
Admission Control to Minimize Rejections and Online Set
Cover with Repetitions

Noga Alon
∗

Schools of Mathematics and
Computer Science
Tel-Aviv University

Tel-Aviv, 69978, Israel

noga@math.tau.ac.il

Yossi Azar
†

School of Computer Science
Tel-Aviv University

Tel-Aviv, 69978, Israel

azar@tau.ac.il

Shai Gutner
‡

School of Computer Science
Tel-Aviv University

Tel-Aviv, 69978, Israel

gutner@tau.ac.il

ABSTRACT
We study the admission control problem in general net-
works. Communication requests arrive over time, and the
online algorithm accepts or rejects each request while main-
taining the capacity limitations of the network. The admis-
sion control problem has been usually analyzed as a bene-
fit problem, where the goal is to devise an online algorithm
that accepts the maximum number of requests possible. The
problem with this objective function is that even algorithms
with optimal competitive ratios may reject almost all of the
requests, when it would have been possible to reject only
a few. This could be inappropriate for settings in which
rejections are intended to be rare events.

In this paper, we consider preemptive online algorithms
whose goal is to minimize the number of rejected requests.
Each request arrives together with the path it should be
routed on. We show an O(log2(mc))-competitive random-
ized algorithm for the weighted case, where m is the number
of edges in the graph and c is the maximum edge capac-
ity. For the unweighted case, we give an O(log m log c)-
competitive randomized algorithm. This settles an open
question of Blum, Kalai and Kleinberg raised in [10]. We
note that allowing preemption and handling requests with
given paths are essential for avoiding trivial lower bounds.

The admission control problem is a generalization of the
online set cover with repetitions problem, whose input is a
family of m subsets of a ground set of n elements. Elements

∗Research supported in part by a grant from the Israel Sci-
ence Foundation, and by the Hermann Minkowski Minerva
Center for Geometry at Tel Aviv University.
†Research supported in part by the Israel Science Founda-
tion and by the German-Israeli Foundation.
‡This paper forms part of a Ph.D. thesis written by the
author under the supervision of Prof. N. Alon and Prof. Y.
Azar in Tel Aviv University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’05,July 18–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-58113-986-1/05/0007 ...$5.00.

of the ground set are given to the online algorithm one by
one, possibly requesting each element a multiple number
of times. (If each element arrives at most once, this cor-
responds to the online set cover problem.) The algorithm
must cover each element by different subsets, according to
the number of times it has been requested.

We give an O(log m log n)-competitive randomized algo-
rithm for the online set cover with repetitions problem. This
matches a recent lower bound of Ω(log m log n) given by
Feige and Korman for the competitive ratio of any ran-
domized polynomial time algorithm, under the BPP 6= NP
assumption. Given any constant ε > 0, an O(log m log n)-
competitive deterministic bicriteria algorithm is shown that
covers each element by at least (1 − ε)k sets, where k is
the number of times the element is covered by the optimal
solution.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Routing protocols; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Al-
gorithms and Problems

General Terms
Algorithms, Theory.

Keywords
On-line, Competitive, Admission control, Set Cover.

1. INTRODUCTION
We study the admission control problem in general graphs

with edge capacities. An online algorithm can receive a se-
quence of communications requests on a virtual path, that
may be accepted or rejected, while staying within the ca-
pacity limitations.

This problem has typically been studied as a benefit prob-
lem. This means that the online algorithm has to be com-
petitive with respect to the number of accepted requests. A
problem with this objective function is that in some cases
an online algorithm with a good competitive ratio may re-
ject the vast majority of the requests, whereas the optimal
solution rejects only a small fraction of them.

In this paper we consider the goal of minimizing the num-
ber of rejected requests, which was first studied in [10]. This

approach is suitable for applications in which rejections are
intended to be rare events. A situation in which a signifi-
cant fraction of the requests is rejected even by the optimal
solution means that the network needs to be upgraded.

We consider preemptive online algorithms for the admis-
sion control problem. Allowing preemption is necessary for
achieving reasonable bounds for the competitive ratio. Each
request arrives together with the path it should be routed
on. The admission control algorithm decides whether to ac-
cept or reject it. An online algorithm for both admission
control and routing easily admits a trivial lower bound [10].

