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Entailment rules between predicates are fundamental to many semantic-inference applications.
Consequently, learning such rules has been an active field of research in recent years. Methods
for learning entailment rules between predicates that take into account dependencies between
different rules (e.g., entailment is a transitive relation) have been shown to improve rule quality,
but suffer from scalability issues, that is, the number of predicates handled is often quite small.
In this paper, we present methods for learning transitive graphs that contain tens of thousands
of nodes, where nodes represent predicates and edges correspond to entailment rules (termed
entailment graphs). Our methods are able to scale to a large number of predicates by exploiting
structural properties of entailment graphs such as the fact that they exhibit a “tree-like" property.
We apply our methods on two datasets and demonstrate that (a) our methods find high-quality
solutions much faster than methods proposed in the past (b) our methods for the first time scale
to large graphs containing 20,000 nodes and more than 100,000 edges.

1. Introduction

Performing textual inference is in the heart of many semantic inference applications
such as Question Answering (QA) and Information Extraction (IE). A prominent generic
paradigm for textual inference is Textual Entailment (Dagan et al. 2013). In textual en-
tailment, the goal is to recognize, given two text fragments termed text and hypothesis,
whether the hypothesis can be inferred from the text. For example, the text "Cyprus
was invaded by the Ottoman Empire in 1571" implies the hypothesis "The Ottomans
attacked Cyprus".

Semantic inference applications such as QA and IE crucially rely on entailment
rules (Ravichandran and Hovy 2002; Shinyama and Sekine 2006; Berant and Liang
2014) or equivalently inference rules, that is, rules that describe a directional inference
relation between two fragments of text. An important type of entailment rule specifies
the entailment relation between natural language predicates, e.g., the entailment rule
‘X invade Y ⇒ X attack Y’ can be helpful in inferring the aforementioned hypothesis.
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X-related-to-nausea X-associated-with-nausea

X-prevent-nausea X-help-with-nausea

X-reduce-nausea X-treat-nausea

Figure 1
A fragment of an entailment graph about the concept nausea from the dataset used by Berant,
Dagan and Goldberger. Edges that can be inferred by transitivity are omitted for clarity.

Consequently, substantial effort has been made to learn such rules (Lin and Pantel 2001;
Sekine 2005; Szpektor and Dagan 2008; Schoenmackers et al. 2010; Melamud et al. 2013).

Textual entailment is inherently a transitive relation, that is, the rules x⇒ y and
y⇒ z imply the rule x⇒ z. For example, from the rules ‘X reduce nausea⇒ X help with
nausea’ and ‘X help with nausea⇒ X associated with nausea’ we can infer the rule ‘X reduce
nausea⇒X associated with nausea’ (Figure 1). Accordingly, Berant, Dagan and Goldberger
(2012) suggested to take advantage of transitivity to improve learning of entailment
rules. They modeled learning entailment rules as a graph optimization problem, where
nodes are predicates and edges represent entailment rules that respect transitivity. To
solve this optimization problem, they formulated it as an Integer Linear Program (ILP)
and employed an off-the-shelf ILP solver to find an exact solution. Indeed, they showed
that applying global transitivity constraints results in more accurate graphs (known as
entailment graphs) comparing to methods that ignore the property of transitivity.

While using an off-the-shelf ILP solver is straightforward, finding the optimal set of
edges respecting transitivity is NP-hard, and practically transitivity constraints impose
substantial restrictions on the scalability of the methods. In fact, in some cases finding
the optimal set of edges for entailment graphs with even ∼50 nodes was quite slow.

In this paper, we develop algorithms for learning entailment graphs that take
advantage of structural properties such as transitivity, but substantially reduce the com-
putational cost of inference, thus allowing us solve the aforementioned optimization
problem on very large graphs.

Our method contains two main steps. The first step is based on a sparsity assumption
that even if an entailment graph contains many predicates, most of them do not entail
one another, and thus we can decompose the graph into smaller components that can
be solved more efficiently. For example, the predicates ‘X parent of Y’, ‘X child of Y’ and
‘X relative of Y’ are independent from the predicates ‘X works with Y’, ‘X boss of Y’, and
‘X manages Y’, and thus we can consider each one of these two sets separately. We prove
that finding the optimal solution for each of the smaller components results in a global
optimal solution for our optimization problem.

The second step proposes a polynomial heuristic approximation algorithm for find-
ing a transitive set of edges in each one of the smaller components. It is based on a
novel modeling assumption that entailment graphs exhibit a “tree-like" property, which
we term forest reducible. For example, the graph in Figure 1 is not a tree, because the
predicates ‘X related to nausea’ and ‘X associated with nausea’ form a cycle. However, these
two predicates are synonomous, and if they were merged into a single node, then the
graph would become a tree. We propose a simple iterative approximation algorithm,

2



Berant et al.

where in each iteration a single node is deleted from the graph and then inserted back
in a way that improves the objective function value. We prove that if we impose a
constraint that entailment graphs must be forest reducible, then each iteration can be
performed in linear time. This results in an algorithm that can scale to entailment graphs
containing tens of thousands of nodes.

We apply our algorithm on two datasets. The first dataset includes medium-sized
entailment graphs where predicates are typed, that is the arguments are restricted to
belong to a particular semantic type (for instance, ‘Xperson parent of Yperson’). We show
that using our algorithm we can substantially improve runtime, while suffering from
only a slight reduction in the quality of learned entailment graphs. The second dataset
includes a much larger graph containing 20,000 untyped nodes, where applying state-
of-the-art methods that employ an ILP solver is completely impossible. We run our
algorithm on this dataset and demonstrate that we can learn knowledge-bases with
more than 100,000 entailment rules at a higher precision compared to local learning
methods.

The paper is organized as follows. In Section 2 we survey prior work on learning
of entailment rules. We first focus on local methods (Section 2.1), i.e., methods that
handle each pair of predicates independently of other predicates, and then describe
global methods (Section 2.2), i.e., methods that take into account multiple predicates
simultaneously. Section 3 is the core of the paper and describes our main algorithmic
contributions. After formalizing entailment rule learning as a graph optimization prob-
lem, we present the two steps of our algorithm. Section 3.1 describes the first step in
which a large entailment graph is decomposed into smaller components. Section 3.2
describes the second step in which we develop an efficient heuristic approximation
based on the assumption that entailment graphs are forest reducible. Section 4 describes
experiments on the first datset containing medium-sized entailment graphs with typed
predicates. Section 5 presents an empirical evaluation on a large graph containing 20,000
untyped predicates. We also perform a qualitative analysis in Section 5.4 to further
elucidate the behaviour of our algorithm. Last, Section 6 concludes the paper.

This paper is based on previous work (Berant, Dagan, and Goldberger 2011; Berant
et al. 2012), but expands over it in multiple directions. Empirically, we present results
on a novel dataset (Section 5) that is by orders of magnitude larger than in the past.
Algorithmically, we present the Tree-Node-And-Component-Fix algorithm, which is an
extension of the Tree-Node-Fix algorithm presented in Berant et al. (2012) and achieves
best results in our experimental evaluation. Theoretically, we provide an NP-hardness
proof for the Max-Trans-Forest optimization problem presented in Berant et al. (2012)
and an ILP formulation for it. Last, we perform in Section 5.4 an extensive qualitative
analysis of the graphs learned by our local and global algorithms from which we draw
conclusions for future research directions.

2. Background

In this section we describe prior work relevant for entailment rule learning. First, we
describe local methods that estimate entailment for a pair of predicates, focusing on
methods that we employ in this paper. Then, we describe global methods that perform
inference over a larger set of predicates. Specifically, we provide details on the method
and optimization problem developed by Berant, Dagan and Goldberger (2012) for
which we propose scalable inference algorithms in this paper. Last, we survey some
other related work in NLP that uses global inference.
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2.1 Local learning

In local learning, given a pair of predicates (i, j) we would like to determine whether
i⇒ j. The main sources of information utilized in the past for local learning were (a)
lexicographic resources (b) co-occurrence and (c) distributional similarity. We briefly
describe the first two and then expand more on distributional similarity which is the
most commonly used source of information.

Lexicographic resources are manually-built knowledge bases from which semantic
information may be extracted. For example, the hyponymy, toponymy and synonymy
relations in WordNet (Fellbaum 1998) can be used to detect entailment between nouns
and verbs. While WordNet is the most popular lexicographic resource, other resources
such as CatVar, Nomlex and FrameNet have also been utilized to extract inference rules
(Meyers et al. 2004; Budanitsky and Hirst 2006; Szpektor and Dagan 2009; Coyne and
Rambow 2009; Ben Aharon, Szpektor, and Dagan 2010).

Pattern-based methods attempt to identify the semantic relation between a pair
of predicates by examining their co-occurrence in a large corpus. For example, the
sentence ‘people snore while they sleep’ provides evidence that ‘snore⇒ sleep’. While most
pattern-based methods focused on identifying semantic relations between nouns (e.g.,
Hearst patterns (Hearst 1992)), several works (Pekar 2008; Chambers and Jurafsky
2011; Weisman et al. 2012) attempted to extract relations between predicates as well.
Chklovsky and Pantel (2004) used pattern-based methods to generate the commonly
used VerbOcean resource.

Both lexicographic as well as pattern-based methods suffer from limited coverage.
Distributional similarity is therefore used to automatically construct broad scale re-
sources. Distributional similarity methods are based on the “distributional hypothesis"
(Harris 1954) that semantically similar predicates occur with similar arguments. Quite
a few methods have been suggested (Lin and Pantel 2001; Szpektor et al. 2004; Bhagat,
Pantel, and Hovy 2007; Szpektor and Dagan 2008; Yates and Etzioni 2009; Schoenmack-
ers et al. 2010), which differ in terms of the specifics of the ways in which predicates are
represented, the features that are extracted, and the function used to compute feature
vector similarity. Next, we elaborate on the methods that we use in this paper.

Lin and Pantel (2001) proposed an algorithm for learning paraphrase relations
between binary predicates, that is, predicates with two variables such as ‘X treat Y’.
For each binary predicate Lin and Pantel compute two sets of features Fx and Fy , which
are the words that instantiate the arguments X and Y respectively in a large corpus.
Given a predicate u and its feature set for the X variable Fx, every feature fx ∈ Fx

is weighted by pointwise mutual information between the predicate and the feature:
w(fx) = log Pr(fx∣u)

Pr(fx)
, where the probabilities are computed using maximum likelihood

over the corpus. Given two predicates u and v, the Lin measure (Lin 1998a) is computed
for the variable X in the following manner:

Linx(u, v) =
∑f∈Fu

x ∩F
v
x
[wu

x(f) +w
v
x(f)]

∑f∈Fu
x
wu

x(f) +∑f∈Fv
x
wv

x(f)
(1)

The measure is computed analogously for the variable Y and the final distributional
similarity score, termed DIRT, is the geometric average of the scores for the two
variables: If DIRT(u, v) is high, this means that the templates u and v share many
“informative” arguments and so it is possible that u⇒ v.
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Szpektor and Dagan (2008) suggested two modifications to DIRT. First, they looked
at unary predicates, that is, predicates with a single variable such as ‘X treat’. Secondly,
they computed a directional score that is more suited for capturing entailment relations
compared to the symmetric Lin score. They proposed that if for two unary predicates
u⇒ v, then relatively many of the features of u should be covered by the features of v.
This is captured by the asymmetric Cover measure (Weeds and Weir 2003):

Cover(u, v) =
∑f∈Fu

∩Fv wu(f)

∑f∈Fu wu(f)
(2)

The final directional score, termed BInc (Balanced Inclusion), is the geometric average
of the Lin measure and the Cover measure.

Both Lin and Pantel as well as Szpektor and Dagan compute a similarity score
using a single argument. However, it is clear that although this alleviates sparsity
problems, considering pairs of arguments jointly provides more information. Yates and
Etzioni (2009), Schoenmackers et al. (2010) and even earlier Szpektor and Dagan (2004)
presented methods that compute semantic similarity based on pairs of arguments.

A problem common to all local methods presented above is predicate ambiguity –
predicates may have different meanings and different entailment relations in different
contexts. Some works resolved the problem of ambiguity by representing predicates
with argument variables that are typed (Pantel et al. 2007; Schoenmackers et al. 2010).
For example, argument variables in the work of Schoenmackers et al. were restricted to
belong to one of 156 types, such as country or profession. A different solution that has
attracted substantial attention recently is to represent the various contexts in which a
predicate can appear in a low dimensional latent space (e.g., using LDA (Blei, Ng, and
Jordan 2003)) and infer entailment relations between predicates based on the contexts in
which they appear (Ritter, Mausam, and Etzioni 2010; Séaghdha 2010; Dinu and Lapata
2010; Melamud et al. 2013). In the experiments presented in this paper we will use the
representation of Schoenmackers et al. in one experiment, and ignore the problem of
predicate ambiguity in the other.

