
Randomized Competitive Algorithms for Generalized
Caching

Nikhil Bansal
IBM T. J. Watson Research

Yorktown Heights, USA
nikhil@us.ibm.com

Niv Buchbinder
Computer Science Dept.
Technion, Haifa, Israel

nivb@cs.technion.ac.il

Joseph (Seffi) Naor
∗

Computer Science Dept.
Technion, Haifa, Israel

naor@cs.technion.ac.il

ABSTRACT
We consider online algorithms for the generalized caching
problem. Here we are given a cache of size k and pages with
arbitrary sizes and fetching costs. Given a request sequence
of pages, the goal is to minimize the total cost of fetching
the pages into the cache. We give an online algorithm with
competitive ratio O(log2 k), which is the first algorithm for
the problem with competitive ratio sublinear in k. We also
give improved O(log k)-competitive algorithms for the spe-
cial cases of the Bit Model and Fault model. In the Bit
Model, the fetching cost is proportional to the size of the
page and in the Fault model all fetching costs are uniform.
Previously, an O(log2 k)-competitive algorithm due to Irani
[14] was known for both of these models. Our algorithms
are based on an extension of the primal-dual framework for
online algorithms which was developed by Buchbinder and
Naor [7]. We first generate an O(log k)-competitive frac-
tional algorithm for the problem. This is done by using
a strengthened LP formulation with knapsack-cover con-
straints, where exponentially many constraints are added
upon arrival of a new request. Second, we round online
the fractional solution and obtain a randomized online al-
gorithm. Our techniques provide a unified framework for
caching algorithms and are substantially simpler than those
previously used.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Algorithms

∗Supported by ISF grant 1366/07 and BSF grant 2002276.
Part of this work was done while visiting Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’08,May 17–20, 2008, Victoria, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-047-0/08/05 ...$5.00.

1. INTRODUCTION
Caching is one of the earliest and most effective tech-

niques of accelerating the performance of computing sys-
tems. Thus, vast amounts of work have been invested in the
improvement and refinement of caching techniques and algo-
rithms. In the classic two-level caching problem we are given
a collection of n pages and a fast memory (cache) which can
hold up to k of these pages. At each time step one of the
pages is requested. If the requested page is already in the
cache then no cost is incurred, otherwise the algorithm must
bring the page into the cache, possibly evicting some other
page, and a cost of one unit is incurred. This simple model
can be extended in two orthogonal directions. First, the
cost of bringing a page into the cache may not be uniform
for all pages. This version of the problem is called weighted
caching and it models scenarios in which the cost of fetch-
ing a page is not the same due to different locations of the
pages (e.g., main memory, disk, Internet). Second, the size
of the pages need not be uniform. This is motivated by web
caching where pages have varying sizes. Web caching is an
extremely useful technique for enhancing the performance of
World Wide Web applications. Since fetching a web page or
any other information from the internet is usually costly, it
is common practice to keep some of the pages closer to the
client. This is done, for example, by the web browser itself
by keeping some of the pages locally, and also by internet
providers that maintain proxy servers for exactly the same
purpose.

We study here several models of generalized caching from
a competitive analysis point of view. In the most general set-
ting, called the General model, pages have both non-uniform
sizes and costs. Two commonly studied special cases, where
the pages can have variable size, are the so-called Bit model
and Fault model. In the Bit model, the cost of fetching a
page is equal to its size, thus minimizing the fetching cost
corresponds to minimizing the total traffic in the network.
In the Fault model, the fetching cost is uniform for all pages,
thus corresponding to the number of times a user has to wait
for a page to be retrieved.

1.1 Previous Work
The caching model where both size and cost are uniform

is very well understood. In their seminal paper, Sleator and
Tarjan [17] showed that any deterministic algorithm is at
least k-competitive, and also showed that LRU (Least Re-
cently Used) is exactly k-competitive. When randomization
is allowed, Fiat et al. [12] designed the Randomized Mark-
ing algorithm which is 2Hk-competitive against an oblivious

adversary, where Hk is the k-th Harmonic number. They
also showed that any randomized algorithm is at least Hk-
competitive. Subsequently, a tight Hk competitive algo-
rithm was obtained [16, 1]. More generally, the (h, k)-version
of the problem has also been studied. Here the online algo-
rithm with cache size k is compared to the offline algorithm
with cache size h ≤ k. A tight k/(k − h + 1) guarantee is
known for the deterministic case [17], and a 2 ln(k/(k−h+1)
guarantee is also known for the randomized case [18].

For weighted caching (uniform size but non-uniform costs),
a tight k-competitive deterministic algorithm follows from
the more general work of Chrobak et al. [10] for the k-server
problem on trees. Subsequently, Young [19] gave a tight
k/(k − h + 1)-competitive deterministic algorithm for the
more general (h, k)-caching problem. The problem of deter-
mining the randomized competitiveness of weighted caching
remained open for a long time. Irani [15] gave an O(log k)-
competitive algorithm for the two weight case, i.e. when
each page weight is either 1 or some fixed M > 1. The case of
arbitrary weights was settled only recently by Bansal, Buch-
binder and Naor [3] who designed an O(log k)-competitive
algorithm for the problem and another O(ln(k/(k−h + 1))-
competitive algorithm for the (h, k)-version.

General caching where the page sizes are also non-uniform
is substantially harder. In contrast to uniform page size
caching, even the offline version of the problem is NP-hard,
as it captures the knapsack problem1. Following a sequence
of results [14, 2, 11], Bar-Noy et al. [4] gave a 4-approximation
for the problem based on the local-ratio technique. This is
currently the best known approximation for (offline) general
caching. For the online case it is known that LRU is (k+1)-
competitive for the Bit model and also for the Fault model
[14], where k denotes the ratio between cache size and the
size of the smallest page. Later on, Cao and Irani [8] and
Young [20] gave a (k+1)-competitive algorithm for the Gen-
eral model based on a generalization of the Greedy-Dual al-
gorithm of Young [19]. An alternate proof of this result was
obtained by [11]. When randomization is allowed, Irani [14]
designed an O(log2 k)-competitive algorithm for both Fault
and Bit models. These algorithms are very complicated and
are based on an approach combining offline algorithms with
the Randomized Marking algorithm. For the General model,
no o(k) randomized algorithms are known. There has been
extensive work on caching in other directions, and we refer
the reader for further details to the excellent text by Borodin
and El-Yaniv [6] and to the survey by Irani [13] on paging.

1.2 Results and techniques
We study in this work all three models mentioned above:

the Bit model in which the cost of fetching a page is propor-
tional to its size, the Fault model in which the cost of fetch-
ing each page is uniform, and the general model in which
the cost of fetching each page is arbitrary. We prove the
following theorem:

Theorem 1.1. There exist randomized algorithms for the
generalized caching problem that are:

• O(log k)-competitive for the Bit model.

• O(log k)-competitive for the Fault model.

1It remains NP-hard for the Bit model. For the Fault model
it is open whether the problem is polynomially solvable [14].

• O(log2 k)-competitive for the general model.

