
A Primal-Dual Randomized Algorithm for Weighted Paging

Nikhil Bansal
IBM T. J. Watson Research,

Yorktown Heights, NY 10598.
nikhil@us.ibm.com

Niv Buchbinder
Computer Science Department,
Technion, Haifa 32000, Israel.

nivb@cs.technion.ac.il

Joseph (Seffi) Naor∗

Computer Science Department,
Technion, Haifa 32000, Israel.

naor@cs.technion.ac.il

Abstract

In the weighted paging problem there is a weight (cost)
for fetching each page into the cache. We design a
randomized O(log k)-competitive online algorithm for the
weighted paging problem, where k is the cache size. This
is the first randomized o(k)-competitive algorithm and its
competitiveness matches the known lower bound on the
problem. More generally, we design an O(log(k/(k −
h + 1)))-competitive online algorithm for the version of
the problem where the online algorithm has cache size k
and the offline algorithm has cache size h ≤ k. Weighted
paging is a special case (weighted star metric) of the well
known k-server problem for which it is a major open ques-
tion whether randomization can be useful in obtaining sub-
linear competitive algorithms. Therefore, abstracting and
extending the insights from paging is a key step in the reso-
lution of the k-server problem.

Our solution for the weighted paging problem is based
on a two-step approach. In the first step we obtain an
O(log k)-competitive fractional algorithm which is based
on a novel online primal-dual approach. In the second
step we obtain a randomized algorithm by rounding online
the fractional solution to an actual distribution on integral
cache solutions. We conclude with a randomized O(log N)-
competitive algorithm for the well studied Metrical Task
System problem (MTS) on a metric defined by a weighted
star on N leaves, improving upon a previous O(log2 N)-
competitive algorithm of Blum et al. [9].

∗This work was done while visiting Microsoft Research, Redmond,
WA. Research supported in part by ISF Grant 1366/07 and US-Israel BSF
Grant 2002276.

1 Introduction

We consider the following classic online paging prob-
lem. We are given a collection of n pages, and a fast mem-
ory (cache) which can hold up to k of these pages. At each
time step one of the pages is requested. If the requested page
is already in the cache then no cost in incurred, otherwise
the algorithm must bring the page into the cache, possibly
evicting some other page, and a cost of one unit is incurred.
In the weighted version of the problem, each page has an
associated weight that indicates the cost of bringing it into
the cache. This models situations where some pages are
more expensive to fetch than others because they may be on
far away servers, or slower disks, and so on. The goal is to
minimize the total cost incurred by the algorithm. Paging is
one of the earliest and most extensively studied problems in
online computation and competitive analysis.

The unweighted paging problem is very well understood.
In their seminal paper, Sleator and Tarjan [29] showed
that any deterministic algorithm is at least k-competitive,
and also showed that LRU (Least Recently Used) is ex-
actly k-competitive. They also considered the more gen-
eral (h, k)-paging problem where the online algorithm with
cache size k is compared to the offline algorithm with cache
size h. They showed that any deterministic algorithm is
at least k/(k − h + 1)-competitive, and that LRU is ex-
actly k/(k − h + 1)-competitive. When randomization is
allowed, Fiat et al. [21] designed the Randomized Mark-
ing algorithm which is 2Hk-competitive against an obliv-
ious adversary, where Hk is the k-th Harmonic number.
They also showed that any randomized algorithm is at least
Hk-competitive. Subsequently, McGeoch and Sleator [25]
gave a matching Hk-competitive algorithm, and Achlioptas,
Chrobak and Noga [1] gave another Hk-competitive algo-
rithm that is easier to state and analyze. For (h, k)-paging,

Young [31] gave a 2 ln(k/(k − h))-competitive algorithm
(ignoring lower order terms) and showed that any algorithm
is at least ln(k/(k − h))-competitive. There has been ex-
tensive work on paging along several other directions, and
we refer the reader to the excellent text by Borodin and El-
Yaniv [10] for further details.

For weighted paging, a tight k-competitive deterministic
algorithm follows from the more general work of Chrobak
et al. [17] for k-server problem on trees (see below). Subse-
quently, Young [30] gave a tight k/(k−h + 1)-competitive
deterministic algorithm for the more general (h, k)-paging
problem. Despite substantial interest no o(k) randomized
algorithms are known for weighted paging. The problem
has been described as a “challenge” in [30], and stated as
a key open problem in [10] (Problems 11.1 and 11.2) and
various other papers [27, 2]. Substantial progress was made
by Irani [23] who gave an O(log k)-competitive algorithm
for the two weight case, i.e. when each page weight is either
1 or some fixed M > 1. In another direction, Blum, Furst
and Tomkins [9] gave an O(log2 k)-competitive algorithm
for the case of n = k+1 pages. Later, Fiat and Mendel [19]
gave an improved O(log k) competitive algorithm for the
case of n = k + c pages, where c is a constant. For large n
however, no o(k)-competitive algorithm was known (prior
to our work) even for the case of three distinct weights.

Paging can be viewed as a special case of the much more
general and challenging k-server problem. In this problem,
there are k servers located on points in an n-point metric
space. At each time step a request is placed at one of the
points and the algorithm must move one of the servers to
this point to serve the request. The goal is to minimize the
overall distance traveled by the servers. The unweighted
paging problem is exactly the k-server problem on a uni-
form metric space. The weighted paging problem is iden-
tical (up to an additive constant) to the k-server problem
on the metric space in which the distance between any two
pages a and b is (w(a) + w(b))/2, where w(·) denotes the
page weights.

The k-server problem has a fascinating history and sub-
stantial progress has been made on deterministic algorithms
for the problem. It is known that any deterministic algo-
rithm must be at least k-competitive on any metric space
with more than k points. Fiat, Rabani and Ravid [20] gave
the first algorithm for which the competitive ratio was only
a function of k. Their algorithm was O((k!)3)-competitive.
After a series of results, a breakthrough was achieved by
Koutsoupias and Papadimitriou [24] who gave an almost
tight 2k − 1 competitive algorithm. This is still the best
known bound (both for deterministic and randomized algo-
rithms) for general metric spaces. The tight guarantee of k
is also known for many special cases. In particular, Chrobak
et al. [17] gave a k-competitive algorithm for trees. We refer
the reader to [10] for more details on the k-server problem.

