
Improved Bounds for Online Routing and Packing Via a Primal-Dual Approach

Niv Buchbinder
Computer Science Department

Technion, Haifa, Israel
E-mail: nivb@cs.technion.ac.il

Joseph (Seffi) Naor∗

Microsoft Research
Redmond, WA 98052

E-mail: naor@cs.technion.ac.il

Abstract

In this work we study a wide range of online and offline
routing and packing problems with various objectives. We
provide a unified approach, based on a clean primal-dual
method, for the design of online algorithms for these prob-
lems, as well as improved bounds on the competitive factor.
In particular, our analysis uses weak duality rather than a
tailor made (i.e., problem specific) potential function. We
demonstrate our ideas and results in the context of routing
problems.

Using our primal-dual approach, we develop a new
generic online routing algorithm that outperforms previ-
ous algorithms suggested earlier by Azar et al. [5, 4]. We
then show the applicability of our generic algorithm to var-
ious models and provide improved algorithms for achieving
coordinate-wise competitiveness, maximizing throughput,
and minimizing maximum load. In particular, we improve
the results obtained by Goel et al. [13] by an O(log n)
factor for the problem of achieving coordinate-wise com-
petitiveness, and by an O(log log n) factor for the problem
of maximizing the throughput. For some of the settings we
also prove improved lower bounds. We believe our results
further our understanding of the applicability of the primal-
dual method to online algorithms, and we are confident that
the method will prove useful to other online scenarios.

Finally, we revisit the notions of coordinate-wise and
prefix competitiveness in an offline setting. We design the
first polynomial time algorithm that computes an almost op-
timal coordinate-wise routing for several routing models.
We also revisit previously studied routing models [16, 11]
and prove tight lower and upper bounds of Θ(log n) on pre-
fix competitiveness for these models.

1 Introduction

In this work we study a wide range of allocation prob-
lems with various objectives. In the most general setting,

∗On leave from the Computer Science Dept., Technion, Haifa, Israel.

we are given a set of clients and facilities, where each facil-
ity has bounded capacity, and thus it can only be allocated to
a limited number of clients. In general, a client may require
service from a subset of the facilities (and not just one fa-
cility). Thus, clients specify, as part of the input, subsets of
the facility set that can provide service to them. An alloca-
tion algorithm has to decide which clients to serve, and for
each served client it needs to choose a single service option.
We consider mostly online settings, in which clients arrive
one-by-one in an adversarial mode, and allocation decisions
cannot be reversed. We also consider certain offline settings
in which all requests are known in advance. Interesting spe-
cial cases of this very general framework are e.g., the well
studied routing and tree packing problems in a network.
The facilities in these problems correspond to the links of
the network. In the routing problem each client specifies
source and destination vertices, bandwidth demand, and a
set of feasible paths connecting the source to the destina-
tion. In the case of tree packing, each client specifies a set
of terminals, demands, and a set of feasible Steiner trees
that span the set of terminals. To keep the discussion sim-
ple and clear, we demonstrate our ideas and results in the
setting of routing problems, and later on explain the neces-
sary modifications for handling other packing problems.

1.1 Routing

Routing and call admission problems in various models
have been studied extensively in both offline and online set-
tings. Consider a network modelled by a graph G = (V,E)
(|V | = n, |E| = m), which can be either directed or undi-
rected. The edges in the graph have capacities, denoted by
u : E → N, which provide an upper bound on the sum of
the demands of the routes that can be packed into an edge.
The set of routing requests is R and, for simplicity, each re-
quest ri ∈ R is associated with a bandwidth demand of one
unit1 between a source vertex si and a target vertex ti. In

1Our results can be extended, with obvious limitations, to handle sce-
narios in which requests have different bandwidth demands. We elaborate
on this later on.

order to serve a request ri we should allocate bandwidth for
the request on paths that connect the source vertex si to the
target vertex ti. There are several common ways by which
this can be done. The setting in which each request should
be served via a single path is referred to as unsplittable rout-
ing. A less restrictive setting in which each request can be
served via multiple routes is called splittable routing. We
associate each request with a set of allowed paths (routes)
P(ri), capturing the fixed routes model, in which requests
can only be served via a unique given path, as a special case.
Let b(ri) be the sum of all bandwidth allocations assigned
to request ri on all paths P ∈ P(ri). The total bandwidth
of a routing solution is the total bandwidth allocated to all
the requests. A feasible routing solution is an allocation of
bandwidth to requests that does not violate any of the edge
capacities. When the routing solution is infeasible, the load
on an edge is the total bandwidth allocated to it divided by
its capacity. The load of a routing solution is the maximum
load taken over all edges.

An important parameter that is used in our analysis, as
well as in previous analysis, is U , which is defined to be the
minimum value by which the capacities in the network need
to be multiplied so as to obtain a feasible splittable solution
that routes all requests. When routes are fixed, U reduces to
the maximum, taken over all edges, of the number of routes
that pass through an edge divided by its capacity.

Routing models differ with respect to the issue of
whether requests have to be fully served or not. All-or-
nothing routing means that a request has to be allocated
a total bandwidth (splittable or unsplittable) of one unit
[10]. Other models relax this requirement and allow the
routing algorithm to allocate requests less than one unit of
bandwidth. The work of [13] introduced another model,
primarily of interest in online settings, in which a rout-
ing algorithm allocates a weight w(ri, P) to request ri on
path P . Eventually, the bandwidth given to request ri

on path P is its “fair” share with respect to its weight.
That is, the bandwidth allocated to request ri on path P ,
b(ri, P) = min{1,mine∈P {u(e)w(ri,P)

w(e) }}, where w(e) is
the total weight allocated to all paths (of all requests) using
edge e.

