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Abstract
We consider a cost sharing system where users are selfish and act according to their own

interest. There is a set of facilities and each facility provides services to a subset of the users.
Each user is interested in purchasing a service, and will buy it from the facility offering it
at the lowest cost. The overall system performance is defined to be the total cost of the
facilities chosen by the users. A central authority can encourage the purchase of services by
offering subsidies that reduce their price, in order to improve the system performance. The
subsidies are financed by taxes collected from the users.

Specifically, we investigate a non-cooperative game, where users join the system, and
act according to their best response. We model the system as an instance of a set cover
game, where each element is interested in selecting a cover minimizing its payment. The
subsidies are updated dynamically, following the selfish moves of the elements and the taxes
collected due to their payments. Our objective is to design a dynamic subsidy mechanism
that improves on the overall system performance while collecting as taxes only a small frac-
tion of the sum of the payments of the users. The performance of such a subsidy mechanism
is thus defined by two different quality parameters: (i) the price of anarchy, defined as the
ratio between the cost of the Nash equilibrium obtained and the cost of an optimal solution;
and (ii) the taxation ratio, defined as the fraction of payments collected as taxes from the
users.

We investigate two different models: (i) an integral model in which each element is
covered by a single set; and (ii) a fractional model in which an element can be fractionally
covered by several sets. Let f denote the maximum number of sets that an element can
belong to. For the fractional model, we provide a subsidy mechanism such that, for any
ε ≤ 1, the price of anarchy is O( log f

ε ) and the taxation ratio is ε. For the integral model, we

provide a subsidy mechanism such that, for any ε ≤ 1, the price of anarchy is O(
log f log(n

ε )
ε )

and the taxation ratio is ε, where n is the number of elements.

1 Introduction

Individual self-interest is the basis for the modern market system in which a consumer acts in its
self-interest when buying goods at lowest prices. A government, or any other central authority,

∗A preliminary version of this paper appeared in the Proceedings of the First International Symposium on Algo-
rithmic Game Theory (SAGT ’08).

†Computer Science Department, Technion, Haifa 32000, Israel. E-mail: nivb@cs.technion.ac.il.
‡Department of Electrical Engineering, Technion, Haifa 32000, Israel.

E-mail: liane@tx.technion.ac.il.
§Computer Science Department, Technion, Haifa 32000, Israel. E-mail: naor@cs.technion.ac.il. Re-

search supported in part by ISF Grant 1366/07 and US-Israel BSF Grant 2002276.
¶Department of Electrical Engineering, Technion, Haifa 32000, Israel.

E-mail: ariel@ee.technion.ac.il.

1



can influence natural market forces in several ways, such as taxation or regulation. In cases
where a government wishes to support and encourage the production of a good that is regarded
as being in the public interest, it gives out an assistance called a subsidy (also called negative
taxation). Subsidies are thus a way to influence the state of the market in a world of independent
self-interested consumers.

An example where government supervision can be very effective is an urban passenger trans-
portation system. An employee commuting to work in a city usually has many transportation
options. He can use a private car, join a car-pool, or use public transportation, e.g., bus or train.
The common choices as to how to travel to work have significant environmental impacts and a
major influence on road traffic congestion. It is thus a governmental interest to reduce the num-
ber of single occupancy vehicles on the road and encourage people to use public transport when
commuting to and from work.

Letting the invisible hand of the free market take its course can sometimes be devastating.
Consider, for example, a setting in which a new building is being built. Each new resident can
either purchase a private car, or initiate the use of some public transport at a much higher cost.
As no bus line is available at the new residence when it is established, the cheapest way for
each new resident to commute is to buy his own car, and then no public transport will ever be
established. Thus, in this case, it is the role of a central authority to develop public transport by
offering subsidies. After public transportation means are established, it is likely that residents
will switch from private to public transport, since the latter is cheaper.

Central authorities have limited budgets. Therefore, subsidies are financed by taxes collected
from the users. The taxes collected by a central authority should only be a bounded fraction of
the total payments made by the users. In the sequel, we develop a formal model of a cost sharing
system with selfish non-cooperative users, and introduce a dynamic subsidy mechanism that
improves on the overall system performance.

1.1 Our Model

We investigate a system where facilities provide services to users. Each user is interested in
purchasing a service which is typically provided by only a subset of the facilities. Users naturally
buy the service from the facility offering it at the lowest cost. A central authority can encourage
the purchase of services by offering subsidies that reduce their price. We investigate settings
where users share services and thereby also share their cost. The notion of social welfare or
social cost corresponds to the overall system performance, and is defined to be the total cost of
the facilities chosen by the users. Back to the public transportation example, each transportation
option corresponds to a different facility having a different cost. The cost of each facility is
essentially the cost of operating the type of transport it represents. The cost of a facility that
provides service to several users is shared amongst them, and can be subsidized by the central
authority in order to shift market share of facilities and users to it, e.g., from cars to public
transport.

The Set Cover Setting. We model the system as an instance of the set cover problem. Let
N = {1, 2, . . . , n} be a ground set of n elements (the users), and let S be a family of subsets of
N , |S| = m (the facilities). Each facility s ∈ S thus consists of the users to whom it can provide
service. A cover of N ′ ⊆ N is a collection of sets such that their union contains N ′. In our
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public transportation example, a cover is a choice of transport types allowing all users belonging
to N ′ to get to work. Each subset s ∈ S has a non-negative cost cs associated with it. The social
cost of a collection of sets T is defined to be the total cost of the sets belonging to T.

In a feasible cover, each user is assigned to one of the sets in the cover containing it. Users
sharing the same set also share its cost. We consider an egalitarian cost sharing mechanism,
which evenly splits the cost of a set among its users. This cost sharing mechanism has an
intuitive appeal, and satisfies essential properties such as cross monotonicity (the cost share of a
user for using a set cannot increase when additional users join the system) and budget balance
(the sum of the payments of the users receiving service from a set is equal to its cost).

The Non-Cooperative Game. We consider a set cover game with selfish non-cooperative
players (also called users, or elements). Each player is interested in selecting its cover in a
way that minimizes its payment. Thus, the strategies of the players in the game correspond to
their different possible covers, that is, the different sets that can provide service to the players.
Each player independently chooses a strategy minimizing its payment, i.e., its best response.
The best response of a player in the set cover game is thus defined as the set(s) that can provide
service to the player at minimum cost (with respect to the current state of the system). The
mutual influence of the players is determined by the egalitarian cost sharing mechanism.