Nevertheless, randomized algorithms for the k-server
problem remain poorly understood. No lower bound bet-
ter than ln k is known for any metric space. Moreover, from
the work of Bartal, Bollobas and Mendel [4] and Bartal,
Linial, Mendel and Naor [6], it follows that no metric space
with more than k points can admit a o(log k/ log log k)-
competitive algorithm. A widely believed conjecture is
that O(log k)-competitive algorithms exist for every metric
space. In a breakthrough result, Bartal, Blum, Burch and
Tomkins [5] gave a poly-log(N) competitive algorithm for
the metrical task system problem (see definitions in the fol-
lowing paragraph) that implies a poly-log(k)-competitive
algorithm for the k-server on a space with k + c points,
where c is a constant independent of k. This guarantee was
improved by Fiat and Mendel [19] to O(log2 k log log k).
However, for n much larger than k, no algorithms with sub-
linear competitive ratio are known except for very few spe-
cial cases. Besides paging and weighted paging with two
weights, a poly-logarithmic competitive algorithm is known
for a special subclass of certain well-separated spaces [28].
Csaba and Lodha [18] gave an O(n2/3) competitive algo-
rithm, which is o(k) competitive for n = o(k3/2), for n
uniformly spaced points on a line1.

A closely related problem is the metrical task system
problem (MTS). In the MTS problem we are given a finite
metric space M = (V, d), where |V | = N . We view the
points ofM as states in which the algorithm may be situ-
ated in. The distance between the points of the metric mea-
sures the cost of transition between the possible states. We
use the k-server notation and say that a server that serves
the requests is moving between the states. Each task (re-
quest) r in a metrical task system is associated with a vector
(r(1), r(2), . . . , r(N)), where r(i) denotes the cost of serv-
ing r in state i ∈ V . In order to serve request r in state
i the server has to be in state i. Upon arrival of a new re-
quest, the state of the system can first be changed to a new
state (paying the transition cost), and only then the request
is served (paying for serving the request in the new state).
The objective is to minimize the total cost which is the sum
of the transition cost and the service cost.

The MTS model was formulated by Borodin, Linial and
Saks [11] who gave tight upper and lower bound of 2N − 1
for any deterministic online algorithm for the problem.
They also designed a 2HN -competitive randomized algo-
rithm for the uniform metric, and showed a lower bound
of HN for this metric. In fact, our proposed algorithm
for the weighed star can be seen in retrospect as a di-
rect generalization of their approach. For the MTS prob-
lem on a weighted star, Blum et al. [9] gave a random-

1A generalization of this result was considered by Bartal and Mendel
[7], who proposed a ∆1−εpolylogk competitive algorithm for bounded
growth metrics with diameter ∆. Unfortunately, their result seems to have
a serious error [M. Mendel, personal communication].

ized O(log2 N)-competitive algorithm . For general met-
rics Bartal et al. [5] designed a randomized O(log5 N)-
competitive algorithm which is based on an algorithm for
HST’s. Fiat and Mendel [19] improved this bound and de-
signed an O(log2 N log log N)-competitive algorithm for
general metrics.

1.1 Results and Techniques

Abstracting and extending the insights from paging is a
key step in the resolution of the k-server problem. We ob-
tain the following results:

Theorem 1.1 (Weighted Paging). There is an O(log k)-
competitive randomized algorithm for the online weighted
paging problem. More generally, there is an O(log(k/(k −
h+1)))-competitive algorithm for the case where where the
online algorithm has cache size k and the offline algorithm
has cache size h ≤ k.

Theorem 1.2 (Metrical Task Systems). There is an
O(log N)-competitive randomized algorithm for the online
Metrical Task System (MTS) problem on a metric defined by
a weighted star on N leaves.

A novel aspect of our weighted paging algorithm is that
it does not rely on “phases” to lower bound the cost of the
optimum algorithm. Our proposed algorithm is based on a
two-step approach. In the first step we obtain an O(log k)-
competitive fractional algorithm for weighted paging. In
a fractional solution the algorithm is allowed to maintain
fractions of pages in the cache, as long as the sum of the
page fractions does not exceed the cache size, k. The cost
of fetching an ε fraction of a page is then ε times the weight
associated with the page. In order to design an online al-
gorithm that generates a fractional competitive solution we
formulate the problem using a covering linear program with
box constraints 2. The same formulation was previously
used by Bar-Noy et al. [3] for approximating the offline
version of the problem. Cohen and Kaplan [15] used the
formulation to give an alternative proof of the competi-
tiveness of Young’s dual-greedy algorithm [30] (which is
k/(k − h + 1)-competitive). The linear programming for-
mulation allows us to utilize the primal-dual framework of
[12] developed for online packing and covering problems.
However, the primal-dual framework of [12] can only lead
to an O(log n)-competitive algorithm for the paging prob-
lem. Thus, obtaining an O(log k)-competitive bound re-
quires new ideas. The main new idea is combining the ap-
proach of [12] with the well known primal-dual scheme.
We are confident that this more general approach will find
further applications to other online problems.

2Box constraints are upper bounds on the values of the variables in the
linear program.

Finally, we need to obtain a randomized algorithm. To
this end, we need to transform the fractional solution to an
actual distribution on integral cache solutions. We show that
such a transformation is possible while paying only an addi-
tional (small) constant multiplicative factor. Combining the
two steps together yields the desired randomized O(log k)-
competitive algorithm.

The O(log N)-competitive algorithm for the MTS prob-
lem on a weighted star is designed along the same lines, but
requires an additional initial idea. As a first step we define
a new MTS model and show that as a result on a weighted
star metric the cost of an optimal solution can only change
by a constant factor. We also show that any solution to the
new MTS model with cost C is a solution to the MTS model
with cost at most 2C. Finally, we formulate the new MTS
model as a covering LP, show how to generate a fractional
solution to it in an online fashion, and then show that the
fractional solution can be rounded using a simple random-
ized rounding method with no further cost.

The primal-dual method is one of the fundamental de-
sign methodologies in the areas of approximation algo-
rithms and combinatorial optimization. Recently, Buch-
binder and Naor [12] have further extended the primal-dual
method and have shown its wide applicability to the design
and analysis of online algorithms. In further work, [13, 14]
have shown more applications of the primal-dual method to
online algorithms. The primal-dual method is useful for on-
line problems such as ski-rental, ad-auctions, routing and
load balancing, network optimization problems, and more.
We use the primal-dual method here for both making online
decisions as well as for the competitive analysis. We note
that the connection between competitive analysis and linear
programming duality was made explicit for the first time by
Young [30] in his work on weighted paging, where an opti-
mal deterministic k-competitive algorithm is obtained via a
primal-dual approach. The linear programming formulation
used by Young [30] was originally suggested by Chrobak et
al. [17], however, this formulation is not a covering-packing
linear program.

2 Preliminaries

We study the classic weighted paging problem where
there is a cache of size k and the total number of pages
is n > k. Each page i is associated with a positive weight
w(i) ≥ 1, denoting the cost of fetching the page into the
cache. A request sequence is a sequence of pages, denoted
by p1, p2, . . ., where page pj is requested at time j. The
jth request is served by placing page pj in the cache at time
j, for each j ≥ 1. The objective is to minimize the total
cost of fetching pages into the cache. We relax the model
and charge for evicting pages instead of loading them. This
relaxation can only change the cost of any algorithm by an

additive factor (fetching the last k pages is “free”).