Routing algorithms are designed to achieve several nat-
ural goals. One goal is to maximize the utility of the net-
work which is the total bandwidth allocated to all requests.
In a somewhat dual setting, the routing algorithm is not al-
lowed to reject any of the requests, in which case the goal
is to minimize the maximum load. Another important rout-
ing goal is fairness. An accepted notion of fairness is max-
min fairness [7, 14]. To define a fair routing solution, we
consider the bandwidth allocation to the requests (b(ri) to
request ri) as a vector in which the entries (allocations) are
sorted from small to large. This vector is called a band-
width vector. A max-min fair routing solution is then an

allocation of bandwidth to requests which defines a lexico-
graphically maximal bandwidth vector. An intuitive way of
viewing a max-min fair solution is that one cannot increase
the bandwidth allocation to a request ri without decreas-
ing the bandwidth allocated to requests that have received
at most the bandwidth given to ri.

A more general fairness measure was suggested by
Kleinberg et al. [15]. A routing solution is called γc-
coordinate-wise competitive if for every i, the ith coordi-
nate of the bandwidth vector is at least 1/γc times the ith
coordinate in any feasible routing solution. The beauty of
this definition is that a γc-coordinate-wise competitive rout-
ing approximates all possible routings. In particular, it ap-
proximates the max-min fair routing, as well as the rout-
ing solution that maximizes the total bandwidth allocated,
achieving, in some sense, a solution which is the “best of
all worlds”. Kleinberg et al. [15] also studied a slightly
weaker notion of prefix competitiveness. A routing solution
is γP -prefix competitive if for every i, the sum of the first
i coordinates in the bandwidth vector is at least 1/γP times
the sum of the first i coordinates in any feasible routing so-
lution. It is not hard to see that a γc-coordinate-wise com-
petitive routing is also γc-prefix competitive routing. The
converse, however, is not necessarily true.

Previous Work: Routing algorithms have been studied
extensively. We thus mention only results that are directly
relevant to our current work. In [4, 5] two different (but sim-
ilar in spirit) online routing algorithms were suggested. The
objective in [5] is maximizing the total throughput, while
the algorithm in [4] minimizes the load. These algorithms,
as well as the ideas behind them, are closely related to our
results and are further discussed in Section 2.1. In [8] an
online routing algorithm, based on a primal-dual approach,
was suggested. The algorithm achieves a splittable rout-
ing which is O(log n)-competitive. The algorithm draws
on ideas from previous work on covering problems [1, 2].

The elegant notion of max-min fairness was consid-
ered in many settings [7, 14]. The general framework
of prefix and coordinate-wise competitiveness was sug-
gested in [15]. More properties of these measures (in
the offline case) were studied later on in [16, 11]. Goel
et al. [13] studied the problem of achieving coordinate-
wise competitiveness online. They designed an algorithm
which is O(1

ε log2 n(log U)1+ε)-coordinate-wise competi-
tive for any ε > 0. In a relaxed setting where the al-
gorithm is allowed to assign weights instead of allocating
bandwidth directly, [13] designed an algorithm which is
O(log2 n log U)-coordinate-wise competitive. Routing and
load balancing are closely related problems [6]. The on-
line load balancing problem in the 1-∞ model was stud-
ied from a fairness perspective in [12]. In this model each
job has weight 1 and it can be assigned to a (given) sub-

set of the machines. They proved that the greedy allocation
yields an assignment which is O(log n)-prefix competitive,
where n is the number of jobs. This result was recently im-
proved by [9] who showed that the greedy allocation is, in
fact, O(log m)-prefix competitive, where m is the number
of machines.

1.2 Results

We provide a unified approach to a wide range of on-
line routing and packing problems with several objectives,
as well as improved bounds on the competitive factor. Our
unified approach is based on a clean primal-dual method
for designing online routing algorithms. The primal-dual
method is one of the fundamental design methodologies
in the areas of approximation algorithms and combinator-
ial optimization. Recently, Buchbinder and Naor [8] have
further extended the primal-dual method and have shown
its applicability to the design and analysis of online algo-
rithms. We use the primal-dual method here for both the
routing algorithms as well as for their analysis. Moreover,
we observe that known online routing algorithms can actu-
ally be viewed and analyzed within the primal-dual frame-
work, thus leading to both simpler and more general analy-
sis. The analysis uses, for example, weak duality rather than
a tailor made (i.e., problem specific) potential function. We
believe our results further our understanding of the primal-
dual method for online algorithms and we are confident that
the method will prove useful in other online scenarios as
well.

Two parameters are of particular interest in routing prob-
lems. The first one is the amount of bandwidth that the
algorithm routes with respect to an optimal routing, and
the second one is the maximum load on the edges. A
(c1, c2)-competitive routing algorithm routes at least 1/c1

of the maximum possible bandwidth, while guaranteeing
that the load on each edge is at most c2. With this notation
in mind we re-examine previously suggested algorithms.
The first algorithm we consider was suggested in [5] for
maximizing the throughput. Using our notation this algo-
rithm is (O(log n), 1)-competitive, provided that the min-
imal edge capacity is at least log n. We show a simple
primal-dual construction and analysis of this algorithm. A
simple change in the algorithm also leads to a construction
of an (O(1), O(log n))-competitive algorithm, that does not
need the restriction on the edges’ capacities. This algorithm
is actually, a bicriteria competitive algorithm that routes a
constant fraction of the optimal number of requests while
incurring a load of O(log n). Next, we reanalyze the prop-
erties of the algorithm in [4] using our primal-dual view.
This algorithm guarantees that if it is possible to route of-
fline all requests without exceeding the capacities, then the
algorithm also routes all requests incurring a load of at most

O(log n). The algorithm has no guarantee if only part of the
requests can be routed offline.

