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Abstract

In the Maximum Subset Matching problem, which generalizes the maximum matching prob-
lem, we are given a graph G = (V,E) and S ⊂ V . The goal is to determine the maximum number
of vertices of S that can be matched in a matching of G. Our first result is a new randomized
algorithm for the Maximum Subset Matching problem that improves upon the fastest known
algorithms for this problem. Our algorithm runs in Õ(ms(ω−1)/2) time if m ≥ s(ω+1)/2 and in
Õ(sω) time if m ≤ s(ω+1)/2, where ω < 2.376 is the matrix multiplication exponent, m is the
number of edges from S to V \ S, and s = |S|. The algorithm is based, in part, on a method for
computing the rank of sparse rectangular integer matrices.

Our second result is a new algorithm for the All-Pairs Shortest Paths (APSP) problem. Given
an undirected graph with n vertices, and with integer weights from {1, . . . ,W} assigned to its
edges, we present an algorithm that solves the APSP problem in Õ(Wnω(1,1,µ)) time where
nµ = vc(G) is the vertex cover number of G and ω(1, 1, µ) is the time needed to compute the
Boolean product of an n×n matrix with an n×nµ matrix. Already for the unweighted case this
improves upon the previous O(n2+µ) and Õ(nω) time algorithms for this problem. In particular,
if a graph has a vertex cover of size O(n0.29) then APSP in unweighted graphs can be solved in
asymptotically optimal Õ(n2) time, and otherwise it can be solved in O(n1.844vc(G)0.533) time.

The common feature of both results is their use of algorithms developed in recent years for
fast (sparse) rectangular matrix multiplication.

1 Introduction

A matching in a graph is a set of pairwise disjoint edges. A maximum matching is a matching of
largest possible size. The problem of finding a maximum matching is fundamental in both practical
and theoretical computer science.

The first polynomial time algorithm for finding a maximum matching in a general graph was
obtained by Edmonds [6]. The currently fastest deterministic algorithms for this problem run in
O(mn1/2) time (see [13, 2, 19, 7]), where m and n are the number of edges and vertices, respectively, in
the input graph. For dense graphs, better randomized algorithms are known. Lovász [12] showed that
the cardinality of a maximum matching can be determined, with high probability, by computing the
rank of a matrix. In particular, checking whether a graph has a perfect matching amounts to checking
whether a determinant of a certain matrix, whose construction involves randomization, is nonzero.
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This randomized algorithm can be implemented to run in O(nω) time, where ω is the exponent of
fast matrix multiplication. Coppersmith and Winograd [5] showed that ω < 2.376. Recently, Mucha
and Sankowski [14] solved a long standing open problem and showed that a maximum matching can
be found, with high probability, in O(nω) time.

Our first main result in this paper concerns a natural generalization of the maximum matching
problem. For a graph G = (V,E) and a subset of vertices S ⊂ V , let f(S) denote the maximum
possible number of vertices in S that can be matched in a matching of G. Notice that if S = V
then f(S) is simply the size of a maximum matching of G. In general, however, not every maximum
matching of G saturates the maximum possible number of vertices of S (e.g. consider a triangle
where S consists of two vertices) and, conversely, not every matching that saturates f(S) vertices of
S can be extended to a maximum matching (e.g. consider a path of length 3 where S consists of the
two internal vertices). Thus, the MAXIMUM SUBSET MATCHING problem is a true generalization
of the maximum matching problem.

Maximum Subset Matching also has natural applications. Consider a graph modeling a social
network, the vertices being the members of the network and the edges being the symmetric social
relations. There are two types of members: privileged members (e.g. registered customers) and
non-privileged members. Our goal is to socially match the maximum number of privileged members.

We present an efficient randomized algorithm for computing f(S). The running time of our
algorithm is expressed in terms of s = |S| and the number of edges connecting S to V \ S, denoted
by m. There could be as many as Θ(s2) edges inside S, and hence the graph may have as many as
Θ(m + s2) edges (clearly we may assume that V \ S is an independent set). As usual in matching
algorithms, we assume that the graph has no isolated vertices.