Linear Programming Relaxation. We formulate a sim-
ple linear programming relaxation of the paging problem.
Let x(i, j) be an indicator to the event that page i is evicted
from the cache between the jth time it is requested and the
(j + 1)st time it is requested. If x(i, j) = 1, we can assume
without loss of generality that page i is evicted in the first
time slot following the jth time it is requested. (As we later
discuss, this assumption is not necessarily true in the online
case.) In a fractional solution, we allow x(i, j) to get any
value between 0 and 1. For each page i, denote by t(i, j) the
time it is requested for the jth time, and denote by r(i, t) the
number of times page i is requested until time t (including
t). For any time t, let B(t) = {i | r(i, t) ≥ 1} denote the
set of pages requested until time t (including t).

A feasible solution to the paging problem can maintain
at any time t at most k pages in the cache. In a fractional
solution the sum of the page fractions in the cache is at most
k. Also, page pt must be in the cache at time t. Thus, any
feasible paging solution must evacuate at least |B(t)| − k
pages out of the set B(t)\{pt}, yielding the following linear
programming formulation:

min
n∑

i=1

r(i,t)∑
j=1

w(i)x(i, j) (LP-Paging)

For any time t:
∑

i∈B(t)\{pt}
x(i, r(i, t)) ≥ |B(t)| − k (1)

For any i, j: 0 ≤ x(i, j) ≤ 1

In the dual program, there is a variable y(t) for each time
t and a variable z(i, j) for each page i and the jth time it is
requested. The dual program is the following:

max
∑

t

(|B(t)| − k) y(t) −
n∑

i=1

r(i,t)∑
j=1

z(i, j)

For each page i and the jth time it is requested:

t(i,j+1)−1∑

t=t(i,j)+1

y(t)

− z(i, j) ≤ w(i) (2)

For any i, j: z(i, j) ≥ 0
For all t: y(t) ≥ 0

Randomized Algorithms. A randomized algorithm is
completely specified by a probability distribution on the
various configurations (deterministic states) in each state of
the algorithm. For the k-server problem this corresponds

to specifying the distribution on k-tuples of server posi-
tions. Such a distribution induces another (simpler) distri-
bution p(x, t) on the points in the metric space, specify-
ing the probability that a server is placed at point x at time
t. Clearly, this map is not a bijection. For example, the
distribution (1/2, 1/2, 1/2, 1/2) on four points A,B,C,D
could be induced by the distribution D1 on two server states
where each state (A,B) and (C,D) occurs with probability
1/2 each, or it can be induced by the distribution D2 where
each of six possible states (A,B), (A,C), . . . , (C,D) oc-
cur with probability 1/6 each.

For the k-server problem, the distribution on the points
in the metric space can be viewed as a probability mass of
k units distributed among the n points, and the “move” of
an algorithm simply corresponds to redistributing this mass
among the points. In this view when the algorithm moves ε
units of mass from point i to j, it incurs a cost of ε · d(i, j).
We call this the fractional view (in contrast to working with
the probability distribution on states, that we call the actual
view). This fractional view has been considered previously
[5, 8]. Blum et al. [8] showed that for the unweighted pag-
ing problem it is possible to transform online a fractional
view to an actual view such that the expected cost incurred
is at most twice the cost of the fractional view. We note that
a fractional view can easily be obtained from a solution to
linear program (LP-Paging), since the variables in the linear
program indicate what fraction of a page is already evacu-
ated from the cache. More formally, at time t, p(pt, t) = 1,
and for each i �= pt, p(i, t) = 1− x(i, r(i, t)).

Our goal is to generate a randomized algorithm from a
fractional view. To this end, we adopt a similar approach
as [8]. However, for weighted paging the relation between
fractional view and actual view is much more subtle. Con-
sider for example the distribution (1/2, 1/2, 1/2, 1/2) on
pages A,B,C and D induced by the actual view where
cache states (A,B) and (C,D) each occurring with proba-
bility 1/2. Pages A and B have weight 1, and pages C and
D have a large weight M . Suppose the fractional algorithm
moves 1/2 unit of mass from page A to page B leading to
the state of (0, 1, 1/2, 1/2). In the fractional view, this algo-
rithm incurs a cost of 1/2. However, it is instructive to see
that it is impossible to modify the actual distribution (to be
consistent with the fractional distribution) without incurring
a cost of Θ(M). In fact, the only actual distribution consis-
tent with (0, 1, 1/2, 1/2) is to have probability 1/2 on state
(B,C) and probability 1/2 on state (B,D). Thus, from the
previous cache state (C,D), either C or D must be moved
to make room for B, which incurs cost Θ(M).

Interestingly, for weighted paging we get around this
problem by restricting our actual distributions to a certain
subclass of distributions (for example in the scenario de-
scribed above, we do not allow the distribution where states
(A,B) and (C,D) have probability half each to correspond

to the distribution (1/2, 1/2, 1/2, 1, 2)). In particular, in
Section 4 we show how to maintain an online mapping from
induced distributions to actual distributions, such that any
fractional move with cost c is mapped to a move on actual
distributions with cost at most 5c. Hence, throughout this
paper we work with the fractional view.

The Metrical Task System Problem. We consider the
metrical task system (MTS) problem on a metric M de-
fined by a weighted star. The leaves of the star are denoted
by {1, 2, . . . , N}, and the distance from the center of the
star to leaf i is d(i). There is a single server and the leaf
in which the server is located defines the state of the sys-
tem. The cost of moving the server from state i to state j
is d(i) + d(j). We can assume that the server is initially in
state 1. Each task (request) r in a metrical task system is
associated with a vector (r(1), r(2), . . . , r(N)), where r(i)
denotes the cost of serving r in state (leaf) i. In order to
serve request r in state i the server has to be in leaf i. Upon
arrival of a new request, the state of the system can first be
changed to a new state (paying the transition cost), and only
then the request is served (paying for serving the request in
the new state).

3 A Fractional Primal-Dual Algorithm for
the Weighted Paging Problem

Our online paging algorithm produces fractional primal
and dual solutions to LP-Paging. In the online case, the
constraints of LP-Paging (corresponding to the requests to
pages) are revealed one-by-one. Upon arrival of a con-
straint, the algorithm finds a feasible assignment to the (pri-
mal) variables that satisfies the constraint. Consider vari-
able x(i, j). In the offline case, we can assume without loss
of generality that the value of x(i, j) is determined at time
t(i, j)+1. However, this is not necessarily true in the online
case; thus, we stipulate that the values assigned to x(i, j) in
the time interval [t(i, j) + 1, t(i, j + 1) − 1] by the online
algorithm form a monotonically non-decreasing sequence.

