrix Qa is the discrete analogue of the Laplace 
operator. There is a close relationship between Lemma 2.4 and its analytic analogue 
proved by Cheeger in [12]. However. the discrete version appears to be somewhat 
more complicated, since we do not deal here with continuous functions. This also 
seems to be the reason for the difference between the discrete estimate (c~/(4 +2c2)) 
and the analytic one (c2/4). We can, in fact, prove a somewhat weaker version of 
Lemma 2.4 (at least for 3-regular graphs), by associating, as in [11], Riemannian 
manifolds with graphs and by using Cheeger's theorem. 

It is also worth noting that the analytic analogue of Lemma 2.2 was proved 
in [18]. Here the main difference between the discrete version and its analytic analogue 
is the factor d corresponding to the maximum degree of a vertex of G. This difference 
seems to arise from the fact that there is no discrete analogue to the unique direction 
of the gradient. 

The content of Corollary 2.3 and Lemma 2.4 is summarized in the following 
theorem. 

Theorem 2.5. Every (n, d, e)-enlarger is an (n, d, c).magnifier, where c=2e/(d+ 2z). 
Every (n, d, c)-magnifier is an (n, d, e)-enlarger, where ~=e2/(4+ 2c2). Thus ,if a graph 
is an (n, d, c)-magnifier, one eat, prove e~ciently (by computing eigenvalues) that it is 
an (n, d, c')-magnifier, where c'=c~](c~ +d(2 +c~)). 1 

We conclude this section by showing how to apply Lemma 2.2 in order to 
generate graphs with (provably) strong magnifying properties from a graph G with 
a relatively small eigenvalue 2=2(G). The idea is the well known "iterated" cons- 
truction mentioned already in [22], but the estimate is better. 

Let G=(V, E) be a graph on a set V of n vertices with maximal degree d. 
Put 2=2(G) and suppose 2 is relatively small compared to d (which is the case in 
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the known constructions of magnifiers). Let X ~  V be a set of vertices with IX[ 
~n/2. By Corollary 2.3 

(2.4) IXUN(X), ~ ( 1 +  2d@22 ) IX ,. 

Suppose one wants stronger magnifying properties. For example suppose 
that a graph H is needed such that for every Xc_V, iX[<=n/2e the inequality 
]NH (X) U X] =>e iX] will hold. Let H be the graph on the set of vertices V in which 
u, vE V are joined if and only if their distance in G is ~ k =2 +d/(22). One can easily 
check, by applying (2.4) repeatedly, that Hhas the desired magnifying properties. The 
maximal degree of H can be, however, d(1 + ( d - l ) + . . .  +(d--1)k-1). In order to 
keep this degree as small as possible it is desirable to choose smaUer values of k. The 
next result Shows that, in fact, for the above example k = O (1/d-~)<<2 + d/(2;~) suffices. 
This result can also be deduced from Theorem 2.5 of[3]. 

Proposition 2.6. Let G=(V, E) be a graph on  n vertices with maximal degree d and 
2= 2(G). Let H be the graph on the set of vertices V in which u, vE V are adjacent iff 
the distance between them in G is ~:k. Then H is an (n, d', c')-magnifier where d' ~ 
-<-d(1 +.. .  + ( d - 1 )  k-l-) and 

c' = 7 2 ( k +  I)~). 
Proof. The proof is analogous to that of Corollary 2.3. Suppose X ~  V, IXl~n/2. 
We have to show that [Nn(X)-Xi>-_c'[X[. Put B= V-(XUNn(X)) .  Note that the 
distance between X and B in G is ->k + 1. By Lemma 2.2 

1 [ X [ + I N ( X ) - X I  
n 

and the desired result follows. | 

By the above proposition if e.g., k:(2-d/2 then for all IXl<-_n/2 
INn(X)UXI>=3 IXI/2. If a higher amount of expansion is needed we may use the 
previous argument to estimate the magnifying properties of "iterates" of H. Thus, 
e.g., k=2~2d/2 is enough to guarantee expansion of the form INn(X)UX]>= 
=>(9/4)[X[ for all [Xi<=n/3. This construction, together with Lemma 2.1, seems 
useful, e.g., in obtaining explicit expanders for the sorting network of [2], in which a 
relatively high amount of expansion is needed. 