Our approach for designing online algorithms for general-
ized caching follows two conceptual steps. First, an O(log k)-
competitive algorithm is developed for the fractional gener-
alized caching problem. In the fractional problem the algo-
rithm is allowed to keep fractions of pages as long as the
total (fractional) size of the pages in the cache does not ex-
ceed the cache size. The cost of fetching an ε fraction of
a page is then defined to be ε times the fetching cost of
the whole page. The second step is to obtain a random-
ized algorithm for the problem. To this end, we maintain
in an online manner, a distribution of cache states that is
(almost) consistent with the fractional solution in hand. We
show how to map the changes in the fractional distribution
on pages to changes in the distribution of caches so that the
cost incurred is not much more than the fractional cost2.

The fractional algorithm we propose is based on the primal-
dual framework developed by [7] for online packing and cov-
ering problems. This framework was recently extended and
shown to be very useful for the weighted caching problem
[3]. However, solving general caching with non-uniform page
sizes requires several new ideas. One fundamental problem
is that the natural LP for generalized caching (where it is
required that the total size of the pages in the cache is at
most k) can have an integrality gap of Ω(k), and therefore
is not suitable for our purposes. For example, suppose the
cache size is k = 2` − 1, and there are two pages of size `,
requested alternately. Only one page can be in the cache at
any time and hence there is a cache miss in each request. A
fractional solution on the other hand can keep almost one
unit of each page and then it only needs to fetch an O(1/k)
fraction of a page in each request. To get around this prob-
lem, we strengthen the LP for generalized caching by adding
exponentially many knapsack-cover inequalities, a technique
introduced by [9]. (We note that the local ratio algorithm
of [4] for generalized caching coupled with the techniques of
[5] also yields knapsack-cover inequalities.) We then show
how to apply a primal-dual technique to this LP to derive
an O(log k)-competitive fractional algorithm for generalized
caching.

We obtain a randomized integral algorithm (online) from
the fractional solution by generating a distribution on cache
states, while bounding the payment to be at most c times
the fractional cost. This part is model-dependent and it is
done by maintaining a distribution with several (different)
properties. We show: (i) Each cache state in the support of
the distribution is valid, i.e., no duplicate pages and total
size of pages is at most the cache size), and (ii) The distri-
bution with the desired properties is maintained throughout
the execution of the algorithm in an online manner. To this
end, we partition the set of pages into classes. The parti-
tioning is model-dependent. Our main tool is the notion of a
balanced distribution over cache states in which the states in
the support evict approximately the same number of pages
from each class of pages. The constructions are presented in
an increasing order of complexity. The most complex con-
struction is for the Fault model where the partitioning into
classes is dynamic. The analysis turns out to be rather in-
volved and requires the use of amortized analysis to bound
its cost.

2This mapping poses many challenges even if all pages have
size 1; the reader is referred to a simple example in [3].

2. PRELIMINARIES
In the general caching problem there is a cache of size k

and n pages of sizes w1 ≤ w2 ≤ . . . ≤ wn, belonging to ∈
[1, k]. It is not assumed that page sizes are integral and k can
be viewed as the ratio between cache size and the smallest
page size. For any subset S of pages, let W (S) =

∑
i∈S wi be

the sum of the sizes of the pages in S. Page p has a fetching
cost of cp. With this terminology, in the Fault model cp = 1
for each page p, in the Bit model cp = wp for each page p,
and in the general model cp and wp are arbitrary.

2.1 LP formulation for general caching
Consider the following (natural) integer program for the

(offline) general caching problem. Instead of charging for
fetching pages into the cache we charge for evicting them,
thus increasing the cost of any algorithm by at most an
additive term (fetching the last k pages is “free”). Let x(p, j)
be an indicator variable for the event that page p is evicted
from the cache between the jth time it is requested and the
(j + 1)st time it is requested. If x(p, j) = 1, we can assume
without loss of generality that page p is evicted in the first
time slot following the jth time it is requested. (As we
later discuss, this assumption is not necessarily true in the
online case.) For each page p, denote by t(p, j) the time it is
requested for the jth time, and denote by r(p, t) the number
of times page p is requested until time t (including t). For
any time t, let B(t) = {p | r(p, t) ≥ 1} denote the set of pages
that were requested until time t (including t). Let pt be the
page that was requested at time t. We need to satisfy the
constraint that at any time t, the currently requested page
must be present in the cache, i.e. x(pt, r(p, t)) = 0, and
that the total space used by pages in B(t) can be at most
k. Since wpt space is already used by pt, this implies that
at most k − wpt space can be used by pages in B(t) \ {pt}.
Equivalently, pages in B(t) \ {pt} with cumulative size at
least W (B(t)) − wpt − (k − wpt) = W (B(t)) − k must be
absent from the cache at time t. This gives the following
exact formulation of the problem.

min

n∑
p=1

r(p,t)∑
j=1

cp · x(p, j)

For any time t:
∑

p∈B(t)\{pt} wpx(p, r(p, t)) ≥ W (B(t))− k

For any p, j: x(p, j) ∈ {0, 1}
In a fractional solution, we relax x(p, j) to take any value
between 0 and 1. However, as discussed in the Introduction
this LP relaxation has a large gap and is therefore unsuitable
for our purposes.

To get around this problem, we use an idea introduced by
Carr et al. [9] of adding exponentially many knapsack cover
inequalities. These constraints are redundant in the integer
program, but they dramatically reduce the integrality gap of
the LP relaxation. There are two main ideas. First, consider
a subset of pages S ⊂ B(t) such that pt ∈ S and W (S) > k.
The pages in S \ {pt} can occupy at most k − wpt size in
the cache at time t. Thus, at least W (S) − wpt − (k −
wpt) = W (S)− k cumulative size of pages in S \ {pt} must
be absent from the cache. Hence, we can add the constraint∑

p∈S\{pt} wpx(p, r(p, t)) ≥ W (S)− k for each such set S at
time t. The second idea is that for each such constraint, we
can truncate the size of a page to be equal to the right hand
size of the constraint, i.e. we have

∑
p∈S\{pt}min(W (S) −

k, wp)x(p, r(p, t)) ≥ W (S) − k. Clearly, truncating the size
has no effect on the integer program. Our LP is as follows.

min

n∑
p=1

r(p,t)∑
j=1

cp · x(p, j)

For any time t and any set of requested pages S ⊆ B(t) such
that pt ∈ S and W (S) > k:

∑

p∈S\{pt}
min{W (S)− k, wp}x(p, r(p, t)) ≥ W (S)− k (1)

For any p, j: 0 ≤ x(p, j) ≤ 1 (2)

We now note a simple observation about knapsack cover
inequalities that will be quite useful.

Observation 2.1. Given a fractional solution x, if a knap-
sack cover inequality is violated for a set S at time t, then it
is also violated for the set S′ = S \{p : x(p, r(p, t)) = 1}, ob-
tained by omitting pages which are already completely evicted
from the cache.

Proof. Suppose Inequality (1) is violated for some S and
x(p, r(p, t)) = 1 for p ∈ S. First, it must be the case that
min(W (S) − k, wp) < W (S) − k, otherwise (1) is trivially
satisfied. Suppose we delete p from S. The right hand size
decreases by exactly wp. The left hand side decreases by
wp and possibly more since the term min(W (S) − k, wp′)
may decrease for pages p′ ∈ S. Thus, Inequality (1) is also
violated for S \ {p}. The result follows by applying the
argument repeatedly.