We focus on a dynamic setting, where players follow the natural game course induced by
best-response dynamics. Each player, in his turn, chooses a cover that minimizes his cost. In
this paper, we take an approach that does not rely on starting the game in a specific starting
configuration. There are many situations in which not all players might be available at the
same time. We thus explore a natural setting where users join the game starting from an empty
configuration. Upon arrival, a user chooses a cover selfishly. As a result, players that have joined
the game previously may change their strategy later on by choosing a cover of lower cost. The
central authority is allowed to increase the subsidies of the sets in every step of the game in order
to improve the social welfare of the final cover. We assume that the game is controlled by an
adversarial scheduler that decides which user plays in each step. The order by which the users
play is not known beforehand (as it is chosen adversarially) as well as the set of elements (users)
N ′ ⊆ N that actually participates in the game. (Note that N ′ may be a strict subset of N in
general.) However, we assume that the set cover instance, i.e., N and S, is known in advance.

The natural game course continues until Nash equilibrium is reached. A Nash equilibrium
of the set cover game corresponds to a choice of covers for all users in N ′, where no user can
unilaterally reduce its payment by choosing a different cover. We note that the set cover game
is a special case of the well known class of congestion games [15]. Rosenthal [15] showed that
a potential function can be defined for each congestion game with the property that it decreases
in case a player makes a move that improves his cost, thus establishing convergence to Nash
equilibrium through best response dynamics.

Subsidies & Taxes. The Nash equilibrium of the set cover game is not unique and the greedy
nature of the users could lead to very inefficient Nash equilibrium points, even when initializing
the game from an empty configuration. We use subsidies in order to guarantee that best-response
dynamics will not converge to such bad equilibria. The following example is instructive as to
why subsidies are needed for minimizing the cost of the final solution when considering an
arbitrary set system. Consider n users where each user can be covered by a unit-cost “private”
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set containing only himself. There is also a set containing all the users that costs
√

n. The users
appear one by one and the best response of each user is to pick the private set covering him.
Once a user picks his private set, he will have no incentive to change his strategy. How will the
set covering all the users (the social optimal solution) be chosen without subsidies? Clearly, a
worse case could be achieved in case the cost of the set containing all users is 1+ ε. However, in
this case, an optimal solution could be trivially achieved by giving a negligible subsidy (higher
than ε) to this set.

During the course of the game, each subset s ∈ S is associated with a subsidy value (possibly
equal to zero, in case no subsidy is offered to the set). The effective cost of a set s, denoted by
ĉs, is defined to be cs minus the subsidy associated with s. Thus, following the egalitarian cost
sharing mechanism used in our setting, if ns users use set s, then each user pays ĉs/ns for this
set. We note that as the subsidies can only lower the cost of the users, the potential function of
the set cover game decreases in the presence of a subsidy mechanism as well, and convergence
to Nash equilibrium is still guaranteed.

Ideally, we would like our subsidy mechanism to spend on subsidies only a bounded fraction
of the revenue. However, in a non-cooperative game setting, the users’ payments are dynamic,
and can vary significantly during the game course due to strategy changes. Consider, for exam-
ple, a set s shared by many users, who decide to leave it at some point of the game in order to
join other subsidized sets. In this case, the revenue that was accrued from the use of s is now
reduced to zero. In order to cope with such dynamic scenarios, we propose a natural framework
where subsidies are offered via taxes. A tax is a non-refundable sum paid to the central authority
only in case a user purchases a new set. It is equal to a fixed fraction of the effective cost of the
purchased set. The taxes collected by a central authority are equal to a fraction of the payments
made by the users that open new sets, and later on offers the revenue from the taxes as subsi-
dies. The total amount of subsidies offered should always be bounded by the amount of taxes
collected.

Quality Parameters. The performance of a subsidy mechanism is a function of two quality
parameters:

• The price of anarchy: The ratio between the social cost of a Nash equilibrium solution
(that is, the sum of the subsidies and the payments of the users) and the social cost of an
optimal solution.

• The taxation ratio: The fraction of the payments collected as taxes from the users.

There is a trade-off between the taxation ratio and the price of anarchy achieved by our sub-
sidy mechanism. The higher the fraction of payments collected as taxes and spent on subsidies
is, the lower the cost of the final solution is. The taxation ratio is determined by a parameter
ε ≤ 1 which is given as input to the subsidy mechanism. Denoting by P the total payments of
the user, the objective is to achieve the best price of anarchy while collecting taxes (and spending
on subsidies) at most εP .

Compare the set cover game to the multicast game [3, 7] in which users (terminals) connect
to a source by making a routing decision that minimizes their payment. Chuzhoy et al [7] an-
alyze the price of anarchy of a Nash equilibrium resulting from the best-response dynamics of
a game course in which the players first join the game sequentially beginning from an empty
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configuration. Their setting is thus a special case of our model in which there is no central au-
thority intervention. It is shown in [6] that the price of anarchy of this setting is O(log3 n). In
the multicast setting, unlike the set cover game, an initial empty configuration coupled with best
response dynamics does guarantee a low price of anarchy with no need to offer subsidies.

1.2 Results and Techniques.

We consider two different models: (i) an integral model in which sets can only be fully bought
(i.e., integrally) and each element is covered by a single set; and (ii) a fractional model in which
a fraction of a set can be bought and each user can be covered by several sets (provided that
their fractions add up to 1). Note that the fraction of coverage an element gets from a set cannot
be greater than the fraction associated with the set. The subsidies, similarly to the choices of
the sets, can be given either integrally or fractionally, depending on the model. In the fractional
model, the central authority is allowed to subsidize only a fraction of a set.

The importance of the fractional model is two-fold. First, a fractional solution turns out to
be an intermediate step towards obtaining an integral solution. Second, it is interesting in its
own right as it captures many practical “fractional” scenarios. In the urban transport system
example, a fractional solution can correspond to the case where a user uses different transport
options during the week. Then, subsidizing a fraction of a set can be interpreted as subsidizing
a transportation mean only during part of the day, or part of the week. Thus, a fraction in this
example can be interpreted as “rate”.

Let f denote the maximum frequency of an element, that is, the maximum number of sets
that an element can belong to. For the fractional model, we prove the following theorem:

Theorem 1 (Fractional Cover). There exists a subsidy policy such that, for any ε ≤ 1, the price
of anarchy is O( log f

ε ) and the taxation ratio is ε.

Theorem 1 provides a trade-off between the taxation ratio and the price of anarchy: as the
central authority collects a higher fraction of the payments as taxes (later on invested in subsi-
dies), the cost of the final solution decreases.

For the integral model, we obtain the following slightly inferior bound.

Theorem 2 (Integral Cover). There exists a subsidy policy such that, for any ε ≤ 1, the price

of anarchy is O(
log f log(n

ε )
ε ) and the taxation ratio is ε.

In order to design mechanisms for both the fractional and integral models, we draw on ideas
from [1, 4]. In [1] Alon et al. considered an online version of the set cover problem, where
elements arrive one by one and need to be covered upon arrival. The goal of [1] is to design an
online algorithm achieving the best possible competitive ratio with respect to the optimal solu-
tion, i.e., optimal social welfare. In [1], an O(log m log n)-competitive algorithm is presented
for this online setting.