The admission control to minimize rejections prob-
lem. We now formally define the admission control problem.
The input consist of the following:

• A directed graph G = (V, E), where |E| = m. Each
edge e has an integer capacity ce > 0. We denote
c = maxe∈Ece.

• A sequence of requests r1, r2, . . . , each of which is a
simple path in the graph. Every request ri has a cost
pi > 0 associated with it.

A feasible solution for the problem must assure that for
every edge e, the number of accepted requests whose paths
contain e is at most its capacity ce. The goal is to find a
feasible solution of minimum cost of the rejected requests.
The online algorithm is given requests one at a time, and
must decide whether to accept or reject each request. It
is also allowed to preempt a request, i.e. to reject it after
already accepting it, but it cannot accept a request after
rejecting it.

Let OPT be a feasible solution having minimum cost
COPT . An algorithm is β-competitive if the total cost of
the requests rejected by this algorithm is at most βCOPT .

Previous results for admission control. Tight bounds
were achieved for the admission control problem, where the
goal is to maximize the number of accepted requests. Awer-
buch, Azar and Plotkin [6] provide an O(log n)-competitive
algorithm for general graphs. For the admission control
problem on a tree, O(log d)-competitive randomized algo-
rithms appear in [7, 8], where d is the diameter of the tree.
Adler and Azar presented a constant-competitive preemp-
tive algorithm for admission control on the line [1].

The admission control to minimize rejections problem was
studied by Blum, Kalai and Kleinberg in [10], where two
deterministic algorithms with competitive ratios of O(

√
m)

and c + 1 are given (m is the number of edges in the graph
and c is the maximum capacity). They raised the question
of whether an online algorithm with polylogarithmic com-
petitive ratio can be obtained.

We note that one can combine an algorithm for maximiz-
ing throughput of accepted requests and an algorithm for
minimizing rejections and get one algorithm which achieves
both simultaneously with slightly degrading the competitive
ratio [9, 11].

In this paper we show that the admission control to mini-
mize rejections problem is a generalization of the online set
cover with repetitions problem described below:

The online set cover with repetitions problem. The
online set cover problem is defined as follows: Let X be a
ground set of n elements, and let S be a family of subsets of
X, |S| = m. Each S ∈ S has a non-negative cost associated
with it. An adversary gives elements to the algorithm from

X one by one. Each element of X can be given an arbitrary
number of times, not necessarily consecutively. An element
should be covered by a number of sets which is equal to the
number of times it arrived. We assume that the elements
of X and the members of S are known in advance to the
algorithm, however, the elements given by the adversary are
not known in advance. The objective is to minimize the cost
of the sets chosen by the algorithm.

Previous results for online set cover. The offline
version of the set cover problem is a classic NP-hard prob-
lem that was studied extensively, and the best approxima-
tion factor achievable for it in polynomial time (assuming
P 6= NP) is Θ(log n) [12, 13]. The basic online set cover
problem, where repetitions are not allowed, was studied in
[2, 14]. A different variant of the problem, dealing with
maximum benefit, is presented in [5]. An O(log m log n)-
competitive deterministic algorithm for the online set cover
problem was given by [2] where n is the number of ele-
ments and m is the number of sets. A lower bound of
Ω(log m log n

log log m+log log n
) was also shown for any deterministic on-

line algorithm. A recent result of Feige and Korman [14]
establishes a lower bound of Ω(log m log n) for the competi-
tive ratio of any randomized polynomial time algorithm for
the online set cover problem, under the BPP 6= NP as-
sumption. They also prove the same lower bound for any
deterministic polynomial time algorithm, under the P 6= NP
assumption.