Theorem 1.1 Let G = (V,E) be a graph and let S ⊂ V , where |S| = s and there are m edges from
S to V \ S. Then, there is a randomized algorithm that computes f(S) w.h.p. in time

Õ

({
ms

ω−1
2 if m ≥ s

ω+1
2 ,

sω if m ≤ s
ω+1

2

)
.

To evaluate the running time obtained in Theorem 1.1 we compare our algorithm to known existing
matching algorithms. First notice that for the current best upper bound of ω, which is less than 2.376,
we have that if m ≥ s1.688 the algorithm runs in O(ms0.688) time, and if m ≤ s1.688 the algorithm runs
in O(s2.376) time. Notice that the running time is not expressed as a function of |V | = n and that n
may be as large as s+m. Maximum Subset Matching can be solved via maximum weighted matching
algorithms as follows. Assign to every vertex with both endpoints in S weight 2, and edges from S
to V \ S weight 1. Then, clearly, a maximum weighted matching has weight f(S). The algorithm of
Gabow and Tarjan [7] is currently the fastest algorithm for maximum weighted matching in general
graphs. In our setting, it runs in Õ(

√
n(m + s2)) time (here m + s2 is our upper bound on the total

number of edges), which is worse than the running time of the algorithm of Theorem 1.1 for a wide
range of parameters (in fact, if ω = 2 + o(1) as conjectured by many researchers, then it is never
better, for any valid combination of the parameters s,m, n). It is not known how to apply Lovás’z
randomized maximum cardinality matching algorithm to the weighted case. Even if it were possible,
the obtained running time would only be Õ(nω).

We now turn to our second main result. In the All-Pairs Shortest Paths (APSP) problem, which
is one of the most fundamental algorithmic graph problems, we are given a graph G = (V,E) with
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V = {1, . . . , n}, and our goal is to compute the distance matrix of G. This is an n × n matrix D
where D(i, j) is the length of a shortest path from i to j, for all i, j = 1, . . . , n. We also require a
concise n× n data structure so that given a pair i, j, a shortest path from i to j can be constructed
in time which is proportional to the number of edges it contains. In the most fundamental case, the
graph is undirected and unweighted; this is the main case we address in this paper (more generally,
we allow the weights to be positive integers). The currently fastest algorithms for the APSP problem
are either the simple obvious O(nm) algorithm (here m = |E|) consisting of breadth first search from
each vertex, or, as m gets larger, a randomized algorithm of Seidel [16] that solves the problem in
Õ(nω) time. This algorithm also has a deterministic version [8, 1]. Shoshan and Zwick [17] proved
that if the graph has positive weights from {1, . . . ,W} then APSP can be solved, deterministically,
in Õ(Wnω) time.

Is there a natural graph parameter for which there exists an algorithm whose running time is
expressed in terms of it and which always performs at least as well as the Õ(nω) algorithm, and is
generally faster? Our main result shows that there is one.

Let vc(G) be the vertex cover number of G, that is the smallest possible cardinality of a subset
S ⊂ V so that V \ S is an independent set. The fact that vc(G) is NP -Hard to compute is well
known and its decision version is one of the canonical examples for NP-Completeness. It is also well
known, and trivial, that vc(G) can be approximated to within a factor of two, in linear time (simply
take all the vertices in a maximal matching with respect to containment). Our main result shows
that if G is an undirected graph with n vertices and vc(G) = nµ then the APSP problem can be
solved in time Õ(Wnω(1,1,µ)), where each weight is taken from {1, . . . ,W}. Here ω(1, 1, µ) is the
rectangular matrix multiplication exponent. Namely, it is the number of algebraic operations needed
to multiply an n× n matrix with an n× nµ matrix over an arbitrary ring (hence, ω = ω(1, 1, 1)).

