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Abstract

For every € > 0 and every integer m > 0, we construct explicitly graphs with O (m/€) vertices and maximum degree O(1/ ),
such that after removing any (1 — €) portion of their vertices or edges, the remaining graph still contains a path of length m. This
settles a problem of Rosenberg, which was motivated by the study of fault tolerant linear arrays.
© 1988 Published by Elsevier B.V.

1. Introduction

What is the minimum possible number of vertices and edges of a graph G, such that even after removing all but €
portion of its vertices or edges, the remaining graph still contains a path of length m? This problem arises naturally
in the study of fault tolerant linear arrays, (see [18]). The vertices of G represent processing elements and its edges
correspond to communication links between these processors. If p, 0 < p < 1 is the failure rate of the processors, it
is desirable that after deleting any p portion of the vertices of G, the remaining part still contains a (simple) path (=
linear array) of length m. Similarly, if u, 0 < u < 1 denotes the failure rate of the communication links, it is required
that after deleting any p portion of the edges of G the remaining part still contains a relatively long path. The objective
is to construct such graphs G with a small number of vertices and edges, since these will give rise to efficient networks.
Some variants of this problem are discussed in [14,9,19]. In this note we prove the following result.

Theorem 1.1. For every € > 0 and every integer m > 1 there is a graph G, which can be explicitly constructed, with
O (m/¢) vertices and maximum degree O (1/€%), such that even after deleting all but e-portion of its vertices or all but
e-portion of its edges, the remaining graph still contains a path of length m.

This settles the problem raised by Rosenberg [18], and is also related to the study of size Ramsey numbers (see
[10,4]). We note that the edge version of the above theorem for € = % was proved by Beck [4], and his proof can be
modified to give the general case, without explicit construction. Our main contribution here is to obtain an explicit
construction by combining the arguments of Beck [4] with some of the eigenvalues technique of [1-3] and the recent
construction of expanders given by Lubotzky et al. [16].
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2. The proof of the main result

Foragraph H=(V, E)and § C V, let Ny (S) denote the set of all neighbors in H of vertices of S. Pésa [17] proved
the following useful lemma which provides a relation between the expanding properties of a graph and the size of the
longest path it contains. (See also [15] for a simpler proof.)

Lemma 2.1. Let H = (V, E) be a nonempty graph. If |Ng(S) — S|>2|S| — 1 for every vertex subset S C V of
cardinality |S| <k, then H contains a path of length 3k — 2.

The following simple lemma is an old folklore result (see, e.g. [4]):

Lemma 2.2. Any graph G on n vertices with average degree d contains an induced subgraph H such that for every
vertex-set S of H the number of edges incident to vertices in S is at least d|S|/2.

Next we need a relation between the eigenvalues of a graph G and the density of its induced subgraphs. Let A = Ag
be the n by n adjacency matrix of a d-regular graph G=(V, E)on V ={1, 2, ..., n}. Clearly d is the largest eigenvalue
of A and its eigenvector is the all 1 vector. Suppose that the absolute value of any other eigenvalue of A is at most A.
For § C V let e(S, S) denote the number of edges of G between vertices of S and vertices of S =V — S, and let e(S)
denote the number of edges that join two vertices of S.

Lemma 2.3. In the above notation, for every subset S C V of cardinality |S| = oan
le(S) — L do?n| <Ll — o) - n. 2.1)

We note that the term %dotzn is roughly the expected number of edges in an induced subgraph of G of size o - n.
Thus, for small Z, every such induced subgraph has about the same number of edges.

Proof. Define a vector f : V — Rby f(i)=—1/|S|ifi € Sand f(i)=1/(n —|S|)ifi ¢ S. Since > i, f(i) =0,
i.e. fif orthogonal to the eigenvector of the largest eigenvalue of A, we conclude that [(Af, f)|<A(f, f), where (,) is
the usual scalar product. One can easily check that

Af. =2 f@) - f(h=dYy_ f2i)— Y (fG) - FG)
ijeE i=1 ijeE

For the specific f defined above

n 2
; 1) = |1?| + - _1|S| and ij;(fa) — f()? =e(s, S)(% + - _1|S|> :
Thus
e(S,S)<i+L>2_d<i+L) gi(LJFL),
IS| ~ n—|S] IS| ~ n—1S] N EN
which implies, by substituting |S| = an, that
le(S, S) — da(l — a)n| <iu(l — a) - n. (2.2)

Since G is a d-regular graph,
2e(S) + e(S, S) =d|S| = don,

e(S) = S donje(S, ).