Our results. The main result we give in this paper is
an O(log2(mc))-competitive randomized algorithm for the
admission control to minimize rejections problem. This set-
tles the open question raised by Blum et al. [10]. For the
unweighted case, where all costs are equal to 1, we slightly
improve this bound and give an O(log m log c)-competitive
randomized algorithm,

We present a simple reduction between online set cover
with repetitions and the admission control to minimize re-
jections problem. This implies an O(log2(mn))-competitive
randomized algorithm for the online set cover with repeti-
tions problem. For the unweighted case (all costs are equal
to 1), we get an O(log m log n)-competitive randomized al-
gorithm. This matches the lower bound of Ω(log m log n)
given by Feige and Korman. Their results also imply a lower
bound of Ω(log m log c) for the competitive ratio of any ran-
domized polynomial time algorithm for the admission control
to minimize rejections problem (assuming BPP 6= NP).

The derandomization techniques used in [2] for the online
set cover problem do not seem to apply here. This is why
we also consider the bicriteria version of the online set cover
with repetition problem. For a given constant ε > 0, the on-
line algorithm is required to cover each element by a fraction
of 1− ε times the number of its appearances. Specifically, at
any point of time, if an element has been requested k times
so far, then the optimal solution covers it by k different sets,
whereas the online algorithm covers it by (1 − ε)k different
sets. We give an O(log m log n)-competitive deterministic
bicriteria algorithm for this problem.

Techniques. The techniques we use follow those of [2,
3] together with some new ideas. We start with an online
fractional solution which is monotone increasing during the
algorithm. Then, the fractional solution is converted into a
randomized algorithm. Interestingly, to get a deterministic
bicriteria algorithm we use a different fractional algorithm
than the one used for the randomized algorithm.

2. FRACTIONAL ALGORITHM FOR AD-
MISSION CONTROL

In this section we describe a fractional algorithm for the
problem. A fractional algorithm is allowed to reject a frac-
tion of a request ri. We use a weight fi for this fraction.
Specifically, if 0 ≤ fi < 1, we reject with percentage of pre-
cisely fi. If fi ≥ 1, then the request is completely rejected.
At any stage of the fractional algorithm we will use the fol-
lowing notation:

• REQe will denote the set of requests that arrived so
far whose paths contain the edge e.

• REQ will denote
S

e∈E REQe.

• ALIV Ee will denote the requests from REQe that
have not been fully rejected (requests ri for which
fi < 1).

• ne will denote the excess of edge e caused by the re-
quests in ALIV Ee.

ne = |ALIV Ee| − ce

The requirement from a fractional algorithm is that for every
edge e, X

i∈ALIV Ee

fi ≥ ne

The cost associated with a fractional algorithm is defined to
be

P
i∈REQ min{fi, 1}pi.

We will now describe an O(log(mc))-competitive algo-
rithm for the problem, even versus a fractional optimum.
The cost of the optimal fractional solution, COPT is denoted
by α.

We may assume, by doubling, that the value of α is known
up to a factor of 2. To determine the initial value of α we
look for the first time in which we must reject a request
from an edge e. We can start guessing α = mini∈REQepi,
and then run the algorithm with this bound on the optimal
solution. If it turns out that the value of the optimal so-
lution is larger than our current guess for it, (that is, the
cost exceeds Θ(α log(mc))), then we ”forget” about all the
request fractions rejected so far, update the value of α by
doubling it, and continue. We note that the cost of the re-
quest fractions that we have ”forgotten” about can increase
the cost of our solution by at most a factor of 2, since the
value of α was doubled in each step.

We thus assume that α is known. Denote by Rbig the
requests with cost exceeding 2α. The optimal fractional
solution can reject a total fraction of at most 1/2 out of the
requests of Rbig. Hence, when an edge is requested more
than its capacity, the fractional optimum must reject a total
fraction of at least 1/2 out of the requests not in Rbig whose
paths contain the edge. By doubling the fraction of rejection
for all the requests not in Rbig (keeping fractions to be at
most 1) and completely accepting all the requests in Rbig,
we get a feasible fractional solution whose cost is at most
twice the optimum. Hence, the online algorithm can always
completely accept requests of cost exceeding 2α (and adjust
the edge capacities ce accordingly).