2.2 Global learning

The idea of global learning is that, by jointly learning semantic relations between a
large number of natural language phrases, one can use the dependencies between the
relations to improve accuracy. A natural way to model that is with a graph where nodes
are phrases and edges represent semantic similarity. Snow, Jurafsky and Ng (2006)
presented one of the early examples of global learning in the context of learning noun
taxonomies. In their work, they enforced a transitivity constraint over the taxonomy
using a greedy inference procedure and demonstrated that this improves the quality of
the taxonomy. Transitivity constraints were also enforced by Yates and Etzioni (2009)
who proposed a clustering algorithm for learning undirected synonymy relations.
Nakashole, Weikum, and Suchanek (2012) learned a taxonomy of binary predicates and
also enforced transitivity with a greedy algorithm.

Berant, Dagan and Goldberger (2012) developed a global method for learning en-
tailment relations between predicates. In this paper we present scalable approximation
algorithms for the optimization problem they propose, and so we provide further detail
on their method. The input to their algorithm is a large corpus and a lexicographic
resource, such as WordNet, and the output is a set of entailment rules that respect
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the constraint of transitivity. The algorithm is composed of two main steps. In the first
step, a set of predicates is extracted from the corpus and a local entailment classifier is
trained based on examples automatically generated from the lexicographic resource. At
this point, we can derive for each pair of predicates (i, j) a score wij ∈ R that estimates
whether i⇒ j.

In the second step of their algorithm, they construct a graph, where predicates are
nodes and edges represent entailment rules. Using the local scores they look for the set
of edges E that maximizes the objective function ∑(i,j)∈E wij under the constraint that
edges respect transitivity. They show that this optimization problem is NP-hard and
find an exact solution using an ILP solver over small graphs. They also avoid problems
of predicate ambiguity by partially contextualizing the predicates. In this paper we
present efficient and scalable heuristic approximation algorithms for the optimization
problem they propose.

In recent years, there has been substantial work on approximation algorithms for
global inference problems. Do and Roth (Do and Roth 2010) suggested a method for
the related task of learning taxonomic relations between terms. Given a pair of terms,
they construct a small graph that contains the two terms and a few other related terms,
and then impose constraints on the graph structure. They construct these small graphs
since their work is geared towards scenarios where relations are determined on-the-fly
for a given pair of terms and no global knowledge base is ever explicitly constructed.
Since they independently construct a graph for each pair of terms , their method easily
produces solutions where global constraints, such as transitivity, are violated.

Another approximation method that violates transitivity constraints is LP relaxation
(Martins, Smith, and Xing 2009). In LP relaxation, binary variables are replaced by
continuous variables, transforming the problem from an Integer Linear Program to a
Linear Program (LP), which is polynomial. An LP solver is then applied, and variables
that are assigned a fractional value are rounded to their nearest integer and so many
violations of transitivity may occur. The solution when applying LP relaxation is not
a transitive graph, while we will show in Section 4 that our approximation method is
substantially faster.

Global inference has gained popularity in recent year in NLP, and a common ap-
proximation method that has been extensively utilized is dual decomposition (Sontag,
Globerson, and Jaakkola 2011). Dual decomposition has been successfully applied in
tasks such as Information Extraction (Reichart and Barzilay 2012), Machine Translation
(Chang and Collins 2011), Parsing (Rush et al. 2012) and Named Entity Recognition
(Wang, Che, and Manning 2013). To the best of our knowledge, it has not been applied
yet for the task of learning entailment relations. The graph decomposition method we
present in Section 3.1 can be viewed as an ideal case of dual decomposition where we
can decompose the problem into disjoint components in a way that we don’t need to
ensure consistency of the results obtained on each component separately.

3. Efficient Inference

Our goal is to learn a large knowledge-base of entailment rules between natural lan-
guage predicates. Following Berant, Dagan and Goldberger (2012), we formulate this
task as a graph learning problem, where given the nodes of an entailment graph, we
would like to find the best set of edges that respect a global transitivity constraint.

Our main modeling assumption is that textual entailment is a transitive relation.
Berant, Dagan and Goldberger (Berant, Dagan, and Goldberger 2012) have demon-
strated that this modeling assumption holds for focused entailment graphs, that is, graphs
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in which predicates are disambiguated by one of their arguments. For example, a
graph that focuses on the concept ‘nausea’ might contain a en entailment rule between
predicates such as ‘X prevents nausea’⇒ ’X affects nausea’, where the predicate ’X prevent
Y’ is disambiguated by the instantiation of the argument nausea. In this work, we will
examine this modeling assumption for more general graphs. In Section 4 we show
that transitivity holds in typed entailment graph, that is, graphs where each predicate
specifies the semantic type of its arguments (for example ‘Xdrug prevent Ysymptom’). In
Section 5.4, we examine the assumption of transitivity when predicates do not carry any
typing information (for example ‘X prevent Y’) and we observe that in this setting the
assumption of transitivity is often violated due to the predicate ambiguity. Nevertheless,
we show that even in this setup we can empirically take advantage of the transitivity
assumption.

Let V be a set of predicates, which are the nodes of the entailment graph, and let
w ∶ V × V → R be an entailment weighting function. Given a pair of predicates (i, j),
a positive wij indicates local tendency to decide that i entails j, while a negative wij

indicates local tendency to decide that i does not entail j. We want to find a global
entailment transitive graph that is most consistent with the local cues. Formally, our
goal is to find the directed graph G = (V,E) that maximizes the sum of edge weights
∑(i,j)∈E wij , under the constraint that the graph is transitive, that is, for every triple of
nodes (i, j, k), if (i, j) ∈ E and (j, k) ∈ E then (i, k) ∈ E.

Berant, Dagan and Goldberger (2012) proved that this optimization problem (which
we term Max-Trans-Graph) is NP-hard, and provided an ILP formulation for it. Let xij
be an indicator for whether i⇒ j, then x = {xij ∶ i ≠ j} are the variables of the following
ILP:

max
x

∑
i≠j

wijxij (3)

s.t. ∀i, j, k ∈ V xij + xjk − xik ≤ 1

∀i, j ∈ V xij ∈ {0,1}

The objective function is the sum of weights over the edges of G and the constraint
xij + xjk − xik ≤ 1 on the binary variables enforces transitivity, (i.e., xij = xjk = 1, implies
that xik = 1). The weighting function w is trained separately using supervised learning
methods and we describe the details of training for each one of our experiments in
Sections 4 and 5.

There is a simple probabilistic modeling that motivates the score (3) that we opti-
mize. Assume that for each pair of nodes (i, j) we are given a probability pij(1) = p(xij =
1) that i⇒ j (the probability that i⇏ j is denoted by pij(0) = 1 − pij(1)). Assuming a
uniform probability over graphs, the posterior probability (which can be also viewed as
the likelihood) of a graph, represented by an edge-set x, is:

p(x)∝∏
i≠j

pij(xij) (4)
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It can be easily verified that:1

log p(xij) = log
pij(1)

pij(0)
xij + log pij(0)

Hence,

log p(x) =∑
i≠j

log p(xij) =∑
i≠j

wijxij + const (5)

such that ‘const’ is a scalar that does not depend on x and

wij = log
pij(1)

pij(0)
(6)

The optimal entailment graph, therefore, is argmaxx p(x) = argmaxx∑i≠j wijxij where
the maximization is over all the transitive graphs. Hence the most likely transitive
entailment graph is obtained as the solution of the ILP maximization problem (3).

Berant, Dagan and Goldberger solved this optimization problem with an ILP solver,
but since ILP is NP-hard, this does not scale well; The number of variables isO(∣V ∣2) and
the number of constraints is O(∣V ∣3). Thus, even a graph with 80 nodes (predicates) has
more than half a million constraints. In this section, we describe a heuristic algorithm
that empirically provides high-quality solutions for the above mentioned optimization
problem in graphs with tens of thousands of nodes.

Our algorithm contains two main steps. The first step (Section 3.1) is based on
a structural assumption that entailment graphs are relatively sparse, that is, most
predicates do not entail one another. This allows us to decompose the graph into
smaller components in a way that guarantees that an exact solution for each one of the
components results in an exact solution for Max-Trans-Graph. However, often even after
decomposition components are too large and finding an exact solution is still intractable.

The second step (Section 3.2) proposes a heuristic algorithm for finding a good
solution for each one of the components. This step is based on an observation that
entailment graphs exhibit a “tree-like" property and are very similar to a novel type
of graph, which we term forest-reducible graph. We utilize this property to develop an
iterative efficient approximation algorithm for learning the graph edges, where each
iteration takes linear time. We also prove that finding the optimal forest-reducible graph
is NP-hard.

In Sections 4 and 5 we apply our algorithm on two different datasets and show
that using transitivity substantially improves performance and that our methods dra-
matically improve scalability, allowing us to increase the scope of global learning of
entailment graphs.

3.1 Entailment graph decomposition

The first step of our algorithm takes advantage of graph sparsity: most predicates in
language do not entail one another. Thus, it might be possible to decompose entailment
graphs into small components and solve each component separately.

1 We assume that pij(1), pij(0) ∈ (0,1) and thus log p(xij) is well-defined.
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Algorithm 1 Decompose
Input: A set V and a weighting function w ∶ V × V → R
Output: An optimal set of directed edges E∗

1: E′ = {(i, j) ∶ wij > 0 ∨wji > 0}
2: V1, V2, ..., Vk ← connected components of the undirected graph G′ = (V,E′)
3: for l = 1, ..., k do
4: El ← Solve the ILP Problem (3) restricted to Vl
5: end for
6: E∗ ← ⋃k

l=1El

Let V1, V2 be a partitioning of the nodes V into two disjoint non-empty subsets. We
term any directed edge, whose two nodes belong to different subsets, a crossing edge.

Proposition 1
If we can partition a set of nodes V into disjoint sets V1, V2 such that no crossing

edge has a positive weight, then the optimal set of edges that is the solution of the
ILP problem (3) does not contain any crossing edge.

Proof Assume by contradiction that the edge-set of the optimal solution Eopt con-
tains a non-empty set of crossing edges Ecross. We can construct Enew = Eopt ∖Ecross.
Clearly ∑(i,j)∈Enew

wij ≥ ∑(i,j)∈Eopt
wij , as wij ≤ 0 for any crossing edge.

Next, we show that Enew does not violate transitivity constraints. Assume it does,
then the violation is caused by omitting the edges inEcross. Thus, there must be, without
loss of generality, nodes i ∈ V1 and k ∈ V2 such that for some node j, (i, j) and (j, k) are
in Enew, but (i, k) is not. However, this means either (i, j) or (j, k) is a crossing edge,
which is impossible since we omitted all crossing edges. Thus, Enew is a better solution
than Eopt, contradiction. Hence, Ecross is empty. �

This proposition suggests a simple algorithm (see Algorithm 1): Construct an
undirected graph with the node set V and with an edge connecting i and j if either
wij > 0 orwji > 0, then find its connected components, and finally solve each component
separately. If an ILP solver is used to find the edges of each component separately
then we obtain an optimal (not approximate) solution to the optimization problem (3)
for the whole graph. Finding the undirected edges (Line 1) and computing connected
components (Line 2) can be performed in O(V 2). Thus, in this case the efficiency of the
algorithm is dominated by the application of an ILP solver (Line 4).

If the entailment graph decomposes into small components, one could obtain an
exact solution with an ILP solver, applied on each component separately, without
resorting to any approximation. To further extend scalability in this setting we use a
cutting-plane method (Kelley 1960). Cutting-plane methods have been used in the past,
for example in dependency parsing (Riedel and Clarke 2006). The idea is that even if
we omit all transitivity constraints, we still expect most transitivity constraints to be
satisfied, given a good weighting function w. Thus, it makes sense to avoid specifying
the constraints ahead of time, but rather add them when they are violated. This is
formalized in Algorithm 2.

Line 1 initializes an active set of constraints (ACT). Line 3 applies the ILP solver with
the active constraints. Lines 4 and 5 find the violated constraints and add them to the
active constraints. The algorithm halts when no constraints are violated. The solution is
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Algorithm 2 SolveCuttingPlane
Input: A set V and a weighting function w ∶ V × V → R
Output: An optimal set of directed edges E∗

1: ACT ← φ
2: repeat
3: E∗ ← Solve ILP (3) using only the constraint subset ACT
4: VIO ← violated(V,E∗)
5: ACT ← ACT ∪ VIO
6: until VIO = φ

clearly optimal since we obtain a maximal solution for a less-constrained problem that
does not violate any transitivity constraint.