3. Eigenvalues, expanders and magnifiers 

A connection between expanders and magnifiers has already been established 
in Lemma 2.1. As mentioned in the introduction, magnifiers are in a sense, the non- 
bipartite generalization of expanders. The following lemmas show that every strong 
expander is a magnifier and that every regular bipartite magnifier is a (strong) expan- 
der. These, together with Theorem 2.5 establish a close relationship between the ex- 
panding properties of a regular bipartite graph G and the value of 2(G), and will 
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enable us to generate random expanders, and check efficiently their expanding pro- 
perties. 

Lemma 3.1. Let G=(1, O; E) bean(n, d, c) strong expander. ThenG is a(2n, d, c/16)- 
magnifier. 

Remark. It is worth noting that the constant 1/16 can easily be improved. We made 
no attempt to find the best possible constant. Also note that without the word "strong" 
the conclusion of Lemma 3.1 does not hold. In fact, an (n, d, c) expander (c>0) 
need not even be connected and thus, certainly must not be a magnifier. An example 
of a disconnected (n, n - 1 ,  l)-expander is the disjoint union of KI,./~ and K,-~,3,/4, 
where K,, b denotes the complete bipartite graph with classes of vertices of sizes a 
and b. For every c '>0  this is not a (2n, n -  1, c') magnifier since if X is the set of 
vertices of the Ka,,/4, then [N(X) --XI =0. A similar example with bounded maximal 
degree d(independent of n) can also be given. 

Proof of Lemma 3.1. By definition every X~C=I satisfies 

(3.1) IN(X1)] ~ [X~]+c{l- [Xx[} " [ X 1 [ ' n  

Applying (3.1) to a set of size n/2 we conclude that c <=2. For every X2 ~ O, 
applying (3.1) to the set I -N(Xz)  we conclude that ]N(X~)]>-]X2[. Suppose 
X~ILJ 0 satisfies IX[ =<n. To prove our lemma we must show that 

C 
[N(X)- XI >= --~ IX[. 

Put X~ =XfqL X2=X(~ 0 and consider the following three possible cases: 

Case 1. IXll_-<lXo[ .(a-c/8). 
£ 

In this case IN(X) - X  I ~ IN(X~)I-IX~ I= > IX=I-lXx ]=>8 IX~ 1-->-i6- IXl. 

Case 2. lX2] (1-8l<lXxl<=n/2. 
In this case 

IN(X)--XI >= IN(X1)I- Ix2] 
3 c ~ 3 1 

C C 

=> --8 IXl => - ~  IXl. 

Case 3. IX1 ] =>n/2. 
In this case 

IN(X) XI>IN(X1)[ [Xz l>( l  2 }  n 
- = - = - t -  2 = - - . n ~  X[ >-i-~ IXl. 2 4 

This completes the proof. II 
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Next we show that a bipartite regular magnifier is a strong expander. Note 
that this is false without the regularity assumption. Indeed if G=(1, O; E) where 
I={il . . . . .  i,}, O={ol, 02 . . . .  , o,} and 

E = {(ij,o~): 1 <=j ~_ n/2}U{(im,o,): 1 ~ m <= n, n/2 < 1 <- n} 

then G is a (2n, n, 1/2) bipartite magnifier and for every c>0 G is not an (n, n, c) 
expander (since ]N({ij :j>n/2})[=l{i j :j>n/2}l. ) A similar example with bounded 
maximal degrees (independent of n) can be given. 

Lemma 3.2. Let G=(I,  O; E) be a d-regular bipartite graph with lI[=[Ol=n. I f  
G is a (2n, d, c)-magnifier then G is an (n, d, b)-strong expander where b= 
= 2 c / ( ( d +  1)(c + 1)). 

Proof. Suppose XC_L We must showthat 

(3.2) ,N(X)[ ~_ IX[+b ( I - ~ - I .  ,x,. 

Put Y=N(X) .  w= ]YI-  l X ] and consider the following two possible cases. 