Observation 2.1 implies that in any feasible solution to the
constraints given by (1), it does not help to have x(i, j) > 1.
Hence, it can be assumed that x(i, j) ≤ 1 without loss of
generality. Thus, we can drop the upper bounds on x(i, j)
and simplify the LP formulation to:

min

n∑
p=1

r(p,t)∑
j=1

cp · x(p, j) (LP-Caching)

For any time t and any set of requested pages S ⊆ B(t) such
that pt ∈ S and W (S) > k:

∑

p∈S\{pt}
min{W (S)− k, wp}x(p, r(p, t)) ≥ W (S)− k (3)

For any p, j: 0 ≤ x(p, j) (4)

In the dual program, there is a variable y(t, S) for each
time t and set S ⊆ B(t) such that pt ∈ S and W (S) > k.
The dual program is the following:

max
∑

t

∑

S⊆B(t),pt∈S

(W (S)− k) y(t, S)

For each page p and the jth time it is requested:

t(p,j+1)−1∑

t=t(p,j)+1

∑

S | p∈S

min{W (S)− k, wp}y(t, S) ≤ cp (5)

We will sometimes denote min{W (S)− k, wp} by w̃S
p .

3. COMPUTING A COMPETITIVE FRAC-
TIONAL SOLUTION

Our online caching algorithm produces fractional primal
and dual solutions to LP-Caching. In the online case, the
constraints of LP-Caching are revealed one-by-one. At any
time t, exponentially many new linear knapsack-cover con-
straints are revealed to the online algorithm. The goal is to
produce a feasible assignment to the (primal) variables that
satisfies all the constraints. Since there are exponentially
many constraints, this process may not run in polynomial-
time. However, as we show next, for our purposes we can
make the algorithm run in polynomial time.

Consider variable x(p, j). In the offline case, we can as-
sume without loss of generality that the value of x(p, j) is
determined at time t(p, j)+1. However, this is not necessar-
ily true in the online case; here after time t(p, j), the page p is
gradually evicted until it is requested next at time t(p, j+1).
Thus, in the online setting, we stipulate that the values as-
signed to x(p, j) in the time interval [t(p, j)+1, t(p, j+1)−1]
form a monotonically non-decreasing sequence. We start
with a high level description of the algorithm. Upon arrival
of the new constraints at time t, if all constraints are already
satisfied, then the algorithm does nothing. Otherwise, the
algorithm needs to satisfy all the current constraints by in-
creasing some of the primal variables. We call a set S mini-
mal if x(p, r(p, t)) < 1 for each p ∈ S. By Observation 2.1,
it suffices to consider primal constraints corresponding to
minimal sets. Satisfying all the constraints at time t guar-
antees that there is enough space (fractionally) in the cache
to fetch the new page.

To this end, the algorithm arbitrarily picks an unsatis-
fied primal constraint corresponding to some minimal set
S and starts increasing continuously its corresponding dual
variable y(t, S). This, in turn, tightens some of the dual
constraints corresponding to primal variables x(p, j) whose
current value is 0. Whenever such an event happens, the
value of x(p, j) is increased from its initial setting of 0 to
1/k. Thus, during the time preceding the increase of x(p, j)
from 0 to 1/k, page p cannot be evicted at all from the
cache. This part is somewhat similar to what happens in
the Randomized Marking algorithm. Meanwhile, variables
x(p, j) which are already set to 1/k are increased (continu-
ously) according to an exponential function of the new dual
variable y(t, S). Note that this exponential function is equal
to 1/k when the constraint is tight. Thus, the algorithm is
well defined. When variable x(p, j) reaches 1, the set S is no
longer minimal, and page p is dropped from S. As a result,
from this time on, the value of x(p, j) remains 1. When this
primal constraint is satisfied the algorithm continues on to
the next infeasible primal constraint.

Since there are exponentially many primal constraints in
each iteration this process may not be polynomial. However,
the rounding process we design in Section 4 does not need
the solution to satisfy all primal constraints. Specifically, for
each model we show that there exists a (different) value γ >
1 such that the algorithm needs to guarantee that at time t
the primal constraint of the set S = {p | x(p, r(p, t)) < 1

γ
}

is satisfied. Thus, the algorithm may actually consider only
that set3. Fortunately, the requirement of the online primal-

3In general, for knapsack cover constraints in an offline set-
ting, all possible subsets may be needed since it is not clear
apriori which set S will have this property, nor can it be

dual framework that variables can only increase monoton-
ically makes this task much simpler. In particular, as the
primal variables increase some pages reach 1/γ and “leave”
the set S. The algorithm then tries to satisfy the set S′ that
contains the rest of the pages. Since pages can only leave
S, this process may continue for at most n rounds. We de-
fer a detailed discussion of this issue to the full version of
the paper. For simplicity, we describe the algorithm that
satisfies all the constraints. The algorithm is presented in
a continuous fashion, but it can easily be implemented in a
discrete fashion. The algorithm is the following:

Fractional Caching Algorithm: At time t, when page
pt is requested:

• Set the new variable: x(pt, r(pt, t)) ← 0. (It can
only be increased at times t′ > t.)

• Until all the primal constraint corresponding to
time t are satisfied do the following:

• Assume that the primal constraint of a minimal set
S is not satisfied.

1. Increase variable y(t, S) continuously; for each
variable x(p, j) such that p ∈ S \ {pt}:

2. If x(p, j) = 1, then remove p from S, i.e. S ←
S \ {p}.

3. If x(p, j) = 0 and

t(p,j+1)−1∑

t=t(p,j)+1

∑
S:p∈S

w̃S
p y(t, S) =

cp, then x(p, j) ← 1/k.
4. If 1/k ≤ x(p, j) < 1, increase x(p, j) according

to the following function:

1

k
·exp


 1

cp







t(p,j+1)−1∑

t=t(p,j)+1

∑

S:p∈S

w̃S
p y(t, S)


− cp







where w̃S
p denotes min{W (S)− k, wp}.

Theorem 3.1. The algorithm is O(log k)-competitive.

Proof. First, we note that the primal solution generated
by the algorithm is feasible. This follows since, in each iter-
ation, the variables x(p, j) are increased until all new primal
constraints are satisfied. Also, each variable x(p, j) is never
increased to be greater than 1.

Next, we show that the dual solution that we generate is
feasible up to an O(log k) factor. Whenever x(p, j) reaches
1, the variables y(t, S) for sets S containing p do not increase
anymore, and hence the value of x(p, j) does not change any
more. Thus, for the dual constraint corresponding to page
p and the jth time it is requested, we get that:

x(p, j) =
1

k
·exp


 1

cp







t(p,j+1)−1∑

t=t(p,j)+1

∑

S:p∈S

w̃S
p y(t, S)


− cp





 ≤ 1

where w̃S
p = min{W (S)−k, wp}. Simplifying, we get that:

t(p,j+1)−1∑

t=t(p,j)+1

∑

S | p∈S

min{W (S)− k, wp}y(t, S) ≤ cp(1 + ln k).

expressed as a linear or even a convex program. See [9] for
more details.