A pre-condition for using cutting-plane methods is that computing the violated con-
straints (Line 4) is efficient, as it occurs in every iteration. We do that in a straightforward
manner: For every edges (i, j) and (j, k) that are in the current solution E∗, if (i, k) ∉ E∗

we add xij + xjk − xik ≤ 1 to the violated constraints. This is cubic in worst-case and
performs very fast in practice.

To conclude, an exact algorithm for Max-Trans-Graph decomposes the graph into
components and uses algorithm 2 to find an exact solution for each component. How-
ever, since the problem is NP-hard this will still fail once components become large.
Next, we describe the second step of our method, which replaces Algorithm 2 with an
efficient approximation that can scale to much larger graphs. We will show in Section 4
that the solutions obtained by the approximation algorithm are almost as good as the
exact solution on a data set where finding an exact solution is feasible.

3.2 Efficient tree-based approximation

The approximation we present in this section is based on a conjecture that entailment
graphs exhibit a “tree-like" property, that is, they can be reduced into a structure similar
to a directed forest, which we term forest-reducible graph (FRG). Although FRGs are a
more constrained class of directed graphs, we prove that restricting our optimization
problem to FRGs does not make the problem fundamentally easier, that is, the problem
remains NP-hard (see Appendix). Then, we present in Section 3.2.2 our iterative approx-
imation algorithm, where in each iteration a node is removed and re-attached back to
the graph in a locally-optimal way. Combining this scheme with our conjecture about
the graph structure yields a linear algorithm for node re-attachment.

Thus, the contribution of this section is two-fold: First, we define a novel mod-
eling assumption about the tree-like structure of entailment graphs and empirically
demonstrate its validity. Second, we exploit this assumption to develop a polynomial
approximation algorithm for learning entailment graphs that can scale to much larger
graphs than in the past.

3.2.1 Forest-reducible graph. The predicate entailment relation, described by our entail-
ment graphs, is typically from a “semantically-specific" predicate to a more “general"
one. Thus, intuitively, the topology of an entailment graph is expected to be “tree-like".
In this section we first formalize this intuition and then empirically analyze its validity.

10
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Figure 2
A fragment of an entailment graph (a), its SCC graph (b) and its reduced graph (c). Nodes are
predicates with typed variables, which are omitted in (b) and (c) for compactness.

Xcountry annex  Yplace 

Xcountry invade  Yplace Yplace be part of Xcountry  

Figure 3
A fragment of an entailment graph that is not an FRG.

This property of entailment graphs is an interesting topological observation on its own,
but also enables the efficient approximation algorithm of Section 3.2.2.

For a directed edge i⇒ j in a directed acyclic graph (DAG), we term the node i a
child of node j, and j a parent of i.2 A directed forest is a DAG where all nodes have no
more than one parent. A strongly connected component in a directed graph is a set of
nodes such that there is a path from every node in the set to any other node. In entail-
ment graphs strongly connected componenets correspond to semantically-equivalent
predicates.

2 In standard graph terminology an edge is from a parent to a child. We choose the opposite definition to
conflate edge direction with the direction of the entailment operator ‘⇒’.

11



Computational Linguistics Volume 1, Number 1

The entailment graph in Figure 2a (subgraph from the data set described in Section
4) is clearly not a directed forest – it contains a cycle of size two comprising the nodes
‘X common in Y’ and ‘X frequent in Y’, and in addition the node ‘X be epidemic in Y’ has
3 parents. However, we can convert it to a directed forest by applying the following
operations. Any directed graph G can be converted into a Strongly-Connected-Component
(SCC) graph in the following way: every strongly connected component is contracted
into a single node, and an edge is added from SCC S1 to SCC S2 if there is an edge in G
from some node in S1 to some node in S2. The SCC graph is always a DAG (Cormen et
al. 2002), and if G is transitive then the SCC graph is also transitive. The graph in Figure
2b is the SCC graph of the one in Figure 2a, but is still not a directed forest since the
node ‘X be epidemic in Y’ has two parents.

The transitive closure of a directed graph G is obtained by adding an edge from node
i to node j if there is a path in G from i to j. The transitive reduction of G is obtained by
removing all edges whose absence does not affect its transitive closure. In DAGs, the
result of transitive reduction is unique (Aho, Garey, and Ullman 1972). We thus define
the reduced graph Gred = (Vred,Ered) of a directed graph G as the transitive reduction of
its SCC graph. The graph in Figure 2c is the reduced graph of the one in Figure 2a and
is a directed forest. We say a graph is a forest-reducible graph (FRG) if its reduced graph
is a directed forest.

We now hypothesize that entailment graphs are approximately FRGs. The intuition
is that the predicate on left-hand-side of an entailment rule has a more specific meaning
than the one on the right-hand-side. For instance, in Figure 2a ‘X be epidemic in Y’ (where
‘X’ is a type of disease and ‘Y’ is a country) is more specific than ‘X common in Y’
and ‘X frequent in Y’, which are equivalent, while ‘X occur in Y’ is even more general.
Accordingly, the reduced graph in Figure 2c is an FRG. We note that this is not always
the case: for example, the entailment graph in Figure 3 is not an FRG, because ‘X annex
Y’ entails both ‘Y be part of X’ and ‘X invade Y’, while the latter two do not entail one an-
other. However, we hypothesize that this scenario is rather uncommon. Consequently, a
natural variant of the Max-Trans-Graph problem is to restrict the required output graph
of the optimization problem (3) to an FRG. We term this problem Max-Trans-Forest.

To test whether our hypothesis holds empirically we performed the following anal-
ysis. We sampled 7 gold standard typed entailment graphs (that is, graphs where pred-
icates specify the semantic type of their arguments such as ‘Xdrug prevents Ysymptom’)
from the dataset described in Section 4, manually transformed them into FRGs by
deleting a minimal number of edges, and measured recall over the set of edges in each
graph (precision is naturally 1.0, as we only delete gold standard edges). The lowest
recall value obtained was 0.95, illustrating that deleting a very small proportion of
edges converts a typed entailment graph into an FRG. Further support for the practical
validity of this hypothesis is obtained from our experiments on typed entailment graphs
in Section 4. In these experiments we show that exactly solving Max-Trans-Graph
and Max-Trans-Forest (with an ILP solver) results in nearly identical performance. In
Section 5.4 we qualitatively analyze the validity of the FRG assumption in untyped
entailment graphs (where predicates are of the form ‘X prevents Y’) and find that this
assumption does not always hold, due to predicate ambiguity.

An ILP formulation for Max-Trans-Forest is simple – a transitive graph is an FRG
if all nodes in its reduced graph have no more than one parent. It can be verified that
this is equivalent to the following statement: for every triplet of nodes i, j, k, if i⇒ j and
i⇒ k, then either j ⇒ k or k⇒ j (or both). This constraint can be stated in a linear from:
xij + xik − xjk − xkj ≤ 1. Therefore, adding this new type of constraint to the ILP given

12



Berant et al.

in (3) results in a formulation for Max-Trans-Forest:

max
x

∑
i≠j

wijxij (7)

s.t. ∀i, j, k ∈ V xij + xjk − xik ≤ 1

∀i, j, k ∈ V xij + xik − xjk − xkj ≤ 1

∀i, j ∈ V xij ∈ {0,1}

A natural question is whether there is a simpler (polynomial) solution for Max-Trans-
Forest that avoids the need for an ILP solver. In the appendix we prove that Max-Trans-
Forest is a also an NP-hard problem by a polynomial reduction from the X3C problem
(Garey and Johnson 1979). Readers who are not interested in the proof can safely skip
the appendix.

3.2.2 Approximation algorithm. In this section we present Tree-Node-Fix and Tree-Node-
And-Component-Fix, which are efficient approximation algorithms for Max-Trans-Forest,
as well as Graph-Node-Fix, an approximation for Max-Trans-Graph.

Tree-Node-Fix. The scheme of Tree-Node-Fix (TNF) is the following. First, an initial FRG
is constructed, using some initialization procedure. Then, at each iteration a single node
v is re-attached (see below) to the FRG in a way that improves the objective function.
This is repeated until the value of the objective function cannot be improved anymore
by re-attaching a node.

Re-attaching a node v is performed by removing v from the graph (deleting v and all
its adjacent edges) and connecting it back with a better set of edges, while maintaining
the constraint that it is an FRG. This is done by considering all possible edges from/to
the other graph nodes and choosing the optimal subset, while the rest of the graph edges
remain fixed. For example, in Figure 2, one way of re-attaching the node ‘X common in
Y’ is to add it as a direct child of ’X occur in Y’ that is not a synonym of ’X frequent
in Y’. This will result in deletion of the edges ’X common in Y’ ⇒ ’X frequent in Y’, ’X
frequent in Y’ ⇒ ’X common in Y’, and also ’X be epidemic in Y’ ⇒ ’X common in Y’,
since otherwise the resutling graph will not be an FRG. We will show that re-attachment
can be efficiently performed in linear time using dynamic programming.

Formally, let Sv−in = ∑i≠v wivxiv be the sum of scores over v’s incoming edges
and Sv−out = ∑k≠v wvkxvk be the sum of scores over v’s outgoing edges. Re-attachment
amount to optimizing a linear objective:

argmax
x(v)

(Sv-in + Sv-out) (8)

while maintaining the FRG constraint, where the variables x(v) ⊆ x are indicators for all
pairs of nodes involving v. We approximate a solution for (3) by iteratively optimizing
the simpler objective (8). Clearly, at each re-attachment the value of the objective func-
tion cannot decrease, since the optimization algorithm considers the previous graph as
one of its candidate solutions.

We now show that re-attaching a node v is linear. To analyze v’s re-attachment, we
consider the structure of the directed forest Gred just before v is re-inserted, and examine
the possibilities for v’s insertion relative to that structure. We start by defining some
helpful notations. Every node c ∈ Vred is a strongly connected component in G. Let vc ∈ c
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Figure 4
(a) Inserting v into a component c ∈ Vred. (b) Inserting v as a child of c and a parent of a subset of
c’s children in Gred. (b’) A node d that is a descendant but not a child of c can not choose v as a
parent, as v becomes its second parent. (c) Inserting v as a new root.

Algorithm 3 Computing optimal re-attachment
Input: FRG G = (V,E), weighting function w, node v ∈ V
Output: optimal re-attachment of v

1: remove v and compute Gred = (Vred,Ered).
2: for all c ∈ Vred in post-order compute Sv-in(c) (Eq. 12)
3: for all c ∈ Vred in pre-order compute Sv-out(c) (Eq. 13)
4: case 1: s1 =maxc∈Vred

s1(c) (Eq. 9)
5: case 2a: s2 =maxc∈Vred

s2(c) (Eq. 10)
6: case 2b: compute s3 (Eq. 11)
7: re-attach v according to max(s1, s2, s3).

be an arbitrary representative node in c (we can choose any node vc ∈ c, because the
graph G is transitive, and c is a strongly connected component). We denote by Sv-in(c)
the sum of weights from all nodes in c and their descendants to v, and by Sv-out(c) the
sum of weights from v to all nodes in c and their ancestors:

Sv-in(c) =∑
i∈c

wiv + ∑
k ∉c

wkvxkvc

Sv-out(c) =∑
i∈c

wvi + ∑
k ∉c

wvkxvck

Note that {xvck, xkvc} are edge indicators in G and not Gred.
There are several cases for re-attaching v that we need to consider:

1. Inserting v into an existing component c ∈ Vred (case 1, see Figure 4a).
2. Inserting v as a new component, which breaks into two subcases:

(a) Forming a new component that contains only v, where v is a child of a
componenet c (case 2a, see Figure 4b).

(b) Forming a new component that contains only v, where v is not a child of any
component c, and so is a new root in Gred (case 2b, see Figure 4c).

Note that v can not form a new component that contains other nodes as well, because
the rest of the graph is fixed.