Theorem 1.2 There is an APSP algorithm that, given an undirected n-vertex graph G with weights
from {1, . . . ,W} and with vc(G) = nµ, runs in Õ(Wnω(1,1,µ)) time. In particular, if W is constant
and vc(G) ≤ n0.294 then the algorithm runs in asymptotically optimal Õ(n2) time and, if vc(G) >
n0.294 then the algorithm runs in O(n1.844vc(G)0.533) time.

In our proof of Theorem 1.2 we construct the distance matrix in the guaranteed running time. It
is also possible to obtain a concise data structure representing the paths, by using witnesses for
(rectangular) matrix multiplication, as shown in [1]; the details of this latter construction, which is
quite standard, will appear in the full version of this paper. In Section 2 we list the known results for
ω(1, 1, µ). In particular, Coppersmith [4] proved that ω(1, 1, µ) = 2 + o(1) for µ < 0.294, and that,
assuming ω = ω(1, 1, 1) > 2, then ω(1, 1, µ) < ω(1, 1, 1) for all µ < 1 (see Lemma 2.3 in the next
section). Thus, at present, our algorithm is faster than the O(nω) algorithm for all unweighted graphs
having a vertex cover of size n1−ε. We also note that the proof of Theorem 1.2 does not assume
that we can compute vc(G) precisely. As mentioned earlier, there is a Θ(m + n) 2-approximation
algorithm for vc(G), which suffices for our purposes.

The rest of this paper is organized as follows. As both of our main results, although having
completely different proofs, rely on fast rectangular matrix multiplication, we present in Section 2
the facts we need about fast rectangular matrix multiplication algorithms. In Section 3 we address
our first main result on the maximum subset matching problem and prove Theorem 1.1. The APSP
problem in undirected graphs is addressed in Section 4 where Theorem 1.2 is proved. The final
section contains some concluding remarks and open problems.
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2 Fast (sparse) rectangular matrix multiplication

We start this section by presenting some parameters related to fast rectangular matrix multiplication.
Our assumption is that the input matrices are given to us in sparse representation, that is as a
collection of triplets (row, column, value) listing all positions where the matrix is non-zero. Thus,
the size of the representation of an input matrix is linear in the number of non-zero entries of the
matrix.

Let M(a, b, c) be the minimal number of algebraic operations needed to multiply an a × b ma-
trix by a b × c matrix over an arbitrary ring R. Let ω(r, s, t) be the minimal exponent for which
M(nr, ns, nt) = O(nω(r,s,t)). Recall that ω = ω(1, 1, 1) < 2.376 [5]. The best bounds available on
ω(1, µ, 1), for 0 ≤ µ ≤ 1 are summarized in the following results. Before stating them we need to
define two more constants, α and β, related to rectangular matrix multiplication.

Definition 2.1 α = max{ 0 ≤ µ ≤ 1 | ω(1, µ, 1) = 2 + o(1) } , β =
ω − 2
1− α

.

Lemma 2.2 (Coppersmith [4]) α > 0.294 .

It is not difficult to see that Lemma 2.2 implies the following theorem. A proof can be found, for
example, in Huang and Pan [10].

Lemma 2.3 ω(1, µ, 1) = ω(1, 1, µ) = ω(µ, 1, 1) ≤
{

2 + o(1) if 0 ≤ µ ≤ α,
2 + β(µ− α) + o(1) otherwise.

Notice that Coppersmith’s result implies that if A is an n× n0.294 matrix and B is an n0.294 × n
matrix then AB can be computed in O(n2+o(1)) time (assuming ring operations take constant time),
which is essentially optimal since the product is an n× n matrix that may contain no zero elements
at all. Note that with ω = 2.376 and α = 0.294 we get β ' 0.533. If ω = 2 + o(1), as conjectured by
many, then α = 1. (In this case β is not defined, but also not needed.)