Thus, the dual solution can be made feasible by scaling it
down by a factor of (1+ln k). We now prove that the primal
cost is at most twice the dual profit, which means that the
primal solution produced is O(log k)-competitive.

We partition the primal cost into two parts, C1 and C2.
Let C1 be the contribution to the primal cost from Step (3)
of the algorithm, due to the increase of variables x(p, j) from
0 to 1/k. Let C2 be the contribution to the primal cost from
Step (4) of the algorithm, due to the incremental increases
of the variable x(p, j) according to the exponential function.

BoundingC1.
Let x̃(p, j) = min(x(p, j), 1

k
). Our goal is to bound the

term
∑n

p=1

∑r(p,t)
j=1 cpx̃(p, j). To do this, we need two obser-

vations. First, from design of the algorithm, it follows that
if x(p, j) > 0, and equivalently if x̃(p, j) > 0, then:

t(p,j+1)−1∑

t=t(p,j)+1

∑

S | p∈S

min{W (S)− k, wp}y(t, S) ≥ cp (6)

We shall refer to (6) as primal complementary slackness.
Next, in the dual solution if y(t, S) > 0, then:

∑

p∈S\{pt}
min{W (S)− k, wp}x̃(p, r(p, t)) ≤ W (S)− k (7)

We shall refer to (7) as dual complementary slackness. To
see why (7) holds, consider the following two cases depending
on whether W (S) ≥ k + 1 or not. Recall that x̃(p, r(p, t)) ≤
1/k for all pages. If W (S) ≥ k + 1 then:

∑

p∈S\{pt}

1

k
·min{W (S)− k, wp} ≤ 1

k
·

∑

p∈S\{pt}
wp

=
W (S)− w(pt)

k
≤ W (S)− 1

k
≤ W (S)− k.

If W (S) < k + 1, then the set S contains at most k pages.
In this case we get that:

∑

p∈S\{pt}

1

k
·min{W (S)− k, wp} ≤ 1

k
·

∑

p∈S\{pt}
(W (S)− k)

≤ k − 1

k
· (W (S)− k) ≤ W (S)− k.

The last inequality follows since W (S) ≥ k. These primal
and dual complementary slackness conditions imply the fol-
lowing.

n∑

p=1

r(p,t)∑

j=1

cpx̃(p, j) (8)

≤
n∑

p=1

r(p,t)∑

j=1




t(p,j+1)−1∑

t=t(p,j)+1

∑

S | p∈S

w̃S
p y(t, S)


 x̃(p, j) (9)

=
∑

t

∑

S⊆B(t),pt∈S


 ∑

p∈S\{pt}
w̃S

p x̃(p, r(p, t))


 y(t, S)(10)

≤
∑

t

∑

S⊆B(t),pt∈S

(W (S)− k) y(t, S). (11)

Inequality (9) follows from Inequality (6), Equality (10)
follows by changing the order of summation, and Inequality
(11) follows from Inequality (7). Thus, C1 is at most the
profit of a feasible dual solution multiplied by (1 + ln k).

BoundingC2.
We bound the derivative of the primal cost of variables

x(p, j) in Step (4) by the derivative of the dual profit ac-
crued in the same round. Variables x(p, j) that have al-
ready reached the value of 1 do not contribute anymore
to the primal cost. The derivative of a variable x(p, j),
1/k ≤ x(p, j) < 1, as a function of y(t) is:

dx(p, j)

dy(t, S)
=

min{W (S)− k, wp}
cp

· x(p, j). (12)

Therefore, the derivative of the primal is at most:

dX

dy(t, S)
=

∑

p∈S\{pt}:x(p,r(p,t))<1

w̃S
p x(p, r(p, t))

≤ W (S)− k =
dY

dy(t, S)
.

The inequality in the second step above follows since the
primal constraint of the set S is unsatisfied yet. Thus, C2 is
at most the profit of a feasible dual solution multiplied by
(1 + ln k).

Completing the analysis.
It follows that C1 + C2 is at most twice the profit of a

feasible dual solution multiplied by (1+ ln k). Note that the
profit of any dual feasible solution is always a lower bound
on the optimal solution. Therefore, we conclude by weak
duality that the algorithm is O(log k)-competitive.

3.1 The(h, k)-general caching problem
The above method can be extended to obtain an O(ln(k/(k−

h+1))) competitive fractional algorithm for the (h, k)-general
caching problem, where an online cache of size k is compared
with an offline cache of size h. The details are deferred to
the full version of the paper.

4. ROUNDING THE FRACTIONAL SOLU-
TION ONLINE

In this section we show how to obtain a randomized online
algorithm from the fractional solution generated previously.
For convenience of analysis, throughout this section we con-
sider the (equivalent) cost version of the problem where we
pay cp for both fetching and evicting a page p. This as-
sumption can change the cost of the fractional solution by
at most a factor of two. At any time step, the LP solution
x1, . . . , xn, where we denote by xp , x(p, r(p, t)), specifies
the probability that each of the pages is absent from the
cache. However, to obtain an actual randomized algorithm
we need to specify a probability distribution over the various
cache states that is consistent with the LP solution. That
is, we need to simulate the moves of the LP over the set of
pages by consistent moves over the actual cache states. We
adopt the following approach to do this simulation.

Let γ ≥ 1 be a parameter and set yp = min(γxp, 1). Let
µ be a distribution on subsets of pages. We say that µ is
consistent with y (or γ-consistent with x) if µ induces the
distribution y on the page set. That is,

∀p :
∑
D

AD
p · µ(D) = yp, (13)

where, for a set of pages D, AD
p = 1 if p ∈ D and 0 otherwise.

We will view µ as a distribution over the complement of the
cache states. To be a meaningful simulation, it suffices to
require the following.

1. Size Property: For any set D with µ(D) > 0, the sum
of the sizes of the pages in D is at least W (B(t))− k.
That is, D corresponds to the complement of a valid
cache.

2. Bounded Cost Property: If y changes to y′ while incur-
ring a fractional cost of d, the distribution µ can be
changed to another distribution µ′ which is consistent
with y′, while incurring a (possibly amortized) cost of
at most βd, where β > 0.

It is easy to see that if xp changes by ε, then yp changes by
at most γε. Hence, given a fractional algorithm with com-
petitive ratio c, the existence of a simulation with the above
properties implies an actual randomized online algorithm
with competitive ratio γβc. We provide three different sim-
ulation procedures for the Bit model, General model, and
the Fault Model. These are organized in increasing order of
complexity.

4.1 The Bit Model
In this section we will show how to obtain an O(log k)-

competitive randomized algorithm for the general caching
problem in the Bit model. Let U , blog2 kc. For i = 0
to U , we define the size class S(i) to be the set of pages of
sizes between 2i and less than size 2i+1. Formally, S(i) =
{p | 2i ≤ wp < 2i+1}. Let x1, . . . , xn be the LP solution at
the current time step. Recall that it satisfies the knapsack
cover inequalities for all subsets. For each page p let yp =
min{1, 3xp} (i.e. γ = 3).