To find the optimal way of re-attaching v, we need to compute the score (8), for each
of the three cases, and choose the best one. We now describe how this score is computed
in each of the three cases.
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Case 1: Inserting v into a component c ∈ Vred. In this case we add in G edges from
all nodes in c and their descendants to v and from v to all nodes in c and their ancestors.
The score (8) in this case is

s1(c) ≜ Sv-in(c) + Sv-out(c) (9)

Case 2a: Inserting v as a child of some c ∈ Vred. Once c is chosen as the parent
of v, choosing v’s children in Gred is substantially constrained. A node that is not a
descendant of c can not become a child of v, since this would create a new path from
that node to c and would require by transitivity to add a corresponding directed edge
to c (but all graph edges not connecting v are fixed). Moreover, only a direct child of c
can choose v as a parent instead of c (Figure 4b), since for any other descendant of c, v
would become a second parent, and Gred will no longer be a directed forest (Figure 4b’).
Thus, this case requires adding in G edges from v to all nodes in c and their ancestors,
and also for each new child of v, denoted by d ∈ Vred, we add edges from all nodes in
d and their descendants to v. Crucially, although the number of possible subsets of c’s
children in Gred is exponential, the fact that they are independent trees in Gred allows us
to go over them one by one, and decide for each one whether it will be a child of v or
not, depending on whether Sv-in(d) is positive. Therefore, the score (8) in this case is:

s2(c) ≜ Sv-out(c)+∑
d∈child(c)

max(0, Sv-in(d)) (10)

where child(c) are the children of c.
Case 2b: Inserting v as a new root in Gred. Similar to case 2a, only roots of Gred can

become children of v. In this case for each chosen root r we add in G edges from the
nodes in r and their descendants to v. Again, each root can be examined independently.
Therefore, the score (8) of re-attaching v is:

s3 ≜∑
r

max(0, Sv-in(r)) (11)

where the summation is over the roots of Gred.
It can be easily verified that Sv-in(c) and Sv-out(c) satisfy the recursive definitions:

Sv-in(c) =∑
i∈c

wiv + ∑
d∈child(c)

Sv-in(d), c ∈ Vred (12)

Sv-out(c) =∑
i∈c

wvi + Sv-out(p), c ∈ Vred (13)

where p is the parent of c in Gred. These recursive definitions allow to compute in linear
time Sv-in(c) and Sv-out(c) for all c (given Gred) using dynamic programming, before
going over the cases for re-attaching v. Sv-in(c) is computed going over Vred leaves-to-
root (post-order), and Sv-out(c) is computed going over Vred root-to-leaves (pre-order).

Re-attachment is summarized in Algorithm 3. Computing an SCC graph is linear
(Cormen et al. 2002) and it is easy to verify that transitive reduction in FRGs is also
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Figure 5
An example graph where single node re-attachment is a disadvantage.

linear (Line 1). Computing Sv-in(c) and Sv-out(c) (Lines 2-3) is also linear, as explained.
Cases 1 and 2b are trivially linear and in case 2a we go over the children of all nodes in
Vred. As the reduced graph is a forest, this simply means going over all nodes of Vred,
and so the entire algorithm is linear.

Since re-attachment is linear, re-attaching all nodes is quadratic. Thus if we bound
the number of iterations over all nodes, the overall complexity is quadratic. This is
dramatically more efficient and scalable than applying an ILP solver. Empirically, we
found that TNF converges after 5-10 iterations.

Tree-node-and-component-fix. Assuming that entailment graphs are FRGs allows us to
employ the node re-attachment operation in linear time. However, this assumption also
enables to perform other graph operations efficiently. We now suggest a natural exten-
sion to the TNF algorithm that better explores the space of FRGs.

A disadvantage of TNF is that it re-attaches a single node in every iteration. Consider
for instance the reduced graph in Figure 5. In this graph, nodes l, m, and n are direct
children of node k, but suppose that in the optimal solution they are all children of
node j. Reaching the optimal solution would require three independent re-attachment
operations, and it is not clear that each of the three alone would improve the objective
function value. However, if we allow re-attachment operations over components in
the SCC graph, then we would be able to re-attach the strong connectivity component
containing the nodes l, m, and n in a single operation. Thus, the idea of our extended
TNF algorithm is to allow re-attachment of both nodes and components. We term this
algorithm Tree-node-and-component-fix (TNCF).

There are many ways in which this intuition can be implemented and our TNCF
algorithm employs one possible variant. In TNCF we first perform node re-attachment
until convergence as in TNF (after initialization), but then compute the SCC graph
and perform component re-attachment until convergence. Component re-attachment is
identical to node re-attachment, except that we are guaranteed that the reduced graph
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Figure 6
Three types of transitivity constraint violations, when re-attaching the node v to a graph
containing the nodes i and k.

is a forest. After performing component re-attachment until convergence we again
perform node re-attachments and then component re-attachments and so on, until the
entire process converges.

Graph-node-fix. The re-attachment strategy described above can be applied without
assuming that the graph is an FRG. Next, we show Graph-Node-Fix (GNF), a similar
algorithm that employs the re-attachment strategy to obtain an approximate solution
for the ILP problem Max-Trans-Graph (3). In this more general case, finding the optimal
re-attachment of a node v is done with an ILP solver. Nevertheless, this ILP is simpler
than (3), since we consider only candidate edges involving v. Figure 6 illustrates the
three types of possible transitivity constraint violations when re-attaching v. The left
side depicts a violation when (i, k) ∉ E, expressed by the constraint in (15) below, and
the middle and right depict two violations when the edge (i, k) ∈ E, expressed by the
constraints in (16). Thus, the ILP is formulated by adding the following constraints to
the objective function (8):

max
x(v)

Sv-in + Sv-out (14)

s.t. ∀i,k∈V ∖{v} if (i, k) ∉ E, xiv + xvk ≤ 1 (15)

∀i,k∈V ∖{v} if (i, k) ∈ E, xvi ≤ xvk, xkv ≤ xiv (16)

∀i,k∈V ∖{v} xiv, xvk ∈ {0,1}

Complexity is exponential due to the ILP solver; however, the ILP size is reduced
by an order of magnitude to O(∣V ∣) variables and O(∣V ∣2) constraints. To summarize,
the complexity of GNF is higher than the complexity of TNF, but it does not require the
assumption that entailment graphs are FRGs.

4. Experimental Evaluation - Typed Entailment Graphs

In this and the next section we empirically evaluate the algorithms presented in Sec-
tion 3 on two different datasets. Our first dataset, presented in this section, comprises
medium-sized graphs for which obtaining an exact solution is possible, and we demon-
strate that our approximation methods substantially improve runtime while causing
only a small degradation in performance compared to the optimal solution. The graphs
are also particularly suited for global optimization since graph predicates are typed,
which substantially reduces their ambiguity. The second dataset (Section 5) contains
a graph with tens of thousands of untyped nodes, where exact inference is completely
impossible. We show that our methods scale to this graph and that transitivity improves
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Figure 7
A fragment of a typed entailment graph.

performance even when predicates are untyped. The resulting graph contains more
than 100,000 entailment rules that can be utilized in downstream semantic applications.

The input to the algorithms presented in Section 3 is a set of nodes V and a weight-
ing function w ∶ V × V → R. We describe how those are constructed before presenting an
experimental evaluation.

4.1 Typed entailment graphs

As mentioned in Section 2, one of the challenges in global optimization is that tran-
sitivity does not always hold when predicates are ambiguous. Schoenmackers et al.
(2010) proposed an algorithm for learning inference rules between typed predicates, a
representation that substantially reduces ambiguity. We adopt their representation and
learn typed entailment graphs. A typed entailment graph (see Figure 7) is a directed graph
where the nodes are typed predicates. A typed predicate is a triple (t1, p, t2), or simply
p(t1, t2), representing a predicate in natural language. p is the lexical realization of the
predicate and the typed variables t1, t2 indicate that the arguments of the predicate
belong to the semantic types t1, t2. Semantic types are taken from a set of types T ,
where each type t ∈ T is a bag of natural language words or phrases. Examples for
typed predicates are: ‘conquer(COUNTRY,CITY)’ and ‘contain(PRODUCT,MATERIAL)’. An
instance of a typed predicate is a triple (a1, p, a2), or simply p(a1, a2), where a1 ∈ t1 and
a2 ∈ t2 are termed arguments. For example, ‘be common in(asthma,australia)’ is an instance
of ‘be common in(DISEASE,PLACE)’.

Given a set of typed predicates, entailment rules can only exist between predicates
that share the same (unordered) pair of types (such as ‘PLACE’ and ‘COUNTRY’), as
otherwise, the rule would contain unbound variables. Hence, given a set of typed pred-
icates we can immediately decompose them into disjoint subsets – all typed predicates
sharing the same pair of types define a separate graph that describes the entailment
relations between those predicates (see Figure 7).

Edges in typed entailment graphs represent entailment rules in the usual way. If
the type t1 is different from the type t2, mapping of arguments is straightforward, as
in the rule ‘be find in(MATERIAL,PRODUCT) ⇒ contain(PRODUCT,MATERIAL)’. If t1 and
t2 are equal we need to specify how arguments are mapped. This is done by splitting
each node into two, for example, the node ‘beat(TEAM,TEAM)’ is split into two typed
predicates ‘beat(Xteam,Yteam)’ and ‘beat(Yteam,Xteam)’. This allows us to specify a rule
where argument order is reversed such as ‘beat(Xteam,Yteam) ⇒ lose to(Yteam,Xteam)’.
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Type Example
direct hypernym beat(TEAM,TEAM)⇒ play(TEAM,TEAM)
direct synonym reach(TEAM,GAME)⇒ arrive at(TEAM,GAME)
direct cohyponym invade(COUNTRY,CITY)⇏ bomb(COUNTRY,CITY)
hyponym (distance=2) defeat(CITY,CITY)⇏ eliminate(CITY,CITY)
random hold(PLACE,EVENT)⇏ win(PLACE,EVENT)

Table 1
Automatically generated training set examples.

This also accommodates rules such as ‘play(Xteam,Yteam)⇒ play(Yteam,Xteam)’: if team
A plays team B, then team B plays team A.

To create typed entailment graphs, we used a dataset that was generously provided
by Schoenmackers et al. (2010). Schoenmackers et al. produced a mapping of 1.1 million
arguments into 156 types (Examples for (argument, TYPE) pairs are ‘(exodus, BOOK)’,
‘(china, COUNTRY)’ and ‘(asthma, DISEASE)’, and then utilized the types, the mapped
arguments and 1 million TextRunner tuples (Banko et al. 2007) to generate a set of
10,672 typed predicates.3 Since entailment can only occur between predicates that share
the same types, we decomposed the 10,672 typed predicates into 2,303 typed entailment
graphs. The largest graph contains 188 nodes and the total number of potential rules is
263,756. 4 The advantage of typing predicates is that it substantially reduces ambiguity,
while still maintaining rules of wide-applicability.

4.2 Training a local entailment classifier

The weighting functionw is derived from an entailment score provided by a local classi-
fier. Given a local classifier that provides an entailment score sij for a pair of predicates
(i, j), we define wij = sij − λ, where λ is a prior that controls graph sparseness: as λ
increases, wij decreases and becomes negative for more pairs of predicates, rendering
the graph more sparse. The probabilistic interpretation of λ is as follows. For each two
nodes let q be a prior probability that an edge exists. For large values of q the graph
tends to be dense and vice versa. Defining λ as log 1−q

q
, the modified weight function is:

wij = log
p(xij = 1)

p(xij = 0)
− log

1 − q

q
= sij − λ (17)

Given the weight function w, the task is to find the maximum a posteriori global graph
that satisfies predefined constraints such as transitivity.

Training is similar to the method proposed by Berant, Dagan and Goldberger (2012),
and we briefly describe its details. The input for training is a lexicographic resource,
for which we use Wordnet, and a set of tuples, for which we use the 1 million typed
TextRunner tuples provided by Schoenmackers et al. We perform the following steps:

3 Readers are referred to their paper for details on mapping of tuples to typed predicates. The mapping of
arguments into types can be downloaded from
http://www.cs.washington.edu/research/sherlock-hornclauses/.

4 In more detail, 1714 graphs have less than 5 nodes, 326 graphs have 5-10 nodes, 145 graphs have 10-20
nodes, 92 graphs have 20-50 nodes, 18 graphs have 50-100 nodes, and 7 graphs have at least 100 nodes.
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1. Training set generation Positive examples are generated using WordNet syn-
onyms and hypernyms. Negative pairs are generated using WordNet direct co-
hyponyms (sister terms), but we also utilize Word hyponyms at distance 2. In
addition, we generate negative examples by randomly sampling pairs of typed
predicates that share the same types. Table 1 provides an example for each type
of automatically generated training example. It has been noted in the past that
the WordNet verb hierarchy contains a certain amount of noise (Richens 2008;
Roth and Frank 2012). However, we use WordNet only to generate examples for
training a statistical classifier, and thus we can tolerate some noise in the generated
examples. In fact, we have noticed that simple variants in training set generation
do not result in substantial differences in classifier performance.

2. Feature representation Each example pair of typed predicates (p1, p2) is repre-
sented by a feature vector, where each feature is a distributional similarity score
estimating whether p1 entails p2.
We compute 11 distributional similarity scores for each pair of typed predicates
based on their arguments in the input set of tuples. The first 6 scores are computed
by trying all combinations of two similarity functions Lin and BInc with three
types of feature representations (see Section 2):

(a) A feature is a pair of arguments. For example, a feature for the typed predi-
cate invade(COUNTRY,CITY) might be (germany,leningrad) or (england,paris).

(b) Predicate representation is binary, and each typed predicate has two feature
vectors, one for the X slot and one for the Y slot. Similarities are com-
puted for each vector separately and are then combined by a geometric
average (as in DIRT (Lin and Pantel 2001)). For example the predicate in-
vade(COUNTRY,CITY) will have a feature vector for its X slot with features
such as germany and england, and a feature vector for its Y slot with features
such as leningrad and paris.