Denote by Rsmall the requests with cost at most α/(mc).
We claim that we can completely reject all the requests
from Rsmall. For each edge e, the optimal solution can

accept a total fraction of at most c out of the requests
whose paths contain the edge e, and therefore it can ac-
cept a total fraction of at most mc requests. The frac-
tions of requests accepted out of Rsmall have total cost at
most mc · α/(mc) = α. It follows that the optimal solu-
tion pays at least cost(Rsmall) − α for the fractions of re-
quests out of Rsmall that it rejected. Therefore, the on-
line algorithm can reject all the requests in Rsmall and pay
cost(Rsmall). If cost(Rsmall) < 2α, then this adds only O(α)
to the cost of the online algorithm. If cost(Rsmall) ≥ 2α,
then cost(Rsmall) ≤ 2(cost(Rsmall)−α), so the online algo-
rithm is 2-competitive with respect to the requests in Rsmall.

By the above arguments, all the requests of cost smaller
than α/(mc) or greater than 2α are rejected immediately
or accepted permanently (edge capacities are decreased in
this case), respectively. An algorithm needs to handle only
requests of cost between α/(mc) and 2α. We normalize the
costs so that the minimum cost is 1 and the maximum cost
is g ≤ 2mc, and fix α appropriately.

The algorithm maintains a weight fi for each request ri.
The weights can only increase during the run of the algo-
rithm. Initially fi = 0 for all the requests. Assume now that
the algorithm receives a request ri for a path of cost pi. For
each edge e, we update REQe, ALIV Ee and ne according
to the definitions given above. The following is performed
for all the edges e of the path of ri, in an arbitrary order.

1. If
P

i∈ALIV Ee
fi ≥ ne, then do nothing.

2. Else, while
P

i∈ALIV Ee
fi < ne, perform a weight aug-

mentation:

(a) For each i ∈ ALIV Ee, if fi = 0, then set fi =
1/(gc).

(b) For each i ∈ ALIV Ee, fi ← fi(1 + 1
nepi

).

(c) Update ALIV Ee and ne.

Note that the fractional algorithm starts with all weights
equal to zero. This is necessary, since the online algorithm
must reject 0 requests in case the optimal solution rejects
0 requests. Hence, the algorithm is competitive for α = 0,
and from now on we assume without loss of generality that
α > 0. In the following we analyze the performance of the
algorithm.

Lemma 1. The total number of weight augmentations per-
formed during the algorithm is at most O(α log(gc)).

Proof. Consider the following potential function:

Φ =
Y

i∈REQ

max{fi, 1/(gc)}f
∗
i pi

where f∗i is the weight of the request ri in the optimal frac-
tional solution. We now show three properties of Φ:

• The initial value of the potential function is: (gc)−α.

• The potential function never exceeds 2α.

• In each weight augmentation step, the potential func-
tion is multiplied by at least 2.

The first two properties follow directly from the initial value
and from the fact that no request gets a weight of more than
1 + 1/pi ≤ 2. Consider an iteration in which the adversary

gives a request ri with cost pi. Now suppose that a weight
augmentation is performed for an edge e. We must haveP

i∈ALIV Ee
f∗i ≥ ne since the optimal solution must sat-

isfy the capacity constraint. Thus, the potential function is
multiplied by at least:Y

i∈ALIV Ee

„
1 +

1

nepi

«f∗
i pi

≥
Y

i∈ALIV Ee

„
1 +

1

ne

«f∗
i

≥ 2

The first inequality follows since for all x ≥ 1 and z ≥ 0,
(1 + z/x)x ≥ 1 + z and the last inequality follows sinceP

i∈ALIV Ee
f∗i ≥ ne. It follows that the total number of

weight augmentation steps is at most:

log2(2gc)α = O(α log gc)

Theorem 2. For the weighted case, the fractional algo-
rithm is O(log(mc))-competitive. In case all the costs are
equal to 1, the algorithm is O(log c)-competitive.

Proof. The cost associated with the online algorithm isP
i∈REQ min{fi, 1}pi, which we will denote by CON . Con-

sider a weight augmentation step performed for an edge e.
In step 2a of the algorithm, the weights of at most c + 1
requests change from 0 to 1/(gc). This is because before
the current request arrived, there could have been at most
c requests containing the edge e and having fi = 0 (the
maximum capacity is c). Since the maximum cost is g, the
total increase of CON in step 2a of the algorithm is at most
(c+1) 1

gc
g = 1+1/c. If follows that in step 2a, the quantityP

i∈ALIV Ee
fi can increase by at most 1 + 1/c. A weight

augmentation is performed as long as
P

i∈ALIV Ee
fi < ne.