Definition 4.1 (Balanced subsets). We say that a
subset of pages D is balanced with respect to y if:

1. If yp = 1 then p is evicted in all cache states, i.e.
AD

p = 1 for all D with µ(D) > 0.

2. The following holds for all 0 ≤ j ≤ U :


U∑

i=j

∑

p∈S(i)

yp

 ≤
U∑

i=j

∑

p∈S(i)

AD
p ≤




U∑

i=j

∑

p∈S(i)

yp




. (14)

We first show that the size property follows from the re-
quirement that sets are balanced.

Lemma 4.2. Let x and y be defined as above. Then, for
any subset D which is balanced with respect to y, the sum of
the sizes of all the pages in D is at least W (B(t))− k.

We first prove a simple mathematical claim.

Claim 4.3. Let x1, x2, . . . , xn and y1, y2, . . . , yn be two
sequences of non-negative real numbers and let 0 = a0 ≤
a1 ≤ a2 ≤ . . . ,≤ an be a non-decreasing sequence of positive
numbers. If for every 1 ≤ j ≤ n:

∑n
i=j xi ≥ −1+(

∑n
i=j yi),

then:
∑n

i=1 aixi ≥ −an +
∑n

i=1 aiyi.

Proof. For every j, 1 ≤ j ≤ n, multiply the jth inequal-
ity by (aj − aj−1) (which is non negative), yielding:

(aj − aj−1)

n∑
i=j

xi ≥ −(aj − aj−1) + (aj − aj−1)

n∑
i=j

yi.

Summing up over all the inequalities yields the desired re-
sult.

Proof. (Lemma 4.2). For the proof it suffices to use the
LHS of condition (14) (i.e., the lower bound). Let S′ ⊆ S
be the set of pages with yp < 1, and let S′(i) = S′ ∩ S(i)
be the class i pages in S′. Since AD

p = 1 whenever yp = 1,
condition (14) implies that for every 0 ≤ j ≤ U :

U∑

i=j

∑

p∈S′(i)
AD

p ≥


U∑

i=j

∑

p∈S′(i)
yp

 ≥



U∑

i=j

∑

p∈S′(i)
yp


− 1. (15)

The sum of the sizes of the pages in D is
∑

p∈S wpAD
p . Since

AD
p = 1 for p ∈ S\S′, it suffices to show that

∑
p∈S′ wpAD

p ≥
W (S′)− k for the proof. Consider the following:

∑

p∈S′
wpAD

p ≥
∑

p∈S′
min{wp, W (S′)− k}AD

p

=
U∑

i=0

∑

p∈S′(i)
min{wp, W (S′)− k}AD

p

≥ 1

2

U∑

i=0

∑

p∈S′(i)
min{2wp, W (S′)− k}AD

p

≥ 1

2

U∑

i=0

min{2i+1, W (S′)− k}
∑

p∈S′(i)
AD

p (16)

≥ −1

2
min{2U+1, W (S′)− k}

+
1

2

U∑

i=0

min{2i+1, W (S′)− k}
∑

p∈S′(i)
yp (17)

≥ −1

2
(W (S′)− k)

+
1

2

U∑

i=0

∑

p∈S′(i)
min{wp, W (S′)− k}yp (18)

≥ −1

2
(W (S′)− k) +

3

2
(W (S′)− k) ≥ W (S′)− k. (19)

Here, Inequality (16) follows since wp ≥ 2i for each p ∈
S′(i). Inequality (17) follows by applying Claim 4.3 with
ai = min{2i+1, W (S′) − k}, xi =

∑
p∈S′(i) AD

p and yi =∑
p∈S′(i) yp, and observing that (15) implies that the condi-

tions of the claim are satisfied. Inequality (18) follows since
wp < 2i+1, and finally Inequality (19) follows since by the
LP knapsack constraints, and the fact that yp = 3xp for
each p ∈ S′:

U∑

i=0

∑

p∈S′(i)
min{wp, W (S′)− k}yp

= 3
∑

p∈S′
min{wp, W (S′)− k}xp ≥ 3(W (S′)− k).

We show how to maintain the bounded cost property using
both the LHS and RHS of condition (14).

Lemma 4.4. Let µ be any distribution on balanced sets
that is consistent with y. Then the cost property holds with
β = 10. That is, if y changes to y′ while incurring a frac-
tional cost of d, then the distribution µ can be modified to
another distribution µ′ over balanced sets such that µ′ is con-
sistent with y′ and the cost incurred while modifying µ to µ′

is at most 10d.

Proof. By considering each page separately, it suffices
to show that the property holds whenever yp increases or
decreases for some page p. Assume first that the weight yp

of page p for p ∈ S(i) is increased by ε. The argument when
yp is decreased is analogous. Page p belongs to S(i), and so
wp ≥ 2i. Thus, the fractional cost is at least ε2i.

We construct µ′ as follows. To ensure the consistency
with y′,i.e., Equation (13), we add page p to ε measure
of the sets D that do not contain p. Since this is the
Bit model, this incurs a cost of at most 2i+1ε. However
this may violate condition (14) for classes j ≤ i. We it-
eratively fix condition (14) starting with class i. Consider

class i. Let s = d∑U
j=i

∑
p∈S(j) ype and suppose first that

d∑U
j=i

∑
p∈S(j) y′pe remains equal to s. Then in µ′, let ε′

be the measure of sets that have s + 1 pages in classes i or
higher. Note that ε′ ≤ ε. Consider the sets with s− 1 pages
in classes i or higher and arbitrarily choose ε′ measure of
these (this is possible since s = d∑U

j=i

∑
p∈S(j) y′pe). Arbi-

trarily pair the sets with s + 1 pages to those with s − 1
pages. Consider any pair of sets (D, D′). Since µ′ satisfies
condition (14) is for class i + 1, the number of pages in D
and D′ that lie in classes i + 1 or higher differ by at most
1. Hence, D \D′ contains some class i page. We move this
page from D to D′. Note that (14) is satisfied for i after this

procedure. Now, consider the case when d∑U
j=i

∑
p∈S(j) y′pe

increases to s + 1. Note that in this case, the condition (14)
is be violated for class i for at most ε′ ≤ ε of sets that have
precisely s − 1 pages in classes i or higher. We arbitrarily
pair the classes with s−1 to pages to those with s+1 pages
and apply the argument above. The total cost incurred in
this step is at most (2ε′) · 2i+1 ≤ 2i+2ε.

After applying the above procedure to fix class i, con-
dition (14) might be violated for class i − 1 for at most ε
measure of sets. We apply the matching procedure sequen-
tially to i− 1 and lower classes incurring an additional cost
of

∑i−1
j=0 2ε · 2j+1 < 4ε2i. Thus the total cost incurred is at

most 10ε2i.

Theorem 4.5. There is an O(log k)-competitive algorithm
for the general caching problem in the Bit model.