Our main result is the construction, using a primal-dual
approach, of a generic general purpose routing algorithm
that outperforms the algorithms of [5] and [4]. Specifically,
our algorithm is (1, O(log n))-competitive, thus obtaining a
uni-criteria competitive algorithm, as well as satisfying the
guarantee of the algorithm in [4]. A simple example shows
that such a result is optimal for an online algorithm. The
construction of an algorithm with such performance guar-
antees turns out to be non-trivial2. Our generic algorithm
generates an unsplittable all-or-nothing routing; however,
to allow the use of the algorithm in a wide variety of rout-
ing models, its performance is compared to a splittable op-
timal routing which is allowed to allocate to each request
(total) bandwidth in the interval [0, 1]. The stronger per-
formance guarantees of our generic algorithm facilitate the
design of online routing solutions for several models and
objectives, yielding improved bounds. In what follows we
list the main applications of the generic algorithm for which
we obtain improved bounds. We note that there are more
applications for which the known bounds are already tight,
yet our generic algorithm can be used to derive the same
bounds, e.g., [5, 4, 8]. For lack of space we defer the de-
tails to the full version. We find it very elegant that a single
unified routing algorithm can be used as a “black box” to
derive algorithms for so many settings and objectives.

In addition, we observe that our generic online algorithm
does not use the fact that edges in each feasible route in-
deed induce an actual path in the graph. This property
is very useful for extending our results to general pack-
ing models, i.e., to the case where general service options
S ∈ S(ri) are given for each request ri. For example, each
request may consist of a set of terminals, and the “service
sets” are all Steiner trees that span the terminals. In this
case, the set of feasible solutions is given implicitly, and
the algorithm only requires that there exists an oracle that
gets as input a weight function on the edges and outputs
a minimum weight solution. In case the oracle can only
compute a β-approximate solution, the algorithm outputs a
(1, O(β log n))-competitive solution. Dealing with approx-
imate oracles requires only a small change in the algorithm.
For more details see Section 2.
Application 1: coordinate-wise competitiveness. The
first objective we study is achieving online a coordinate-
wise competitive solution. Two settings were previously
studied with respect to this measure. First, a setting with
fixed routes for each request [16], and a second setting in
which each request is allowed to be served in a splittable

2We can easily transform a (c1, c2)-competitive algorithm to a (c1 ·
c2, 1)-competitive algorithm by scaling down all allocated bandwidth.
However, obtaining a (1, c1 · c2)-competitive factor is problematic, since
requests should be allocated bandwidth of at most 1.

Models Coordinate-wise competitiveness
Routes Allocation Lower Bound Upper Bound (Unsplittable)

Splittable Bandwidth Ω(log n log U) O(1
ε
log n log U(log log U)1+ε)

+ Ω(log U log log U) [13]
Weight Ω(log n + log U) [13, 16] O(log n log U)

Fixed Bandwidth Ω(log n + log n log U
log n

) O(1
ε
log n + 1

ε
log n log U

log n
(log log U

log n
)1+ε)

Weight Ω(log U) [16] O(log n + log n log U
log n

)

Figure 1. Upper/Lower bounds on online coordinate-wise competitiveness. Our results are in bold.

fashion [11]. Each setting is then divided into two online
models which were considered in [13]: In the first model,
denoted as a bandwidth model, the algorithm should allo-
cate each request bandwidth directly in the interval [0, 1].
In the second model, the weight model, the algorithm is al-
lowed to give weights to the requests, instead of directly
allocating bandwidth. Figure 1 summarizes the best known
results on online coordinate-wise competitiveness. For each
model we state the best known upper and lower bounds on
achieving coordinate-wise competitiveness online. We re-
mark that our algorithm results in an unsplittable routing,
thus all the upper bounds in Figure 1 for the splittable case
are actually stronger. Our results appear in Figure 1 in bold
and are summarized in the following:

• An O(log n) improvement in the competitiveness over
the algorithms in [13] (for both models).

• A new, almost tight, lower bound of Ω(log n log U) for
the bandwidth model.

• Slightly better competitive algorithms and suitable im-
proved lower bounds when routes are fixed.

Application 2: maximizing throughput. The second ob-
jective we study is maximizing the total throughput. In [13]
a model where requests should be routed in an unsplittable
way and get bandwidth in the interval [0, 1] is considered.
The goal is to maximize the total throughput of the network.
Goel at al. [13] designed an O(log n log log n)-competitive
algorithm for the problem and proved an Ω(log n) lower
bound on the competitive ratio of any deterministic algo-
rithm for the problem. We design a simple algorithm based
on our generic algorithm that tightens the competitive ratio
to O(log n). We also extend their lower bound to the fixed
routes model. We remark that the algorithm in [5] can also
be used in this setting. However, the algorithm in [5] re-
quires the minimal capacity of an edge to be at least log n,
while our algorithm does not have this requirement.

Application 3: minimizing maximum load. The third ob-
jective we study is minimizing the maximum load. In this
setting all requests should be fully routed, and the objec-
tive is to minimize the maximum load. In [4] an optimal
O(log n)-competitive algorithm for the problem was sug-

gested. Their algorithm is based on an underlying algo-
rithm with weaker guarantees than our generic algorithm
(See section 2.1). We show a simple alternative way of ap-
plying our generic algorithm that achieves the same (opti-
mal) competitive ratio. Even though we do not achieve a
better competitive ratio, we claim that using our algorithm
achieves other desired goals, since our algorithm guarantees
that the load on the edges is more evenly spread among the
edges. For more details see Section 3.4.