Before step 2b we have that
P

i∈ALIV Ee
fi < ne + 1 + 1/c.

Thus, the total increase of CON in step 2b of the algorithm
does not exceedX

i∈ALIV Ee

fipi
1

nepi
=

X
i∈ALIV Ee

fi

ne
< 2 + 1/c

It follows that the total increase of CON in a weight augmen-
tation step is at most 3+2/c. Using lemma 1 which bounds
the number of augmentation steps, we conclude that the
algorithm is O(log(gc))-competitive.

For the weighted case, we saw that the input can be trans-
formed so that g ≤ 2mc, which implies that the algorithm is
O(log(mc))-competitive. In case all the costs are equal to 1,
g is also equal to 1 and the algorithm is O(log c)-competitive.

3. RANDOMIZED ALGORITHM FOR AD-
MISSION CONTROL

We describe in this section an O(log2(mc))-competitive
randomized algorithm for the weighted case and a slightly
better O(log m log c)-competitive randomized algorithm for
the unweighted case.

The algorithm maintains a weight fi for each request ri,
exactly like the fractional algorithm. Assume now that the
algorithm receives a request ri with cost pi. The following
is performed in this case.

1. Perform all the weight augmentations according to the
fractional algorithm.

2. Reject all requests whose weight is at least 1
12 log(mc)

.

3. For every request r, if its weight f increased by δ, then
reject the request r with probability 12δ log(mc).

4. If the current request ri cannot be accepted (some edge
would be over capacity), then reject the request. Else,
accept the request ri.

We can assume that |REQe|, the total number of requests
whose paths contain a specific edge e, is less than 4mc2. To
see this, note that the fractional algorithm normalizes the
costs so that the minimum cost is 1 and the maximum cost
is at most 2mc. If |REQe| ≥ 4mc2, then since the optimal
solution can accept at most c requests from REQe, it must
pay a cost of at least t − 2mc2 for requests rejected out of
REQe, where t is the total cost of these requests. The online
algorithm can reject all the requests in REQe, pay t and it
will still be 2-competitive with respect to the requests in
REQe, since t ≥ 4mc2.

Theorem 3. For the weighted case, the randomized algo-
rithm is O(log2(mc))-competitive.

Proof. Denote by Cfrac the cost of the fractional algo-
rithm. The expected cost of requests rejected in step 3 of the
algorithm is at most 12Cfrac log(mc). The cost of requests
rejected in step 2 has the same upper bound.

We now calculate the probability for a request r to be
rejected in step 4. This can happen only if the path of
request r contains an edge e for which

P
i∈ALIV Ee

fi ≥ ne

but the randomized algorithm rejected less than ne requests
whose paths contain the edge e. All the requests with weight
at least 1

12 log(mc)
are rejected for sure, so we can assume that

fi < 1
12 log(mc)

for all i ∈ ALIV Ee.

Suppose that i ∈ ALIV Ee and that during all runs of
step 3 of the algorithm the request ri has been rejected with
probabilities q1, . . . , qn, where

Pn
k=1 qk = 12fi log(mc). The

probability that ri will be rejected is at least

1−
nY

k=1

(1−qk) ≥ 1−e−
Pn

i=k qk = 1−e−12fi log mc ≥ 6fi log mc

The last inequality follows since for all 0 ≤ x ≤ 1, 1−e−x ≥
x/2.

The number of requests in ALIV Ee which were rejected
by the algorithm is a random variable whose value is the
sum of mutually independent {0, 1}-valued random variables
and its expectation is at least µ = 6ne log mc. By Chernoff
bound (c.f., e.g., [4]), the probability for this random vari-

able to get a value less than (1− a)µ is at most e−a2µ/2 for
every a > 0. Therefore, the probability to be less than ne is
at most

e
−(1− 1

6 log mc
)2(6ne log mc)/2 ≤ 3

m3c3

The request costs were normalized, so that the maximum
cost is at most 2mc. Each edge is contained in the paths
of at most 4mc2 requests. Therefore, the expected cost of
requests which are rejected in step 4 because of this edge
is at most (4mc2)(2mc)3/(m3c3) = 24/m. Thus, the total
expected cost of requests rejected in step 4 is 24. The result
now follows from Theorem 2.