Case 1. IXUYl=lxI+tYl<-n.  
By the magnifying properties of G, IN(XUY)- (XUY) I=IN(Y) -X]>= 

-~c(IXI + IYI)=c(21xI +w). Note that there are precisely d .  IXI edges joining verti- 
ces of X to vertices of Y, and hence precisely d(]Y ] - IX I) = dw edges joining vertices 
of Y to vertices in N ( Y ) - X .  Thus IN(Y)-X]~_dw. Combining these inequali- 

2c 
ties we conclude that dw>-c(2lXl+w), i.e., w--lN(X)I-]Xl>=d_c IXl => 

2c 
--> ( d + l ) ( c + l )  IX[ implying (3.2). 

Case2. IXl+lYl>n. 
Put Z = N ( Y ) - X ,  z = l Z  [. Asin Case 1, 

(3.3) z <= d( fYI-IXI)  = dw. 

Define T = ( 1 U O ) - ( Z U X U Y ) .  Clearly ]Tl~_n and one can easily check that 
N(T) - TC= Z. Thus, by the magnifying properties of G, 

z--Izl--> I N ( T ) - T I  >= ctZl = c ( 2 n - l X l - l Y l - I Z l )  = c ( 2 n - 2 1 X l - w - z ) .  

This implies 
C 

z _~ ~ ( 2 n - 2 [ X  I-w). 
c + l  

Combining the last inequality with (3.3) we obtain 

¢ 
dw >= ~ ( 2 n - 2 [ X I - w )  

c + l  
i.e., 

w = I N ( X ) I -  IXl = > 
2 c  

(d+ 1)(c+ 1) (n-IX[) 

implying (3.2). This completes the proof. II 

2c (1 --~-L) 
(d+ 1)(c+ 1) • Ixr, 
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Lemma 3.2 and Corollary 2.3 imply that if for a regular bipartite graph G, 
2(G) is well separated from 0, then G is a strong expander. One can derive a similar 
result with a somewhat better estimate from the main result of Tanner in [30]. We 
proceed to do this in the next lemma, which will be used in Section 4. 

Lemma 3.3. Let G=(I,  O; E) be a d-regular bipartite graph, where ]ll=]O[=n. 
Put 2 = 2 (G). Then G is an (n, d, e) strong expander, where 

c = (2d2-  22)/d 2. 

t ,=d andhence c>=2/d). (One can easily show that always ° < 

Proof. Let e=(C~o)ier, oeo be the n×n binary matrix whose rows and columns are 
indexed by the vertices of I and O, respectively, in which 

{~ if ioEE 

% = otherwise. 

One can easily check that if Q=  Qa is the Q-matrix of G defined in Section 2, then 

and that if 2' is an eigenvalue of d I - Q  so is -2". Hence the two largest and two 
smallest eigenvalues of d I - Q  are +__(d, d - 2 )  and thus the two largest eigenvalues 
of c r c  are d 2 and (d -2 )  2. Therefore, by [30, Theorem 2.1], if X~=I and ~= 
= l,V[/n then 

d z ( (2d2-A=)(1-~z) -1 
[N(X)I => ~(d~_(d_2)z)+¢d_2)  z I X] = 1 + d. , (2d; ._ ,~z) (1_~))  IX[ 

This completes the proof. Note that if X=c I, [X I= < n/2, we actually get 

= • I X [ .  I 

Combining Lemmas 2.4, 3.1 and 3.3 we obtain the following result, analogous 
to Theorem 2.5. 

Theorem 3.4. Let G=(I,  O; E) be a d-regular bipartite graph, where [ l l=lO]=n 
and 2 = ~ (G). 

(1) I f  G is an (n, d, e) strong expander then 2>-_e~/(lO24+2e 2) (i.e., G is an 
(2n, d, e2/(1024 +2e~))-enlarger). 

(2) I f  2 >=e (i.e., i f  G is a (2n, d, D-enlarger), then G is an (n, d, (2&-e2)/d ~) 
strong expander. 