In our work, we take into consideration not only the overall system performance, but also the
selfish nature of the users who play according to their best response. As the goal of the users is
to minimize the payment for their cover, they may change their strategy after joining the system
until Nash equilibrium is reached. We thus go beyond the online version of the set cover problem
considered in [1], and analyze its non-cooperative game extension. The model investigated in
[1] can be seen as a special case of ours, where the central authority pays for the full cost of the
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cover and users pay nothing. (Also, users join one by one without reaching equilibrium.) Thus,
using the algorithm of [1], a central authority will not be able to finance the subsidies from taxes.
Bounding the taxation ratio while maintaining a low price of anarchy requires a new algorithm
and a different analysis which is achieved via the primal-dual approach of [4].

We note that for both the integral and fractional models our results are tight, since our subsidy
mechanism applies also to the special case of an online setting where users join the system
one by one and act according to their best response by choosing a cover of minimum cost. In
case ε is a fixed constant, the resulting price of anarchy almost matches the lower bound of
Ω( log m log n

log log m+log log n) shown in [1] for the online setting.
In the fractional model, our subsidy mechanism keeps a bounded taxation ratio by investing

money in subsidies only when a user purchases a new set (or a fraction thereof), and pays a tax.
The idea is therefore to invest in subsidies in each iteration only a small fraction of the payment
of a user (corresponding to the tax paid). The total cost of the taxes is bounded by maintaining
an (almost) feasible dual solution during the execution of the algorithm, which also allows us to
bound the price of anarchy of the solution. As in [1], we maintain a fractional primal solution,
however, in our case, it is not always feasible. Rather, the feasibility of the cover is obtained by
the best response of the users joining the system. The primal solution we maintain corresponds
to the subsidies given by the central authority.

Developing an integral subsidy mechanism requires several more ideas. As opposed to the
fractional case, it is no longer possible to offer in each iteration a fraction of the user’s payment.
Instead, the algorithm keeps a bounded taxation ratio by giving an integral subsidy only after
accumulating the taxes paid by the users over several iterations. In [1], Alon et al. obtained
an integral solution for their online setting by maintaining at each iteration a fractional feasible
solution and using a potential function that determines which of the sets should be chosen to the
integral cover. We design a new potential function and note that the potential function defined in
[1] cannot satisfy our needs, as it would lead to a high taxation ratio. The analysis we perform
is more delicate and bounds both the price of anarchy and the taxation ratio of the algorithm.

Perspective on Other Approaches that Improve on the Social Welfare. The issue of im-
proving on the overall system performance even in the face of selfish behavior has been consid-
ered extensively in the game theory literature, and designing mechanisms to improve the coor-
dination of selfish agents is a well known idea. A central topic in game theory is the notion of
mechanism design (see e.g. [14]) in which the rules of a game are designed to achieve a specific
outcome. This is done by setting up a structure where players are paid (or penalized), and thus
each player has an incentive to behave as the designer intends. Planning such a mechanism is
based on an assumption that the players have private information known only to them and which
affects their decisions.

Coordination mechanisms [8, 13] is a game theoretic concept that improves on the perfor-
mance of systems with independent selfish and non-colluding agents by redesigning the system,
i.e., by selecting policies and rules of the game (for example, adding delays and priorities to a
congestion game [8, 9]). Another approach for improving on the overall system performance
and reducing the price of anarchy is to impose economic incentives upon users in the form of
tolls [5, 10, 11, 17]. In such systems, the performance of a user is determined by a monetary
payment to a central authority for the use of particular resources. A different model used in
order to improve on the social welfare assumes that the central authority can impose particular
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strategies on some fraction of the self-optimizing users [12, 16]. This is called a Stackelberg
strategy.

An important aspect of both mechanism design and coordination mechanisms is that the
designer must design the system once and for all. The same applies to settings in which tolls
are used, and which assume global knowledge of the system (in particular, the set of users, or
commodities, is known beforehand). The tolls are thus computed off-line, prior to the course of
the game. In contrast, in our setting, the policy of the central authority is dynamic, changes over
time, and is determined by the state of the system.

Extensions. Our fractional subsidy algorithm can be generalized for the game extensions of
the wide range of online graph and network optimization problems considered in [2] and which
concern connectivity and cut problems in graphs. In a general online connectivity problem,
there is a communication network known to the algorithm in advance, where each edge in the
network has a nonnegative cost. The connectivity demands, specifying subsets of vertices to
be connected, arrive online. The notion of social welfare of a subgraph G is defined to be the
total cost of the edges belonging to G. Thus, an optimal solution with respect to the overall
system performance consists of a minimum cost subgraph satisfying all connectivity demands.
The algorithm presented in [2] satisfies each new demand, so as to achieve the best possible
competitive ratio.

In the non-cooperative game version of these problems, a user corresponds to a connectivity
demand, and is thus interested in choosing a minimum cost subgraph satisfying its own demand.
The central authority is allowed to subsidize the costs of some of the edges by collecting taxes,
in order to improve on the overall system performance. The game extensions of this range
of problems belong to the class of congestion games [15], and thus their natural game course
induced by best-response dynamics converges to a Nash equilibrium. Our subsidy algorithm
achieves a taxation ratio of ε, while maintaining a price of anarchy of O( log m

ε ), where m is
the number of edges in the graph. Examples of problems belonging to this class are fractional
versions of Steiner trees, generalized Steiner trees, and the group Steiner problem. It remains an
open question whether an integral solution can be obtained for this set of problems as well.

2 Formal Definitions

In this section we formally describe our model. Let N = {1, 2, . . . , n} be a ground set of n
elements (the users), and let S be a family of subsets of N , |S| = m (the facilities). Each s ∈ S
has a non-negative cost cs associated with it. Let f be the maximum frequency of an element,
i.e., the maximum number of sets that can contain an element. A cover is a collection of sets
such that their union is N . The cost of a cover is the sum of the costs of the sets that are included
in the cover. A fractional cover is an assignment of weights, ws, to each s ∈ S, such that the
total weight of the sets that contain each element is at least 1. The cost of a fractional cover is∑

s∈Swscs. A linear programming formulation of the minimum fractional set cover problem
appears in Figure 1. We have a variable ws for each set s ∈ S indicating the fraction of set s that
is taken to the cover. For each element, we demand that the sum of the fractions of the sets that
contain the element is at least 1. In the dual program (see also Figure 1) we have a variable ye

corresponding to each of the elements. We require that the total sum of variables that correspond
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Primal Dual
Minimize:

∑
s∈S csws Maximize:

∑
e∈N ye

Subject to: Subject to:
∀e ∈ N :

∑
s|e∈s ws ≥ 1 ∀s ∈ S:

∑
e∈s ye ≤ cs

∀s ∈ S|ws ≥ 0 ∀e ∈ N |ye ≥ 0

Figure 1: A primal-dual pair for the set-cover problem.

to elements that belong to a set s is at most the cost of the set. The integral set cover problem
corresponds to the special case where ws ∈ {0, 1}.