We now present results for fast sparse matrix multiplication. The running times of these algo-
rithms are expressed in terms of α, β, and ω.

Lemma 2.4 (Yuster and Zwick [21]) The product of two n×n matrices over a ring R, each with
at most m non-zero elements, can be computed in time

O(min{ m
2β

β+1 n
2−αβ
β+1 + n2+o(1) , nω }).

Note that for ω = 2.376, α = 0.294, and β = 0.533, the algorithm runs in O(min{m0.7n1.2 +
n2+o(1) , n2.376}) time (in fact, by “time” we assume that each algebraic operation in the ring takes
constant time; if not, then the running time should be multiplied by the time needed for an algebraic
operation).

It is possible to extend the method of [21] to rectangular matrices. This was explicitly done in
[11]. To simplify the runtime expressions, we only state the case where A and BT (where A and
B are the two matrices being multiplied) have the same dimensions, as this case suffices for our
purposes.

4



Lemma 2.5 (Kaplan, Sharir, and Verbin [11]) Let A be an n× r matrix and let B be an r×n
matrix, over a ring R, each with at most m non-zero elements. Then AB can be computed in time

O




mn
ω−1

2 if m ≥ n
ω+1

2 ,

m
2β

β+1 n
2−αβ
β+1 if n1+α

2 ≤ m ≤ n
ω+1

2 ,

n2+o(1) if m ≤ n1+α
2

 .

Notice that the value of r in the statement of Theorem 2.5 is irrelevant since our sparse representation
(and the fact that a common all-zero column of A and BT can be discarded without affecting the
product) implies that r = O(m).

Finally, a word about Boolean matrix multiplication. Although not properly a ring, all of the
results in this section also apply to Boolean matrix multiplication. This is easy to see; simply perform
the operations over Zn+1. A non-zero value is interpreted as 1. As each algebraic operation in Zn

costs only Θ(log n) time it is not surprising that some researchers actually define ω as the exponent
of Boolean matrix multiplication.

3 Maximum Subset Matching

Let G = (V,E) be an undirected graph with V = {1, . . . , n}. With each edge e ∈ E we associate a
variable xe. Define the skew adjacency matrix (also known as the Tutte matrix) At(G) = (aij) by

aij =

+xe, if e = ij, i < j and (i, j) ∈ E;
−xe, if e = ij, i > j and (i, j) ∈ E;
0, otherwise.

Tutte [18] showed that At(G) is non-singular if and only if G has a perfect matching. This was
generalized later by Lovász [12] who proved that:

Lemma 3.1 The size of a maximum matching in G is 1
2rank(At(G)).

This fact, together with some additional non-trivial ideas, leads to an O(nω) time randomized al-
gorithm for deciding whether a graph has a perfect matching, and, much later, to O(nω) time
randomized algorithms that actually find a maximum matching [14, 9].

Our first lemma is a generalization of Lemma 3.1. For a graph G = (V,E) and a subset S ⊂ V , let
At(S, G) denote the sub-matrix of At(G) obtained by taking only the rows corresponding to vertices
of S. Thus, At(S, G) is an s× n matrix where s = |S| and n = |V |. Recalling the definition of f(S)
from the introduction we prove:

Lemma 3.2
f(S) = rank(At(S, G)).

Proof. We first prove that f(S) ≤ rank(At(S, G)). Consider the case where s − f(S) is even
(the odd case is proved analogously). We may assume that n − s is even since otherwise, we can
alway add an additional isolated vertex to V \S without affecting the rank of At(S, G) nor the value
f(S). We add edges to G so that V \ S induces a complete graph, and denote the new graph by G′.
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Clearly, the cardinality of the maximum matching of G′ is (n − s + f(S))/2. Thus, by Lemma 3.1,
rank(At(G′)) = n− s + f(S). In particular, we must have that

rank(At(S, G′)) ≥ rank(At(G′))− (n− s) = f(S).