4.2 The General Cost Model
In this section we study the General cost model and show

how to obtain an O(log2 k)-competitive randomized caching

algorithm for this model. Let U , blog2 kc. Let C =
blog2 Cmaxc. For i = 0 to U , and j = 0 to C, we define S(i, j)
to be the set of pages of sizes at least 2i and less than 2i+1,
and fetching cost between 2j and less than 2j+1. Formally,
S(i, j) = {p | 2i ≤ wp < 2i+1 and 2j ≤ cp < 2j+1}. Let
x1, . . . , xn be the LP solution at the current time step that
satisfies the knapsack cover inequalities for all subsets. Let
γ = U +3. Thus, for each page p, yp = min{1, (U +3)·xp} =
O(log k) · xp.

Definition 4.6. A set D of pages is balanced with respect
to y if the following two conditions hold:

1. If yp = 1 then p is evicted in all cache states, i.e.
AD

p = 1 for all D with µ(D) > 0.

2. For each size class 0 ≤ i ≤ U , it holds that for each
0 ≤ j ≤ blog Cmaxc:

C∑

z=j

∑

p∈S(i,z)

yp

 ≤
C∑

z=j

∑

p∈S(i,z)

AD
p ≤




C∑

z=j

∑

p∈S(i,z)

yp




. (20)

We first show that the size property follows from the re-
quirement that the sets are balanced.

Lemma 4.7. Let x and y be defined as above. Then, for
any subset D that is balanced with respect to y, the sum of
sizes of all pages in D is at least W (B(t))− k.

Proof. For the proof it suffices to use the LHS of condi-
tion (20) (i.e., the lower bound). Let S′ denote the subset
of pages with yp < 1. As yp = 1 whenever AD

p = 1 , it

suffices to show that
∑

p∈S′ wpAD
p ≥ W (S′)− k. Moreover,

condition (20) implies that for any 0 ≤ i ≤ U :

C∑
z=0

∑

p∈S′(i,z)

AD
p ≥ b

C∑
z=0

∑

p∈S′(i,z)

ypc ≥ −1 +

C∑
z=0

∑

p∈S′(i,z)

yp. (21)

Thus, the total size of pages from S′ that are in D can be
lower bounded as follows:

∑

p∈S′
wpAD

p ≥
∑

p∈S′
min{wp, W (S′)− k}AD

p

=
U∑

i=0

C∑

j=0

∑

p∈S′(i,j)
min{wp, W (S′)− k}AD

p

≥ 1

2

U∑

i=0

C∑

j=0

∑

p∈S′(i,j)
min{2wp, W (S′)− k}AD

p

≥ 1

2

U∑

i=0

min{2i+1, W (S′)− k}
C∑

j=0

∑

p∈S′(i,j)
AD

p (22)

≥ 1

2

U∑

i=0

min{2i+1, W (S′)− k}

−1 +

C∑

j=0

∑

p∈S′(i,j)
yp


(23)

≥ −U + 1

2
(W (S′)− k)

+
1

2

U∑

i=0

C∑

j=0

∑

p∈S′(i,j)
min{wp, W (S′)− k}yp (24)

≥ −U + 1

2
(W (S′)− k) +

U + 3

2
(W (S′)− k)

= W (S′)− k. (25)

Inequality (22) follows since wp ≥ 2i for each page p ∈
S′(i, j), and Inequality (23) follows from (21). Inequality
(24) follows since wp ≤ 2i+1 for each page p ∈ S′(i, j) .
Finally, Inequality (25) follows by the knapsack constraints:

U∑
i=0

C∑
j=0

∑

p∈S′(i,j)

min{wp, W (S′)− k}yp

=
∑

p∈S′
min{wp, W (S′)− k}yp

= (U + 3)
∑

p∈S′
min{wp, W (S′)− k}xp

≥ (U + 3)(W (S′)− k).

Here we use the fact that yp = (U + 3)xp for p ∈ S′.

We now show how to maintain the bounded cost property
with β = 10. For this we need to use both the LHS and
RHS of condition (20), and we use an argument similar to
the one used in the proof of Lemma 4.4.

Lemma 4.8. Give any distribution µ over balanced sets
that is consistent with y. If y changes to y′ incurring a

fractional cost of d, then the distribution µ can be modified
to another distribution µ′ over balanced sets consistent with
y′ such that total cost incurred is at most 10d.

Proof. Suppose that yp increases by ε and p lies in the
class S(i, j). Note that the balance condition (20) holds for
every size class different from i, and moreover for size class
i the condition also holds for all cost classes higher than j.
We apply the procedure used in Lemma 4.4 to size class i.
Note that applying this procedure does not have any effect
on size classes different from i, and we can thus iteratively
balance cost classes starting from j down to 0 in size class i.
To bound the cost, observe that the analysis in the proof of
Lemma 4.4 only used the fact that the cost of the classes are
geometrically decreasing. Thus, a similar analysis implies
that the cost incurred is no more than 10ε · 2j .

We conclude with the next theorem:

Theorem 4.9. There is an O(log2 k)-competitive algorithm
for the caching problem in the General model.

4.3 The Fault Model
In this section we study the Fault model and show how

to obtain an O(log k)-competitive randomized caching algo-
rithm for this model. Note that an O(log2 k)-competitive
algorithm follows directly from the result for the General
model. Recall that in the proofs for the Bit model and the
General model we crucially used the fact that the cost in the
different classes is geometrically decreasing. However, this
is not the case for the Fault model, making the proof sig-
nificantly more involved and requiring the use of a potential
function so as to perform an amortized analysis.

We sort the n pages with respect to their size, i.e., w1 ≤
w2 ≤ . . . ≤ wn. Let x1, . . . , xn be the LP solution at the
current time step that satisfies the knapsack cover inequali-
ties for all subsets. For each page p, let yp = min{1, 15 ·xp}.
Let S′ denote the set of pages with yp < 1. During the ex-
ecution of the algorithm we maintain a grouping G of pages
in S′ into groups G(i), 1 ≤ i ≤ `. Each group G(i) contains
a sequence of consecutive pages in S′. As the pages are or-
dered in non-decreasing order with respect to size, for any
i the largest page size in group G(i) is at most the smallest
page size in G(i + 1).

Definition 4.10 (Good Grouping). A grouping G of
pages in S′ is called good if it satisfies the following proper-
ties.

1. For each i, 1 ≤ i ≤ `, we have
∑

p∈S(i) yp ≤ 12.

2. If
∑

p∈S′ yp ≥ 3, then for each group i, 1 ≤ i ≤ `, we

have
∑

p∈G(i) yp ≥ 3. If
∑

p∈S′ yp < 3, then there is

exactly one group G(1) containing all the pages in S′.

We define
∑

p∈G(i) yp to be the weight of group G(i).

Definition 4.11 (Balanced Set). Given a good group-
ing G, a set of pages D is called balanced if the following two
properties hold.

1. If yp = 1, then AD
p = 1.

2. For each i, the number of pages |D∩G(i)| = ∑
p∈G(i) AD

p

satisfies
 ∑

p∈G(i)

yp

 ≤
∑

p∈G(i)

AD
p ≤




∑

p∈G(i)

yp




. (26)

The simulation procedure works as follows. At any time the
algorithm maintains a good grouping G of the pages. It also
maintains a probability distribution µ on balanced sets D
which is consistent with y. At each step of the algorithm, as
the value of y changes, the algorithm modifies the distribu-
tion µ to be consistent with y. Additionally, as y changes,
the grouping G may also possibly change (so as to remain
good), in which case a previously balanced set need not re-
main balanced anymore. In such a case, we also modify µ
since only balanced sets can belong to the support of µ.