For the unweighted case we slightly change the algorithm
as follows. In step 3 of the algorithm we reject a request
with probability 4δ log m, and in step 2 we reject all the
requests whose weight is at least 1/(4 log m).

Theorem 4. For the unweighted case, the randomized al-
gorithm is O(log m log c)-competitive.

Proof. Following the proof of Theorem 3, we get that
the probability for an edge to cause a specific request to be
rejected in step 4 of the randomized algorithm is at most

e
−(1− 1

2 log m
)2(2ne log m)/2 ≤ 3

m

Denote by Q the quantity maxe∈E(|REQe| − ce). Hence,
Q is the maximum excess capacity in the network. The
total expected cost of requests rejected in step 4 is at most
Q(3/m)m = 3Q. It is obvious that the optimal solution
must reject at least Q requests. The result now follows from
Theorem 2.

4. REDUCING ONLINE SET COVER TO
ADMISSION CONTROL

We now describe the reduction between online set cover
and admission control. Suppose we are given the following
input to the online set cover with repetitions problem: X is
a ground set of n elements and S is a family of m subsets
of X, with a positive cost cS associated with each S ∈ S.
The instance of the admission control to minimize rejections
problem is constructed as follows: The graph G = (V, E)
has an edge ej for each element j ∈ X. The capacity of the
edge ej is defined to be the number of sets that contain the
element j. The maximum capacity is therefore at most m.

The requests are given to the admission control algorithm
in two phases. In the first phase, before any element is given
to the online set cover algorithm, we generate m requests to
the admission control online algorithm. For every S ∈ S,
the request consists of all the edges ej such that j ∈ S. The
online algorithm can accept all the requests and this will
cause the edges to reach their full capacity.

In the second phase, each time the adversary gives an
element j to the online set cover algorithm, we generate a
request which consists of the one edge ej and give it to the
admission control algorithm. In case the request caused the
edge ej to be over capacity, the algorithm will have to reject
one request in order to keep the capacity constraint.

In case there is a feasible cover for the input given to the
online set cover problem, there is no reason for the admission
control algorithm to reject requests that were given in the
second phase. This is because requests in the second phase
consist of only one edge. Thus, we can assume that the
admission control algorithm rejects only requests given in
the first phase, which correspond to subsets of X.

It is easy to see that the requests rejected by the admis-
sion control algorithm correspond to a legal set cover. We
reduced an online set cover problem with n elements and
m sets to an admission control problem with n edges and
maximum capacity at most m. The fact that the requests
we generated are not simple paths in the graph can be easily
fixed by adding extra edges.

5. DETERMINISTIC BICRITERIA ALGO-
RITHM FOR ONLINE SET COVER

In this section we describe, given any constant ε > 0,
an O(log m log n)-competitive deterministic bicriteria algo-
rithm that covers each element by at least (1−ε)k sets, where
k is the number of times the element has been requested,
whereas the optimum covers it k times. We assume for sim-
plicity that all the sets have cost equal to 1. The result can
be easily generalized for the weighted case using techniques
from [2].

The algorithm maintains a weight wS > 0 for each S ∈ S.
Initially wS = 1/(2m) for each S ∈ S. The weight of each
element j ∈ X is defined as wj =

P
S∈Sj

wS , where Sj

denotes the collection of sets containing element j. Initially,
the algorithm starts with the empty cover C = ∅. For each
j ∈ X, we define coverj = |Sj

T
C|, which is the number of

times element j is covered so far. The following potential
function is used throughout the algorithm:

Φ =
X
j∈X

n2(wj−coverj)

We give a high level description of a single iteration of the
algorithm in which the adversary gives an element j and
the algorithm chooses sets that cover it. We denote by k
the number of times that the element j has been requested
so far.

