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Abstract

We show that the minimum expected length of a 1-1 encoding of a discrete random variable

X is at least1 H(X)− log(H(X)+1)− log e and that this bound is asymptotically achievable.

1 Introduction

Let X be a random variable distributed over a countable support set X . A (binary, 1–1)

encoding of X is an injection φ : X → {0,1}∗, the set of finite binary strings. The expected

number of bits φ uses to encode X is

l(φ)
def
=

∑
x∈X

Pr(x)|φ(x)|

where Pr(x) is the probability that X = x and |φ(x)| is the length of φ(x).

A string x1, . . . ,xm is a prefix of a string y1, . . . ,yn if m ≤ n and xi = yi for i = 1, . . . ,m.

Usually, one is interested in prefix-free encodings where no string in φ(X ) is a prefix of

another. Let

L(X)
def
= min{l(φ) : φ is a prefix-free encoding of X}
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1Throughout, logarithms are to the base 2 and H(X) def=

∑
x∈X

Pr(x) log 1

Pr(x)
is the binary entropy of X.
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denote the minimum expected number of bits used in a prefix-free encoding ofX. Shannon [1]

showed2 that for all discrete random variables X,

H(X) ≤ L(X) ≤ H(X) + 1 .

Occasionally, encodings that are not necessarily prefix free are encountered. This is the

case, for example, if there is an “end of message” symbol. It is therefore of interest to

determine

`(X)
def
= min{l(φ) : φ is an encoding of X},

the minimum expected number of bits used in any 1–1 encoding of X.

Wyner [2] proved that for all discrete random variables X,

`(X) ≤ H(X).

This bound, named Wyner’s upper bound by Elias [3], is achieved by the constant random

variables. Leung-Yan-Cheong and Cover [4] proved that for all discrete random variables X,

`(X) ≥ H(X)− logH(X)− log logH(X)− . . .− 6.

In this note we improve this bound to:

Theorem For every discrete random variable X,

`(X) ≥ H(X)− log(H(X) + 1)− log e. 2

This bound is asymptotically achieved by a random variable derived from the geometric

distribution.

The next section proves these statements. The appendix recounts known proofs of

Wyner’s upper bound and of a lower bound that is generally weaker than the theorem’s.

2 Proof

Without loss of generality, assume that X ⊆ N (= {1, 2, . . .}) and let pi
def
= Pr(i). Central to

our proof is the relation between H(X), `(X), and

E(X)
def
=
∑
i∈X

ipi,

the expected value of X.

2The lower bound was later shown to hold for the larger class of uniquely-decodable codes.
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Lemma 1 If X is distributed geometrically over N then

log(E(X)) ≤ H(X) ≤ log(E(X)) + log e.

Proof: Suppose that X is distributed with parameter p: for i ≥ 1, pi = p(1− p)i−1. Then

E(X) =
1

p
,

while

H(X) = log
1

p
+

1− p
p

log
1

1− p
≤ log

1

p
+ log e.

Note that
1− p
p

log
1

1− p
≥ (1− p) log e,

hence the bound is asymptotically achievable as p decreases to 0. 2

Lemma 2 For every random variable X distributed over N ,

H(X) ≤ log(E(X)) + log e.

Proof: Of all random variables distributed over N and having a given expectation, the

entropy is maximized by a geometrically-distributed one, e.g., Cover and Thomas [5]. 2

A reverse type of the above inequality cannot hold. For every integer i, the constant random

variable X = i has zero entropy and expected value i. Even if the pi’s are required to be

non-increasing, we can, for E ≥ 1 and m ≥ 2(E − 1), let p1 = 1 − 2(E−1)
m

, and p2 = . . . =

pm = 2(E−1)
m(m−1)

. The resulting random variable has expectation E while its entropy diminishes

to 0 with increasing m.

Lemma 3 For every discrete random variable X,

H(X) ≤ `(X) + log (`(X) + 1) + log e.