But At(S, G′) and At(S, G) are the same matrix, hence rank(At(S, G)) ≥ f(S).
We next prove that f(S) ≥ rank(At(S, G)). Suppose that rank(At(S, G)) = r. We have to show

that at least r vertices of S can be saturated by a matching. As the rank is r there is an r × r
sub-matrix of At(S, G)), call it B, which is nonsingular. Let the rows of B correspond to S′ (notice
that S′ ⊂ S), and the columns to U , which is some set of vertices, possibly intersecting S′. It suffices
to show that there is a matching covering the vertices in S′. In the expansion of the determinant of
B we get r! products (with signs). Each product corresponds to an oriented subgraph of G obtained
by orienting, for each xij in the product, the edge from i (the row) to j (the column). This gives a
subgraph in which the out-degree of every vertex of S′ is 1 and the indegree of every vertex of U is
1. Thus any connected component is either a directed path, all of whose vertices are in S′ besides
the last one which is in U \ S′, or a cycle, all of whose vertices are in S′. The crucial point now is
that if there is an odd cycle in this subgraph, then the contribution of this term to the determinant
is zero, as we can orient the cycle backwards and get the same term with an opposite sign (we do it
only for the lexicographically first such cycle in the subgraph, to make sure this is well defined; this
will pair the terms that cancel). As the determinant is nonzero, there is at least one such subgraph
in which all components are either paths or even cycles, and hence there is a matching saturating all
vertices in S′, as needed.

Our algorithm computes f(S) by computing, with high probability, rank(At(S, G)), which, by
Lemma 3.2, amounts to the same thing. Computing the rank of a symbolic matrix (such as At(S, G))
directly is costly. Each algebraic operation is performed in a ring of multivariate polynomials of high
degree, and cannot, therefore, be performed in constant (or, close to constant) time. By using a
result of Zippel [23] and Schwartz [15], Lovász [12] proved the following.

Lemma 3.3 If G is a graph with n vertices and we replace each variable of At(G) with a random
integer from {1, . . . , R} then the rank of the resulting matrix equals rank(At(G)) with probability
at least 1 − n/R. Similarly, if B is any given sub-matrix of At(G) then the rank of the resulting
sub-matrix equals the rank of B, with probability at least 1− n/R.

For a complex matrix A, let A∗ denote, as usual, the Hermitian transpose of A (some researchers
also denote it by AH). If A is a real matrix then A∗ = AT . We need to recall the following simple
fact from linear algebra.

Fact 3.4 Let A be a complex matrix, then A∗A and A have the same kernel.

Indeed, suppose A∗Ax = 0, then, using the Hermitian product, < Ax,Ax > =< A∗Ax, x >= 0,
whence Ax = 0. Notice that the assertion may fail for general fields, as can be seen, for instance, by
the p× p matrix over Fp, all of whose entries are equal to 1.

We need the following result of Hopcroft and Bunch [3] which asserts that Gaussian Elimination
of a matrix requires asymptotically the same number of algebraic operations needed for matrix
multiplication. Notice that a by-product of Gaussian elimination is the matrix rank.

Lemma 3.5 Let A be an n×n matrix over an arbitrary field. Then rank(A) can be computed using
O(nω) algebraic operations. In particular, if each field operation requires Θ(K) time then rank(A)
can be computed in O(Knω) time.
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An important proposition which is obtained by combining Lemma 3.5, Lemma 2.5, Fact 3.4, and
one additional idea, is the following:

Theorem 3.6 Let A be an s × n matrix having at most m non-zero integer entries located in an
s×(n−s) sub-matrix (the other s2 entries may be all non-zero), and suppose that the largest absolute
value of an entry is R. Then, rank(A) can be computed, w.h.p., in time

Õ

({
(log R)ms

ω−1
2 if m ≥ s

ω+1
2 ,

(log R)sω if m ≤ s
ω+1

2

)
.

