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Abstract

The primal-dual method is a powerful algorithmic technique that has proved to be
extremely useful for a wide variety of problems in the area of approximation algorithms.
The method has its origins in the realm of exact algorithms, e.g., for matching and
network flow. In the area of approximation algorithms the primal-dual method has
emerged as an important unifying design methodology starting from the seminal work
of Goemans and Williamson [59].

We show in this thesis how to extend the primal-dual method to the setting of
online algorithms, and show its applicability to a wide variety of interesting problems.
Among the online problems that we consider here are the weighted caching problem,
generalized caching, the set-cover problem, several graph optimization problems, routing,
load balancing and the problem of allocating ad-auctions. We also show that classic
online problems such as the ski rental problem and the dynamic TCP-acknowledgement
problem can be optimally solved using a simple primal-dual approach.

The primal-dual method has several advantages over existing methods. First, it
gives a general recipe for the design and analysis of online algorithms. The analysis of
the competitive ratio is direct, without a potential function appearing “out of nowhere”.
Finally, since the analysis is done via duality, the competitiveness of the online algorithm
is with respect to an optimal fractional solution which can be advantageous in certain
scenarios.
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Abbreviations and Notations

LP Linear program.
P A primal (minimum) linear program.
D A dual (maximum) linear program.
∆P , ∆D The change in the cost of the primal and dual programs, respectively.
G = (V,E) Graph with set of vertices V and set of edges E.
σ = σ1, σ2, . . . A request sequence.
OPT (σ) The cost of the optimal solution on the request sequence σ.
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Chapter 1

Preface

The primal-dual method is a powerful algorithmic technique that has proved to be
extremely useful for a wide variety of problems in the area of approximation algorithms.
The method has its origins in the realm of exact algorithms, e.g., for matching and
network flow. In the area of approximation algorithms the primal-dual method has
emerged as an important unifying design methodology starting from the seminal work
of Goemans and Williamson [59].

We show here how to extend the primal-dual method to the setting of online algo-
rithms, and show that it is applicable to a wide variety of problems. The method we
propose has several advantages over existing methods:

• A general recipe for the design and analysis of online algorithms is developed.

• The framework is shown to be applicable to a wide range of interesting online
problems.

• The use of a linear program helps detecting the difficulties of the online problem
in hand.

• The competitive ratio analysis is direct, without a potential function appearing
“out of nowhere”.

• The competitiveness of the online algorithm is with respect to an optimal fractional
solution.

In Chapter 2 we briefly discuss necessary background needed for the rest of the
discussion. This includes a short exposition on linear programming, duality, offline
approximation methods, and basic definitions of online computation. Many readers may
already be familiar with these basic definitions and techniques, however, we advise the
readers not to skip this chapter, and in particular the part on approximation algorithms.
Approximation algorithms techniques are presented in a way that allows the reader to
later see the similarity to the online techniques we develop. This chapter also provides
some of the basic notation that we use in the rest of our discussion. In Chapter 3 we

5



give a first taste of how the primal-dual approach is helpful in the context of online
algorithms. This is done via the well understood ski rental problem. We show how it is
possible to derive alternative optimal algorithms for the ski rental problem using a simple
primal-dual approach. In Chapter 4 we place the foundations of the online primal-dual
approach. We describe the general online setting and design the basic algorithms for
that setting. We also study two toy examples that demonstrate the online framework.
The rest of the chapters show how to apply the primal-dual approach to many interesting
problems. We tried to make the chapters independent and so the reader may skip some
of the results. However, there are still some connections between the chapters, and
so closely related problems appear in consecutive chapters, and in increasing order of
complexity.

Among the problems that we consider are the weighted caching problem, generalized
caching, the online set-cover problem, several graph optimization problems, routing, load
balancing, and even the problem of allocating ad-auctions. We also show that classic on-
line problems like the dynamic TCP-acknowledgement problem can be optimally solved
using a primal-dual approach. There are also several more problems that can be solved
via the primal-dual approach and are not discussed here.