(c) Binary typed predicates are decomposed into two unary typed predicates,
and similarity is computed separately for each unary predicate. Then, simi-
larity scores are combined by a geometric average. For example, the binary
typed predicate invade(COUNTRY,CITY) will be decomposed into two unary
predicates, one where the first argument of invade has the type COUNTRY
(and the type of the second argument is unspecified), and another where
the second argument of invade has the type CITY (and the first argument in
unspecified).

The other 5 scores were provided by Schoenmackers et al. (Schoenmackers et al.
2010) and include SR (Schoenmackers et al. 2010), LIME (McCreath and Sharma
1997), M-estimate (Dzeroski and Brakto 1992), the standard G-test and a simple
implementation of Cover (Weeds and Weir 2003). Overall, the rationale behind this
representation is that combining various scores will yield a better classifier than
each single measure.

3. Training We sub-sample negative examples and train over an equal number of
positive and negative examples. We used SVMperf (Joachims 2005) to train a
Gaussian kernel classifier that provides an output score, sij . We tuned the two
SVM parameters using 5-fold cross validation on a development set of two typed
entailment graphs.

4. Prior knowledge For a small number of pairs of predicates we might have prior
knowledge whether one entails the other. Berant, Dagan, and Goldberger. (2012)
integrated prior knowledge by adding hard constraints to the ILP. Since not all
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of our algorithms use an ILP solver we integrate prior knowledge by modifying
the local classifier score. For pairs of predicates i, j for which we have prior
knowledge that i entails j (termed positive local constraints), we set sij =∞. For
pairs of predicates i, j for which we have prior knowledge that i does not entail j
(termed negative local constraints), we set sij = −∞.
To generate prior knowledge constraints we normalized each predicate by omit-
ting the first word if it is a modal and turned passives into actives. If two nor-
malized predicates are equal they are a positive local constraint. Negative local
constraints were constructed from 3 sources (1) Predicates differing by a single
pair of words that are WordNet antonyms (2) Predicates differing by a single word
of negation (3) Predicates p(t1, t2) and p(t2, t1) where p is a transitive verb (e.g.,
beat) in VerbNet (Kipper, Dang, and Palmer 2000).
As reported by Berant, Dagan and Goldberger (2012), we find that injecting prior
knowledge into the graph improves performance, as it provides a good starting
point for the inference procedure.

4.3 Experimental evaluation

To evaluate performance we manually annotated all edges in 10 typed entailment
graphs containing 14, 14, 22, 30, 53, 62, 76, 86, 118 and 118 nodes. This annotation
yielded 3,427 edges and 35,585 non-edges, resulting in an empirical edge density of
9%. The dataset is publicly available and can be downloaded from http://www-nlp.
stanford.edu/joberant/homepage_files/resources/Acl2011Exp.rar

We implemented the following algorithms for learning graph edges, where in all of
them the graph is first decomposed into components as described in Section 3.1.

No-trans Local scores are used without transitivity constraints – an edge (i, j) is
inserted iff wij > 0, or in other words iff sij > λ.

Exact-graph Find the optimal solution for Max-Trans-Graph in each component by
applying an ILP solver in a cutting-plane method, as described in Section 3.1.

Exact-forest Finding the exact solution for Max-Trans-Forest (see Equation 7) in
each component by applying an ILP solver in a cutting-plane method.

LP-relax Solving Max-Trans-Graph approximately by applying an LP-relaxation
(see Section 2) on each graph component. We apply the LP solver within the same
cutting-plane method to allow for a direct comparison. As mentioned, our goal is to
present a method for learning transitive graphs, while LP-relax produces solutions that
violate transitivity. However, we run it on our dataset to obtain empirical results, and
to compare runtimes against TNF.

Graph-Node-Fix (GNF) Initialization of each component is performed in the fol-
lowing way: if the graph is very sparse, i.e. λ ≥ C for some constant C (set to 1 in our
experiments), then solving the graph exactly is not an issue and we use Exact-graph.
Otherwise, we initialize by applying Exact-graph in a sparse configuration, i.e., λ = C.

Tree-Node-Fix (TNF) Initialization is done as in GNF, except that if it generates a
graph that is not an FRG, it is corrected by a simple heuristic: for every node in the
reduced graph Gred that has more than one parent, we choose from its current parents
the single one whose SCC is composed of the largest number of nodes in G.

We do not present the results of TNCF in this experiment, because for medium-sized
graphs it provides results that are almost identical to TNF.

The No-trans baseline is a state-of-the-art local learning algorithm. It uses state-of-
the-art local scores such as DIRT (Lin and Pantel 2001), BInc (Szpektor and Dagan 2008),
Cover (Weeds and Weir 2003) and SR (Schoenmackers et al. 2010), and trains a classifier
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using these scores. Berant, dagan and Goldberger (Berant, Dagan, and Goldberger 2010)
have demonstrated empiricially that training a classifier over multiple similarity scores
improves performance compared to using just a single similarity score.

The Exact-graph algorithm is the state-of-the-art global method presented by Be-
rant, Dagan and Goldberger (2012). It finds the optimal solution for Max-Trans-Graph
and our goal is to show that we can obtain good performance more efficiently using our
approximation methods. Last, LP-relax is a standard approximation method for solving
Integer Linear Programs (Martins, Smith, and Xing 2009).

We note that a trivial baseline would be to initialize edges based on whether sij > λ
and then compute the transitive closure in each component. We empirically found that
this adds edges too aggressively and results in very low precision.

We use the Gurobi optimization package5 as our ILP solver in all experiments. The
experiments were run on a multi-core 2.5GHz server with 32GB of RAM.

We evaluate algorithms by comparing the set of gold standard edges with the set of
edges learned by each algorithm. We measure recall, precision and F1 for various values
of the sparseness parameter λ, and compute the area under the precision-recall Curve
(AUC) generated. Efficiency is evaluated by comparing runtimes.

We first focus on runtimes and show that TNF is substantially more efficient than
other baselines that use transitivity. Figure 8 compares runtimes of Exact-graph, GNF,
TNF, and LP-relax as −λ increases and the graph becomes denser. Note that the y-axis
is in logarithmic scale. Clearly, Exact-graph is extremely slow and runtime increases
quickly. For λ = 0.3 runtime was already 12 hours and we were unable to obtain results
for λ < 0.3, while in TNF we easily got a solution for any λ. When λ = 0.6, where both
Exact-graph and TNF achieve best F1, TNF is 10 times faster than Exact-graph. When
λ = 0.5, TNF is 50 times faster than Exact-graph and so on. Most importantly, runtime for
GNF and TNF increases much more slowly than for Exact-graph. Comparing runtimes
for TNF and GNF, we see that the gap between the algorithms decreases as −λ increases.
However, for reasonable values of λ TNF is about 4-7 times faster than GNF, and we
were unable to run GNF on large graphs as we report in Section 5.

Runtime of LP-relax is also bad compared to TNF and GNF. Runtime increases more
slowly than Exact-graph, but still very fast compared to TNF. When λ = 0.6, LP-relax is
almost 10 times slower than TNF, and when λ = −0.1, LP-relax is 200 times slower than
TNF. This points to the difficulty of scaling LP-relax to large graphs. Last, Exact-forest is
the slowest algorithm and since it is an approximation of Exact-graph we omit if from
the figure for clarity.

We now examine the quality of the learned graphs and validity of our modeling
assumptions. Figure 9 (left) shows a pair-wise comparison of Exact-graph and Exact-
forest. As is evident, the two curves are very similar, and the maximal F1 on the
curve and AUC are almost identical. This provides further support for our modeling
assumption that entailment graphs are roughly forest-reducible. Figure 9 (right) shows
a similar comparison for TNF and GNF. We observe again that the curves are similar
and performance is almost identical (maximal F1: 0.41, AUC: 0.31), illustrating that
employing the FRG assumption when using our approximation algorithm is empirically
effective.

In Figure 10, we compare the performance of Exact-graph, which exactly solves
Max-Trans-Graph, to our most efficient approximation algorithm, TNF, and to No-trans,
a basline that does not use transitivity at all (GNF and LP-relax are omitted from the

5 www.gurobi.com
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Figure 8
Runtime in seconds of the global algorithms for various −λ values.

figure to improve readability). We observe that both Exact-graph and TNF substantially
outperform No-trans and that TNF’s graph quality is only slightly lower than Exact-
graph (which is extremely slow). We report in the caption the maximal F1 on the curve
and AUC in the recall range 0-0.5 (the widest range for which we have results for all
algorithms). Note that compared to Exact-graph, TNF reduces AUC by merely a point
and the maximal F1 score by 2 points only.

As for LP-relax, results are just slightly lower than Exact-graph (maximal F1: 0.43,
AUC: 0.32), but its output is not a transitive graph, and as shown above runtime is quite
slow.

To summarize, in this section we have empirically evaluated the algorithms pre-
sented in Section 3 on medium-sized graphs for which we can find an optimal solution.
Our main findings are as follows:
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Figure 9
Pair-wise comparison of the precision-recall curves of Exact-graph vs. Exact-forest, and GNF vs.
TNF.

1. Finding the optimal solution for Exact-graph and Exact-forest results in very
similar graphs. This supports our assumption that entailment graphs are approx-
imately forest-reducible.

2. Running GNF and TNF also yields very similar graphs, illustrating that employ-
ing the FRG assumption when using our re-attachment approximation scheme is
effective.

3. Our efficient approximation algorithm, TNF, is substantially faster compared to
running an ILP solver that exactly solves Max-Trans-Graph.

4. TNF results in only a slight decrease in quality of learned graphs compared to
Exact-graph.

5. TNF, which respects the transitivity constraint, learns graphs of higher quality
compared to the local baseline, No-trans.

These findings lead us to believe that the algorithms presented in Section 3 can scale
to large entailment graphs. In the next section, we empirically evaluate on a much larger
dataset for which using ILP solvers is impractical.

5. Experimental Evaluation - Untyped Entailment Graphs

In this section we evaluate our methods on a graph with 20,000 nodes. Again, we
describe how the nodes V and the weighting function w are constructed.

5.1 Untyped entailment graphs

The nodes of the entailment graph we learn in this section are not typed. While ambi-
guity is a problem in this setting we will show that nevertheless transitivity constraints
can improve results compared to a state-of-the-art local entailment classifier.

The nodes of the graph were generated from a set of two billion tuples of the
form (arg1,predicate,arg2) that were extracted by the Reverb open information extraction
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Precision (y-axis) vs. recall (x-axis) curve. Maximal F1 on the curve is 0.43 for Exact-graph, 0.41
for TNF, and 0.34 for No-trans. AUC in the recall range 0-0.5 is 0.32 for Exact-graph, 0.31 for
TNF, and 0.26 for No-trans.

system (Fader, Soderland, and Etzioni 2011) over the Clueweb096 dataset and were
generously provided by the authors of Reverb.

We performed some simple preprocessing over the extracted tuples. Each tuple is
accompanied by a confidence value and we discarded tuples with confidence smaller
than 0.5. Next, we normalized predicates using a procedure that omits unnecessary
content such as modals and adverbs. The entire normalization procedure is publicly
available as part of the Reverb project.7 Last, we normalized arguments by replacing

6 http://lemurproject.org/clueweb09.php/
7 https://github.com/knowitall/reverb-core/blob/master/core/src/main/java/edu/
washington/cs/knowitall/normalization/RelationString.java

25



Computational Linguistics Volume 1, Number 1

pronouns and determiners by the tokens ‘PRONOUN’ and ‘DET’. We also ran the BIU
number normalizer8 and replaced numbers larger than one by the token ‘NUM’. After
these three steps we are left with a total of 960 million tuples of which 291 million are
distinct.

The number of distinct predicates in set of extracted tuples is 103,315. Since this is
still a large number we restrict the predicate set to the 10,000 predicates that appear
with the highest number of pairs of arguments. As previously explained, each predicate
is split into two (e.g., ‘defeat’ is split into ‘X defeat Y’ and ‘Y defeat X’) and so the final
number of entailment graph nodes is 20,000.

5.2 Training a local entailment classifier

As with typed entailment graphs, the weighting function w is obtained by training a
classifier that provides a score sij for all pairs of predicates9 and defining wij = sij − λ.
this setting computing the scores sij involves the following steps:

1. Training set generation We use the dataset released by Zeichner, Berant and
Dagan (2012), which contains 6,567 entailment rule applications annotated for
their validity by crowdsourcing. For example, the dataset marks that ‘The exercises
alleviate pain⇒ The exercises help ease pain’ is a valid rule application, while ‘Obama
want to boost the defense budget⇒Obama increase the defense budget’ is an invalid rule
application. We extract a single rule from each rule application, for example from
the rule application ‘The exercises alleviate pain ⇒ The exercises help ease pain’ we
extract the rule ‘X alleviate Y⇒X help ease Y’. We use half of the dataset for training,
resulting in 1,224 positive examples and 2,060 negative examples. Another two
training examples are ‘X unable to pay Y⇒ X owe Y’ and ‘X own Y⇏ Y be sold to X’.