Proof: Let A2 be the s× (n− s) sub-matrix containing at most m non-zero entries, and let A1 be
the remaining s× s sub-matrix. Clearly,

B = AAT = A1A
T
1 + A2A

T
2 .

We first compute A1A
T
1 using O(sω) algebraic operations and in O((log R)sω) time, as each algebraic

operation requires O(log R) time. We compute A2A
T
2 using Lemma 2.5. This can be done in the

time stated in Lemma 2.5, multiplied by log R. We have therefore computed B. Notice that B is
an s × s matrix, and each entry in B has absolute value at most nR2. Furthermore, by Fact 3.4,
rank(B) = rank(A). Now, suppose rank(B) = t. Thus, B has a t× t sub-matrix B′ whose rank is t,
and hence det(B′) 6= 0. On the other hand, by Hadamard Inequality |det(B′)| ≤ (tn2R4)t/2 < (nR)2n.
Since an integer x has O(log x) prime divisors, choosing a random prime p = O((nR)2) guarantees
that, w.h.p., det(B′) 6= 0 also in Fp, and, in particular, rank(B) = t also in Fp. We compute rank(B)
using Lemma 3.5, using O(sω) algebraic operations, where each algebraic operation in Fp requires
O(log n + log r) time. Thus, in time Õ((log R)sω). The overall running time of the algorithm is

Õ




(log R)(sω + ms
ω−1

2 ) if m ≥ s
ω+1

2 ,

(log R)(sω + m
2β

β+1 s
2−αβ
β+1 ) if s1+α

2 ≤ m ≤ s
ω+1

2 ,

(log R)(sω + s2+o(1)) if m ≤ s1+α
2

 = Õ

({
(log R)ms

ω−1
2 if m ≥ s

ω+1
2 ,

(log R)sω if m ≤ s
ω+1

2

)
.

Completing the proof of Theorem 1.1: We are given a graph G = (V,E) and a subset S ⊂ V ,
where |S| = s and there are m edges between S and V \ S. Our goal is to compute f(S).

We construct the Tutte sub-matrix At(S, G) and replace each variable with an integer from
{1, . . . , n2}, uniformly at random. Denote the obtained integer matrix by A. By Lemma 3.3, with
probability at least 1−1/n, rank(A) = rank(At(S, G)). Thus, we need to compute rank(A). Notice,
however, that A is an s × n integer matrix with at most m non-zero entries in an s × (n − s) sub-
matrix. Furthermore, the absolute value of each entry of A is at most R = n2. Thus, by Theorem
3.6 we can compute rank(A) in the stated running time.

It is important to notice that computing rank(A) directly in Theorem 1.1, without computing
AAT , is costly. The fastest algorithms for computing the rank of an s×n matrix directly require the
use of Gaussian elimination, and can be performed using O(nsω−1) algebraic operations [3]. Gaussian
elimination, however, cannot make use of the fact that the matrix is sparse (namely, in our terms,
make use of m as a parameter to its running time). This can be attributed to the negative result of
Yannakakis [20] who proved that controlling the number of fill-ins (entries that were originally zero
and become non-zero during the elimination process) is an NP-Hard problem.
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4 All Pairs Shortest Paths in graphs with an s-vertex cover

In this section we prove Theorem 1.2. Suppose G = (V,E) is an undirected graph and S ⊂ V is a
vertex cover of G. The weight of each edge is an integer from {1, . . . ,W}. We denote S = {1, . . . , s}
and T = V \ S = {s + 1, . . . , n}. Our goal is to obtain the distance matrix D = Dn×n whose rows
and columns are indexed by V , where D(x, y) is the length of a shortest path connecting x and y.