EIGENVALUE~ AND EXPANDERS 93 

Thus if  G is an (n, d, c) strong expander, one can prove efficiently (by computing 
eigenvalues) that it is an (n, d, c') strong expander, where 

c , _  1 ( c 2 c 4 ) 
2d 1024+2c2 (1024+2c~)  2 ~ c2/(1032d). II 

The last inequality, in which we use the fact that c<-2, can easily be improved. 
We will be more careful with the constant in the next section, where we generate 
random expanders. 

4. Generating random expanders and magnifiers 

In view of Theorems 2.5 and 3.4 and the well known fact that almost every 
graph in a properly chosen class of graphs has strong expanding properties (see, 
e.g., [7], [13], [25]), it is clear that one can generate graphs randomly and check effi- 
ciently that they have the desired properties. We proceed to describe the expected 
expanding properties of such graphs. 

We will need the following result of Bassalygo [7]. (See also [13] for a similar 
result.) 

Lemma 4.I. Suppose 0 < ~ <  1//if< 1. Let d be an integer satisfying 

(4.1) a ~ H(a)+ H(ocfl) 
H(c 0 - ~/3H(1//~) ' 

where H ( X ) = - X  log~X--(1-X) log~( l -X)  is the bhTary entropy function. Let 
I and 0 be two sets of  vertices, Ill = ]O] = n ,  and let G be a random d-regular bipartite 
graph on the classes of vertices I and O, obtained by choosing randomly d permutations 
from I to O. Then, with probability approaching I as n tends to 0% G has the following 
properties: 

[For every X c= I of  cardinality IXt ~-~n, IN(X)I -~ /~ lXl ,  and, similarly 
(4.2) [for every Y c= 0 ofcardinality ]YI <- ~n, IN(Y)] _->/~]Y[. | 

Note that in fact the result of [7] guarantees only the first half of (4.2) with 
probability -~-1 but by symmetry the second half can also be guaranted. Note also 
that we allow multiple edges here. 

Suppose, now, that ~=(I/2)+(e/4) and /3=I+e,  where (1/2)+(~/4)(1 +e )<  
< 1. It is easy to see that in this case (4.2) implies that G is a (2n, d, e)-magnifier. 
Indeed, suppose X==IUO, ]Xl~-n. Put X I = X O L  X~=Xf)O. If X1, X,<=~n 
then IN(X)-X]~-I~xII-IX2I+I~x21-IXxI=~IXI, as needed. Otherwise we can 
assume, without loss of generality, that IXll>c<n=(1/2)+(e/4)n. But then IX~l<_- 
~_(1/2)-(~/4)n and 

(1 4) 4) IN(X)-X[  => IN(X1)-X~[ => (I+~) + n -  - n >~n --> ~IXl, 

as needed. Thus G is a (2n, d, e)-magnifier and by Lemma 2.4 2 =  2(G)~8~/(4+2e~). 
Therefore if dsatisfies (4.1) with ~fl<l ,  o~--(1/2)+(e/4), f l= l  +e, and if n is large 
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enough and G is chosen randomly as above, then almost certainly 

(4.3) 2(G) -> e2/(4+2e2). 

This can be checked efficiently, by computing the eigenvalue 2. (In the unlikely 
case that (4.3) fails to occur, one can generate another G.) If (4.3) is satisfied, then, 
by Lemma 3.3, G is guaranteed to be an (n, d, c)-strong expander, where 

(4.4) c >= (2d2(G)-)~(G)) ~ (4+2~2)d 2 2 d -  4~--~e ~- . 

Another possibility is to apply Corollary 2.3 to conclude that G is a (2n, d, c') 
magnifier with c'=22/(d+22) and then to apply Lemma 2.1 to construct from G its 
double cover that will be a (provably) (2n, d +  I, c') expander. If a higher amount of 
expansion is necessary one can use Proposition 2.6 to estimate the expanding proper- 
ties of "iterates" of G. 