Offline prefix and coordinate-wise competitiveness. Fi-
nally, we revisit offline questions that arise in the context of
prefix and coordinate-wise competitiveness [16]. In gen-
eral, there is no reason that a single 1-competitive (prefix
or coordinate-wise) solution exists with respect to all so-
lutions. Thus, the first issue is determining the best possi-
ble competitiveness in each of the models under consider-
ation. A separate issue is whether such a solution can be
efficiently computed. Two routing settings were previously
studied with respect to these issues: a fixed routes model
[16] and a splittable routing model [11]. Each model can
be further divided into a restricted setting in which no two
requests can share both their source and target vertices (and
thus there are at most n2 requests), and an unrestricted set-
ting in which two different requests may share both source
and target vertices. We close all the remaining open ques-
tions regarding these two models. Specifically, we prove
that the prefix competitiveness is Θ(log n) for both models,
while the coordinate-wise competitiveness is Θ(log U). In
general, the value U can be as large as the number of re-
quests, which is typically much larger then the size of the
network. Thus, this result shows a separation between the
notion of coordinate-wise competitiveness that is Θ(log U)
and the notion of prefix competitiveness that is Θ(log n),
and thus depends only on the size of the network and not
on the number of requests. Finally, we show how to ef-
ficiently compute an O(log U + log n

log log n)-coordinate-wise
competitive routing with respect to all splittable routings.
Our contributions are the following:

• Construction of a general polynomial time algo-
rithm that computes an (almost optimal) unsplittable

Primal Dual
Minimize:

∑
e∈E u(e)x(e) +

∑
ri

Z(ri) Maximize:
∑

ri

∑
P∈P(ri)

f(ri, P)

Subject to: Subject to:
∀ri ∈ R, P ∈ P(ri):

∑
e∈P x(e) + Z(ri) ≥ 1 ∀ri ∈ R:

∑
P∈P(ri)

f(ri, P) ≤ 1

∀e ∈ E:
∑

ri∈R,P∈P(ri)|e∈P

∑
ri

f(ri, P) ≤ u(e)

Figure 2. A primal-dual pair for the splittable routing problem.

O(log U + log n
log log n)-coordinate-wise competitive so-

lution with respect to all splittable routings. For this
problem only an existential result was known [16].

• Tight upper and lower bounds of Θ(log n) on prefix
competitiveness for both the fixed routes model and the
splittable model. This result improves upon the previ-
ous O(log U) upper bound and the Ω(log n

log log n) lower
bound for the fixed routes model obtained by Kumar
and Kleinberg [16]3. For the splittable model this re-
sult extends the proof in [11] to an unrestricted setting.

• Proof of the existence of an (optimal) O(log U)-
coordinate-wise competitive routing solution for the
splittable routing model.

2 A Generic Online Routing Algorithm

In this section we first inspect previously suggested rout-
ing algorithms and show how they fit into our primal-dual
framework. We then design a generic online routing algo-
rithm which is based on the primal-dual approach and which
outperforms these algorithms. All the algorithms we de-
scribe get requests ri in an online fashion that consist of
a source vertex si, a target vertex ti, and a set of feasible
routes P(ri) that can be used to serve each request. The
set of possible routes, P(ri), can be given either explicitly
or implicitly. When the routes are given implicitly, we re-
quire that there exists an oracle that gets a weight function
w : E → R

+ and returns the shortest path P ∈ P(ri) with
respect to the weight function.

An optimal splittable routing can be formulated as a lin-
ear program. The formulation appears in Figure 2 as the
dual (maximum) linear program with the objective of maxi-
mizing the total throughput. We have a variable f(ri, P) for
each request ri and path P ∈ P(ri) indicating the amount
of bandwidth allocated to request ri on path P . The first set
of constraints guarantees that the total bandwidth allocated
to each request is at most 1. The second set of constraints
guarantees that the edge capacities are not violated. The
corresponding primal program has a variable Z(ri) for each

3In fact, our result shows a bound of min{O(log n), O(log U)}. We
observe that the proof in [16] actually yields γP = Ω(log n

log log n
), rather

than Ω(log U
log log U

), since the family of graphs used for the lower bound
proof has the property that n, the number of vertices, grows as U increases.

request and a variable x(e) for each edge e. The constraints
of the primal program stipulate that for any request ri and
any path P ∈ P(ri), the sum of the variables x(e), taken
over all edges e on the path P , plus the variable Z(ri), is at
least 1.

An online routing algorithm generates a solution to the
dual program in Figure 2. Since our goal is to compare our
performance to an optimal splittable routing, all the algo-
rithms we describe maintain at all times a solution to the
primal program that upper bounds the value of our current
dual solution. It is interesting to note that the online request
arrival can actually be viewed as gradually revealing both
the dual and the corresponding primal programs.

2.1 Previous Online Routing Algorithms

Our primal-dual approach can be used to describe and
analyze several previously suggested routing algorithms.
These algorithm were previously described and analyzed
using problem specific potential function. The first relevant
algorithm (AAP) was suggested in [5] for maximizing the
throughput. The algorithm can be described very simply
using our primal-dual approach.

AAP: Initially: x(e)← 0.
When new request ri = (si, ti, P(ri)) arrives:

1. If there exists a path P (ri) ∈ P(ri) of length < 1
with respect to x(e):

(a) Route the request on any path P (ri) ∈ P(ri)
with length < 1.

(b) Z(ri)← 1.

(c) For each edge e in P (ri):

x(e)← x(e) exp

(
ln(1 + n)

u(e)

)
+

1

n

[
exp

(
ln(1 + n)

u(e)

)
− 1

]

Lemma 2.1. Algorithm AAP is(
O(u(min) ·

[
exp

(
ln(1+n)
u(min)

)
− 1

]
, 1

)
-competitive with

respect to all splittable routing solutions. If u(min) ≥ log n
then the algorithm is (O(log n), 1)-competitive.

Proof sketch. The main observation is that when a request

Primal Dual
Minimize:

∑
e∈E x(e) +

∑
ri

Z(ri) Maximize:
∑

ri

∑
P∈P(ri)

f(ri, P)

Subject to: Subject to:
∀ri ∈ R, P ∈ P(ri):

∑
e∈P

x(e)
u(e)

+ Z(ri) ≥ 1 ∀ri ∈ R:
∑

P∈P(ri)
f(ri, P) ≤ 1

∀e ∈ E: 1
u(e)

∑
ri∈R,P∈P(ri)|e∈P f(ri, P) ≤ 1

Figure 3. A primal-dual pair for the problem in [4] .

ri is routed, the increase of the primal cost is at most

2
(
u(min) ·

[
exp

(
ln(1+n)
u(min)

)
− 1

])
+ 1. This follows since

Z(ri) ← 1, and since for edges on the path P (ri) satisfy∑
e∈P (ri)

x(e) ≤ 1. Whenever the algorithm decides to
reject a request, the change in the primal cost is zero. The
second observation is that the algorithm maintains a feasible
primal solution at all times. This follows since Z(ri) ← 1
for each request with shortest path less than 1. Each time a
request is routed, the dual profit is 1. Thus, by weak dual-
ity the algorithm routes at least the fraction claimed in the
lemma of the maximal possible requests.