We start with a high level description of the algorithm.
Upon arrival of a new constraint at time t, if it is already
satisfied, then the algorithm does nothing. Otherwise, the
algorithm needs to satisfy the current constraint by increas-
ing some of the primal variables in the constraint. Satisfy-
ing the constraint guarantees that there is a enough space in
the cache to fetch the new page. To this end, the algorithm
starts increasing (continuously) the new dual variable y(t).
This, in turn, tightens some of the dual constraints corre-
sponding to primal variables x(i, j) whose current value is
0. Whenever such an event happens, the value of x(i, j) is
increased from its initial setting of 0 to 1/k. Thus, during
the time preceding the increase of x(i, j) from 0 to 1/k,
page i cannot be evicted from the cache. This part is some-

what similar to what happens in the Randomized Marking
algorithm [21]. Meanwhile, variables x(i, j) which are al-
ready set to 1/k are increased (continuously) according to
an exponential function of the new dual variable y(t). Note
that this exponential function is equal to 1/k when the con-
straint is tight. Thus, the algorithm is well defined. When
variable x(i, j) reaches 1, the algorithm starts increasing
the dual variable z(i, j) at the same rate as y(t). As a result,
from this time on, the value of x(i, j) remains 1. The algo-
rithm is presented in a continuous fashion, but it can easily
be implemented in a discrete fashion. The algorithm is the
following:

Fractional Paging Algorithm: At time t, when page pt

is requested:

• Set the new variable: x(pt, r(pt, t)) ← 0. (It can
only be increased in times t′ > t.)

• If the primal constraint corresponding to time t is
satisfied, then do nothing.

• Otherwise: increase primal and dual variables, un-
til the primal constraint corresponding to time t is
satisfied, as follows:

1. Increase variable y(t) continuously; for each
variable x(i, j) that appears in the (yet unsat-
isfied) primal constraint that corresponds to
time t:

2. If x(i, j) = 1, then increase z(i, j) at the
same rate as y(t).

3. If x(i, j) = 0 and

t(i,j+1)−1∑

t=t(i,j)+1

y(t)

− z(i, j) = w(i),

then set x(i, j)← 1/k.

4. If 1/k ≤ x(i, j) < 1, increase x(i, j) accord-
ing to the following function:

1

k
· exp

 1

w(i)

t(i,j+1)−1∑

t=t(i,j)+1

y(t)

 − z(i, j)− w(i)

Note that the exponential function for x(i, j) contains
variables y(t) that correspond to future times. However,
these variables are all initialized to 0, so they do not con-
tribute to the value of the function.

The analysis of the primal cost is partitioned into two
parts. The first one corresponds to the contribution of the in-
crease of the variables x(i, j) from 0 to 1/k, and the second
part corresponds to the increase of the variables x(i, j) from
1/k till (at most) 1, according to the exponential function.

Each part is upper bounded separately by the dual solution,
yielding the desired result. We now prove the following the-
orem.

Theorem 3.1. The algorithm is O(log k)-competitive.

Proof. First, we note that the primal solution generated by
the algorithm is feasible. This follows since, in each itera-
tion, the variables x(i, j) are increased until the new primal
constraint is satisfied. Also, each variable x(i, j) is never
increased to be greater than 1.

Next, we show that the dual solution that we generate is
almost feasible. Whenever x(i, j) increases in some round
and reaches 1, the algorithm starts increasing z(i, j) at the
same rate as y(t). Therefore, the value of x(i, j) is not go-
ing to change anymore, as the exponent of the exponen-
tial function will not change any more. Thus, for the dual
constraint corresponding to page i and the jth time it is re-
quested, we get that:

x(i, j) =
1

k
exp

 1

w(i)

t(i,j+1)−1∑

t=t(i,j)+1

y(t)

 − z(i, j)− w(i)

 ≤ 1.

Simplifying, we get that:

t(i,j+1)−1∑

t=t(i,j)+1

y(t)

 − z(i, j) ≤ w(i)(1 + ln k). (3)

Thus, the dual solution can be made feasible by scaling it
down by a factor of (1+ln k). We now prove that the primal
cost is at most twice the dual profit, which means that the
primal solution produced by the algorithm is 2(1 + ln k)-
competitive.

We partition the primal cost into two parts. Let C1 be
the contribution to the primal cost from Step (3) of the al-
gorithm, due to the increase of variables x(i, j) from 0 to
1/k. Let C2 be the contribution to the primal cost from
Step (4) of the algorithm, due to the incremental increases
of the variable x(i, j) according to the exponential function
from 1/k up to at most 1.

Bounding C1: For page i and the jth time it is requested,
it follows from the algorithm that if x(i, j) > 0, then:

t(i,j+1)−1∑

t=t(i,j)+1

y(t)

− z(i, j) ≥ w(i) (4)

(primal complementary slackness)

Next, in the dual solution, if y(t) > 0, then:

∑
i∈B(t)\{pt}

x(i, r(i, t)) ≤ |B(t)| − k (5)

(dual complementary slackness)

The inequality follows since there are |B(t)| − 1 variables
in the constraint corresponding to t. Thus, even if all
the variables are increased from 0 to 1/k, they add up to
|B(t)|−1

k ≤ |B(t)| − k. The latter inequality holds since
|B(t)| ≥ k + 1. Also, it follows from the algorithm that if
z(i, j) > 0, then:

x(i, j) ≥ 1 (dual complementary slackness) (6)

For completeness, we state what the primal and dual com-
plementary slackness conditions imply.

n∑
i=1

r(i,t)∑
j=1

w(i)x(i, j)

≤
n∑

i=1

r(i,t)∑
j=1

t(i,j+1)−1∑

t=t(i,j)+1

y(t)

 − z(i, j)

 x(i, j) (7)

=
∑

t

 ∑

i∈B(t)\{pt}
x(i, r(i, t))

 y(t)

−
n∑

i=1

r(i,t)∑
j=1

x(i, j)z(i, j) (8)

≤
∑

t

(|B(t)| − k) y(t)−
n∑

i=1

r(i,t)∑
j=1

z(i, j). (9)

Inequality (7) follows from Inequality (4), Equality (8) fol-
lows by changing the order of summation, and Inequality
(9) follows from Inequalities (5) and (6). Thus, C1 is at
most the profit of a feasible dual solution multiplied by
(1 + ln k).