For an nα × nβ matrix A and an nβ × nγ matrix B, both with entries in {0, . . . ,K} ∪ {∞}, we
define the distance product C = A ? B to be C(i, j) = Minnβ

k=1A(i, k) + B(k, j). Yuval [22] observed
that C can be computed in O(Knω(α,β,γ)) time. The idea of his proof is to replace each entry z with
(nβ + 1)z (and infinity with 0), compute the usual product C ′ of the resulting matrices A′ and B′ ,
and deduce C(i, j) by considering C ′(i, j) as a number written in base nβ +1. In fact, this argument
can be stated more generally as follows:

Lemma 4.1 For an nα × nβ matrix A and an nβ × nγ matrix B, both with entries in {0, . . . ,K} ∪
{∞}, let c(i, j, q) denote the number of distinct indices k for which A(i, k) + B(k, j) = q, Then,
all the numbers c(i, j, q) for i = 1, . . . , nα, j = 1, . . . , nγ and q = 0, . . . , 2K can be computed in
Õ(Knω(α, β, γ)) time.

Denote by A the adjacency matrix of G where the rows are indexed by S and the columns by V .
Thus, A is an s × n matrix and A(i, j) = w(i, j) if ij ∈ E, A(i, i) = 0, and otherwise A(i, j) = ∞,
for i = 1, . . . , s and j = 1, . . . , n. We first compute the distance product B = A ? AT . This can be
done in Õ(Wnω(µ,1,µ)) time where s = nµ, using Lemma 4.1. We consider B as the adjacency matrix
of a weighted undirected graph G′ whose vertex set is S. Notice that the weight of each edge of G′

is between 1 and 2W . The weight w′(i, j) corresponds to a shortest path connecting i with j in G,
among all paths with at most two edges.

We solve the APSP problem in G′. This can be done in Õ(Wsω) time using the algorithm of
Shoshan and Zwick [17]. Denote the output distance matrix by D′. Clearly, D′(i, j) = D(i, j) for
i = 1, . . . , s and j = 1, . . . , s. Indeed, in a shortest path from i to j in G we can short-circuit any
two consecutive edges (i1, i2, i3) where i2 ∈ T with the direct edge (i1, i3) which is an edge of G′,
without increasing the length of the path.

We now remain with the problem of computing D(i, j) where at least one of i or j is in T . By
symmetry we shall assume that i < j. Consider first the case i ∈ S and j ∈ T . In the beginning of
the algorithm we can choose (in linear time), for each j ∈ T , an arbitrary neighbor f(j) ∈ S. We
have already computed D(i, f(j)); hence suppose that D(i, f(j)) = `. As our graph is undirected we
have that if ` = ∞ then also D(i, j) = ∞. Otherwise, for each neighbor v of j,

|D(i, v)− `| ≤ 2W.

Let xh denote the number of neighbors v of j with D(i, v)+w(v, j) = `−2W +h, for h = 1, . . . , 5W .
Clearly, if we can determine all the xh then, if h′ is the smallest index for which xh′ > 0 then
D(i, j) = `− 2W + h.

We propose two methods for computing the xh’s. The first method is suitable (in our setting)
when W is constant, but is presented here since it is also applicable in situations where the set of
possible distances is not consecutive and not necessarily constant, thus we believe it may find other
applications. Let D(k) be the matrix obtained from D′ by replacing each entry z with zk. We shall
demonstrate the method in case W = 1 (the unweighted case). The generalization is not difficult.
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Consider the regular integer products Ck = AT D(k) for k = 0, . . . , 4 (for the sake of accuracy, we
replace infinities with zeros when performing the integer product). Thus, C0(j, i) is just the number
of neighbors of j that can reach i. Namely, C0(j, i) = x1 + x2 + x3 + x4 + x5. Similarly, Ck(j, i)
is just the sum of the distances from each of these neighbors to i, each distance taken to the k’th
power. Namely,

Ck(j, i) = (`− 2)kx1 + (`− 1)kx2 + `kx3 + (` + 1)kx4 + (` + 2)kx5.