The Set Cover Game: Cost Shares & Subsidies Structures. We turn to define the set cover
game more precisely. As our subsidy mechanism works under fairly general assumptions, not
all the definitions here are needed for the algorithms and analysis in the next sections. Rather,
any setting in which the subsidies offered are fully financed from taxes, is sufficient. We provide
here a precise and natural definition of the game for completeness.

For simplicity, we assume taxes are collected only when a user purchases a new set (or a
fraction thereof). This can happen either when a user joins the system or when it changes its
strategy. The cost cs of a new set s that has not yet been opened (purchased) is called its opening
cost. When a new set is opened by a user, a fraction equal to ε of its opening cost is collected as
tax. The operating cost of a facility is defined to be its opening cost minus the payment collected
as tax. The operating cost of a facility that provides service to several users is shared amongst
them. The tax paid by a user is non-refundable, while the remaining part of the payment (the
operating cost) is a variable amount which may decrease when additional users join the same set
and share its cost. We note that our mechanism can support other settings where both taxes and
operating costs are shared by the users, as long as taxes are non-refundable, and can thus cover
the subsidies. Each set is associated with a subsidy value (possibly zero, in case no subsidy is
offered to the set). The subsidy can be applied either to the opening cost, in case the set has not
been opened yet, or to the operating cost in case it is used by at least one user (see Figure 2). In
the latter case, subsidies are given to a set that has already been purchased so as to lower its cost
and encourage more users to join it. The effective opening cost ĉs of a set s, is defined to be its
opening cost minus the subsidy associated with s. The effective operating cost of s is defined
similarly with respect to the operating cost of the set.

In the integral model, sets are taken integrally and each element is covered by a single set.
The effective opening cost ĉs that a user will have to pay for purchasing a new set s that is not
subsidized, is composed of a non-refundable tax of ε · ĉs, and a variable payment of (1−ε)ĉs that
is equal to the effective operating cost of the set. In case a user joins a set s that is not subsidized,
and shared by other users, its payment is equal to (1− ε)ĉs/ns, where ns is the number of users
sharing s.

In the fractional model, each set s is associated with a fraction xs which is fully subsidized
(that is, its effective cost equals zero). The cost of any other fraction of this set, that is, a fraction
λ that is not subsidized, is equal to λ · cs. Each element can be covered by several fractions
of different sets adding up to 1. Denote the fraction of set s used by user i by λs,i and the
number of users using set s by ns. Assume without loss of generality that λs,1 ≤ λs,2 ≤
· · · ≤ λs,ns ≤ 1. Define λs,0 = xs. The cost of each fraction of s is as follows: the interval
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opening cost

effective
operating cost

tax operating cost

subsidy is offered

first user opens
the set

egalitarian cost
sharing mechanism

more users join
the set

(b)

opening cost

effective
opening cost

tax
effective

operating cost

subsidy is offered

first user opens
the set

egalitarian cost
sharing mechanism

more users join
the set

(a)

Figure 2: (a) A subsidy is offered to a set that has not been opened yet. The first user joining the set pays its effective opening
cost, consisting of a tax and the effective operating cost. In case more users join the set, they share its effective operating cost. (b) A
user opens a new set that is not subsidized, and pays its opening cost, consisting of a tax and the operating cost. The subsidy offered
lowers the operating cost, changing it to effective operating cost. In case more users join the set, they share its effective operating
cost.

[λs,j−1, λs,j ] is shared by (ns − j + 1) users, where the variable payment of each user equals
(λs,j − λs,j−1) · (1− ε) · cs/(ns − j + 1). The first user who opened the interval [λs,j−1, λs,j ]
will also pay a non-refundable tax equal to (λs,j − λs,j−1) · ε · cs.

Let us consider the following example, where there is a set s with price cs. The opened
fraction of s is equal to 2/3. Assume that 1/3 of s is fully subsidized, and element 1 is covered
by 1/2 of s, and element 2 is covered by 2/3 of s. Assume also that element 1 was the first to open
the interval [1/3, 1/2] of s. Then, the tax paid by element 1 for opening s equals ε·cs·(1/2−1/3).
The variable payment of element 1 equals (1/2− 1/3) · (1− ε)cs/2, as (1/2-1/3) of its cover is
shared with element 2. The tax paid by element 2 for using s equals ε · cs · (2/3− 1/2)), as he is
the first (and only) user that uses the interval [1/2, 2/3] of s. The variable payment of element 2
equals (1/2−1/3) · (1− ε)cs/2+(2/3−1/2) · (1− ε)cs, as (1/2-1/3) of its cover is shared with
element 1, and (2/3-1/2) of its cover is not shared with any other element. Note that the elements
do not need to contribute any payments for the first 1/3 fraction of s as it is fully subsidized.

Following is a graphical example of the fractional model, where an element chooses a single
set, and some fraction of this set is fully subsidized.

Nash Equilibrium Existence & Convergence. For both the fractional and integral models, the
set cover game always converges to a Nash equilibrium. This property is established by means
of a global potential function Φ on the strategy space. We denote by T the strategy profile
consisting of the integral cover choices of all players, and by T̃ the family of sets that have
already been opened. Note that T̃ may include sets that have been opened, and later “deserted”,
following strategy changes performed by users. The potential function Φ(T , T̃ ) defined for our
integral set cover game is the following:
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Subsidies are given
to an opened set.

subsidies
subsidies

subsidies

effective
opening cost

effective
operating cost
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tax tax

operating cost
effective

operating cost

Figure 3: (a) Set s has a fully subsidized fraction of 1/4. The opening cost of the remaining fraction of s is thus equal to 3/4cs.
Assuming the tax is 20%, the first user joining this fraction pays a tax of 3/20cs, and an operating cost of 3/5cs. A similar scenario
is represented by Figure 2a. (b) Set s′ is not subsidized, used by a single user. Assuming the tax percentage is 20%, the user pays a
tax of 1/5cs′ and an operating cost of 4/5cs′ . Now, in case a value of 1/5cs′ is given as subsidies, the operating cost of the set is
reduced to 3/5cs′ . A similar scenario is represented by Figure 2b.

Φ(T , T̃ ) =
∑

s∈T̃
ε · ĉs +

∑

s∈T

( ns∑

j=1

(1− ε)ĉs

j

)
.

The potential of the fractional model follows directly, as each fraction λs of set s can be
considered as a different set, with opening cost λs · cs and operating cost λs · (1− ε)cs.
Theorem 3. A Nash equilibrium exists for every instance of the set cover game. Moreover, this
game always converges to Nash equilibrium via best response dynamics.

The proof of theorem 3 appears in Appendix A.