We proceed to give one numerical example. Suppose e= I/8, a =(1/2)+(e/4), 
f l= l  +e, d=3.  One can easily check that these values satisfy (4.1). Hence, by the 
above discussion, almost every 3-regular bipartite graph G with n inputs and n outputs 
(chosen by 3 random permutations) is a (2n, 3, l/8)-regular magnifier. If G is such 
a graph then, by (4.3), 2(G)-~1/258, and thus, by (4.4), one can prove efficiently that 
G is an (n, 3, 0.0025) strong expander. Similar examples for d>3  can also be given. 

As a by-product of our methods we obtain some new results on the distribu- 
tion of eigenvalues of the adjacency matrices of random d-regular graphs. 

For fixed 0 < p <  1, let G be a random graph on a set V of n vertices in which 
every edge is chosen, independently, with probability p. Recall that the adjacent 
matrix of G is the n×n binary matrix Ao=(a,v)u,~Cv in which a,v=lc,,uv is an 
edge. The eigenvalues of G are the eigenvalues of A~. From the well known semi- 
circle law of Wigner [33] it follows that with probability 1 -o(1)  (as n-~oo) all but 
o(n) of the eigenvalues of G have absolute value < c  1/~ for every e > 2 l / p ( 1 - p ) .  
Fiiredi and Koml6s [16] showed that in fact, with probability ~1 as n-*~o the maxi- 
mal eigenvalue is very close to (n -2 )p  +1 and all the others have absolute value 
< 2 ~ I/n+ O (n 1/3 log n). 

The situation becomes much more difficult for random d-regular graphs on n 
vertices, (fixed d, n ~ o~). A probabilistie model for these graphs was introduced in 
[10]. In [23] McKay determined the asymptotic behaviour of the eigenvalues thus 
providing an analogue of the semi-circle law for regular graphs. His results imply that 
with probability 1 --o(1) all but o(n) of the eigenvalues have absolute value <_-2 t/d - 1. 
Note that the largest eigenvalue of a d-regular graph G is always d and the second 
largest is d -  ~(G), where 2(G) is the second smallest eigenvalue of the Q-matrix of 
G. It seems unlikely that the methods of [16] can be extended to show that with high 
probability the second largest eigenvalue of a d-regular random graph G is well sepa- 
rated from the first. However, since this difference is ).(G) and since one can easily 
check that with high probability G is a magnifier (provided d=>3), Lemma 2.4 shows 
that the difference is almost always ~ e(d), where s(d) is independent of the number 
of vertices. The following theorem can be proved using the ideas of the proof of 
Lemma 2.4, 
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Theorem 4.2. Let G be a random d-regular graph on n vertices, (using the model of  [10]), 
where d>= 3. Then, with probability 1 - o (1) (as n ~ co), 2 (G) = the difference between 
the largest and the second largest eigenvalue of  G satisfies 2(G) = f2(d). [ 

We omit the detailed proof. 

R. Boppana and the present author showed that for every d-regular graph G 
on n vertices ).(G)<=d-2 l/i2-T+O(logan)-1. (Note that by the results of [23] for 
a random d-regular graph on a large number n of vertices ).(G)<=d-2 ~-~-i-1 (1 +o(1)) 
with high probability.) It might be that for such graphs almost certainly 2(G)-~ 
- d - 2  l/d-L-l. If this is true, the random method for generating guaranteed expand- 
ers discussed in this section will supply much better expanders than the best known 
explicit construction described in [4, 5]. 

5. Concluding remarks 

1. Further relations between the eigenvalue A(G) of a graph G and structural 
properties of G (diameter, bisection width, etc.) appear in [3]. 

2. The following conjecture was mentioned at the end of the previous section. 

Conjecture 5.1. If G is a random d-regular graph on n vertices then with probability 
-~1 as n - ~  2(G)>=d-2]/-d-~-l+o(1). 

Any lower bound of the form d -  O (]/-d) would also be interesting. 

Acknowledgement. I would like to thank N. Pippenger for fruitful discussions, and 
especially for improving and simplifying the proof of Lermrna 2.4. 

Added in proof: Recently, Lubotzky, Phillips, and Sarnak [34] constructed, for 
every fixed d = p +  1, p prime, an infinite family of d-regular graphs G with 
2 ( G ) > = d - 2 f d  - 1. 
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