We first show that the size property holds for balanced sets
D, and then show how to update G and µ as y changes, such
that the cost property holds with β = O(1) in an amortized
sense.

Lemma 4.12. Let y be as defined above and let G be a
good grouping with respect to y. Then any balanced set D
with respect to G has size at least W (S)− k.

Proof. Let S′ be the set of pages p for which yp < 1.
As D is balanced, each page with yp = 1 belongs to D and
hence it suffices to show that

∑
p∈S′ wpAD

p ≥ W (S′)− k. If

W (S′) − k ≤ 0, then we are already done. Henceforth we
assume that W (S′)− k > 0.

The linear program constraint for the set S′ implies that∑
p∈S′ min{wp, W (S′) − k}xp ≥ W (S′) − k. This implies

that
∑

p∈S′ xp ≥ 1 and so
∑

p∈S′ yp ≥ 15. Hence by the

second condition for a good grouping, each group G(i) has
weight at least 3.

For each group G(i) let wi(min) and wi(max) denote the
smallest and largest page size in G(i). Recall that for each
i, we have that wi(min) ≤ wi(max) ≤ wi+1(min). (Define
w`+1(min) = w`(max).) Let mi = min(wi(min), W (S′)− k)
for i = 1, . . . , ` + 1. We lower bound the total size of pages
in D ∩ S′ as follows.

∑

p∈S′
wpAD

p ≥
∑

p∈S′
min{wp, W (S′)− k}AD

p

=
∑̀

i=1

∑

p∈G(i)

min{wp, W (S′)− k}AD
p

≥
∑̀

i=1

mi

∑

p∈G(i)

AD
p ≥

∑̀

i=1

mi(−1 +
∑

p∈G(i)

yp)

≥ 2

3

∑̀

i=1

mi

∑

p∈G(i)

yp (27)

=
2

3


∑̀

i=1

mi+1

∑

p∈G(i)

yp




−2

3


∑̀

i=1

(mi+1 −mi)
∑

p∈G(i)

yp




≥ 2

3


∑̀

i=1

mi+1

∑

p∈G(i)

yp


− 8

(∑̀

i=1

(mi+1 −mi)

)
(28)

=
2

3


∑̀

i=1

mi+1

∑

p∈G(i)

yp


− 8m`+1 + 8m1

≥ 2

3


∑̀

i=1

∑

p∈G(i)

min{wp, W (S′)− k}yp




− 8(W (S′)− k) (29)

≥ 2(W (S′)− k).

Here inequality (27) follows since D is balanced, and hence
for each 1 ≤ i ≤ `,

∑

p∈G(i)

AD
p ≥

 ∑

p∈G(i)

yp

 ≥ −1 +
∑

p∈G(i)

yp,

and by observing that G is good and hence
∑

p∈G(i) yp ≥ 3

for each 1 ≤ i ≤ ` and thus

−1 +
∑

p∈G(i)

yp ≥ 2

3


 ∑

p∈G(i)

yp


 .

Inequality (28) follows since mi+1 − mi ≥ 0 for each 1 ≤
i ≤ `, and since G is good, for each 1 ≤ i ≤ ` we have
that

∑
p∈G(i) yp ≤ 12: Finally, Inequality (29) follows by

considering the knapsack cover inequality for the set S′ and
observing that yp = 15xp for each p ∈ S′:

∑̀
i=1

∑

p∈G(i)

min{wp, W (S)− k}yp

=
∑

p∈S′
min{wp, W (S′)− k}15xp ≥ 15(W (S′)− k).

Lemma 4.13. As the solution y changes over time we can
maintain a good grouping G and a consistent distribution on
balanced sets with amortized cost at most a constant times
the fractional cost.

Proof. The online fractional algorithm has the following
dynamics. After a page p is requested variable yp can only
increase (the page is gradually evicted). This process stops
when page p is requested again and yp is set to zero. When-
ever yp changes, we need to modify the distribution µ on
balanced sets D to remain consistent. Moreover, a change
in yp may change the structure of the groups. This happens
if either the weight of G(i) exceeds 12, or if it falls below
3, or if yp becomes 1 and leaves the group G(i) (recall that
groups only contain pages q with yq < 1). We view a change
in yp as a sequence of steps where yp changes by an infinites-
imally small amount ε. Thus at each step exactly one of the
following events happens.

Event 1: Variable yp < 1 of page p increases or decreases
by ε.

Event 2: The weight of group G(i) reaches 12 units.

Event 3: The weight of group G(i) drops to 3 units.

Event 4: The value of yp for page p reaches 1 and p leaves
the set S(i).

We prove that in all cases the amortized cost of the online
algorithm is at most O(1) times the fractional cost. For
amortization we use the following potential function:

Φ = 13
∑

p∈S′
yp + 11

∑̀
i=1

∣∣∣∣∣∣
6−

∑

p∈G(i)

yp

∣∣∣∣∣∣
.

In each possible event let Con be the total cost of the online
algorithm. Let Cf be the fractional cost, and let ∆Φ be the

change in the potential function. We show that in each of
the events:

∆Con + ∆Φ ≤ 405∆Cf (30)

Since Φ is always positive, this will imply the desired result.

Event 1.
Assume first that yp such that p ∈ G(i) is increased by

ε. If yp increases by ε it must be that xp is increased by at
least ε

15
. Thus, in the fault model the fractional cost is at

least ε
15

.
To maintain consistency, we add p to ε measure of the sets

D that do not contain p. However this might make some of
these sets unbalanced by violating (26). Suppose first that
s = d∑p∈G(i) ype does not change when yp is increased by ε.

In this case, we match the sets with s+1 pages in G(i) (the
measure of these is at most ε) arbitrarily with sets contains
s−1 pages, and transfer some page from the larger set (that
does not lie in the smaller set) to the smaller set. An anal-
ogous argument works when s increases as yp is increased.
Note that after this step, the sets become balanced.

The total online cost is 3ε. Moreover, the potential change
∆Φ is at most 13ε + 11ε = 24ε and hence (30) holds. An
analogous argument works if yp is decreased (in fact it is
even easier since the potential only decreases).

Event 2.
Consider an event in which the total weight of a group G(i)

reaches 12 units. In this case we split G(i) into two sets such
that their weight is as close to 6 as possible. Suppose one set
is of size 6 + x and the other is of size 6− x where 0 ≤ x ≤
1/2. Let Φ(s) and Φ(e) denote the potential function before
and after the change respectively. The contribution of the
first term does not change. The second term corresponding
to G(i) initially is at least 11(12 − 6) = 66 and the final
contribution is 11(|6− (6− x)|+ |6− (6 + x)|) = 22x ≤ 11.
Thus ∆Φ = Φ(e)− Φ(s) = 11− 66 ≤ −55.