It remains to prove that the algorithm routes at most
u(e) requests on each edge e. To this end, observe that for
each edge e, the value x(e) is the sum of a geometric se-

quence with initial value 1
n

[
exp

(
ln(1+n)

u(e)

)
− 1

]
and mul-

tiplier exp
(

ln(1+n)
u(e)

)
. Thus, after u(e) requests are routed

through edge e, the value x(e) is:

x(e) =
1

n
·
(

exp

(
ln(1 + n)

u(e)

)
− 1

)
·
exp

(
u(e) ln(1+n)

u(e)

)
− 1

exp
(

ln(1+n)
u(e)

)
− 1

=
1

n
· (1 + n− 1) ≥ 1.

Since the algorithm never routes requests on edges for
which x(e) ≥ 1, we are done.

Remark 2.2. It is interesting to note that a small change in
the update rule of x(e) to:

x(e)← x(e)

(
1 +

1

u(e)

)
+

1

n · u(e)

yields an algorithm which is (O(1), O(log n))-competitive.
This algorithm violates the capacity constraints by
O(log n), but does not require that the minimal capacity
is at least log n.

The second relevant algorithm (AAFPW) was sug-
gested in [4] for the problem of minimizing the maximum
load. The main idea used for the analysis of this algorithm is
looking at a normalized version of the system that appears
in Figure 2. The primal-dual normalized pair is shown in
Figure 3. With this normalized form the “heart” of this on-
line algorithm can be described as follows:

AAFPW: Initially: x(e) ← 1
2m (m is the number of

edges). When a new request ri arrives:

1. Let P (ri) ∈ P(ri) be the shortest path with respect
to x(e)

u(e) , and let α be the length of P (ri).

2. If α ≥ 1 or there is an edge such that x(e) > 2
return “FAIL”, else:

(a) Route the request on P (ri).

(b) For each edge e in P (ri):
x(e)← x(e)(1 + 1

2u(e)).

(c) Z(ri)← 1− α.

Lemma 2.3. If there exists a feasible splittable routing so-
lution that routes all requests, then AAFPW routes all the
requests and the maximum load is O(log n).

Proof. The second part of the lemma is easier. We return
“FAIL” when x(e) > 2. Thus, if p is the number of re-
quests we route on an edge e, then: 1

2m (1 + 1
2u(e))

p−1 ≤ 2.
Therefore, the number of requests that the algorithm routes
on edge e is at most u(e) · O(log n). To prove the first part
of the lemma, note first that the total initial cost of the pri-
mal solution is 1/2. In any iteration in which the algorithm
routes a request, the total change in the cost of the primal
solution is:

1− α +
∑

e∈P (ri)

x(e)

2u(e)
= 1− α + α/2 = 1− α/2.

The generated primal solution is always feasible since
we update Z(ri)← 1− α. Assume now that the algorithm
returns “FAIL” after routing N ′ < N requests. There are
two possibilities:
First case: α ≥ 1. This means that the primal solu-
tion of the previous phase is feasible without any addi-
tional updates. Thus, we have a primal solution with cost
1/2 + N ′ < N . This contradicts the fact that we have a
feasible dual solution with profit N .
Second case: For some edge e, x(e) > 2. Since x(e) is
multiplied by 1 + 1

2u(e) in each iteration, it means that in
more than u(e) iterations we increased the weight of x(e)
while x(e) ≥ 1. In those iterations, α ≥ x(e)

u(e) ≥ 1
u(e) . Thus,

after so many iterations, and when setting Z(ri) = 1 for the

last request (that was rejected), we obtain a feasible primal
solution with cost strictly less than:

1/2 + (N ′ − u(e)) + u(e)(1− 1

2u(e)
) + 1 = N,

where the first term (= 1/2) is the initial cost, the term
N ′ − u(e) upper bounds the cost of the iterations in which
x(e) ≤ 1, the term u(e)(1 − 1

2u(e)) upper bounds the cost
of the u(e) iterations in which x(e) > 1, and the last term
(= 1) is the cost of the last request. This, again, contradicts
the fact that we have a feasible dual solution with value N ,
thus completing the proof .

Finally, we remark that the load balancing algorithm in
[4] can also be described using our primal dual framework.
We defer this description to the full version.

2.2 A New Generic Routing Algorithm

In this section we design a generic online routing algo-
rithm which is based on the primal-dual approach. The al-
gorithm then generates in an online fashion an unsplittable
all-or-nothing routing which is (1, O(log n))-competitive
with respect to all splittable routings. The main point here is
that the algorithm actually routes at least the optimal num-
ber of requests. Algorithm AAFPW guarantees the rout-
ing of an optimal number of requests only when there is
a feasible solution that routes all the requests. Otherwise,
there is no guarantee on the number of requests that this
algorithm routes. This weaker guarantee of AAFPW suf-
fices for the design of an algorithm for minimizing the max-
imum load. However, the weaker guarantee does not seem
to suffice when we want to maximize the total through-
put, or design a coordinate-wise competitive algorithm, as
is done in Sections 3.1, 3.2, and 3.3. The AAP algorithm is
guaranteed to route at least 1/(c log n) of the optimal num-
ber of requests without violating the capacities (when the
capacities are at least log n). A slight change of AAP leads
to an algorithm that is (O(1), O(log n))-competitive with-
out any restriction on the capacities (See remark 2.2). This
may seem like an insignificant difference with respect to our
new guarantees, however, these weaker guarantees become
a real obstacle when trying to use this algorithm for mini-
mizing the maximum load, or for achieving coordinate-wise
competitiveness, as done in Sections 3.1, 3.2, and 3.4. We
also remark that the methods in [8] allow us to obtain the
same guarantees as the AAP algorithm by applying online
derandomization methods.