2. Feature representation Each pair of predicates (p1, p2) is represented by a feature
vector, where the first six are distributional similarity features identical to the first
six features described in Section 4.2. In addition, for pairs of predicates for which
at least one distributional similarity feature is non-zero, we add lexicographic
features computed from WordNet (Fellbaum 1998), VerbOcean (Chklovski and
Pantel 2004) and CatVar (Habash and Dorr 2003), as well as string-similarity
features. Table 2 provides the exact details of these features. A feature is computed
for a pair of predicates (p1, p2) where in this context a predicate is a pair (pred,rev):
’pred’ is the lexical realization of the predicate, and ‘rev’ is a boolean indicating
whether arg1 is ‘X’ and arg2 is ‘Y’ or vice versa. Overall, each pair of predicates is
represented by 27 features.

3. Training After obtaining a feature representation for every pair of predicates, we
train a Gaussian kernel SVM classifier that optimizes F1 (SVMperf implementation
(Joachims 2005)), and tune the parametersC and γ by a grid search combined with
5-fold cross validation. We use the trained local classifier to compute a score sij for
all pairs of predicates.

4. Prior knowledge We automatically generate local constraints for pairs of predi-
cates for which we know with high certainty whether the first entails the second
or not. We define and compute constraints over pairs of predicates (p1, p2), where

8 http://u.cs.biu.ac.il/~nlp/downloads/normalizer.html
9 We do not need to run the classifier on 10,0002 pairs of predicates, since for the majority of predicate

pairs the features are all zeros, and for this set of pairs we can run the classifier only once.
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Name Type Source Description
synonym binary WordNet rev1 = rev2 ∧ pred1 is a synonym of pred2.
loose synonym binary WordNet rev1 = rev2 ∧ pred1 and pred2 are identical except for a pair of

words (w1,w2)where w1 is a synonym of w2.
hypernym binary WordNet rev1 = rev2 ∧ pred1 is a hypernym of pred2 at distance ≤ 2.
loose hypernym binary WordNet rev1 = rev2 ∧ pred1 and pred2 are identical except for a pair of

words (w1,w2)where w1 is a hypernym of w2 at distance ≤ 2.
hyponym binary WordNet rev1 = rev2 ∧ pred1 is a hyponym of pred2 at distance ≤ 2.
loose hyponym binary WordNet rev1 = rev2 ∧ pred1 and pred2 are identical except for a pair of

words (w1,w2)where w1 is a hyponym of w2 at distance ≤ 2.
co-hyponym binary WordNet rev1 = rev2 ∧ pred1 is a co-hyponym of pred2 at distance ≤ 2.
loose co-hyponym binary WordNet rev1 = rev2 ∧ pred1 and pred2 are identical except for a pair of

words (w1,w2)where w1 is a co-hyponym of w2 at distance ≤ 2.
entailment binary WordNet rev1 = rev2 ∧ pred1 verb-entails pred2 (distance ≤ 1).
loose entailment binary WordNet rev1 = rev2 ∧ pred1 and pred2 are identical except for a pair of

words (w1,w2)where w1 verb-entails w2 (distance ≤ 1).
stronger binary VerbOcean rev1 = rev2 ∧ pred1 is stronger-than pred2.
loose stronger binary VerbOcean rev1 = rev2 ∧ pred1 and pred2 are identical except for a pair of

words (w1,w2)where w1 is stronger-than w2.
rev-stronger binary VerbOcean rev1 = rev2 ∧ pred2 is stronger-than pred1.
loose rev-stronger binary VerbOcean rev1 = rev2 ∧ pred1 and pred2 are identical except for a pair of

words (w1,w2)where w2 is stronger-than w1.
CatVar binary CatVar pred1 and pred2 contain a pair of content words (w1,w2) that are

either identical or derivationally-related in CatVar.
remove word binary String rev1 = rev2 ∧ removing a single word from pred1 will result in

pred2.
add word binary String rev1 = rev2 ∧ adding a single word to pred1 will result in pred2.
remove adj. binary String rev1 = rev2 ∧ removing a single adjective from pred1 will result

in pred2.
add adj. binary String rev1 = rev2 ∧ adding a single adjective to pred1 will result in

pred2.
Edit real String if rev1 = rev2, the normalized edit-distance between pred1 and

pred2, otherwise 1.
Reverse binary String rev1 = rev2

Table 2
Definition of lexicographic and string-similarity features. We denote by the string ’pred’ the
lexical realization of the predicate, and by the boolean indicator ‘rev’ whether arg1 is ‘X’ and arg2

is ‘Y’ or vice versa. Normalized edit-distance is edit-distance divide by the sum of lengths of
pred1 and pred2.

.

again a predicate p is a pair (pred, rev). We start with negative local constraints
(Examples in Table 3):

(a) cousin: (p1, p2) are cousins if rev1 = rev2 and pred1 = pred2, except for a single
pair of words w1 and w2, which are cousins in WordNet, that is, they have a
common hypernym at distance 2.

(b) indirect hypernym: (p1, p2) are indirect hypernyms if rev1 = rev2 and pred1 =
pred2, except for a single pair of words w1 and w2, and w1 is a hypernym at
distance 2 of w2 in WordNet.

(c) antonym: (p1, p2) are antonyms if rev1 = rev2 and pred1 = pred2, except for a
single pair of words w1 and w2, and w1 is an antonym of w2 in WordNet.

(d) uncertainty implication: holds for (p1, p2) if rev1 = rev2 and concatenating the
words “want to" to pred2 results in pred1.

(e) negation: Negation holds for (p1, p2) and (p2, p1), if rev1 = rev2 and in ad-
dition removing a single negation word (“not",“no", “never", or “n’t") from
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pred1 results in pred2. Negation also holds for (p1, p2) and (p2, p1), if rev1 =
rev2 and in addition replacing in pred1 the word “no" for the word “a" results
in pred2.

(f) transitive opposites: (p1, p2) are transitive opposites if pred1 = pred2 and rev1 ≠
rev2 and pred1 is a transitive verb in VerbNet.

Name ⇒/⇔ Example
cousin ⇔ ‘X beat Y⇏ X fix Y’
indirect hy-
pernym

⇒ ‘X give all kind of ⇏ X sell all kind of Y’

antonym ⇔ ‘X announce death of ⇏ X announce birth of Y’
uncertainty
implication

⇒ ‘X want to analyze Y⇏ X analyze Y’

negation ⇔ ‘X do no harm to Y⇏ X do harm to Y’
transitive
opposite

⇔ ‘X abandon Y⇏ Y abandon X’

Table 3
Examples for negative local constraints. The column ‘⇒/⇔’ indicates whether the constraint is
directional or symmetric.

Name ⇒/⇔ Example
determiner ⇔ ‘X be the answer to Y⇒ X be answer to Y’
positive im-
plication

⇒ ‘X start to doubt Y⇒ X doubt Y’

passive-
active

⇔ ‘X command Y⇒ Y be commanded by X’

Table 4
Examples for positive local constraints. The column ‘⇒/⇔’ indicates whether the constraint is
directional or symmetric.

Next, we define the positive local constraints (Examples in Table 4):
(a) determiner: The determiner constraint holds for (p1, p2) and (p2, p1) if rev1 =

rev2 and omitting a determiner (“a" or “the”) from pred1 results in pred2.
(b) positive implication: Positive implication holds for (p1, p2) if rev1 = rev2 and

concatenating the words “manage to" or “start to" or “start" or “decide to" or
“begin to" to pred2 results in pred1.

(c) passive-active: The passive-active constraint holds for (p1, p2) and (p2, p1) if p2
is the passive form of p1.

Again, local constraints are integrated into our model by changing the score sij =
∞ for positive local constraints and sij = −∞ for negative local constraints.

5.3 Experimental evaluation

To evaluate performance we use the second half of the dataset released by Zeichner,
Berant and Dagan (2012) as a test set. This test set contains 3,283 annotated examples,
where 1,734 are covered by the 10,000 nodes of our graph (649 positive examples and
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Figure 11
Precision-recall curve comparing global algorithms to the local algorithm.

1,085 negative examples). As usual, for each algorithm we compute recall and precision
with respect to the gold standard in various points by varying the sparseness parameter
λ.

Most methods employed over typed graphs in Section 4 (Exact-graph, Exact-forest,
LP-relax and GNF) are intractable since they require an ILP solver and our graph does
not decompose into components that are small enough. Therefore, we compare the No-
trans local baseline, where transitivity is not used, with the efficient global methods
TNF and TNCF. Recall that in Section 4 we initialized TNF by applying an ILP solver
in a sparse configuration on each graph component. In this experiment the graph is too
large to use an ILP solver and so we initialize TNF and TNCF with a simple heuristic
we describe next.

We begin with an empty graph and first sort all pairs of predicates (i, j) for which
wij > 0 according to their weight w. Then, we go over predicate pairs one-by-one and
perform two operations. First, we verify that inserting (i, j) into the graph does not
violate the FRG assumption. This is done by going over all edges (i, k) ∈ E and checking
that for every k either (j, k) ∈ E or (k, j) ∈ E. If this is the case, then the edge (i, j) is
a valid candidate edge as the resulting reduced graph will remain a directed forest,
otherwise adding it will result in i having two parents in the reduced graph, and we
do not insert this edge. Second, we compute the transitive closure Tij , which contains all
node pairs that must be edges in the graph in case we insert (i, j), due to transitivity.
We compute the change in the value of the objective function if we were to insert Tij
into the graph. If this change improves the objective function value, we insert Tij into
the graph (and so the value of the objective function increases monotonically). We keep
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going over the candidate edges from highest score to lowest until the objective function
can not be improved anymore by inserting a candidate edge. We term this initialization
HTL-FRG, since we scan edges from high-score to low-score and maintain an FRG. We
add this initialization procedure as another baseline.

Figure 11 presents the precision-recall curve of all global algorithms compared
to the local classifier for 0.05 ≤ λ ≤ 2.5. One evident property is that No-trans reaches
higher recall values than the global algorithms, which means that adding a global
transitivity constraint prevents adding correct edges that have positive weight, since
this would cause the addition of many other edges that have negative weight. A possible
reason for that is predicate ambiguity where positive weight edges connect connectivity
components through an ambiguous predicate. This suggests that a natural direction
for future research is to develop algorithms that do not impose transitivity constraints
for rules i⇒ j and j ⇒ k, if each rule refers to a different meaning of j. One possible
direction is to learn latent “sense" or “topic" variables for each rule (as suggested
by Melamud et al. (2013)). Then, we can use the methods presented in this paper to
impose transitivity constraints for each sense separately, and easily allow violations
of transitivity across different senses. We provide concrete examples for such cases of
ambiguity in our qualitative analysis in Section 5.4.

method λ recall precision F1 # of rules
No-trans 1 0.1 0.75 0.18 39,872
No-trans 0.8 0.14 0.7 0.24 57,276
No-trans 0.6 0.17 0.68 0.27 65,232
No-trans 0.4 0.19 0.7 0.3 77,936
No-trans 0.2 0.24 0.65 0.35 116,832
HTL-FRG 0.2 0.09 0.78 0.17 48,986
HTL-FRG 0.15 0.1 0.78 0.18 55,756
HTL-FRG 0.1 0.11 0.77 0.19 65,802
HTL-FRG 0.05 0.12 0.76 0.21 84,380
TNF 0.2 0.11 0.77 0.19 61,186
TNF 0.15 0.11 0.72 0.19 71,674
TNF 0.1 0.14 0.72 0.23 88,304
TNF 0.05 0.15 0.72 0.25 127,826
TNCF 0.2 0.12 0.79 0.21 66,240
TNCF 0.15 0.13 0.75 0.23 80,450
TNCF 0.1 0.16 0.8 0.27 102,565
TNCF 0.05 0.18 0.74 0.29 156,208

Table 5
Recall, precision, F1, and the number of learned rules for No-trans and several global algorithms
for parameters of λ for which recall is in the range 0.1-0.25.

Although global algorithms are limited in their recall, for recall values of 0.1-0.2
they substantially improve precision over No-trans. To better observe this result, Table 5
presents the results for the recall range 0.1-0.25. Comparing TNCF and No-trans shows
that the TNCF algorithm improves over No-trans by 5-10 precision points: In the recall
range of 0.1-0.2 the precision of No-trans is 0.68-0.75, while the precision of TNCF is
0.74-0.8. The number of rules learned by TNCF in this recall range is about 100,000.
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Figure 12
Runtime in seconds for various −λ values for global algorithms.