6



Chapter 2

Necessary Background

In this chapter we briefly discuss necessary background needed for the rest of the thesis.
In Section 2.1 we briefly discuss the notion of linear programming and duality. In Section
2.2 we define the notion of optimization problems and discuss several classic methods
for deriving (offline) approximation algorithm. We demonstrate these ideas on the set
cover problem which is later considered in the online setting. In Section 2.3 we give
the basic concepts and definitions related to online computation. This chapter is not
meant to give a comprehensive introduction, but rather only provide the basic notation
and definitions used later on in the text. For a more comprehensive discussion of these
subjects we refer the reader to the many excellent textbooks on these subjects. For more
information on linear programming and duality we refer the reader to [41]. For further
information on approximation techniques we refer the reader to [88]. Finally, for more
details on online computation and competitive analysis we refer the reader to [28].

2.1 Introduction to Linear programming and Duality

Linear programming is the problem of minimizing or maximizing a linear objective func-
tion over a feasible set defined by a set of linear inequalities. There are several equivalent
forms of formulating a linear program. In our discussion the most convenient format is
the following:

(P ) : min

n
∑

i=1

cixi

Subject to:
For any 1 ≤ j ≤ m:

∑n
i=1 aijxi ≥ bj

∀1 ≤ i ≤ n xi ≥ 0

It is well known that any linear program can be formulated this way. We refer to
such a minimization problem as the primal problem (P ). Every primal linear program
has a corresponding dual program with certain properties that we discuss in the sequel.
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The dual linear program is a maximization linear program. It has m dual variables that
correspond to the primal constraints. It has n packing constraints that correspond to
the primal variables. The dual program (D) that corresponds to the linear program
formulation (P ) is the following.

(D) : max
m
∑

j=1

bjyj

Subject to:
For any 1 ≤ i ≤ n:

∑m
j=1 aijyj ≤ ci

∀1 ≤ j ≤ m yj ≥ 0

The dual linear formulation is very useful. The main properties of the dual program
that make it so useful are summarized in the following Theorems:

Theorem 2.1 (Weak duality). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym) be
feasible solutions to the primal and the dual linear programs respectively, then:

n
∑

i=1

cixi ≥
m
∑

j=1

bjyj

The weak duality theorem says that the value of any feasible dual solution is at most
the value of any feasible primal solution. Thus, the dual program can actually be used
as a lower bound for any feasible primal solution. The proof of this theorem is quite
simple.

Proof.

n
∑

i=1

cixi ≥
n
∑

i=1





m
∑

j=1

aijyj



 · xi (2.1)

=

m
∑

j=1

(

n
∑

i=1

aijxi

)

· yj (2.2)

≥
m
∑

j=1

bjyj, (2.3)

where Inequality (2.1) follows since y = (y1, y2, . . . , ym) is feasible and each xi is non-
negative. Equality (2.2) follows by changing the order of summation. Inequality (2.3)
follows since x = (x1, x2, . . . , xn) is feasible and each yj is non-negative.

The next theorem is sometimes referred to as the strong duality Theorem. It states
that if the primal and dual programs are bounded, then the optima of the two programs
is equal. The proof of the strong duality Theorem is harder and we only state the
theorem here without a proof.
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Theorem 2.2 (Strong duality). The primal linear program has a finite optimal solution
if and only if the dual linear program has a finite optimal solution. In this case the value
of the optimal solutions of the primal and dual programs is equal.

Finally, we prove an important theorem that is used extensively in the context of
approximation algorithms. The theorem states that if two conditions hold with respect
to the primal and the dual then the solution is optimal (or approximately optimal).

Theorem 2.3 (Complementary slackness). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym)
be feasible solutions to the primal and dual linear programs respectively, satisfying the
following conditions:

• Primal complementary slackness condition: Let α ≥ 1.
For each 1 ≤ i ≤ n, if xi > 0 then ci

α ≤
∑m

j=1 aijyi ≤ ci.

• Dual complementary slackness condition: Let β ≥ 1.
For each 1 ≤ j ≤ m, if yj > 0 then bj ≤

∑n
i=1 aijxi ≤ bj · β.