Bounding C2: We bound the derivative of the increase of
variables x(i, j) in Step (4) by the derivative of the dual
profit accrued in the same round. In each round only vari-
ables x(i, j) that belong to the new primal constraint (and
correspond to the new dual variable y(t)) are being in-
creased. However, variables x(i, j) that belong to the new
primal constraint but have already reached the value of 1 are
not increased anymore and so do not contribute to the pri-
mal cost. In the dual program the new variable y(t) is raised
with rate 1, and also all the variables z(i, j) that correspond
to x(i, j) in the new primal constraint that are already with
value 1. It is beneficial for the purpose of analysis to think
of the process as increasing a time variable τ , and then rais-
ing the variable y(t) and the appropriate variables z(i, j)
with rate 1 with respect to the virtual variable τ . Using this

notation we get that:

dC2

dτ
=

∑
i∈B(t)\{pt},1/k≤x(i,j)<1

w(i) · dx(i, r(i, t))

dy(t)
· dy(t)

dτ

=
∑

i∈B(t)\{pt},1/k≤x(i,j)<1

x(i, r(i, t)) (10)

≤ (|B(t)| − k)−
∑

i∈B(t)\{pt},x(i,j)=1

1 (11)

= (|B(t)| − k)
dy(t)

dτ
−

∑
i∈B(t)\{pt},x(i,j)=1

dz(i, j)

dτ

Where Equality (10) follows since dy(t)
dτ = 1 and also

dx(i,j)
dy(t) = 1

w(i) ·x(i, j) for each 1/k ≤ x(i, j) < 1. Inequal-
ity (11) holds since the new primal constraint is unsatisfied
yet and thus:

∑
i∈B(t)\{pt},1/k≤x(i,j)<1

x(i, r(i, t))

+
∑

i∈B(t)\{pt},x(i,j)=1

x(i, r(i, t)) < |B(t)| − k

We also remark that by the properties of the algorithm,
any variable x(i, j) which is strictly less than 1/k is ac-
tually equal to 0. Finally, the last term exactly equals the
derivative of the dual profit with respect to τ . Therefore,
the change in the dual profit is greater than or equal to the
change in C2. Thus, C2 is at most the profit of a feasible
dual solution multiplied by (1 + ln k).

Completing the analysis. It follows that C1 + C2 is at
most twice the profit of a feasible dual solution multiplied
by (1 + ln k). Note that the profit of any dual feasible
solution is always a lower bound on the optimal solution.
Therefore, we conclude by weak duality that the algorithm
is 2(1 + ln k)-competitive.

The weighted (h, k)-paging. In the (h, k) version of the
weighted paging problem the online algorithm has a cache
of size k, and its performance is compared with an optimal
offline algorithm that has a cache of size h ≤ k. The design
of a fractional O(log(k/(k−h+1)))-competitive algorithm
for this version requires several minor changes to our algo-
rithm. In particular, the variables x(i, j) are initially set to
k−h+1

k instead of 1
k when their dual constraint is tight. We

defer the algorithm and analysis to the full version of the
paper.

4 Rounding the Fractional Solution Online

We first round up the page weights to their nearest power
of 2 (increasing the competitive ratio by at most a factor of
2). Let w1 < w2 < . . . < w� denote the rounded weights.

A page belongs to class i if its rounded weight is wi. We re-
fer to an individual page as the j-th page of class i. For con-
venience of analysis, throughout this section we consider
the (equivalent) cost version of the problem where we pay
wi/2 for both fetching and evicting a class i page.

Recall that in the fractional view of the problem, the
algorithm maintains a distribution on the pages with total
mass k. Any such distribution P is completely specified by
pij ∈ [0, 1] such that

∑
i

∑
j pij = k, where pij is the mass

on the j-th page of weight class i. Given two distributions
P and P ′ on pages, let Cf (P, P ′) denote the cheapest way
to move from P to P ′, where it costs wi/2 to move one unit
of mass either into or out of a class i page. For those famil-
iar, Cf is just the transshipment cost of flow from P to P ′

(we refer the reader to [16] for details about transshipment
cost between distributions). Let δij = pij − p′ij . Clearly,
Cf (P, P ′) is at least

∑
i(wi/2)(

∑
j |δij |) since at least |δij |

units of mass either needs to enter or leave page j of class
i. Moreover, any greedy algorithm that arbitrarily moves
mass out of pages with excess (δij > 0) to those with a de-
ficiency (δij < 0) has cost

∑
i(wi/2)(

∑
j |δij |) implying

that Cf (P, P ′) =
∑

i(wi/2)(
∑

j |δij |).
A randomized algorithm on the other hand needs to work

with a distribution on valid cache states. Given two distri-
butions D and D′ on the cache states, let C(D,D′) denote
the cheapest way of moving from D to D′ (by definition,
this is the cost incurred by the randomized algorithm). Let
Π(D) denote the distribution induced on the pages by D.
We say that P and D are consistent if P = Π(D). Clearly,
Cf (Π(D),Π(D′) is a lower bound on C(D,D′).

For the unweighted paging problem, Blum, Burch and
Kalai [8] showed that given any P , P ′ and D such that
Π(D) = P , there exists some D′ such that Π(D′) = P ′

and C(D,D′) ≤ 2Cf (P, P ′). Their procedure is the fol-
lowing. Suppose without loss of generality that P ′ is ob-
tained from P by removing ε units of mass from page a and
putting it on page b. Remove page a arbitrarily from ε mea-
sure of caches that contain a, and add page b to ε measure of
caches that do not contain b. Now, some caches may have
k+1 pages (an excess) while some may have k−1 pages (a
hole). Arbitrarily match the caches with an excess to those
with a hole (clearly, the measure of caches with excess is
equal to those with a hole). Consider any matched pair; the
cache with an excess must contain a page that does not lie
in its matched cache, so we simply transfer this page. It can
easily be verified that C(D,D′) ≤ 2ε, while the fractional
cost Cf (P, P ′) = ε.

However the situation for weighted paging is more in-
volved. Recall the example in Section 2. It shows that there
exist P, P ′ and D consistent with P , such that C(D,D′)�
Cf (P, P ′) for every D′ satisfying P ′ = Π(D′). Thus, we
cannot work with any arbitrary D that is consistent with P ,
as in the unweighted case. Interestingly, we get around this

problem by carefully restricting the space of distributions
D that we are allowed to work with. Formally, we show the
following.

Theorem 4.1. Let the weights wi be such that wi+1/wi ≥ 2
for 1 ≤ i ≤ � − 1. There is a subclass D of distributions
on cache states, along with a map T from (D × P) → D
with the following property: Given any two distributions on
pages P and P ′, and given any D ∈ D satisfying Π(D) =
P , we can obtain another distribution D′ = T (D,P ′) such
that Π(D′) = P ′, D′ ∈ D and C(D,D′) ≤ 5Cf (P, P ′).

The theorem gives us the desired mapping between a dis-
tribution P on pages and a distribution D on cache states.
Whenever the fractional algorithm moves from state P to
P ′, the randomized algorithm moves from D to D′ =
T (D,P ′). Since Π(D′) = P ′ and D′ ∈ D, the process
can be applied repeatedly.