3 The Fractional Model

In this section we design a fractional subsidy algorithm that is executed by the central authority.
The algorithm receives as input a parameter ε ≤ 1, and generates a solution with price of anarchy
O( log f

ε ), and taxation ratio ε. The subsidy algorithm runs in iterations, where each iteration
corresponds to a new set fraction purchased by some user. This can be the case either when a
new user joins the system, or when an existing user changes its strategy. In each such case, the
user pays as tax an ε fraction of its payment. The amount of subsidies given in each iteration
is bounded by the amount of collected taxes, thus allowing the subsidies to be fully financed
from taxes. The central authority does not determine which sets are chosen to the cover by the
users. The only guarantee is that the users act according to their best response by choosing a
fractional cover of minimum cost. Each iteration of the algorithm solely consists of an update of
the subsidies. Consider an element (user) e that either joins the system or changes its strategy.
There are four different types of set fractions that can be chosen by e.

1. Fractions that are fully subsidized. These fractions have zero cost.

2. Fractions that are not subsidized, yet are used by other users. A user joining such fractions
does not have to pay any tax. The operating cost of such a fraction is evenly split between
its users.

10



3. Fractions that are not subsidized and are not used by other users. A user choosing these
fractions will have to pay their full cost (tax and a full operating cost).

4. Fractions that have been previously opened, but are currently not used by any user (users
left them following strategy changes). A user joining such a fraction does not have to
pay any tax (as a tax was paid when opening it for the first time), but has to pay its full
operating cost.

The minimum cost cover chosen by element e consists of the lowest cost combination of
fractions of sets adding up to one, while taking into account the charging associated with the
four types of set fractions. In case the element chooses a second-type fraction, its payment will
lower the payments of other elements using the fraction, but will not have any effect on the
cost of the solution. In addition, we do not consider in our analysis the gain from fractions
that are “deserted” following strategy changes performed by users (that is, fractions that have
been opened, but left by all their users). As we do not reduce the cost of our solution when
such fractions are unused, we do not take them into account when an element reuses them by
choosing a fourth-type fraction. Moreover, as both fractions of type three and four are chosen
from the minimum cost feasible set that covers e, any user that already opened a new fraction
of a set in the past will always prefer to return to this fourth-type fraction (that requires no tax
payment), before opening new third-type fractions (that do require tax payment).

Thus, following the best response of user e, the total cost of the solution increases only due
to third-type fractions. Note that a third-type fraction is chosen by e in order to “complete” its
cover, after choosing all possible first, second, and fourth-type fractions of lower cost. Let ρ be
the third-type fraction chosen by e. User e chooses the fraction ρ from the minimal cost set that
covers it. Let cmin be the opening cost of this minimal set. We refer to ρ as the greedy choice,
or greedy cover of the user, and to ρ · cmin as its greedy cost. Let xs be the fraction of set s that
is subsidized by the central authority. Initially, xs = 0 for all sets, and the dual variables ye = 0
for all elements. The algorithm that updates the subsidies offered by the central authority is the
following:

Fractional Subsidy Algorithm (with input ε):
When user e purchases a new (third-type) set fraction:

1. ye ← ye + ε · ρ · cmin

2. For each set s that contains e:

xs ← xs ·
(

1 +
ε · ρ · cmin

2cs

)
+

ε · ρ · cmin

f · 2cs

The variables ye are the variables of the dual linear program of the fractional set cover prob-
lem (Figure 1). These variables are used to maintain an (almost) feasible dual solution. The cost
of the dual solution allows us to bound both the price of anarchy and the taxation ratio of the
algorithm. Note that the value of the primal variables ws, indicating the fraction of set s that is
taken to the cover (Figure 1), is determined both by the third-type fractions chosen by the user,
and by the subsidized fractions xs.

Let ∆xi
s be the change of xs in the ith iteration (i.e., the additional subsidy given to set s).

The amount of subsidies given in the ith iteration is
∑

s∈S∆xi
scs. We show that this amount is

11



bounded by ε · ρ · cmin, which is the tax paid by the user. To do so, we establish a relationship
between the fractional greedy cost G, the fractional subsidy cost F and the total profit D of the
dual solution we produce. Note that in each iteration the amount of taxes collected is exactly the
change in the dual cost (ε · ρ · cmin). Let ∆Gi, ∆Fi and ∆Di be the change of the fractional
greedy cost, the fractional subsidy cost, and the dual cost, respectively, in the ith iteration.
Lemma 4. In each iteration i, ∆Gi = 1

ε ∆Di, and ∆Fi ≤ ∆Di. Thus, ∆Fi/∆Gi ≤ ε.

Proof. In each iteration the greedy cost ∆Gi = ρ · cmin, and ∆Di = ε · ρ · cmin. Thus, ∆Gi =
1
ε ·∆Di. In case

∑
s|e∈s xs > 1, element e is covered by fully subsidized set fractions and thus

ρ = 0. Thus, we get that in each iteration, the subsidy cost, ∆Fi, is:

∑

s|e∈s

cs
ε · ρ · cmin

2cs

(
xs +

1
f

)
≤ ε · ρ · cmin ≤ ∆Di.

As ∆Di equals the amount of new taxes collected in the ith iteration, ∆Fi is the subsidy cost
in the ith iteration, and ∆Gi is the opening cost of the new set fraction purchased in the same
iteration, the next corollary follows directly.
Corollary 5. The taxation ratio of the fractional subsidy algorithm is ε. Moreover, the subsidy
cost is bounded by the amount of taxes collected.
Lemma 6. The dual solution D produced is feasible up to factor of O(log f).

Proof. To prove the lemma, consider the dual constraint of a set s, and consider the fraction of
s subsidized by the central authority. We prove by induction, that for all sets s, xs is at least:
xs ≥ 1

f

(
2

1
2cs

∑
e∈s ye − 1

)
.

Initially, this inequality holds trivially. Consider an iteration in which we increase ye by ∆ye

and also increase the value of xs. Let xs and x′s be the values in the beginning and at the end of
the iteration, respectively. Similarly, let ye and y′e be the values in the beginning and at the end
of the iteration, respectively (where y′e = ye + ∆ye). Then:

x′s = xs ·
(

1 +
ε · ρ · cmin

2cs

)
+

ε · ρ · cmin

f · 2cs

= xs ·
(

1 +
∆ye

2cs

)
+

∆ye

f · 2cs

≥ 1
f

(
21/(2cs)

∑
e∈s ye − 1

)
·
(

1 +
∆ye

2cs

)
+

∆ye

f · 2cs

=
1
f

(
21/(2cs)

∑
e∈s ye ·

(
1 +

∆ye

2cs

)
− 1

)
·

≥ 1
f

(
21/(2cs)

∑
e∈s ye · 2∆ye/(2cs) − 1

)
=

1
f

(
21/(2cs)

∑
e∈s y′e − 1

)
.