1. If coverj ≥ (1− ε)k, then do nothing.

2. Else, while coverj < (1 − ε)k, perform a weight aug-
mentation:

(a) For each S ∈ Sj − C, wS ← wS(1 + 1
2k

).

(b) Add to C all the subsets for which wS ≥ 1.

(c) Choose from Sj at most 2 log n sets to C so that
the value of the potential function Φ does not
exceed its value before the weight augmentation.

In the following we analyze the performance of the algo-
rithm and explain which sets to add to the cover C in step
2c of the algorithm. The cost of the optimal solution COPT

is denoted by α.

Lemma 5. The total number of weight augmentations per-
formed during the algorithm is at most O(α log m).

Proof. Consider the following potential function:

Ψ =
Y

S∈COP T

wS

We now show three properties of Ψ:

• The initial value of the potential function is: (2m)−α.

• The potential function never exceeds 1.5α.

• In each weight augmentation step, the potential func-
tion is multiplied by at least 2ε/2.

The first two properties follow directly from the initial value
and from the fact that no request gets a weight of more
than 1.5. Consider an iteration in which the adversary gives
an element j for the kth time. Now suppose that a weight
augmentation is performed for element j. We must have that

coverj < (1 − ε)k, which means that the online algorithm
has covered element j less than (1− ε)k times. The optimal
solution OPT covers element j at least k times, which means
that there are at least εk subsets of OPT containing j which
were not chosen yet. Thus, in step 2a of the algorithm the
potential function is multiplied by at least:

(1 +
1

2k
)εk ≥ 2ε/2

It follows that for fixed ε > 0 the total number of weight
augmentation steps is at most:

log(3m)α

log 2ε/2
= O(α log m)

Lemma 6. Consider an iteration in which a weight aug-
mentation is performed. Let Φs and Φe be the values of
the potential function Φ before and after the iteration, re-
spectively. Then, there exist at most 2 log n sets that can be
added to C during the iteration such that Φe ≤ Φs. Fur-
thermore, the value of the potential function never exceeds
n2.

Proof. The proof is by induction on the iterations of
the algorithm. Initially, the value of the potential function
Φ is less than n · n = n2. Suppose that in the iteration the
adversary gives element j for the kth time. For each set
S ∈ Sj , let wS and wS + δS denote the weight of S before
and after the iteration, respectively. Define δj =

P
S∈Sj

δS .

By the induction hypothesis, we know that 2(wj−coverj) <
2, because otherwise Φs would have been greater than n2.
Thus, wj < coverj + 1 ≤ b(1 − ε)kc + 1 ≤ k. This means
that δj ≤ k · 1/(2k) = 1/2.

We now explain which sets from Sj are added to C.
Repeat 2 log n times: choose at most one set from Sj such

that each set S ∈ Sj is chosen with probability 2δS . (This
can be implemented by choosing a number uniformly at ran-
dom in [0,1], since 2δj ≤ 1.)

Consider an element j′ ∈ X. Let the weight of j′ before
the iteration be wj′ and let the weight after the iteration
be wj′ + δj′ . Element j′ contributes before the iteration

to the potential function the value n2wj′ . In each random
choice, the probability that we do not choose a set containing
element j′ is 1− 2δj′ . The probability that this happens in

all the 2 log n random choices is therefore (1− 2δj′)
2 log n ≤

n−4δj′ .
Note that δj′ ≤ 1/2. In case we choose a set containing

element j′, then coverj′ will increase by at least 1 and the
contribution of element j′ to the potential function will be
at most n2(wj′+δj′−1) ≤ n2wj′−1. Therefore, the expected
contribution of element j′ to the potential function after the
iteration is at most

n−4δj′n2(wj′+δj′) + (1− n−4δj′)n2wj′−1

= n2wj′ (n−2δj′ + n−1 − n−4δj′−1) ≤ n2wj′

where to justify the last inequality, we prove that f(x) =
nx + n−1 − n2x−1 ≤ 1 for every x ≤ 0. To show this we
note that f(0) = 1 and f ′(x) = nx log n(1 − 2nx−1). This
implies that f ′(x) ≥ 0 for every x ≤ 0. We can conclude
that f(x) ≤ 1 for every x ≤ 0, as needed.