Proof. Let P be a distribution on pages with total mass k.
Let D(P) denote the set of distributions D ∈ D that are
consistent with P . Specifying D(P) for each P suffices to
describe D completely. Each distribution D ∈ D is speci-
fied by associating a cache state C(α) with each real num-
ber α in the interval [0, 1).

Let ki =
∑

j pij denote the mass on class i pages as
determined by P . Consider the interval I = [0, k], and
imagine this interval partitioned into I1, . . . , Il where I1 =
[0, k1), I2 = [k1, k1 + k2),. . . , Il = [k1 + . . . , kl−1, k1 +
. . . + kl). Consider an α ∈ [0, 1). Let T (α) denote the
set of real numbers {α, 1 + α, 2 + α, . . . , k − 1 + α}. For
every D ∈ D(P), the cache C(α) has ni pages of wi where
ni = |T (α) ∩ Ii|. By construction, each cache C(α) has
either 	ki
 or �ki� pages of weight wi, and the expected
number of pages of weight wi is ki. Consider any arbitrary
way of filling the caches C(α), for 0 ≤ α < 1, with pages
such that: (i) no C(α) contains two identical pages and (ii) it
is consistent with P (i.e. the probability measure of caches
that contain page j of class i is exactly pij). Such a filling
always exists since, for example, we can put the first page of
class 1 in C(α) corresponding to α = [0, p11), the second
page of class 1 in C(α) corresponding to α = [p11, p11 +
p12) (where the range of α is considered modulo 1) and so
on. Any way of filling C(α)’s that satisfies the properties
above is a valid element D ∈ D(P).

We now describe the transformation T . Suppose we
are given some D ∈ D(P), and the fractional algorithm
changes state from P to P ′. By separating the pages for
which p′ij > pij and those for which p′ij < pij and ar-
bitrarily matching the increases in mass with decreases,
we can decompose the move P to P ′ into the sequence
P = P0 → P1 → P2 → . . . → P ′ such that Cf (P, P ′) =∑

i≥0 Cf (Pi, Pi+1) and each move Pi to Pi+1 is an ex-
change where some infinitesimally small ε units of mass

is moved from some page pa to some page pb. Thus, it suf-
fices to prove the theorem for such exchanges P → P ′. Let
i be the weight class of page a, and j be that of page b. For
this move, the fractional algorithm pays ε(wi + wj)/2.

We now describe and analyze the move D → D′. We di-
vide the cost into two parts. One due to cache size changes,
and the second due to the change in the composition of the
cache. We first consider the simpler case when i = j. Here,
the quantities k1, . . . , k� and the intervals I1, . . . , I� associ-
ated with P remain unchanged, and hence the structure of
C(α)’s remains unchanged. We essentially apply the argu-
ment of Blum et al. [8] to class i pages. The only difference
is that we need to verify that their argument works even
when caches contain either �ki� or 	ki
 class i pages (in
[8] all caches have the same size). We arbitrarily remove
page a from an ε measure of caches that contain a, and ar-
bitrarily add b to an ε measure of caches that do not contain
b. We say that a cache has a hole if it has one fewer page
than it is supposed to, and it has an excess if it has one ex-
tra page than it is supposed to. Any cache with a hole has
size either 	ki
 − 1 or 	ki
, and every cache with excess
has size either �ki� or �ki�+ 1, and hence is strictly larger.
We arbitrarily pair up the caches with a hole to those with
excesses, and transfer some page from the larger cache that
does not lie in the smaller cache. The cost incurred is at
most 2εwi/2 + 2εwi/2 = 2εwi.

We now consider the case when i < j (the case when i >
j is analogous). Consider the intervals I1, . . . , I�. When we
move from P to P ′ the right boundary of Ii shifts ε units
to the left, the intervals Ii+1, . . . , Ij−1 shift to the left by ε
units, and finally, the left boundary of Ij shifts left by ε and
its right boundary stays fixed.

We break the analysis into two parts. We first consider
the classes h for i < h < j. For each such h at most ε frac-
tion of caches C(α) must lose a page of weight wh (as their
quota for class h shrinks from �kh� to 	kh
 and similarly,
at most ε fraction of caches must gain a page. Moreover,
the fraction of caches that must lose a weight wh page is
exactly equal to the fraction that must gain such a page. We
arbitrarily pair these caches. As any cache that must lose a
page is strictly larger than a cache that must gain one, for ev-
ery matched pair of caches, there is some page in the larger
cache that does not lie in the smaller cache and hence can
be transferred to it. The movement cost incurred per class
is at most 2ε(wh/2), and hence the total contribution due to
such classes h is

∑
i<h<j εwh ≤ ε(wi+wj), as consecutive

weights differ by a factor of at least 2.
Finally, we consider the case when h = i (the argu-

ment for h = j is analogous). Without loss of generality
we assume that �ki� = �ki − ε� (otherwise we can split
ε into at most 2 parts ε1, ε2, and apply the argument sepa-
rately). Consider the caches C(α) that are supposed to lose
a weight wi page (because ki becomes ki − ε). We say that

these caches have an excess, and note that they all contain
exactly �ki� class i pages. Next, we arbitrarily choose ε
measure of caches that contain a, and remove a from them.
These caches have a hole, and strictly fewer class i pages
than caches with excess (a cache with a hole has either 	ki

or 	ki
 − 1 pages). We arbitrarily pair caches with an ex-
cess to caches with a hole, and transfer some page from the
larger cache that does not lie in the smaller cache. The cost
incurred is at most 3εwi/2. By an identical argument for
class j, the cost incurred is at most 3εwj/2.

The distribution D′ obtained satisfies all the conditions
required to lie in the set D(P ′). Moreover, the total cost
incurred in moving from D to D′ is 5ε(wi + wj)/2 which
is at most 5 times the fractional cost.

5 The Metrical Task System Problem on a
Weighted Star Metric

We consider in this section the metrical task system
(MTS) problem on a metricM defined by a weighted star.
The leaves of the star are denoted by {1, 2, . . . , N}. We
present an O(log N)-competitive online algorithm. We are
going to charge the algorithm by 2d(i) whenever the server
moves from state i to another state, say j. Thus, we are not
going to charge the algorithm for the cost of moving into
state j. This assumption can only add an additive term to
the total cost which is independent of the request sequence
(we do not charge for the last state change). From now on
we abuse notation and let d(i) denote the cost of moving
from state i to a different state.

We are going to work with the (equivalent) continuous
time MTS model. In this model the algorithm is allowed
to change states at any time t which is a real number and
not only at integral times. The service cost is generalized
in a straight forward way to an integral instead of a sum.
It is well known [10, Sec. 9.1.1] that any continuous time
algorithm can be transformed to a discrete time algorithm
without increasing the total cost. On the other hand, since
the continuous time model is a relaxation of the discrete
model it is clear that the optimal cost can only decrease.