Then:
n
∑

i=1

cixi ≤ α · β
m
∑

j=1

bjyj

In particular if the complementary slackness conditions hold with α = β = 1 then
we get that ~x and ~y are both optimal solutions to the primal and dual linear programs
respectively. The proof of the theorem is again very short:

Proof.

n
∑

i=1

cixi ≤ α

n
∑

i=1





m
∑

j=1

aijyi



xi (2.4)

= α

m
∑

j=1

(

n
∑

i=1

aijxi

)

yj (2.5)

≤ α · β
m
∑

j=1

bjyj, (2.6)

where (2.4) follows by the primal complementary slackness condition. Equality (2.5)
follows by changing the order of summation, and Inequality (2.6) follows by the dual
complementary slackness condition.

Theorem 2.3 gives an efficient tool for finding approximate solutions. Consider, for
example, a minimization problem. Suppose that you can find primal and dual solutions
that satisfy the complementary slackness conditions. Then, you get that the solution
for the minimization problem is at most α · β times a feasible dual solution. Since, by
weak duality (Theorem 2.1), the value of any dual solution is a lower bound on the value
of any primal solution, the solution you found is also at most α · β times the optimal
(minimal) primal solution.
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Covering/Packing linear formulations: A special subclass of linear programs con-
sists of programs in which the coefficients aij , bj and ci are all non-negative. In this
case the primal formulation is called covering problem and the dual formulation forms a
packing problem. The meaning of the names will become clear in Section 2.2, where we
discuss the set cover problem. In our following discussion we sometime use this notion
of covering-packing primal-dual pair.

2.2 Introduction to Approximation Algorithms

In this section we give a very short background on some basic methods used in approxi-
mation algorithms. Later we show that the same ideas can be extended and used in the
context of online algorithms. We start by formally defining the notions of optimization
problems and approximation factors. In an (offline) minimization optimization prob-
lem we are given set of instances I. For each instance I ∈ I there is a set of feasible
solutions. Each feasible solution is associated with a cost. Let OPT (I) be the cost of
the minimal feasible solution for instance I. A polynomial time algorithm A is called a
c-approximation for a minimization optimization problem if for every instance I it out-
puts a solution with cost at most c ·OPT (I)+ α, where α is some constant independent
of the input. In all our discussion α is zero and so we leave it out. The definitions
for maximization optimization problems are analogues. In this case, each instance is
associated with a profit. A c-approximation algorithm is guaranteed to return a solution
with cost at least OPT (I)/c, where OPT (I) is the maximum profit solution.

The set cover problem: We demonstrate several classic ideas used for developing
approximation algorithms via the set cover problem. In the set cover problem we are
given a set of n elements X = e1, e2, . . . , en, and a family S = s1, s2, . . . , sm of subsets of
X, |S| = m. Each set sj is associated with a non negative cost cs. A cover is a collection
of sets such that their union is X. The objective is to find a cover of X of minimum
cost, and this problem is known to be NP-hard. LP relaxations constitute a very useful
way for obtaining lower bounds on the original solution of the combinatorial problem.
To this end we introduce a non negative variable xs for each sets ∈ S. Next, consider
the following linear formulation of the problem:

(P ) : min
∑

s∈S

csxs s.t.

for each element ei, (1 ≤ i ≤ n):
∑

s|ei∈S xs ≥ 1

∀s ∈ S, xs ≥ 0

Constraining xs to be 0 or 1 instead of xs ≥ 0 would yield an equivalent integral
formulation of the set cover problem (by setting xs = 1 for each set in an optimal cover).
Such formulations are called integer programming formulations. Since the feasible space
of the linear formulation contains as a subspace all the integral solutions of the integer
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formulation, we get that the optimal solution to the linear formulation sets a lower bound
on the value of any integral set cover solution. A solution to the linear formulation is
called a fractional set cover solution. In such a relaxed set cover solution one is allowed
to take a fraction xs of each set and pay only csxs for this fraction. The restriction is
that the sum of fractions of sets that contain each element ei should be at least 1. In the
corresponding dual linear program of (P ) there is a variable for each element ei. The
dual program (D) is the following.