The first inequality follows by the induction hypothesis. The second inequality follows since
2y ≤ 1 + y for y ≤ 1 (note that as ε, ρ ≤ 1, and cmin ≤ cs, it holds that ε·ρ·cmin

cs
≤ 1). Finally,

it is easy to observe that xs is at most 3 (in the beginning of the iteration, xs < 1, as s is not
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fully subsidized, and its value is increased up to 3 following the current iteration). Thus we get
that 1

f

(
21/(2cs)

∑
e∈s ye − 1

)
≤ 3. Therefore, the sum of the variables ye in the dual constraint

corresponding to s is at most 2cs · log2(1 + 3f) = O(log f) · cs.

Theorem 7. The price of anarchy of the final solution is O( log f
ε ), and the taxation ratio is ε.

Proof. The taxation ratio follows from Corollary 5. Let D′ be a feasible dual solution obtained
from D by dividing it by O(log f). The total cost of the solution is bounded by the sum of the
subsidies given by the central authority and the total greedy cost. By Lemmas 4 and 6 we get
that the total cost of the solution is then at most:

G + F = O

(
(1 +

1
ε
) log f

)
D′ = O

(
log f

ε
OPT

)
.

4 The Integral Model

In this section we show how to obtain a subsidy algorithm for the integral version of the problem,
which requires several more ideas and a careful analysis. The algorithm receives as input a pa-
rameter ε ≤ 1, and generates a solution with price of anarchy O

(
1
ε log f log

(
n
ε

))
, and taxation

ratio ε.
Let OPT be the cost of an optimal integral solution. We design a subsidy algorithm that

computes a solution with the properties stated above, given the value of OPT. Note that we
can assume (using doubling) that the value of OPT is known up to a factor of 2. The complete
subsidy algorithm runs in phases, as follows. We start by guessing α = mins∈S cs. If it turns out
that the total cost of the solution exceeds Θ(α log f log(n

ε
)

ε ), we update the value of α by doubling
it, and start a new phase by restarting the algorithm from the current event. Since the success of
our algorithm is guaranteed whenever α ≥ OPT, then it holds in the last phase that α ≤ 2OPT.
Therefore, the total cost of the solution is the sum of a geometric sequence which is at most
twice the bound on the cost of the last phase of our algorithm. Moreover, this does not influence
the taxation ratio, that is ε in each such phase separately. Note that as we guess the value of the
optimum solution, we can ignore all sets with cost greater than α, since these sets cannot belong
to an optimal solution (and we thus assume that α ≥ maxs∈S cs).

The algorithm maintains a variable xs ≥ 0 for each s ∈ S, and updates it as in the fractional
case. Unlike the fractional case, these variables do not denote (fractional) subsidies. Rather,
the value of xs is used in order to determine whether the set s should be (fully) subsidized. Let
xj =

∑
s∈Sj

xs for each element j ∈ N , where Sj denotes the collection of sets containing
element j. We define C to be the family of sets in S that are chosen to the cover, either by the
greedy choices of the users, or by the central authority, and define C̃ ⊆ C to be the family of sets
that are (fully) subsidized. We denote by C and C̃ the set of all elements covered by the members
of C and C̃, respectively. The following potential function is used throughout the algorithm:

Φ(ε) =
∑

j 6∈C̃

exp
(
(xj − 1) · ln

(e · n
ε

))
+exp

(
1
2α

∑

s∈S

[
cs · IC̃(s)− 3

2
xscs · ln

(e · n
ε

)]
− ε

)
.
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The function IC̃ above is the characteristic function of C̃, that is, IC̃(s) = 1 if s ∈ C̃,
and IC̃(s) = 0 otherwise. The potential function is used to determine whether a set s should
be subsidized. More specifically, after increasing the value xs, the set s is added to the cover
C̃ (that is, s is subsidized), only if as a result the potential function decreases. Throughout
the analysis of the algorithm, the first term of the potential function ensures that whenever the
fraction assigned to an element j is at least 1 (that is, xj ≥ 1), then j is covered by a fully
subsidized set. The second term is used to both bound the cost of the subsidized sets and the
total cost of the solution. This part of the potential function was carefully adjusted, so that both
the total cost of the solution and the subsidy ratio are maintained. Several constants that are used
later on by the algorithm were also chosen carefully so that the subsidy ratio is exactly ε.

Consider a user e that either joins the system, or performs a best-response move. In either
case, e chooses an integral cover of minimum cost, i.e., it chooses a min cost set covering it.
If this set is either subsidized, or used by users that joined the system previously, then the total
solution cost does not increase and the subsidy algorithm does nothing. In addition, we do
not consider in our analysis the gain from sets that are “deserted” following strategy changes
performed by users. As we do not reduce the cost of our solution when such sets are unused, we
do not take them into account when an element reuses them. Moreover, any user that already
opened a set in the past will prefer to return to this “deserted” set (requiring no tax payment),
instead of opening a new one (requiring tax payment). In case the user chooses a new set, that is,
a set that is neither subsidized, “deserted”, nor used by other users, we implement the following
subsidy algorithm:

Integral Subsidy Algorithm (with input ε):
Let ε′′ = 1

16ε and let ε′ = ε
3 ln

(
e·n
ε′′

) .

Let s′ be the new set chosen by the user and let cmin be the cost of the set:

1. ye ← ye + ε′ · cmin

2. For each set s that contains e:

(a) xs ← xs ·
(
1 + ε′cmin

2cs

)
+ ε′ · cmin

f · 2cs
.

(b) Subsidize the full cost of set s (add it to C̃) if by doing so the value of the
potential function Φ(ε′′) is at most its value before the increment of xs.

The algorithm updates the variables xs each time a user purchases a new set. In each such
iteration the tax collected from the user is εcmin. We will show that the total subsidy given by
the algorithm is at most the amount of tax that was collected until that time. The analysis of our
algorithm’s performance is based on the following lemma.
Lemma 8. For any value ε ≤ 1, Φ(ε) satisfies the following properties:

1. At start Φ(ε) ≤ 1, and at any time during the execution of the algorithm Φ(ε) > 0.

2. Each time the fraction xs of a set s is increased by the algorithm, then either adding it to
C̃, or not adding it, does not increase the value of Φ(ε).
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Proof. In order to simplify notation, we use in the proof Φ instead of Φ(ε). We prove the two
parts of the lemma:

Proof of (1): At start,

Φ = n · exp
(
− ln

(e · n
ε

))
+ exp(−ε) = n · ε

e · n + exp(−ε) =
ε

e
+ exp(−ε) ≤ 1.

The last equality follows since ε ≤ 1. It is easy to verify that each term in the potential
function is always positive, and therefore the potential function is always positive.