As a first step towards obtaining a competitive online al-
gorithm for the MTS problem we define a new MTS model
and show that on a star metric the cost of an optimal solution
can only change by a constant factor. The high level idea of
the new model is to cancel the transition cost incurred due
to state change and pay only for serving the requests. To
balance, we restrict the algorithm and allow it to change its
state only if certain conditions are fulfilled. For each state
we partition the time interval into phases. We permit the
solutions to leave each state i only at the end of a phase (of
state i). The first phase of each state starts at time t = 0.
Phase p of state i starts at time tp−1(i) and ends at the ear-
liest time tp(i) for which the accumulated cost of service at

state i in the interval [tp−1(i), tp(i)] is exactly d(i).
We are now ready to describe the new MTS model in its

full generality. An online algorithm is allowed to leave state
i only at the end of a phase (of state i). The algorithm does
not pay any transition cost when moving from one state to
another. If the algorithm is in state i during phase p then
it pays a cost d(i). The algorithm pays the full cost of the
phase even if it was in state i only during part of the phase
p. This can happen if the algorithm moves to state i from
i′ in the middle of the pth phase of i (and at the end of a
phase of state i′). Given a set of requests σ̄, let OPTn(σ̄) be
the minimum offline cost of serving the set of requests in the
new MTS model. Let OPTo(σ̄) be the minimum offline cost
of serving the set of requests in the standard MTS model. In
the following we state two relatively easy lemmas. Due to
space constraints we omit the proofs.

Lemma 5.1. Let σ̄ be a set of requests. Any solution S to σ̄
in the standard MTS model with cost C can be transformed
into a legal solution S′ in the new MTS model with cost at
most 2C. In particular, OPTn(σ̄) ≤ 2OPTo(σ̄).

Lemma 5.2. Let σ̄ be a set of requests. Any solution S to σ̄
in the new MTS model with cost C is a legal solution S′ in
the standard MTS model with cost at most 2C.

From Lemmas 5.1 and 5.2 a c competitive algorithm in
the new MTS model implies a 4c competitive algorithm in
the standard MTS model, and hence it suffices to consider
the new MTS model.

5.1 The Algorithm

We next describe a simple linear programming formula-
tion for the offline problem in the new MTS model. Our
online algorithm will generate a fractional solution to this
linear program. We later show how to transform this frac-
tional solution to a randomized integral solution. Let x(i, p)
be an indicator to the event that the solution is in state i dur-
ing the pth phase. We relax the solution and allow the algo-
rithm to be at time t in several states as long as the sum of
the fractions of the states is at least 1. (The latter constraint
is valid since our objective function is minimization.). Let
ni be the number of phases of state i. The linear program is
then the following:

(P) min
N∑

1=1

ni∑
p=1

d(i)x(i, p)

For any time t:
N∑

i=1

∑
p | t∈[tp−1(i),tp(i)]

x(i, p) ≥ 1 (12)

It may seem that the linear program contains an unbounded
number of constraints. However, it is easy to see that we
need only to consider times t which are the end of a phase

for some state. It can also be easily verified that given an
instance of the MTS problem, any feasible solution in the
new MTS model defines a feasible solution to (P) with the
same cost. We also observe that a feasible solution to (P)
defines a (fractional) solution which is feasible in the new
MTS model with the same cost. We should be a bit more
careful in the online case, where the constraints of (P) are
revealed one-by-one. Upon arrival of a constraint, the algo-
rithm finds a feasible assignment to the (primal) variables
that satisfies the constraint. Consider variable x(i, p). In
the offline case, we can assume without loss of generality
that the value of x(i, p) is determined at the beginning of
phase p of state i. However, this is not necessarily true in
the online case; thus, we restrict our attention to solutions
that assign values to x(i, p) forming a monotonically non-
decreasing sequence.

The dual program has a variable y(t) for each constraint
of (P), and we demand that the total sum of the variables
y(t), taken over a phase p of state i, is at most d(i). Note
that the primal and dual linear programs forms a covering
packing pair. The dual program is the following:

(D) max
T∑

t=1

y(t)

For state i and phase p :
∑

t∈[tp−1(i),tp(i)]

y(t) ≤ d(i) (13)

We now describe an online primal-dual algorithm for the
MTS problem which is a special case of the online covering-
packing algorithm described in [12]. Therefore, the analysis
of [12] already implies an O(log N)-competitive factor for
the algorithm. Since the algorithm described in [12] is more
general (and complicated), we provide here for complete-
ness the algorithm and a proof of the competitive factor.

At each time period t (when the phase of some state
ends),

• Initiate y(t)← 0 and x(i, p)← 0, if the p-th phase
begins for i at t.

• While
∑N

i=1

∑
p | t∈[tp−1(i),tp(i)] x(i, p) < 1:

1. Increase y(t) continuously.

2. Increase each variable x(i, p) by the follow-
ing increment function:

x(i, p)← 1

N

exp

 log(1 + N)

d(i)

∑
t∈[tp−1(i),tp(i)]

y(t)

 − 1

Notice that each variable x(i, p) starts from zero and it
always increases during the algorithm. Its value is 1 when
the corresponding dual constraint is tight.

Theorem 5.3. The algorithm is O(log N)-competitive.

Proof. Let X(t) and Y (t) be the values of the primal and
dual solutions, respectively, at time t. We prove the follow-
ing claims:

1. During time t, dX(t)
dy(t) ≤ 2 log(1 + N)dY (t)

dy(t) .

2. The primal solution produced is feasible.

3. The dual solution produced is feasible.

The theorem now directly follows from weak LP duality.

Proof of (1): Simple calculations give us:

dX(t)

dy(t)
=

N∑
i=1

∑
p | t∈[tp−1(i),tp(i)]

d(i) · dx(i, p)

dy(t)

= log(1 + N)

N∑
i=1

∑
p | t∈[tp−1(i),tp(i)]

(
x(i, p) +

1

N

)

≤ 2 log(1 + N) = 2 log(1 + N)
dY (t)

dy(t)
. (14)

Where Inequality (14) follows since∑N
i=1

∑
p | t∈[tp−1(i),tp(i)] x(i, p) < 1 and also the

number of variables in any primal constraint is N .

Proof of (2): This claim is trivial since we increase the pri-
mal variables until the current primal constraint becomes
feasible. We never decrease any x(i, p), so all previous con-
straints remain feasible.

Proof of (3): Consider the dual constraint of x(i, p). Since
each x(i, p) is at most 1 (when it is 1 then all the constraints
it belongs to are satisfied), we get:

x(i, p) =
1

N

exp

 log(1 + N)

d(i)

∑
t∈[tp−1(i),tp(i)]

y(t)

 − 1

 ≤ 1.