(D) : max
∑

e∈X

yei
s.t.

for each set s ∈ S:
∑

ei∈S yei
≤ cs

∀1 ≤ i ≤ n, yei
≥ 0

We next demonstrate several classic approximation techniques using the set cover
problem as our running example.

2.2.1 Dual Fitting Method

We present dual fitting by analyzing a simple greedy algorithm for the set cover problem
and show that the algorithm is an O(log n)-approximation. The greedy algorithm is the
following: Let C be the sets in the cover produced by the algorithm. Initially, C = ∅.
Let U be the set of yet uncovered elements. Initially U = X. As long as U 6= ∅, add to
C the set s ∈ S that minimizes the ratio cs

|U∩s| .

To prove that this simple algorithm is an O(log n)-approximation, we first describe
the same algorithm a bit differently as a primal-dual algorithm. This kind of description
is used in the sequel.

Greedy algorithm: Initially, C = ∅. Let U be the set of yet uncovered elements.
As long as U 6= ∅, let s ∈ S be the set that minimizes the ratio cs

|U∩s| :

1. Add s to C and set xs ← 1.

2. For each ei ∈ (U ∩ s), yei
← cs

|U∩s| .

Theorem 2.4. The greedy algorithm is an O(log n)-approximation algorithm for the set
cover problem.

Proof. Note that the algorithm produces throughout its execution both primal and dual
solutions. Let P and D be the values of the objective function of the primal and dual
solutions the algorithm produces, respectively. Initially, P = D = 0. We focus on a
single iteration of the algorithm and denote by ∆P and ∆D the change in the primal
and dual cost, respectively. We prove three simple claims:

1. The algorithm produces a primal (covering) feasible solution.
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2. In each iteration: ∆P ≤ ∆D.

3. Each packing constraint in the dual program is violated by a multiplicative factor
of at most O(log n).

The proof follows immediately from the three claims together with weak duality.
First by claim (1) our solution is feasible. By the fact that initially P = D = 0 and by
claim (2) we get that we produce a primal and dual solutions such that P ≤ D. Finally,
by claim (3) we get that dividing the dual solution by c log n, for a constant c, we obtain
a dual feasible solution with value D′ = D

c log n . Therefore, we get that the primal cost
is at most c log n times a feasible dual solution. Since by weak duality a feasible dual
solution is at most the cost of any primal solution, we get that the primal solution is at
most c log n times the optimal (minimal) primal solution.
Proof of (1): It is easy to verify that if there exists a feasible primal solution, then the
algorithm will also produce a feasible solution.
Proof of (2): In each iteration of the algorithm the change in the primal cost (due to
the addition of set s) is cs. In the dual we set |U ∩ s| dual variables each to cs

|U∩s| , and
so the total change in the dual profit is also cs. Note that we only set the dual variable
of each element once in the round in which it was covered.
Proof of (3): Consider the dual constraint corresponding to set s. Let e1, e2, . . . , ek be
the elements belonging to the set s ordered in the same order as covered by the greedy
algorithm. Consider element ei; we claim that yei

≤ cs

k−i+1 . This is true since at the time
ei was covered by the greedy algorithm, the set s contained at least k − i + 1 elements
that were still uncovered. Therefore, the algorithm could pick the set s and set yei

to
cs

k−i+1 . Since the algorithm chose the set that minimizes this ratio and so minimizes the
value of yei

then yei
is at most cs

k−i+1 . Therefore, for the set s we get that:

∑

ei∈s

yei
≤

k
∑

i=1

cs

k − i + 1
≤ Hk · cs = cs ·O(log n),

where Hk is the kth harmonic number.

2.2.2 Rounding Linear Programming Solutions

In this section we design a different O(log n)-approximation algorithm for the set cover
problem using a technique called randomized rounding. We first compute an optimal
fractional solution to linear program (P ). Recall that in a feasible solution, for each
element, the sum of fractions of the sets containing it is at least 1. We describe the
rounding algorithm a bit differently than in standard textbooks. This description will
be useful in the sequel. The rounding algorithm is the following:
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Randomized Rounding algorithm:

1. For each set s ∈ S, choose 2 ln n independently random variables X(s, i) uni-
formly at random in the interval [0, 1].