To achieve our stronger bounds it is not enough to main-
tain a single primal solution, leading us to maintain simulta-
neously several primal solutions that will be used through-
out to make clever routing decisions.

The algorithm decomposes the graph G = (V,E) into
graphs G0, G1, . . . , Gk. For each j, the vertices of Gj are

the same as in G. The edges of Gj are all edges in G having
capacity at least mj . The capacity of each edge in the jth
copy, Gj , is then set to u(e, j) ← min{u(e),mj+2}. Let
Gk be the last copy of the graph which is non-empty (i.e.
the maximum capacity in G, u(max) ≤ mk). The algo-
rithm maintains a primal solution in each copy of the graph.
We denote by x(e, j) and Z(ri, j) the primal variables cor-
responding to the jth copy. Let u(min, j) be the minimal
edge capacity in the jth copy (which is at least mj).

Route: Initially, ∀j: x(e, j)← u(min,j)
m·u(e,j) .

When new request ri = (si, ti, P(ri)) arrives:

1. Consider all copies of the graph from Gk to G0. In
each copy Gj :

(a) Let P (ri, j) ∈ P(ri, j) be the shortest path
with respect to x(e, j) and let α be the length
of P (ri, j).

(b) If α < 1:

i. Route the request on P (ri, j).
ii. For each edge e in P (ri, j):

x(e, j)← x(e, j)(1 + 1
u(e,j)).

iii. Z(ri, j)← 1− α.

(c) Else (α > 1):

i. If the total bandwidth routed in this step
in Gj is less than u(min, j), and the cur-
rent request can be routed in Gj , route
the request in an arbitrary feasible path
P ∈ P(ri, j).

(d) If the request is routed - Finish.

2. Reject requests that were rejected from all copies.

The analysis of Route is done via the following claims.
The proofs of Lemma 2.4 and Theorem 2.5 are omitted.

Lemma 2.4. Let Nj be the total number of requests that
are introduced to the jth copy. Let M be the maximum total
bandwidth of any feasible splittable routing in Gj (out of
Nj). Then, Route accepts at least M requests in Gj , and
the load on each edge in Gj is O(log n).

Theorem 2.5. Algorithm Route is (1, O(log n))-
competitive with respect to all splittable routing solutions.

Further Extensions: If the algorithm is only given an ap-
proximate oracle (as is the case when packing objects other
than paths) that outputs for a request ri a set S ∈ S(ri)
that is at most β times the minimum S ∈ S(ri) with re-
spect to the given weights, the competitive factor of the al-
gorithm becomes (1, O(β log n)). This requires the follow-
ing change in the update method in Steps c(ii) and c(iii):
x(e, j)← x(e, j)(1+ 1

βu(e,j)) and Z(ri, j)← 1−α
β . A sec-

ond extension applies to the case where request ri has an

arbitrary demand di. Our algorithm generates an unsplit-
table routing. In case the demands are arbitrary, it might
not be possible to compare our algorithm to the best split-
table routing. However, it is still possible to compare the
performance to the best unsplittable routing, or to an op-
timal splittable routing that only uses paths with minimal
capacity of at least di. Other than that, only a few more
ideas, and an extension of the proofs are needed. A third
extension we consider is adding different weights (prof-
its) to the requests. This enables, for instance, to model
a weighted max-min fair solution. For this variant it is pos-

sible to design an (1, O(log
[
np(max)

p(min)

]
))-competitive algo-

rithm, where p(max) and p(min) are the maximum and
minimum profits. A simple example shows that the addi-
tional additive factor of log(p(max)/p(min)) is unavoid-
able (See [8]).

3 Applications of the Generic Algorithm

In this section we show the applicability of our generic
algorithm to different settings having various objective
functions. We note that there are more applications for
which the known bounds are already tight, yet our generic
algorithm can be used to derive the same bounds, e.g.,
[5, 4, 8]. For lack of space we defer the details to the full
version. In Section 3.1 we design an algorithm for achiev-
ing coordinate-wise competitiveness. In Section 3.2 we de-
sign a similar algorithm with better competitive factors for a
setting that allows the allocation of weights instead of band-
widths. In Section 3.3 we design an O(log n)-competitive
algorithm for maximizing the throughput for the setting
studied in [13] and extend the lower bounds for the problem.
In Section 3.4 we design a scheme for applying our generic
algorithm for minimizing the maximum load. We remark
that achieving the bounds in Section 3.1 and Section 3.2 for
the fixed routes model requires a small modification to the
generic algorithm that ensures that when the algorithm re-
jects a request there exists an edge with load at least log n.
The proofs are omitted.

3.1 Achieving Coordinate-wise Competi-
tiveness - Assigning Bandwidth

Here we design an almost optimal online algorithm
for achieving a coordinate-wise routing solution [13]. In
this setting the algorithm should output an unsplittable
routing and assign bandwidth to each request. We de-
sign an O(1

ε log n log U(log log U)1+ε) competitive algo-
rithm for any ε > 0 and prove an almost matching
lower bound of Ω(log n log U + log U log log U) even
when splittable routing is allowed. This result im-
proves both upper and lower bounds for the problem,

each by a logarithmic factor [13]. For the fixed routes
model the competitive ratio of our algorithm slightly
improves to O(1

ε log n log U
log n (log log U

log n)1+ε) for any
ε > 0. We show an almost matching lower bound of
Ω(log n log U

log n + log n). The algorithm considers copies
of the graph referred to as levels. In levels � = 0, 1, 2, . . .
we multiply all edge capacities by 2�.