We use HTL-FRG as an initialization method for TNCF, which on its own is not
a very good approximation algorithm. Comparing HTL-FRG to No-trans, we observe
that it is unable to reach high recall values and it only marginally improves precision
compared to No-trans. Applying TNF over HTL-FRG also provides disappointing re-
sults – it increases recall compared to HTL-FRG, but precision is not better than No-
trans. Indeed, it seems that although performing node re-attachments monotonically
improves the objective function value, it is not powerful enough to learn a graph that
is better with respect to our gold standard. On the other hand, adding component re-
attachments (TNCF) allows the algorithm to better explore the space of graphs and learn
a graph with higher recall and precision than HTL-FRG.

Figure 12 presents the runtime for HTL-FRG, TNF and TNCF (y-axis in logarithmic
scale), all of which yield an FRG and can be run on a large untyped graph. Again, we
were unable to obtain results with Exact-graph, Exact-forest, LP-relax and GNF, because
using an ILP solver on a graph with 20,000 nodes was impossible. As expected, HTL-
FRG is much faster than both TNF and TNCF, and TNCF is somewhat slower than
TNF. However, as mentioned above, TNCF is able to improve both precision and recall
compared to TNF and HTL-FRG. Note that when λ = 1.2 runtime increases suddenly for
both TNF and TNCF. This is since at this point a large connected component is formed,
as we explain next.

Figure 13 presents the results of graph decomposition as described in Section 3.1.
Evidently, when λ = 0 the largest component constitutes almost all of the graph, which
contains 20,000 nodes. Note that when λ = 1.2 the size of the largest component increases
suddenly to more than half of the graph nodes. Additionally, TNCF obtained recall of
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The number of nodes in the largest component as a function of the sparseness prior −λ.

0.1-0.2 when λ ≤ 0.2, and in this case the number of nodes in the largest component is
90% of the total number of graph nodes. Thus, contrary to the typed graphs, untyped
graphs that contain ambiguous predicates do not decompose well into small compo-
nents.

To summarize, we demonstrated that our efficient global methods scale to a graph
with 20,000 nodes and observed that even when predicates are ambiguous we are able
to improve precision for moderate values of recall. Nevertheless, there are indications
that our modeling assumptions are violated when applied over a large graph with
ambiguous predicates. Transitivity and FRG constraints limit the recall we are able to
reach, and the graph does not decompose very well into components. Thus, in future
work we would like to apply our algorithms over graphs where predicate ambiguity is
modeled and so transitivity constraints can be properly applied.

5.4 Qualitative analysis

In the previous section we quantitatively evaluated global methods for learning entail-
ment graphs over a large set of untyped predicates. Our results revealed interesting
issues that we would like to further investigate:

1. Why do methods that assume entailment graphs are transitive and forest-
reducible have limited recall?

2. How much does node re-attachment affect graph structure?
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In this section, we try to answer these questions by performing a qualitative
analysis that allows us to gain better insight on the behavior of our algorithms.

Question 1: Transitivity and FRG assumptions. We would like to understand why using
global algorithms such as TNCF results in limited recall. Our hypothesis is that since
predicates in the graph are untyped and potentially ambiguous, violations of the as-
sumptions are possible, which results in recall reduction. To examine this hypothesis
we perform two qualitative analyses:

1. We analyze graphs containing only gold standard edges, and manually identify
cases where the modeling assumptions are violated.

2. We compare the local algorithm, No-trans, to the global algorithm, TNCF. If our
hypothesis is correct then we expect TNCF to remove correct edges that are
inserted by No-train due to ambiguous predicates.

We start by constructing a graph with all edges from our gold standard dataset
and search for transitivity and FRG violations caused by ambiguous predicates. Note
that the manually annotated gold standard edges are only a subset of the full set of
correct edges, which is actually much larger. Thus, we can not automatically identify
violations, because the graph is missing many true edges. Instead, we manually go
over candidate violations and check if indeed this case is a result of a violation of our
modeling assumptions, and if so then our global algorithm can not predict the correct
set of edges.

One example is the pair of rules ‘seek⇒ apply for’ and ‘apply for⇒ file for’. The first
rule was annotated in the rule application ‘Others seek medical care ⇒ Others apply for
medical care’ (Recall that crowdsourcing was used to annotate rule applications, and
rules were extracted from these applications). The second rule was extracted from the
rule application ‘Students apply for more than one award ⇒ Student file for more than one
award’. This causes a transitivity violation since ‘Students seek more than one award⇏ Stu-
dent file for more than one award’. Evidently, the meaning of the predicate ‘apply for’ is
context-dependent. Another example is the pair of rules ‘contain ⇒ supply’ and ‘sup-
ply⇒ serve’ annotated in the applications ‘The page contains links⇒ The page supplies links’
and ‘Users supply information or material ⇒ Users serve information or material’. Clearly,
‘contain ⇏ serve’ and the transitivity violation is caused by the fact that the predicate
‘supply’ is context-dependent – in the first context the subject is inanimate, while in the
second context the subject is human.

A good example for an FRG violation is the predicate ‘come from’. The following
three entailment rules are annotated by the turkers: ‘come from ⇒ be raised in’, ‘come
from⇒ be derived from’, and ‘come from⇒ come out of ’. These correspond to the following
rule applications: ‘The Messiah comes from Judah⇒ The Messiah was raised in Judah’, ‘The
colors come from the sun light ⇒ The colors are derived from the sun light’, and ‘The truth
comes from the book ⇒ The truth comes out of the book’. Clearly, ‘be raised in ⇏ be derived
from’ and ‘be derived from ⇏ be raised in’, and so this is an FRG violation. Indeed the
three applications correspond to different meanings of the predicate ‘come from’, which
depend on context. A second example is the pair of rules ‘be dedicated to⇒ be committed
to’ and ‘be dedicated to ⇒ contain information on’. Again, this is an FRG violation since
‘be committed to ⇏ contain information on’ and ‘contain information on ⇏ be committed
to’. This violation occurs due to the ambiguity of the predicate ‘be dedicated to’, which
can be resolved by knowing whether the subject is human or is an object that carries
information (e.g., ‘The web site is dedicated to the life of lizards’).
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This first analysis revealed particular cases where the transitivity and FRG as-
sumptions do not hold. In the next analysis, we would like to directly compare cases
where global and local methods disagree with one another. We hypothesize that since
predicates are not disambiguated, then global algorithms will delete correct edges due
to an ambiguous predicate. We set the sparseness parameter λ = 0.2 and compare the
set of edges learned by No-trans to the set of edges learned by TNCF.

Examining the disagreements we observe that as expected in 90% of the cases TNCF
deletes an edge that was inserted by No-trans. We divide these deleted edges into two
categories in the following manner: we compute the weakly connected components of
the graph learned by TNCF, 10 and then for each edge inserted by No-trans and deleted
by TNCF we check whether it connects two different weakly-connected components
or not. There are two reasons for focusing on this property of deleted edges. First, we
hypothesize that most deleted edges will connect two different connected components,
because such edges result in many violations of transitivity. Second, weakly connected
components usually correspond to separate semantic meanings, and thus a correct
edge that connects two weakly connected components probably involves an ambiguous
predicate.

Indeed, out of all edges where No-trans inserts an edge and TNCF does not, 76.4%
connect weakly-connected components in the global graph. This proves that deleting
such edges is the main cause for disagreement between TNCF and No-trans. Now, we
can take a closer look at these edges, and check whether indeed when a correct edge is
deleted, it is because of an ambiguous predicate.

We randomly sample five cases where TNCF erroneously deleted an edge connect-
ing weakly connected components – these are cases where ambiguity is likely to occur.
For comparison, we also sample five cases where TNCF was right and No-trans erred.
Table 6 shows the samples where No-trans is correct. The first column describes the rule
and the second column specifies the score sij provided by the local classifier No-trans.
The last two columns detail two examples for predicates that are in the same weakly-
connected component with the rule LHS and RHS in the graph learned by TNCF. These
two columns provide a flavor for the overall meaning of predicates that belong to this
component. Table 7 is equivalent and shows the samples where TNCF is correct.

Example 1 in Table 6 already demonstrates the problem of ambiguity. The LHS
for this rule application in the crowdsourcing experiment was ‘your parents turn off
comments’ and indeed in this case the RHS ‘your parents cut off comments’ is inferred.
However, we can see that the LHS component revolves around the turning off or shutting
off of appliances for example, while the RHS component deals with a more explicit
and physical meaning of cutting. This is since the predicate ‘X cut off Y’ is ambiguous
and consequently TNCF omits this correct edge. Example 5 also demonstrates well
the problem of ambiguity – the LHS of this rule application is ‘This site was put by
fans’, which in this context entails the RHS ‘This site was run by fans’. However, the
more common sense of ‘be put by’ does not entail the predicate ‘be run by’; this sense
is captured by the predicates in the LHS component ‘Y help put X’ and ‘X be placed by Y’.
Example 4 is another good example where the ambiguous predicate is ‘X be open to Y’
– the RHS component is concerned with the physical state of being opened, while the
LHS component has a more abstract sense of availability. The LHS of the rule application

10 A weekly connected component in a directed graph is a set of nodes S such that for every pair of nodes
u, v ∈ S there is an undirected path from u to v and from v to u, that is, there is a path when edge
directions are ignored.
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# Rule sij LHS component RHS component
1 ‘X turn off Y⇒ X cut off Y’ 1.32 X shut off Y, X cut on Y X chop Y, X slice Y
2 ‘X be arrested in Y⇒X be captured

in Y’
0.27 X be killed on Y, X be ar-

rested on Y
X be delivered in Y, X be
provided in Y

3 ‘X die of Y⇒ X be diagnosed with
Y’

0.88 X gain on Y, X run on Y X be treated for Y, X have
symptom of Y

4 ‘X be available to Y⇒ X be open to
Y’

0.27 X be offered to Y, X be pro-
vided to Y

X open for Y, X open up for
Y

5 ‘X be put by Y⇒ X be run by Y’ 0.41 Y help put X, X be placed
by Y

Y operate X, Y control X

Table 6
Correct edges inserted by No-trans and omitted by TNCF that connect weakly-connected
components in TNCF. An explanation for each column is provided in the body of the section.

# Rule sij LHS component RHS component
1 ‘X want to see Y⇒ X want to help

Y’
0.83 X need to visit Y, X need to

see Y
X be a supporter of Y, X
need to support Y

2 ‘X cut Y⇒ X fix Y’ 0.88 X chop Y, X slice Y X cure Y, X mend Y
3 ‘X share Y⇒ X understand Y’ 0.62 X partake in Y, Y be shared

by X
Y be recognized by X, X re-
alize Y

4 ‘X build Y⇒ X rebuild Y’ 1.42 X construct Y, Y be manu-
factured by X

X regenerate Y, X restore Y

5 ‘X measure Y⇒ X weigh Y’ 0.65 X quantify Y, X be a mea-
sure of Y

X count for Y, X appear Y

Table 7
Erroneous edges inserted by No-trans and omitted by TNCF that connect weakly-connected
components in TNCF. An explanation for each column is provided in the body of the section.

in this case was ‘The services are available to museums’. Examples 2 and 3 are cases where
the problem is not in predicate ambiguity but in the connected component itself. Thus,
out of five randomly sampled examples where TNCF deleted an edge that connects two
weakly connected components, three can be attributed to predicate ambiguity.

Table 7 demonstrates cases where TNCF correctly omitted an edge and conse-
quently decomposed a weakly-connected component into two. These are classical cases
where the global constraint of transitivity helps the algorithm avoid errors . In Example
1 although sij = 0.83, which is higher than λ = 0.2, the edge is not inserted since this
would cause the addition of wrong edges from the LHS component that deals with
seeing and visiting to the RHS component, which is concerned with help and support.
Example 2 is a case of a pair of predicates that are co-hyponyms or even perhaps antonyms.
Transitivity helps TNCF avoid this erroneous rule.

To conclude, our analysis reveals that applying structural constraints encourages
global algorithms to omit edges. Although this is often desirable, it can also prevent
correct rules from being discovered due to problems of ambiguity. Thus, as discussed
in Section 5.3, we believe that an important direction for future research is to apply our
global graph learning methods over context-sensitive representations (such as the one
presented by Melamud et al. (2013)).