Next, we redistribute the pages in the original group G(i)
among the sets D such that they are balanced with respect
to the two new groups. Observe that in the worst case, each
set D might need to remove all the 12 pages it previously
had and bring in at most d6 + xe+ d6− xe ≤ 13 new pages.
Since the measure of sets is D, the total cost incurred is at
most 25. Again, (30) holds as the fractional cost Cf is 0 and
the decrease in potential more than offsets the cost Con.

Event 3.
Consider the event when the weight of a group G(i) de-

creases to 3 units. If G(i) is the only group (i.e. ` = 1)
then all properties of a good grouping still hold. Otherwise,
we merge G(i) with one of its neighbors (either G(i − 1)
or G(i + 1)). If G(i) has a neighbor with weight at most 9,
then we merge G(i) with this neighbor. Note that before the
merge, each balanced set D has exactly 3 pages from G(i)
and hence it also remains balanced after the merge. Also,
since |6− 3|+ |6− x| ≥ |6− (x + 3)| for all 3 ≤ x ≤ 9, and
hence the potential function does not increase in this case.
Thus (30) holds trivially.

Now suppose that all neighbors of G(i) have weight greater
9. Consider any such neighbor and let x > 9 be its weight.
We merge G(i) with this neighbor to obtain a group with
weight 3 + x which lies in the range (12, 15]. Then as in the

handling of Event 4.3, we split this group into two groups
with as close weight as possible. Since the weight is at most
15, the cost of balancing the sets D is at most 16 + 15 = 31
(using argument similar to that in Event 4.3). We now con-
sider the change in potential. The only change is due to sec-
ond terms corresponding to G(i) and its neighbor (the first
term does not matter since total weight of pages in S′ does
not change upon merging or splitting). Before the merge, the
contribution was 11·3+11·(x−6) = 11x−33 ≥ 66. After the
merge (and the split) the maximum value of the potential is
obtained for the case when the size of the merged group is
15 which upon splitting leads to sets of size 7 + y and 8− y
where y ≤ 0.5, in which case its value is 11(1+y+2−y) = 33.
Thus, the potential function decreases by at least 33 while
the online cost is at most 31, and hence (30) holds.

Event 4.
Suppose some yp increases to 1 and exits the group G(i).

Note that if yp = 1, then all balanced sets D contain p.
Thus, removing p from G(i) keeps the sets balanced.

Let us first assume that the weight of G(i) does not fall
below 3 when p is removed. In this case, the groups and the
balanced sets remain unchanged. Thus the online algorithm
incurs zero cost. The first term of the potential decreases
by 13, and the second term increases by at most 11, and
hence (30) holds. Now consider the case when the weight of
G(i) falls below 3. We apply an argument similar to that
for Event 4.3. If G(i) can be merged with some neighbor
without weight exceeding 12, then we do so. This merge
may cause some sets D to become imbalanced. However,
this imbalance is no more than one page and can be fixed by
transferring one page from each set to another appropriate
set. The total cost incurred in this case is at most 2. We now
consider the change in potential. The first term decreases by
13. For the second term, the original group G(i) contributes
function 11(6 − (3 + x)) = 11(3 − x), with x < 1 and its
neighbor contributes 11(|6 − z|) where 3 ≤ z ≤ 9 is its
weight. After the merge, the second term corresponding to
the merged group contributes 11(|6− (z + 2 + x)|) which is
at most 11(|6− z|+ (2 + x)). Overall, ∆Φ ≤ −13 + 11(2 +
x)− 11(3− x) = 22x− 24 < −2. Thus (30) holds.

If we need to split the merged set, we note that the above
analysis, showing that (30) holds, is also valid when 9 ≤
z ≤ 12. Next, when this merged set is split, we can apply
the analysis in Event 4.3, and then the potential function
decreases by at least 33 units, while the cost incurred is at
most 31, and hence (30) holds.

We conclude with the next theorem:

Theorem 4.14. There is an O(log k)-competitive algorithm
for the caching problem in the Fault model.

5. REFERENCES
[1] D. Achlioptas, M. Chrobak, and J. Noga. Competitive

analysis of randomized paging algorithms. Theoretical
Computer Science, 234(1–2):203–218, 2000.

[2] S. Albers, S. Arora, and S. Khanna. Page replacement
for general caching problems. In Proc. of the 10th
Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 31–40, 1999.

[3] N. Bansal, N. Buchbinder, and J. Naor. A primal-dual
randomized algorithm for weighted paging. In Proc. of

the 48th annual IEEE Symposium on Foundations of
Computer Science, pages 507-517, 2007.

[4] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and
B. Schieber. A unified approach to approximating
resource allocation and scheduling. J. ACM,
48(5):1069–1090, 2001.

[5] Reuven Bar-Yehuda and Dror Rawitz. On the
equivalence between the primal-dual schema and the
local ratio technique. SIAM J. Discrete Math.,
19(3):762–797, 2005.

[6] A. Borodin and R. El-Yaniv. Online computation and
competitive analysis. Cambridge University Press,
1998.

[7] N. Buchbinder and J. Naor. Online primal-dual
algorithms for covering and packing problems. In
Proceedings of the 13th Annual European Symposium
on Algorithms, pages 689–701, 2005.

[8] P. Cao and S. Irani. Cost-aware www proxy caching
algorithms. In USENIX Symposium on Internet
Technologies and Systems, pages 193–206, 1997.

[9] R. Carr, L. Fleischer, V. Leung, and C. A. Phillips.
Strengthening integrality gaps for capacitated network
design and covering problems. In Symposium on
Discrete Algorithms, pages 106–115, 2000.

[10] M. Chrobak, H. J. Karloff, T. H. Payne, and
S. Vishwanathan. New results on server problems.
SIAM J. Discrete Math, 4(2):172–181, 1991.

[11] E. Cohen and H. Kaplan. LP-based analysis of
greedy-dual-size. In Proceedings of the 10th Annual
ACM-SIAM symposium on Discrete algorithms, pages
879–880, 1999.

[12] A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator,
and N. Young. Competitive paging algorithms. J.
Algorithms, 12(4):685–699, 1991.

[13] S. Irani. Competitive analysis of paging: a survey. In
Proceedings of the Workshop on Online Algorithms,
Dagstuhl, Germany. Springer Verlag Lecture Notes in
Computer Science.

[14] S. Irani. Page replacement with multi-size pages and
applications to web caching. In Proceedings of the 29th
Annual ACM Symposium on Theory of computing,
pages 701–710, 1997.

[15] S. Irani. Randomized weighted caching with two page
weights. Algorithmica, 32(4):624–640, 2002.

[16] L. A. McGeoch and D. D. Sleator. A strongly
competitive randomized paging algorithm.
Algorithmica, 6(6):816–825, 1991.

[17] D. D. Sleator and R. E. Tarjan. Amortized efficiency
of list update and paging rules. Communications of
the ACM, 28(2):202–208, 1985.

[18] N. E. Young. On-line caching as cache size varies. In
Proceedings of the 2nd Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 241–250, 1991.

[19] N. E. Young. The k-server dual and loose
competitiveness for paging. Algorithmica,
11(6):525–541, 1994.

[20] N. E. Young. On-line file caching. In Proceedings of
the 9th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 82–86, 1998.

