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Abstract

We show that the minimum expected length of a 1-1 encoding of a discrete random variable

X is at least! H(X)—log(H(X)+1)—loge and that this bound is asymptotically achievable.

1 Introduction

Let X be a random variable distributed over a countable support set X. A (binary, 1-1)
encoding of X is an injection ¢ : X — {0,1}*, the set of finite binary strings. The expected

number of bits ¢ uses to encode X is

1(6)% Y Pr(z)|o(x)]

zeX

where Pr(x) is the probability that X = = and |¢(z)| is the length of ¢(z).

A string x4, ...,z,, is a prefix of a string y1,...,y, if m <nand x; =y, fori =1,... m.
Usually, one is interested in prefiz-free encodings where no string in ¢(X) is a prefix of
another. Let

L(X) % min{i(¢) : ¢ is a prefix-free encoding of X}
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!Throughout, logarithms are to the base 2 and H(X) def > Pr(z)log Prl( ) is the binary entropy of X.
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denote the minimum expected number of bits used in a prefix-free encoding of X. Shannon [1]

showed? that for all discrete random variables X,
HX)<LX)<HX)+1.

Occasionally, encodings that are not necessarily prefix free are encountered. This is the
case, for example, if there is an “end of message” symbol. It is therefore of interest to
determine

0(X)Y min{i(¢) : ¢ is an encoding of X},

the minimum expected number of bits used in any 1-1 encoding of X.

Wiyner [2] proved that for all discrete random variables X,
((X) < H(X).

This bound, named Wyner’s upper bound by Elias [3], is achieved by the constant random

variables. Leung-Yan-Cheong and Cover [4] proved that for all discrete random variables X,
0(X)>H(X)—logH(X)—loglog H(X) — ... —6.
In this note we improve this bound to:

Theorem For every discrete random variable X,
0(X)>H(X)—log(H(X)+ 1) —loge. O

This bound is asymptotically achieved by a random variable derived from the geometric
distribution.
The next section proves these statements. The appendix recounts known proofs of

Wyner’s upper bound and of a lower bound that is generally weaker than the theorem’s.

2 Proof

Without loss of generality, assume that X C N (= {1,2,...}) and let p; et Pr(i). Central to

our proof is the relation between H(X), ¢(X), and
E(X)E S ip,
i€X

the expected value of X.

2The lower bound was later shown to hold for the larger class of uniquely-decodable codes.



Lemma 1 If X is distributed geometrically over N/ then
log(E(X)) < H(X) < log(E(X)) + loge.

Proof: Suppose that X is distributed with parameter p: for i > 1, p; = p(1 — p)"~!. Then

1
E(X) =
p
while
1 1- 1 1
H(X)=1log—-+ plog <log — + loge.
p P L—=p p
Note that
L—p
1 > (1—p)l
 loe T > (1 —p)loge,
hence the bound is asymptotically achievable as p decreases to 0. O

Lemma 2  For every random variable X distributed over N,
H(X) <log(FE(X)) + loge.

Proof: Of all random variables distributed over N and having a given expectation, the

entropy is maximized by a geometrically-distributed one, e.g., Cover and Thomas [5]. a

A reverse type of the above inequality cannot hold. For every integer 7, the constant random
variable X = ¢ has zero entropy and expected value i. Even if the p;’s are required to be

2E-1)

non-increasing, we can, for £ > 1 and m > 2(E — 1), let p; = 1 — yand pp = ... =

DPm = % The resulting random variable has expectation E while its entropy diminishes

to 0 with increasing m.

Lemma 3  For every discrete random variable X,
H(X) <{X)+log({(X)+1)+loge.

Proof: It will be convenient to use probability notation exclusively. For example, we let
P = (p1,p2,...) denote the probability distribution underlying X, and write E(P), H(P),
and ((P) for E(X), H(X), and ¢(X).

Without loss of generality, assume that the p;’s are non-increasing. Any encoding ¢ of
X that achieves £(X) has |¢(1)] =0, |¢(2)| = |¢(3)] = 1, and, in general,

|0(0)] = [log].
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. def j+1_
For j > 0 let ¢; = Z?izj Ypi (e.g., qo = p1, 1 = p2 +ps, etc.) and let Q = (go, qu,...). Then

(P) =3 llogilpi =" 3 llogilp =3 jo; = B(Q).

=0 =27

To derive the theorem observe that P is a refinement of @), hence:

HP) = Q)+ Y g (M P P
j=0 9% 49 95

< H(Q)+)_jg
=0

— B(Q) + H(Q)
< B(Q)+log(E(Q) +1) +loge,

where the last inequality follows from Lemma 2 (slightly modified because ) ‘ranges’ over

{0,1,...}). O

Rephrased, this result gives a slightly stronger form of the theorem.
To show that this bound can be arbitrarily approximated, we ‘reverse engineer’ the proof

of the last lemma. Take any 0 < p < 1. For j > 0 let

def ;
q; = p(1 —p),

and for 27 <4 < 2/t1 — 1 let
gy
[ 2] .
That is,

1— 1— 1—p)?
p—(ppi=p) pd=p) p(l=p)"
2 2 4
Then, again in probability notation,
H(P)=H(Q)+ ) jg=E@Q)+H(Q) = EQ) +log(E(Q) + 1) + (1 — p) loge
j=0
where the inequality follows from the remark ending Lemma 1’s proof. On the other hand,

(P) =3 ju; = BQ)

Hence, as p decreases, ¢(P) approaches H(P) — log(H(P) + 1) — loge.



Appendix

For completeness, we recount known proofs of Wyner’s upper bound and of a lower bound
proven by Leung-Yan-Cheong and Cover [4].
The lower bound is generally weaker than the one claimed by the theorem, but its sim-

plified proof, due to Dunham [6], is short and elegant:
Lemma 4 If X is finite, then
((X) > H(X) — loglog(|X| + 1).

Proof: An optimal code satisfies:

1 1 1 ol 1 1 |
> pilog— => pil; => p;log < logZT” = logZQ_Uog’J <loglog(|X|+1). O
i=1 pi = i=1 Di

g =1 1=1

We note that Rissanen [7] proved a slightly stronger version of this bound.

To prove Wyner’s upper bound, assume again that the p;’s are non-increasing. Then

[ =

pi < <.

~

Taking an encoding ¢ where
. . 1
16()] = Llogi] < log — ,

)

we obtain:

0X) = Y pilo) < i 1og]§ — H(X).

ieX ieX i
This bound is trivially achieved by the constant random variables. For random variables
with arbitrarily high entropy, it can be approached up to an additive constant of 2. Take
m = 2" — 1 and let X be uniformly distributed over 1,...,m. Then

H(X) =logm
and
1 n—-1 1 1 on
(0 = 32 = (=202 4 2) = (02 = 2m) = T8 =2 > logm — 2
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