By linearity of expectation it follows that Exp[Φe] ≤ Φs.
Hence, there exists a choice of at most 2 log n sets such that
Φe ≤ Φs. The choices of the various sets S to be added to C
can be done deterministically and efficiently, by the method
of conditional probabilities, c.f., e.g., [4], chapter 15. After
each weight augmentation, we can greedily add sets to C one
by one, making sure that the potential function will decrease
as much as possible after each such choice.

Theorem 7. The deterministic algorithm for online set
cover is O(log m log n)-competitive.

Proof. It follows from Lemma 5 that the number of iter-
ations is at most O(α log m). By Lemma 6, in each iteration
we choose at most 2 log n sets to C in step 2c of the algo-
rithm. The sets chosen is step 2b of the algorithm are those
which have weight at least 1. The sum of weights of all the
sets is initially 1/2 and it increases by at most 1/2 in each
weight augmentation. This means that at the end of the
algorithm, there can be only O(α log m) sets whose weight
is at least 1. Therefore, the total number of sets chosen by
the algorithm is as claimed.

6. CONCLUDING REMARKS

• An interesting open problem is to decide if the algo-
rithm presented here for the admission control problem
can be derandomized.

• Recently, Feige and Korman established a lower bound
of Ω(log m log n) for the competitive ratio of any ran-
domized polynomial time algorithm for the online set
cover problem, under the BPP 6= NP assumption. It
is interesting to decide whether this lower bound ap-
plies for superpolynomial time algorithms as well.

• The algorithms we gave for the admission control prob-
lem did not use the fact that the requests are simple
paths in the graph. All the algorithms treated a re-
quest as an arbitrary subset of edges.

7. REFERENCES
[1] R. Adler and Y. Azar. Beating the logarithmic lower

bound: randomized preemptive disjoint paths and call
control algorithms. Journal of Scheduling, 6:113–129,
2003.

[2] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and
J. Naor. The online set cover problem. In Proc. 35th
ACM Symp. on Theory of Computing, pages 100–105,
2003.

[3] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and
J. Naor. A general approach to online network
optimization problems. In Proc. 15rd ACM-SIAM
Symp. on Discrete Algorithms, pages 577–586, 2004.

[4] N. Alon and J. Spencer. The Probabilistic Method.
Wiley, New York, Second Edition, 2000.

[5] B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton.
Making commitments in the face of uncertainty: how
to pick a winner almost every time. In Proc. 28th
ACM Symp. on Theory of Computing, pages 519–530,
1996.

[6] B. Awerbuch, Y. Azar, and S. Plotkin.
Throughput-competitive on-line routing. In Proc. 34th
IEEE Symp. on Found. of Comp. Science, pages
32–40, 1993.

[7] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén.
Competitive non-preemptive call control. In Proc. 5th
ACM-SIAM Symp. on Discrete Algorithms, pages
312–320, 1994.

[8] B. Awerbuch, R. Gawlick, T. Leighton, and
Y. Rabani. On-line admission control and circuit
routing for high performance computation and
communication. In Proc. 35th IEEE Symp. on Found.
of Comp. Science, pages 412–423, 1994.

[9] Y. Azar, A. Blum, and Y. Mansour. Combining online
algorithms for rejection and acceptance. In Proceedings
of the 15th Annual ACM Symposium on Parallelism in
Algorithms and Architectures, pages 159–163, 2003.

[10] A. Blum, A. Kalai, and J. Kleinberg. Admission
control to minimize rejections. In Proceedings of
WADS 2001; LNCS 2125, pages 155–164, 2001.

[11] D. Bunde and Y. Mansour. Improved combination of
online algorithms for acceptance and rejection. In
Proceedings of the 16th Annual ACM Symposium on
Parallelism in Algorithms and Architectures, pages
265–266, 2004.

[12] V. Chvátal. A greedy heuristic for the set-covering
problem. Mathematics of Operations Research,
4(3):233–235, 1979.

[13] U. Feige. A threshold of ln n for approximating set
cover. Journal of the ACM, 45(4):634–652, July 1998.

[14] U. Feige and S. Korman. Personal communication.