Simplifying, we get that for each state i and phase p:∑
t∈[tp−1(i),tp(i)] y(t) ≤ d(i).

Rounding the fractional solution. Rounding the frac-
tional solution is simple. The algorithm maintains the in-
variant that it is in state i at time t (in phase p) with prob-
ability equal to x(i, p). Suppose at the end of a phase p in
state i, x(i, p) = a and the value of a is distributed among
the states of the system (including i) by the fractional solu-
tion. Let aj the increase of the fraction associated with state
j at that point of time. As

∑
j aj = a, if the algorithm with

was in state i at the end on phase p, it moves to state j with
probability aj/a. It is easy to verify that the expected cost
of the algorithm is exactly the cost of the fractional solution.

6 Conclusion

Our main result in this work is a randomized O(log k)-
competitive algorithm for the weighted paging problem. We
believe that the methods used in this work, and especially
the primal-dual approach which is a fundamental method
for (offline) optimization problems, are very general and
may lead eventually to a sub-linear algorithm for the much
more challenging k-server problem.

We have used the techniques in the paper, along with
several additional ideas, to obtain poly-logarithmic compet-
itive algorithms for a generalized model of paging in which
pages have both arbitrary weights and sizes.

References

[1] D. Achlioptas, M. Chrobak and J. Noga. Competitive anal-
ysis of randomized paging algorithms. Theoretical Computer
Science, 234(1-2): 203–218, 2000.

[2] S. Albers. Online algorithms: A survey. Mathematical Pro-
gramming, 97: 3–26, 2003.

[3] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B.
Schieber. A unified approach to approximating resource allo-
cation and scheduling. Journal of the ACM, 48(5), pp. 1069–
1090, 2001.

[4] Y. Bartal, B. Bollobas and M. Mendel. A Ramsey-type the-
orem for metric spaces and its applications for metrical task
systems and related problems. In Proceedings of the 42nd An-
nual Symposium on Foundations of Computer Science, 2001,
396–405.

[5] Y. Bartal, A. Blum, C. Burch and A. Tomkins. A polylog(n)-
Competitive algorithm for metrical task systems. In Pro-
ceedings of the 29th Annual ACM Symposium on Theory of
computing, 1997, 711–719.

[6] Y. Bartal, N. Linial, M. Mendel and A. Naor. On metric
ramsey-type phenomena. In Proceedings of the 35th Annual
ACM Symposium on Theory of computing, 2003, 463–472.

[7] Y. Bartal and M. Mendel. Randomized k-server algorithms
for growth-rate bounded graphs. J. Algorithms, 55(2), 192–
202, 2005.

[8] A. Blum, C. Burch and A. Kalai. Finely-competitive paging.
In Proceedings of the 40th Annual Symposium on Founda-
tions of Computer Science, 1999, 450–458.

[9] A. Blum and M. Furst and A. Tomkins. What to do with your
free time: algorithms for infrequent requests and randomized
weighted caching. Manuscript, 1996.

[10] A. Borodin and R. El-Yaniv, Online computation and com-
petitive analysis, 1998, Cambridge University Press.

[11] A. Borodin and N. Linial and M. Saks, An optimal online
algorithm for metrical task systems. In Proceedings of the
19th Annual ACM Symosium on Theory of computing, 1987,
373–382.

[12] N. Buchbinder and J. Naor. Online primal-dual algorithms
for covering and packing problems. In Proceedings of the
13th Annual European Symposium on Algorithms, 2005, 689–
701.

[13] N. Buchbinder and J. Naor. Improved bounds for online rout-
ing and packing via a primal-dual approach. In Proceedings
of the 47th Annual Symposium on Foundations of Computer
Science, 2006, 293–304.

[14] N. Buchbinder, K. Jain, and J. Naor. Online primal-dual al-
gorithms for maximizing ad-auctions revenue. In Proceed-
ings of the 13th Annual European Symposium on Algorithms,
2007.

[15] E. Cohen and H. Kaplan. LP-based analysis of greedy-dual-
size. In Proceedings of the 10th Annual ACM-SIAM sympo-
sium on Discrete algorithms, 1999, 879–880.

[16] C. Chekuri, S. Khanna, J. Naor and L. Zosin. A linear pro-
gramming formulation and approximation algorithms for the
metric labeling problem. SIAM J. Discrete Math. 18(3), 608-
625, 2004.

[17] M. Chrobak, H. J. Karloff, T. H. Payne and S. Vishwanathan.
New results on server problems. SIAM J. Discrete Math, 4(2),
172–181, 1991.

[18] B. Csaba and S. Lodha. A randomized on-line algorithm
for the k-server problem on a line. Random Structures and
Algorithms, 29(1), 82–104, 2006.

[19] A. Fiat and M. Mendel. Better algorithms for unfair metrical
task systems and applications. SIAM Journal on Computing,
32(6), 1403–1422, 2003.

[20] A. Fiat, Y. Rabani and Y. Ravid. Competitive k-server al-
gorithms. Journal of Computer and System Sciences, 48(3),
410–428, 1994.

[21] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. Sleator
and N. Young. Competitive paging algorithms. J. Algorithms,
12(4), 685–699, 1991.

[22] Sandy Irani. Page replacement with multi-size pages and ap-
plications to Web caching. In Proceedings of the 29th Annual
ACM Symposium on Theory of computing, 1997, 701–710.

[23] S. Irani. Randomized weighted caching with two page
weights. Algorithmica, 32(4), 624–640, 2002.

[24] E. Koutsoupias and C. H. Papadimitriou. On the k-server
conjecture. Journal of the ACM, 42(5), 971–983, 1995.

[25] L. A. McGeoch and D. D. Sleator. A strongly competitive
randomized paging algorithm. Algorithmica, 6(6), 816–825,
1991.

[26] Mark S. Manasse and Lyle A. McGeoch and Daniel D.
Sleator. Competitive algorithms for on-line problems. In Pro-
ceedings of the 20th Annual ACM Symposium on Theory of
computing, 1997, 322–333.

[27] Mark S. Manasse and Lyle A. McGeoch and Daniel D.
Sleator. Competitive algorithms for server problems. Jour-
nal of Algorithms, 11(2), 208–230,1990 .

[28] S. S. Seiden. A general decomposition theorem for the k-
server problem. Information and Computation, 174(2), 193–
202, 2002.

[29] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list
update and paging rules. Communications of the ACM, 28(2),
202–208, 1985.

[30] N. E. Young. The k-server dual and loose competitiveness
for paging. Algorithmica, 11(6), 525–541, 1994.

[31] N. E. Young. On-line caching as cache size varies. In Pro-
ceedings of the 2nd Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 1991, 241–250.