Algorithm: When a request ri = (si, ti, P(ri)) arrives:

1. Run algorithm Route on levels � = 0, 1, 2, . . . in
an increasing order.

2. Route the request in the lowest level � in which
Route accepts the request.

3. Assign bandwidth of ε
c log n2�(1+�)(H(1+�))1+ε to the

request, where c is a constant and H(·) is the har-
monic number.

Theorem 3.1. The algorithm is
O(1

ε log n log U(log log U)1+ε)-coordinate-wise competi-
tive. For the fixed routes model the algorithm is
O(1

ε log n log U
log n (log log U

log n)1+ε + log n
ε)-coordinate-

wise competitive.

Lower bounds: In [13] a lower bound of (approximately)
Ω(log n + log U log log U) was proved. We improve the
lower bound and prove an almost matching lower bound for
the problem.

Lemma 3.2. Any deterministic online algorithm (splittable
or unsplittable) is Ω(log n log U)-coordinate-wise compet-
itive for the general setting, and Ω(log n log U

log n + log n)-
competitive when routes are fixed.

3.2 Achieving Coordinate-wise Competi-
tiveness - Assigning Weights

In this section we design an algorithm for achieving a
coordinate-wise competitive solution in a relaxed setting
studied in [13] in which the algorithm is allowed to assign
weights instead of directly allocating bandwidths. For this
model we design an O(log n log U)-coordinate-wise com-
petitive algorithm improving the competitive ratio obtained
in [13] by a factor of O(log n). When routes are fixed
the competitive ratio of our algorithm slightly improves to
O(log n log U

log n + log n). The algorithm considers copies
of the graph referred to as levels. In levels � = 0, 1, 2, . . .
the edge capacities are multiplied by 2�.

Algorithm: When request ri = (si, ti, P(ri)) arrives:

1. Run algorithm Route in levels � = 0, 1, 2, . . . in
an increasing order.

2. Route the request in the lowest level � in which
Route accepts the request and assign the request
weight w(ri, P) = 1

2� .

Theorem 3.3. The algorithm is O(log n log U)-
coordinate-wise competitive for the general setting and is
O(log n log U

log n + log n)-coordinate-wise competitive for
the fixed routes model.

3.3 Maximizing the Throughput

In [13] Goel et al. considered a routing model in which
the algorithm should output a feasible unsplittable routing
by assigning bandwidth directly to each request. The ob-
jective is to maximize the total throughput. This model
differs from the model considered in [5], since here there
is no additional requirement that the routing is an all-or-
nothing routing. Goel et al. [13] designed for this model
an algorithm that is O(log n log log n) competitive. In this
section we improve their result and design a simple op-
timal O(log n)-competitive algorithm for maximizing the
throughput in this model. We remark that the algorithm
in [5] can also be used in this setting. However, the al-
gorithm in [5] requires the minimal capacity to be at least
log n, while our algorithm does not have this requirement.
Using Route, our algorithm is very simple:

Algorithm: When a request ri = (si, ti, P(ri)) arrives:

1. Run algorithm Route on the graph. Accept all
requests that were accepted by Route on the path
Route chose for the request.

2. Give each accepted request bandwidth 1
c log n ,

where c > 0 is some constant.

Lemma 3.4. The algorithm is O(log n)-competitive with
respect to an optimal splittable routing and it does not vio-
late the capacities of the edges in the graph.

Lower bounds: In [13], an Ω(log n) lower bound was
proved even in the case where the algorithm can assign
weights instead of bandwidth. We observe that the bound of
Ω(log n) holds for bandwidth allocation even for the fixed
routes model.

Lemma 3.5. There is an Ω(log n) lower bound on the com-
petitive ratio of any deterministic online algorithm that as-
signs bandwidth directly even for the fixed routes model.

3.4 Minimizing the Maximum Load

In this section we design an alternative O(log n)-
competitive algorithm to the problem of minimizing the
maximum load [4]. In this setting the algorithm is not al-
lowed to reject requests and the objective is to minimize
the load. Although we do not improve over the perfor-
mance of the algorithm in [4], we claim that using our al-
gorithm may still be beneficial, since our algorithm guaran-
tees that the load on the edges is more evenly spread among

the edges. This is due to the fact that the algorithm routes
the maximum number of requests with respect to any value
of load. The algorithm in [4] only attempts to guess the
load in which all requests can be routed. When the guess
is less than the minimum load there is no guarantee on the
number of requests that will be routed. The algorithm con-
siders copies of the graph referred to as levels. In levels
� = 0, 1, 2, . . . all the edge capacities are multiplied by 2�.

Algorithm: When a request ri = (si, ti, P(ri)) arrives:

1. Run algorithm Route on level � = 0, 1, 2, . . . in
an increasing order.

2. Route the request on the lowest level � in which
Route accepts the request. Use the path Route
chosen for the request in this level.

Lemma 3.6. The algorithm is O(log n)-competitive with
respect to the optimal splittable routing solution.

4 Offline Cases - Revisiting

In this section we study the notions of coordinate-wise
competitiveness and prefix competitiveness and their offline
computational complexity. We first prove a tight Θ(log n)
bounds on the prefix competitiveness for both the fixed
routes model and the splittable routing model, where n is
the number of vertices in the network. This improves both
upper and lower bounds of [16] and generalizes the result
in [11]. Our second contribution is proving the existence
of an O(log U)-coordinate-wise competitive routing for any
splittable routing instance. We then design an algorithm for
computing efficiently an unsplittable O(log U + log n

log log n)-
coordinate-wise competitive solution with respect to all
splittable routings. For this problem only an existential re-
sult was previously known [16]. The proofs are omitted.

4.1 Prefix Competitiveness

In this section we prove upper and lower bounds of
Θ(log n) on prefix competitiveness in the offline case, thus
improving upon the results in [16]. The bounds hold for
the splittable model as well as the fixed routes model. The
lower bound holds even with the restriction that no two re-
quests can share the same source and target.

Lemma 4.1. For any routing instance in both the fixed
routes model and the splittable model there exists a solu-
tion which is O(log n)-prefix competitive.