Considering the x1, x2, x3, x4, x5 as unknown variables, we have a system of five linear equations whose
coefficient matrix is just the 5 × 5 Vandermonde matrix with generators ` − 2, ` − 1, `, ` + 1, ` + 2.
It is well known that this system has a unique solution (all of our generators are distinct, and even
consecutive). This Vandermonde method becomes more inefficient if W is not constant, but each
linear system can be solved in O(W 2) time.

The second method uses truncated distance matrices. Let D̂′ be the matrix obtained from D′ by
replacing each entry z with z mod 5W . We apply Lemma 4.1 to the product AT ? D̂′, and obtain,
in particular, the values c(i, j, q) for q = 0, . . . , 6W − 1. Notice that each finite entry in A is between
0 and W and each finite entry in D̂′ is between 0 and 5W − 1. We claim that we can determine
the xh from these values. Indeed, each contribution to c(i, j, q) is due to a neighbor v so that
(D(i, v) mod 5W ) + w(v, j) = q. But this determines D(i, v) + w(v, j), and hence a corresponding
xh, uniquely, since we know that all the possible D(i, v) are between `− 2W and ` + 2W , thus, in a
4W interval, and we know that 1 ≤ w(v, j) ≤ W , which is another interval of length W .

We have thus shown how to compute all of the distances D(i, j) for i ∈ S and j ∈ T precisely.
In particular, we have determined the first s rows of D in Õ(Wnω(1,µ,µ)) time. Denote these first s
rows of D by D′′. To determine the distances D(i, j) where i ∈ T and j ∈ T , we simply repeat the
above procedure using the truncated distance matrix D̂′′ (instead of D̂′) and applying Lemma 4.1 to
the product AT ? D̂′′. The running time now is Õ(Wnω(1,µ,1)).

We have shown how to correctly compute the final distance matrix D. What remains is to
determine the running time of the algorithm. As noted in the introduction, if vc(G) = nµ then
finding a vertex cover S with s ≤ 2nµ vertices can be easily done in O(n2) time. Overall, the
algorithm consists of three distance products (three applications of Lemma 4.1), and one application
of the algorithm of Shoshan and Zwick. The most time consuming operation is Õ(Wnω(1,µ,1)), and
hence the result follows.

5 Concluding remarks

We presented two new algorithms for two fundamental problems in algorithmic combinatorics. Both
of these algorithms are based on rectangular matrix multiplication, but each is combined with differ-
ent tools from combinatorics and linear algebra. It is plausible that for Maximum Subset Matching
this is not the end of the road. The possibility of a faster algorithm remains (whether using fast
matrix multiplication or not). This, however, is not the case for our APSP result. Namely, no
algorithm that is expressed in terms of n and vc(G) can outperform the algorithm of Theorem 1.2.
Assuming vc(G) = s, no algorithm can perform faster than the time needed to multiply two Boolean
matrices of orders n× s and s× n.

To see this, consider the following simple reduction. Let A be an n× s Boolean matrix and let B
be an s×n Boolean matrix. Create a graph with 2n+s vertices, consisting of sets X = {x1, . . . , xn},
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Y = {y1, . . . , ys}, Z = {z1, . . . , zn}. There is an edge from xi ∈ X to yj ∈ Y if an only if A(i, j) = 1.
Similarly, there is an edge from yi ∈ Y to zj ∈ Z if an only if B(i, j) = 1. Notice that Y is a vertex
cover of the created graph. Clearly, the shortest path from xi to zj has length 2 if and only if in the
product C = AB we have C(i, j) = 1.

Another interesting open problem is whether Theorem 3.6 can be extended to finite fields. That
is, given an s×n matrix A over Fp (p constant) with at most m non-zero entries, is there an algorithm
that computes rank(A) in O(ms(ω−1)/2) time if m ≥ s(ω+1)/2 and in O(sω) time if m ≤ s(ω+1)/2 ?
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