Proof of (2): The proof is probabilistic. We prove that, adding s to C̃ with probability p and
not adding it with probability (1 − p), decreases the expected cost of the potential function Φ.
Therefore, at least one of these options does not increase the value of Φ. Let δs be the value
by which the fraction of set s is incremented. We choose to include s in C̃ with probability
p = 1 − exp(−δs ln

(
e·n
ε

)
). By linearity of expectation, we may consider each term of the

potential function separately.
We consider the contribution of some element j 6∈ C̃ to the first term of the potential function.

If j 6∈ s, then the first term remains as is. Otherwise, the expected value of its contribution is:

(1− p) · exp
(
(xj + δs − 1) · ln

(e · n
ε

))
+ p · 0

= exp
(
−δs ln

(e · n
ε

))
· exp

(
(xj + δs − 1) · ln

(e · n
ε

))
= exp

(
(xj − 1) · ln

(e · n
ε

))
.

It remains to bound the expected value of the second term of the potential function. Let C̃ be the
sets that are fully subsidized before the current iteration, where the value of xs is increased. The
set s is not in C̃, as otherwise the current element would already be covered by a fully subsidized
set and the current iteration would not have been initiated. Let T be the value of the second term
of the potential function before increasing the fraction xs:

T = exp

(
1
2α

∑

s∈S

[
csIC̃(s)− 3

2
xscs · ln

(e · n
ε

)]
− ε

)
.

Let C̃′ be the sets that are fully subsidized after the current iteration. Therefore, C̃′ = C̃ ∪ {s}
with probability p, and C̃′ = C̃ with probability (1 − p). Let T ′ denote the value of the second
term with respect to the cover C̃′, and E[·] denote the expectation value. Therefore,

E[T ′] = T · exp
(
− 1

2α
· 3
2
δscs · ln

(e · n
ε

))
· E

[
exp

(
1
2α

· csIC̃′(s)
)]

. (1)

We would like to bound the term E
[
exp

(
1
2αcsIC̃′(s)

)]
. As IC̃′(s) = 1 with probability p and

IC̃′(s) = 0 with probability (1− p), we get that
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E
[
exp

(
1
2α

· csIC̃′(s)
)]

= exp
(
−δs ln

(e · n
ε

))
+

(
1− exp

(
−δs ln

(e · n
ε

)))
· exp

( cs

2α

)

≤ 1− δs ln
(e · n

ε

)
+ δs ln

(e · n
ε

)
exp

( cs

2α

)
(2)

= 1 + δs ln
(e · n

ε

)
·
(
exp

( cs

2α

)
− 1

)
(3)

≤ 1 + δs ln
(e · n

ε

)
· 3cs

4α
≤ exp

(
3δscs · ln

(
e·n
ε

)

4α

)
. (4)

Here, (2) follows since for all y ≥ 0 and z ≥ 1, e−y +(1−e−y) ·z ≤ 1−y+y ·z, (4) follows
since ey − 1 ≤ 3y/2 for all 0 ≤ y ≤ 1/2 (recall that α ≥ maxs∈S cs); and since 1 + y ≤ ey

for all y ≥ 0. Plugging the above term in (1), we conclude that the expected value of the second
term of the potential function after the current iteration is at most

E[T ′] ≤ T · exp
(
− 1

2α
· 3
2
δscs · ln

(e · n
ε

))
· exp

(
3δscs · ln

(
e·n
ε

)

4α

)
= T,

completing the proof of the second part of Lemma 8.

By Lemma 8 the algorithm is well defined throughout the execution of the algorithm, and
it follows that Φ(ε) is monotonically non-increasing. Using Lemma 8, we now prove our main
Theorem:.

Theorem 9. For any ε ≤ 1, the price of anarchy of the solution is O

(
log f log(n

ε )
ε

)
, and the

taxation ratio is ε.

Proof. Let F be the fractional subsidy cost, that is F =
∑

s∈S xscs. Let I be the integral subsidy
cost,

∑
s∈C̃ cs. Let G be the total cost of the greedy integral choices of the users. Finally, let D

be the total profit of the dual solution produced by the algorithm. The total cost of the solution
is the sum of the cost of the greedy choices and the cost of the subsidies (that is, (G + I)).

By the first part of Lemma 8, the value of the potential function stays at most 1 during the
execution of the subsidy algorithm. Therefore, if during the execution, xj ≥ 1 for some user j,
then j ∈ C̃, since otherwise the contribution of the term exp

(
ln

(
e·n
ε′′

)
[xj − 1]

)
itself would be

at least 1. That is, if a new user j arrives, and xj ≥ 1, then j is covered by a fully subsidized set,
and its greedy cost is zero. Due to this property, Lemmas 4 and 6 hold for the integral model as
well, with respect to ε′. Thus, we get that

• In each iteration i, ∆Gi = 1
ε′ · ∆Di, and ∆Fi ≤ ∆Di. Hence, we get that F ≤ D and

that G = D/ε′.

• The dual solution D is feasible up to factor of O(log f).
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Next, we prove that the price of anarchy achieved by our algorithm is O(
log f log(n

ε )
ε ). Our

subsidy algorithm runs with the function Φ(ε′′). By the second term of the potential function,
we get that:

exp

(
1
2α

∑

s∈S

[
csIC̃(s)− 3

2
xscs · ln

(e · n
ε′′

)]
− ε′′

)
≤ 1.

Therefore, it holds that:

I =
∑

s∈S
csIC̃(s) ≤

∑

s∈S

3
2
xscs · ln

(e · n
ε′′

)
+ 2αε′′ (5)

≤
∑

s∈S

3
2
xscs · ln

(e · n
ε′′

)
+ 4ε′′ · OPT =

3
2
F · ln

(e · n
ε′′

)
+ 4ε′′ · OPT. (6)

Thus, we get that the total solution cost is at most:

G + I ≤ D

ε′
+

3
2
D · ln

(e · n
ε′′

)
+ 4ε′′ · OPT (7)

=
1
ε
· 3D · ln

(e · n
ε′′

)
+

3
2
D · ln

(e · n
ε′′

)
+ 4ε′′ · OPT (8)

≤ 1
ε
O(log f) · OPT · ln

(e · n
ε′′

)
+ O(log f) · OPT · ln

(e · n
ε′′

)
+ 4ε′′ · OPT (9)

= O

(
log f log

(
n
ε

)

ε

)
· OPT.