This and inequality (2.2) imply inequality (2.1). This completes the proof. [l
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Proof of Theorem 1.1. Lubotzky et al. [16] showed that if p and g are primes congruent to 1 mod 4, with p a quadratic
non-residue mod g, then there is an explicitly constructed d = p + 1 regular graph G with n = g(¢> — 1)/2 vertices,
such that the absolute value of each of its eigenvalues but the first is at most 1 = 24/d — 1. We next show that for
properly chosen p and g, G satisfies the assertion of Theorem 1.1. We first consider the case of deleting vertices.
Suppose we delete all but a set V of € - n vertices of G. By Lemma 2.3 the induced subgraph of G on V contains at
least %dezn - %ie(l — €)n edges, i.e. has average degree at least ed — A(1 — €). By Lemma 2.2 this graph contains

an induced subgraph H in which every vertex set of cardinality x hits at least %(ed — A(1 —¢€)) - x edges. Let S be an

arbitrary vertex subset of H, of cardinality x = fin <on, where o < %e will be chosen later. We next show that for a
properly chosen d:

|NH(S) = S| >2|S]. (2.3)

Indeed, otherwise, if T = Ny (S) — S, then | SU T | < 3x and there are in H (and hence in G) at least %(ed —(1—=¢)p)-n
edges joining vertices of S U T'. However, by Lemma 2.3

e(SUT)<1d9pn + 1731 =3p) -n
and therefore the inequality

ed — A(1 —e)<9fd 4+ 34(1 — 3p)
must hold. Since 1 <2+/d — 1 this implies
i< 2/d —1(4 — e — 9[3).

< 2.4)
(e —=9pB)
Hence if we choose d such that
4—c—9a\>
d>4. | ——— (2.5)
€ — 9

then (2.4) is violated for all § <o and hence (2.3) holds. By Lemma 2.1 we conclude that H contains a path of length
3|an] — 2. Therefore if we choose e.g. o = %e and we choose the primes p and ¢ in the construction of G such that

J 8\ q@®>—1) _6

=p+1>4(z) and n=T>Z(m+5) (2.6)
we conclude that even if we delete all but € - n vertices of G, the remaining part still contains a path of length m.
This completes the proof for the case of deleting vertices. The case of deleting edges is somewhat simpler. Indeed,
if we delete all but an e-portion of the edges we are left with a graph of average degree ¢ - d. This graph contains,
by Lemma 2.2, an induced subgraph H in which any set of x vertices hits at least ed %x edges. Hence if S is any

2
vertex subset of cardinality fn <aon of H, where o < %e, and if d satisfies d > 4(%) one can check, as before, that

INg (S) — S| >2|S]|. Thus, by Lemma 2.1, H contains a path of length 3|an| — 2. It is easy to check that the previous
choice of p, g given in (2.6) suffices to guarantee a path of length m in this case, as well. (In fact, here a slightly smaller
d is enough.) By the standard results about the distribution of primes (see e.g. [8]), there is a choice for p and ¢ for
which (2.6), as well as the estimates n = O(m/e) andd = O(1/ €2) hold. This completes the proof. [

3. Related problems
3.1. Size Ramsey numbers

The size Ramsey number A;(G) of a graph G is the least number of edges in a graph H with the property that any
two coloring of the edges of H contains a monochromatic copy of G. Size Ramsey numbers were first considered in

[10], and several results on them can be found also in [6,12,13]. Beck’s result [4], mentioned in Section 1, resolves the
problem raised by Erdos of estimating the size Ramsey numbers for paths. Beck’s construction, however, is probabilistic.
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Typically, explicit constructions are much more difficult to find than random ones for Ramsey type problems (see [13]).
Our construction supplies an explicit example showing that the size Ramsey number for paths is linear.

3.2. Fault tolerant graphs for bounded degree trees

A natural extension of Theorem 1.1. is obtained by replacing the requirement for paths of length m by a requirement
for all trees of maximum degree k and size m. Beck [4] proved, without an explicit construction, that there exists a graph
G with O(k - m - (log m)'?) edges, such that any set of half of its edges contains every tree of size m and maximum
degree k. Very recently, Friedman and Pippenger [11] gave, for every € > 0 and m, k > 2, an explicit construction of a
graph G with O (mk? /€) vertices and maximum degree O (k?/€%) such that any set of an e-portion of its edges contains
every tree of size m and maximum degree k. Their construction is based on an interesting generalization, of Pdsa’s
theorem (Lemma 2.1) from paths to trees. Some other related results can be found in [5,7].
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