Question 2: Node re-attachment. We would like to understand the effect of applying TNF
over the entailment graph, or more precisely check whether TNF substantially alters
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Figure 14
A fragment from the graphs learned by HTL-FRG (black solid edges) and TNF (red dashed
edges).

the set of graph edges compared to an initialization with HTL-FRG. First, we run both
HTL-FRG and TNF with sparseness parameter λ = 0.2 and compute the proportion of
edges that is in their intersection. HTL-FRG learns 48,986 edges while TNF learns 61,186
edges. The number of edges in the intersection is 35,636. This means that 27% of the
edges learned by HTL-FRG were removed (13,350 edges) and in addition 25,550 edges
were added into the graph. Clearly, this indicates that TNF changes the learned graph
substantially.

We exemplify this with a few fragments of graphs learned by HTL-FRG and TNF.
Figure 14 shows 11 predicates11, where the black solid edges correspond to HTL-FRG
edges, while red dashed edges correspond to TNF edges. Nodes that contain more
than a single predicate represent an agreement between TNF and HTL-FRG that all
predicates in the node entail one another. Clearly, TNF substantially changes the initial-
ization generated by HTL-FRG. HTL-FRG creates an erroneous component in which
‘give a lot of’ and ‘generate a lot of’ are synonymous and ‘mean a lot of’ entails them.
TNF disassembles this component and determines that ‘give a lot of’ is equivalent to
‘offer plenty of’, while ‘generate a lot of’ entails ‘cause of’. Moreover, TNF disconnects the
predicate ‘mean a lot of’ completely. TNF also identifies that the predicates ‘offer a wealth
of’, ‘provide a wealth of’, ‘provide a lot of’ and ‘provide plenty of’ entail ‘offer plenty of’. Of
course, TNF sometimes causes errors – e.g., HTL-FRG decided that ‘cause’ and ‘cause of’
are equivalent, but TNF deleted the correct entailment rule ‘cause of ⇒ cause’.

Figure 15 provides another interesting example for an improvement in the graph
due to the application of TNF. In the initialization, HTL-FRG determined that the
predicate ‘encrypt’ entails the predicates ‘convert’ and ‘convince’ rather than the pred-
icates ‘code’ and ‘encode’. This is since the local score provided by the classifier for
(‘encrypt’,‘convert’) is 0.997 – slightly higher than the local score for (‘encrypt’,‘encode’),
which is 0.995. Therefore, HTL-FRG inserts the wrong edge ‘encrypt⇒ convert’ and then
it is unable to insert the correct rule ‘encrypt⇒ encode’ due to the FRG assumption. After

11 We do not explicitly write the X and Y variables for brevity, and thus we focus only on predicates where
the X variable is a subject.
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Figure 15
A fragment from the graphs learned by HTL-FRG (black solid edges) and TNF (red dashed
edges).
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Figure 16
A fragment from the graphs learned by HTL-FRG (black solid edges) and TNF (red dashed
edges).

HTL-FRG terminates, TNF goes over the nodes one by one and is able to determine that
overall the predicate ‘encrypt’ fits better as a synonym of the predicates ‘code’ and ‘encode’
and re-attaches it in the correct location. As an aside, notice that both HTL-FRG and TNF
are able to identify in this case the correct directionality of the rule ‘compress⇒ encode’.
The local score given by the classifier for (‘compress’,‘encode’) is 0.65, while the local score
for (‘encode’,‘compress’) is -0.11.

As a last example, Figure 16 demonstrates again the problem of predicate ambi-
guity. The predicate ‘depress’ can occur in two contexts that though related, instigate
different entailment relations. The first context is when the object of the predicate (the
Y argument) is a person and then the meaning of ‘depress’ is similar to ‘discourage’. A
second context is when the object is some phenomenon, for example ‘The serious econom-
ical situation depresses consumption levels’. In initialization, HTL-FRG generates a set of
edges that is compatible with the latter context, determining that the predicate ‘depress’
entails the predicates ‘lower’ and ‘bring down’. TNF re-attaches ‘depress’ as a synonym of
‘discourage’ and ‘deter’ (since this improves the objective function), resulting in a set of
edges that corresponds to the first meaning of ‘depress’ mentioned above. The methods
we employ in this paper do not allow to learn the rules for both contexts since this would
result in violations of the transitivity and FRG assumptions. This again emphasizes the
importance of learning graphs where predicates are marked by their various senses,
which will result in a model that can directly benefit from the methods suggested in
this paper.
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6. Conclusions

The problem of language variability is at the heart of many semantic applications such
as Information Extraction, Question Answering, Semantic Parsing and more. Conse-
quently, learning broad coverage knowledge-bases of entailment rules and paraphrases
(Ganitkevitch, Van Durme, and Callison-Burch 2013) has proved crucial for systems
that perform inference over textual representations (Stern and Dagan 2012; Angeli and
Manning 2014).

In this paper, we have presented algorithms for learning entailment rules between
predicates that can scale to large sets of predicates. Our work builds on prior work by
Berant, Dagan and Goldberger (2012), who defined the concept of entailment graphs,
and formulated entailment rule learning as a graph optimization problem, where the
graph has to obey the structural constraint of transitivity.

Our main contribution is a heuristic polynomial approximation algorithm that can
learn entailment graphs containing tens of thousands of nodes. The algorithm is based
on two main observations; first, that entailment graphs are sparse, and second, that
entailment graphs are forest-reducible. This leads to an efficient algorithm in which at
the first step the graph is decomposed into smaller components, and in the second step
we find a set of edges for each component. The second step is an iterative approximation
algorithm in which at each iteration a node or component of the graph is deleted and
then re-attached in a way that improves the overall objective function.

We performed a thorough empirical evaluation, in which we ran our algorithm on
two separate datasets. On the first dataset we witnessed a substantial improvement in
runtime at a relatively small cost in performance. On the second dataset, we show that
our method scales to a an untyped entailment graph containing 20,000 nodes, much
larger than was previously possible using state-of-the-art global methods. We see that
using a global algorithm improves precision for modest values of recall, but that local
methods can achieve higher recall than global methods. We perform an analysis and
conclude that the main reason for this limitation is predicate ambiguity which results
in graphs that do not adhere to the structural constraints of transitivity and forest
reducibility.

In future work, we hope to address the problem of predicate ambiguity. A natural
direction is to combine methods that model the context-sensitivity of predicates with
global structural assumptions. In this way, one can apply structural constraints for a set
of predicates, given that they appear in similar contexts. A second important direction
for future work is to demonstrate that using entailment rules learned by our method
improves performance in downstream semantic applications such as QA, IE and RTE.

Appendix A: Max-Trans-Forest is NP-hard

In this appendix we show that Max-Trans-Forest problem (7) is NP-hard. We prove that
the following decision problem (which is clearly easier than Max-Trans-Forest) is NP-
hard: Given a set of nodes V , a function w ∶ V × V → R and an integer number α, is there
a transitive forest-reducible (FRG) subgraph G = (V,E) such that ∑e∈E w(e) ≥ α. In this
appendix we use the standard terminology that for a directed edge i⇒ j, the node i
is termed the parent of node j, and the node j is termed the child of i. We start with a
simple polynomial reduction from the following decision problem.

Max-Sub-FRG: Given a directed graphG = (V,E), a function w ∶ E → Z+ and a pos-
itive integer α, is there a transitive FRG subgraph G′ = (V,E′) such that ∑e∈E′ w(e) ≥ α.
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Figure 1
The graph constructed given an input X of size 3n and S of size m. Each s ∈ S is a set of size 3. In
this example s1 = {x1, x2, x3}, s2 = {x3, x5, x3n−1}, sm = {x4, x3n−1, x3n}.

Max-Sub-FRG ≤p Max-Trans-Forest Given an instance (G = (V,E),w,α) of Max-
Sub-FRG we construct the instance (G′ = (V,E′),w′, α) of Max-Trans-Forest such
that w′(u, v) = w(u, v) if (u, v) ∈ E and −∞ otherwise. We need to show that (G =
(V,E),w,α) ∈ Max-Sub-FRG iff (G′ = (V,E′),w′, α) ∈ Max-Trans-Forest. This is trivial: if
there is a transitive FRG subgraph ofGwhose sum of edges ≥ α, then choosing the same
edges will yield a transitive FRG subgraph of G′ whose sum of edges ≥ α. Similarly, any
transitive FRG subgraph of G′ whose sum of edges ≥ α can not use any −∞ edges, and
therefore, the edges of this FRG are in E and this defines a subgraph of G whose sum of
edges ≥ α.

Note that for Max-Sub-FRG, maximizing the sum of weights of edges in the sub-
graph is equivalent to minimizing the sum of weights of edges not in the subgraph. We
now denote by z the sum of weights of the edges deleted from the graph.

Next we show a polynomial reduction from the NP-hard Exact Cover by 3-sets
(X3C) problem (Garey and Johnson 1979) to Max-Sub-FRG. The X3C is defined as
follows. Given a setX of size 3n, andm subsets, S1, S2, .., Sm ofX , each of size 3, decide
if there is a collection of n Si’s whose union covers X .

X3C ≤p Max-Sub-FRG Given an instance (X,S) of X3C problem, we construct an
instance (G = (V,E),w, z) of the Max-Sub-FRG problem as follows (An illustration of
the construction is given in Figure 1). First, we construct the vertices V : we construct
x1, .., x3n vertices, corresponding to the points of X , m vertices s1, .., sm corresponding
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to the subsets S, m additional vertices t1, t2, .., tm, and one more vertex a. Next we
construct the edges E and the weight function w ∶ E → Z+.

1. For each 1 ≤ i ≤m, we add an edge (ti, si) of weight 2.
2. For each 1 ≤ i ≤m, we add an edge (a, si) of weight 1.
3. For each 1 ≤ j ≤ 3n, we add an edge (a, xj) of weight M = 4m.
4. For each 1 ≤ i ≤m, if si = {xp, xq, xr}, we add 3 edges of weight 1: (si, xp), (si, xq),

and (si, xr).

To complete the construction of the Max-Sub-FRG problem, we define z = 4m − 2n. We
next prove that S has an exact 3-cover of X ⇔ there is a transitive FRG subgraph of G
such that the sum of weights deleted is no more than 4m − 2n.
⇒: Assume there is an exact 3-cover of X by S. The FRG subgraph will consist of:

n edges (a, si) for the n vertices si that cover X , the 3n edges (si, xj), and m − n edges
(tf , sf ), for the m − n vertices sf that do not cover X . The transitive closure contains
all edges (a, xi), and the rest of the edges are deleted: for all sf ’s that are not part of
the cover, the 3 edges (sf , xj), and the edge (a, sf) are deleted. In addition the weight
2 edges (ti, si) for the si’s that cover X are deleted. The total weight deleted is thus
3(m − n) +m − n + 2n = 4m − 2n. It is easy to verify that the subgraph is a transitive FRG
- there are no connected components of size > 1, and in the transitive reduction of G
there is no node with more than one parent.
⇐: Assume there is no exact 3-cover ofX by S, we will show that any FRG subgraph

must delete more than 4m − 2n weight. We cannot omit any edge (a, xi), as the weight
of each such edge is too large. Thus all these edges are in the FRG and are either deleted
during transitive reduction or not.

Assume first that all these edges are deleted in the transitive reduction, that is for
every xj there exists an si such that (a, si) and (si, xj) are in the forest. Since there
is no collection of n subsets Si that cover X , there must be at least k > n such si’s.
Consequently, for these si’s, the forest must not contain the edges (ti, si) (otherwise, si
would have two parents and violate both the forest and the transitivity properties). For
the m − k nodes with no edge (sf , xj) we can either add an edge (a, sf) or (tf , sf), but
not both (otherwise, sf would have more than one parent). Since w(tf , sf) > w(a, sf) it
is better to delete the (a, sf) edges. Hence, the total weight of deleted edges is 3m − 3n
for the edges between si’s and xj ’s, 2k in the edges (ti, si), for si’s that cover the xj ’s,
andm − k for the edges (a, sf). Total weight deleted is 4m − 3n + k > 4m − 2n since k > n.

Assume now that r > 0 edges (a, xj) are not deleted in the transitive reduction. This
means that for these xj ’s there is no edge (si, xj) for any i (otherwise, xj will have more
than one parent after transitive reduction). This means that 3n − r of the xj ’s are covered
by si’s. To cover xj ’s we need at least k ≥ ⌈n − r

3
⌉ si’s. As before, for these si’s we also

have the edges (a, si) and we delete the edges (ti, si), and for the m − k nodes sf that
do not cover any xj it is best to add the edges (tf , sf) and to delete the edges (a, sf). So
the weight deleted is 3m − (3n − r) for edges between si and xj , 2k in the edges (ti, si)
and m − k for the edges (a, sf). Thus, the weight deleted is 4m − 3n + k + r ≥ 4m − 3n +
⌈n − r

3
⌉ + r ≥ 4m − 2n + r − ⌊ r

3
⌋ > 4m − 2n. �

Since it is known that X3C is NP-hard, this polynomial reductions shows that Max-
Trans-Forest is also NP-hard.
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