Inequality (7) follows since F ≤ D and G is added to both sides of (6). Inequality (8)
follows by plugging the value ε′ = ε

3 ln
(

e·n
ε′′

) and (9) follows by since the dual solution D is

feasible up to factor of O(log f).
We now prove that the ratio between the sum of the subsidies offered, I , and the total pay-

ments of the users, G, along the game course, is at most ε. Thus, by collecting as taxes a fraction
equal to ε of the payment made by the user in each iteration where a new set is purchased, the
central authority is able to finance the subsidies by the taxes collected from the users. We thus
get that the taxation ratio is ε. Going back to Inequality (6), we get that:

I ≤ 3
2
F · ln

(e · n
ε′′

)
+ 4ε′′ · OPT ≤ 3

2
D · ln

(e · n
ε′′

)
+ 4ε′′ · OPT (10)

≤ 3
2
Gε′ · ln

(e · n
ε′′

)
+ 4ε′′ · (G + I) =

3
4
ε ·G +

1
4
ε · I. (11)

Inequality (10) follows as F ≤ D. Inequality (11) follows since G = D
ε′ , the fact that

OPT ≤ G + I (since G and I together form a feasible integral solution), and setting ε′′ = ε
16 .

Simplifying the last inequality, we get that for any value ε ≤ 1:

I

G
≤

3
4ε

1− 1
4ε
≤ ε.
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5 Conclusions

We considered a non-cooperative set cover game in which each user acts selfishly and chooses a
cover that minimizes his cost. We focused on a dynamic setting, where players follow the natural
game course induced by best-response dynamics. We took an approach that does not rely on any
prior knowledge of the set of users that actually participates in the game, and thus explored a
natural setting in which users join the game starting from an empty configuration.

We designed a dynamic subsidy mechanism, where a central authority creates incentives
for users to purchase services by offering subsidies that reduce their price, in order to improve
on the system performance. The subsidies are financed by taxes collected from the users on
purchased sets. We addressed both an integral model in which sets can only be fully bought and
each element is covered by a single set, and a fractional model in which a fraction of a set can be
bought and each user can be covered by several sets. For both models we proposed a mechanism
that achieves our main goal which is keeping the price of anarchy as low as possible, while
collecting as taxes (and spending in subsidies) only a small fraction of the sum of the payments
of the users.

To the best of our knowledge, this is the first work to suggest a dynamic online subsidy
mechanism, where there are no game rules or system rules to be defined beforehand. Rather, the
policy of the central authority changes over time, and is only determined by the current state of
the system. As being the first such suggested setting, we believe our work leaves room for further
research. One main direction is to apply similar mechanisms for other problems, for example,
cost-sharing problems in settings with congestion. Another direction for future work is the time
convergence to a Nash equilibrium, which remains to be explored.
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A Proof of Theorem 3

Theorem 3. A Nash equilibrium exists for the set cover game. Moreover, this game always
converges to Nash equilibrium via best response dynamics.

Proof. We prove the theorem for the integral model. The proof can be easily extended for the
fractional case, as done for the fractional model presented in [7].

We prove that the function Φ is an exact potential for the set cover game. That is, the
decrease in the value of the potential function following a move performed by a player is equal
to the decrease in the payoff of the respective player. The strategy space of the set cover game
consists of all possible feasible covers, and is thus finite. Consequently, as Φ admits a minimal
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value over the strategy space, the game possesses a (pure-strategy) equilibrium. Moreover, there
is a one-to-one correspondence between Nash equilibrium solutions and the solutions defining
a local minimum of the potential function, and convergence of best-response dynamics to Nash
equilibrium is thus guaranteed.

Consider a strategy profile T where si is the set chosen by player i. We denote by ns the
number of elements using set s according to T . In case i is the first player to purchase si, it
pays a tax equal to ε · csi . Note that as this tax is non-refundable, it cannot be reduced by any
change of strategy. The variable cost share of player i is equal to (1−ε)ĉsi

nsi
. Now, assume that this

variable sum can be reduced in case i performs a best-response move and switches from set si

to set s∗i , resulting in a new strategy profile T ∗. We denote by n∗s the number of elements using
set s according to T ∗. We compare the change in i’s payoff and in the value of the potential
function in the two following possible cases:

1. Assume set s∗i was opened previously, and thus i does not have to pay any tax for using
it. Thus, the family of sets T̃ ∗ is identical to T̃ . As i performs a best-response move, its
payoff is reduced, and thus

(1− ε)ĉs∗i
n∗s∗i

<
(1− ε)ĉsi

nsi

.

As n∗s∗i = ns∗i + 1, it holds that

(1− ε)ĉs∗i
ns∗i + 1

<
(1− ε)ĉsi

nsi

. (1)

We turn to compare the potential value of (T , T̃ ) and (T ∗, T̃ ∗):

Φ(T ∗, T̃ ∗) =
∑

s∈T̃ ∗
ε · ĉs +

∑

s∈T ∗

( n∗s∑

j=1

(1− ε)ĉs

j

)
(2)

=
∑

s∈T̃
ε · ĉs +

∑

s∈T

( ns∑

j=1

(1− ε)ĉs

j

)
+

(1− ε)ĉs∗i

ns∗i + 1
− (1− ε)ĉsi

nsi

(3)

<
∑

s∈T̃
ε · ĉs +

∑

s∈T

( ns∑

j=1

(1− ε)ĉs

j

)
= Φ(T , T̃ ). (4)

Equality (3) follows as the taxes paid in T̃ and T̃ ∗ are equal, and due to the change in the
number of users of si and s∗i in T and T ∗. Inequality (4) follows from Inequality (1).

2. Assume that player i is the first player that purchases s∗i . Thus, the family of sets T̃ ∗
includes the sets in T̃ , plus the additional set s∗i . In that case, i has to pay both a tax and
a variable sum (the effective operating cost) for using s∗i . As i performs a best-response
move, its payoff is reduced, and thus
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ε · ĉs∗i + (1− ε)ĉs∗i <
(1− ε)ĉsi

nsi

. (5)

We turn to compare the potential value of (T , T̃ ) and (T ∗, T̃ ∗):

Φ(T ∗, T̃ ∗) =
∑

s∈T̃ ∗
ε · ĉs +

∑

s∈T ∗

( n∗s∑

j=1

(1− ε)ĉs

j

)
(6)

=
∑

s∈T̃
ε · ĉs + ε · ĉs∗i +

∑

s∈T

( ns∑

j=1

(1− ε)ĉs

j

)
+ (1− ε)ĉs∗i −

(1− ε)ĉsi

nsi

(7)

<
∑

s∈T̃
ε · ĉs +

∑

s∈T

( ns∑

j=1

(1− ε)ĉs

j

)
= Φ(T , T̃ ). (8)

Equality (7) follows as in T̃ ∗ there is an additional tax of ε · ĉs∗i compared to the taxes paid
in T̃ , and due to the change in the number of users of si and s∗i in T and T ∗. Inequality
(8) follows from Inequality (5).

Note that in both cases, the difference between the potential function Φ(T ∗, T̃ ∗) and Φ(T , T̃ )
is equal to the difference between player i’s payoff with respect to the strategy profiles T ∗ and
T .

Note that in the second case, following the purchase of a new set s∗i , this set might be fully
subsidized, changing its effective cost to zero. The change in the payoff of player i remains
equal to the change in the value of the potential function in this case as well.
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