Proof: It will be convenient to use probability notation exclusively. For example, we let

P = (p1, p2, . . .) denote the probability distribution underlying X, and write E(P ), H(P ),

and `(P ) for E(X), H(X), and `(X).

Without loss of generality, assume that the pi’s are non-increasing. Any encoding φ of

X that achieves `(X) has |φ(1)| = 0, |φ(2)| = |φ(3)| = 1, and, in general,

|φ(i)| = blog ic.

3



For j ≥ 0 let qj
def
=
∑2j+1−1
i=2j pi (e.g., q0 = p1, q1 = p2 + p3, etc.) and let Q = (q0, q1, . . .). Then

`(P ) =
∞∑
i=1

blog icpi =
∞∑
j=0

2j+1−1∑
i=2j

blog icpi =
∞∑
j=0

jqj = E(Q).

To derive the theorem observe that P is a refinement of Q, hence:

H(P ) = H(Q) +
∞∑
j=0

qjH

(
p2j

qj
,
p2j+1

qj
, . . . ,

p2j+1−1

qj

)

≤ H(Q) +
∞∑
j=0

jqj

= E(Q) +H(Q)

≤ E(Q) + log (E(Q) + 1) + log e,

where the last inequality follows from Lemma 2 (slightly modified because Q ‘ranges’ over

{0, 1, . . .}). 2

Rephrased, this result gives a slightly stronger form of the theorem.

To show that this bound can be arbitrarily approximated, we ‘reverse engineer’ the proof

of the last lemma. Take any 0 < p < 1. For j ≥ 0 let

qj
def
= p(1− p)j,

and for 2j ≤ i ≤ 2j+1 − 1 let

pi
def
=
qj
2j
.

That is,

P =

(
p,
p(1− p)

2
,
p(1− p)

2
,
p(1− p)2

4
, . . .

)
.

Then, again in probability notation,

H(P ) = H(Q) +
∞∑
j=0

jqj = E(Q) +H(Q) ≥ E(Q) + log(E(Q) + 1) + (1− p) log e

where the inequality follows from the remark ending Lemma 1’s proof. On the other hand,

`(P ) =
∞∑
j=0

jqj = E(Q).

Hence, as p decreases, `(P ) approaches H(P )− log(H(P ) + 1)− log e.
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Appendix

For completeness, we recount known proofs of Wyner’s upper bound and of a lower bound

proven by Leung-Yan-Cheong and Cover [4].

The lower bound is generally weaker than the one claimed by the theorem, but its sim-

plified proof, due to Dunham [6], is short and elegant:

Lemma 4 If X is finite, then

`(X) ≥ H(X)− log log(|X |+ 1).

Proof: An optimal code satisfies:

|X |∑
i=1

pi log
1

pi
−
|X |∑
i=1

pili =
|X |∑
i=1

pi log
2−li

pi
≤ log

|X |∑
i=1

2−li = log
|X |∑
i=1

2−blog ic ≤ log log(|X |+ 1). 2

We note that Rissanen [7] proved a slightly stronger version of this bound.

To prove Wyner’s upper bound, assume again that the pi’s are non-increasing. Then

pi ≤
1

i
.

Taking an encoding φ where

|φ(i)| = blog ic ≤ log
1

pi
,

we obtain:

`(X) =
∑
i∈X

pi|φ(i)| ≤
∑
i∈X

pi log
1

pi
= H(X).

This bound is trivially achieved by the constant random variables. For random variables

with arbitrarily high entropy, it can be approached up to an additive constant of 2. Take

m = 2n − 1 and let X be uniformly distributed over 1, . . . ,m. Then

H(X) = logm

and

`(X) =
1

m

n−1∑
i=0

i2i =
1

m
((n− 2)2n + 2) =

1

m
(n2n − 2m) =

n2n

m
− 2 ≥ logm− 2.
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