Lemma 4.2. There exists a routing instance, where no two
requests have the same source and target vertices, such that
any routing solution has prefix competitiveness Ω(log n).

4.2 Coordinate-wise Competitiveness

In this section we sketch the ideas of a non-polynomial
algorithm that computes an O(log U)-coordinate-wise com-
petitive routing solution in the splittable model. We then
show how to transform it to a polynomial time algorithm
losing only a small additive penalty of O(log n

log log n). Our
proposed algorithm works in phases: In the ith phase the
capacities in the graph are multiplied by 2i. We then com-
pute an optimal feasible all-or-nothing splittable routing for
the set of requests that were not routed by any previous
phase. We give each request that was routed in the ith
phase bandwidth of 1/2i. This solution violates the capac-
ity constraints. Yet, we claim that this routing solution is
2-coordinate-wise competitive. Suppose that the jth (poor-
est) coordinate in some solution is b. Then, at least N−j+1
requests in this solution receive bandwidth of at least b. This
means that at least N−j+1 requests can be routed in an all-
or-nothing fashion when multiplying the capacities by 1/b.
By the properties of the algorithm at least N−j+1 requests
are, therefore, routed until phase i ≤ 2/b. All those requests
get bandwidth at least b/2 and thus we are done. By the de-
finition of U , all the requests are routed until phase i ≤ 2U .
Therefore, the load on each edge is at most log(2U). Thus,
dividing each bandwidth allocation by O(log U), we get a
feasible splittable solution that is O(log U)-coordinate-wise
competitive.

The non-polynomial step in our algorithm is the compu-
tation of an optimal all-or-nothing splittable routing. We
thus remove the all-or-nothing requirement, substituting
this step by a computation of an optimal feasible split-
table routing for the set of requests that were not routed
by any previous phase, using, e.g., linear programming. Let
Λ∗(i) be the maximum bandwidth that was routed in the ith
phase. This value upper bounds the optimal all-or-nothing
splittable routing. Using standard rounding techniques it
is possible to obtain from this splittable routing an unsplit-
table all-or-nothing routing with value Λ∗(i), and load of
max{c,O(log n

u(min) log(log n/u(min)))}, where u(min) is the
current minimum capacity, and c > 1 is a constant. We note
that our performance requirements are slightly different
from previous requirements [18], however, we can still ob-
tain a rounding, even deterministically, using the method of
conditional expectations [17, 3]. The rest of the algorithm
remains the same. Summing up the loads in all phases, we
get that the load on each edge is O(log U + log n

log log n). By
dividing each allocated bandwidth by this factor, we get a
feasible solution with the desired competitiveness.

Lemma 4.3. For any splittable routing instance there exists
an O(log U)-coordinate-wise competitive routing solution.
There is a polynomial time algorithm that computes an un-
splittable O(log U + log n

log log n)-coordinate-wise competitive
routing with respect to splittable routing solutions.

Acknowledgement

We would like to thank the anonymous referees for a
very thorough reading of the paper and helpful comments.

References

[1] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor.
The online set cover problem. In Proceedings of the 35th an-
nual ACM Symposium on the Theory of Computation, pages
100–105, 2003.

[2] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor.
A general approach to online network optimization prob-
lems. In ACM-SIAM Symposium on Discrete Algorithms,
pages 100–105, 2004.

[3] N. Alon and J. H. Spencer. The probabilistic method. Wiley,
New York, 2 edition, 2000.

[4] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-
line routing of virtual circuits with applications to load bal-
ancing and machine scheduling. J. ACM, 44(3):486–504,
1997.

[5] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-
competitive online routing. In Proc. of 34th FOCS, pages
32–40, 1993.

[6] Y. Azar. On-line load balancing. Online Algorithms - The
State of the Art, Springer, (8):178–195, 1998.

[7] D. Bertsekas and R. Gallager. Data networks. Prentice-Hall,
Inc., 1987.

[8] N. Buchbinder and J. Naor. Online primal-dual algorithms
for covering and packing problems. In 13th Annual Euro-
pean Symposium on Algorithms - ESA 2005, 2005.

[9] N. Buchbinder and J. Naor. Fair online load balancing. In
18th ACM Symp. on Parallelism in Algorithms and Architec-
tures, 2006.

[10] C. Chekuri, S. Khanna, and F. B. Shepherd. The all-or-
nothing multicommodity flow problem. In STOC ’04: Pro-
ceedings of the thirty-sixth annual ACM symposium on The-
ory of computing, pages 156–165, 2004.

[11] A. Goel and A. Meyerson. Simultaneous optimization via ap-
proximate majorization for concave profits or convex costs.
2005.

[12] A. Goel, A. Meyerson, and S. A. Plotkin. Approximate ma-
jorization and fair online load balancing. In Symposium on
Discrete Algorithms, pages 384–390, 2001.

[13] A. Goel, A. Meyerson, and S. A. Plotkin. Combining fairness
with throughput: Online routing with multiple objectives. J.
Comput. Syst. Sci., 63(1):62–79, 2001.

[14] J. Jaffe. Bottleneck flow control. IEEE Transactions on Com-
munications, 29(7):954–962, 1981.

[15] J. Kleinberg, E. Tardos, and Y. Rabani. Fairness in rout-
ing and load balancing. In FOCS ’99: Proceedings of the
40th Annual Symposium on Foundations of Computer Sci-
ence, page 568, 1999.

[16] A. Kumar and J. M. Kleinberg. Fairness measures for re-
source allocation. In IEEE Symposium on Foundations of
Computer Science, pages 75–85, 2000.

[17] P. Raghavan. Probabilistic construction of deterministic al-
gorithms: approximating packing integer programs. J. Com-
put. Syst. Sci., 37(2):130–143, 1988.

[18] P. Raghavan and C. Thompson. Randomized rounding:
A technique for provably good algorithms and algorithmic
proofs. Combinatorica, 7:365–374, 1987.