2. For each set s, let Θ(s) = min2 ln n
i=1 X(s, i).

3. Solve the program (P ).

4. Take s to the cover if Θ(s) ≤ xs, where xs is the value of the variable in the
solution to the LP.

Theorem 2.5. The algorithm produces a solution with the following properties:

• The expected cost of the solution is O(log n) times the cost of the fractional solution.

• The solution is feasible with probability 1− 1/n > 1/2.

It is not hard to prove using standard arguments that with constant probability
the algorithm produces a feasible solution whose cost is at most O(log n) times the
fractional solution. However, for our discussion the above properties are enough. Since
the fractional solution provides a lower bound on any integral solution, we get that the
algorithm is an O(log n)-approximation.

Proof. To prove (1) note that for each i, 1 ≤ i ≤ 2 ln n, the probability that X(s, i) ≤ xs

is exactly xs. The probability that s is chosen to the solution is the probability that
there exists an i, 1 ≤ i ≤ 2 ln n, such that X(s, i) ≤ xs. Let Ai be the event that
X(s, i) ≤ xs. Using this definition the probability that s is chosen to the solution is the
probability of

⋃2 ln n
i=1 Ai. By the union bound this probability is at most the sum of the

probabilities of the events which is 2xs ln n. Therefore, using linearity of expectation the
expected cost of the solution is at most 2 ln n times the fractional solution.

To prove (2) pick an element e. Fix any i, 1 ≤ i ≤ 2 ln n. The probability that e is
not covered due to the set X(s, i) is the probability that we are not choosing any set s
covering the element e. This probability is:

∏

s∈S|e∈s

(1− xs) ≤ exp



−
∑

s∈S|e∈s

xs



 ≤ exp(−1),

where the first inequality follows since 1 − x ≤ exp(−x). The second inequality follows
since each element is fractionally covered. Since we choose 2 ln n random variables in-
dependently, the probability that e is not covered is at most exp(−2 ln n) = 1

n2 . Using
the union bound we get that the probability that there exists an element e which is not
covered is at most n · 1

n2 = 1
n .
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2.2.3 The Primal-dual Schema

In this section we give a third approximation algorithm for the set cover problem using
the complementary slackness Theorem. The algorithm is the following:

Primal-dual algorithm:
While there exists an uncovered element ei:

1. Increase the dual variable yei
continuously.

2. If there exists a set s such that
∑

e∈s ye = cs: Take s to the cover and set xs ← 1.

Let f be the maximum frequency of an element (i.e., the maximum number of sets
an element belong to).

Theorem 2.6. The algorithm is an f -approximation for the set cover problem.

Proof. Clearly, the primal solution produced by the algorithm is feasible, since we pick
sets to the cover as long as the solution is infeasible. The dual solution produced by
the algorithm is also feasible since whenever a dual constraint of a set becoming tight,
we take s to the solution, and then we never increase a dual variable corresponding to
an element belonging to s. Finally, the primal complementary slackness condition holds
with α = 1, since, if xs > 0, then

∑

e∈s yei
= cs. The dual complementary slackness

condition holds with β = f , since, if yei
> 0, then 1 ≤

∑

s|e∈s xs ≤ f . Thus, by Theorem
2.3 we get that the algorithm ia an f -approximation.

2.3 Introduction to Online Computation

The performance of online algorithms is defined very similarly to the performance of
offline approximation algorithms. Suppose we are given a minimization optimization
problem. For each instance of the problem I there is a set of feasible solutions. Each
feasible solution is associated with a cost. Let OPT (I) be the cost of the minimal feasible
solution for instance I. In the online case the instance is given to the algorithm in parts.
These parts are usually referred to as requests. Each specific online problem also defines
certain restrictions on the way the online algorithm is allowed to process these requests.
An online algorithm A is said to be c-competitive for a minimization optimization prob-
lem if for every instance I it outputs a solution of cost at most cOPT (I) + α, where α
is independent of the request sequence. if α = 0 then the algorithm is called strictly
c-competitive. We do not distinguish between the two notions. Analysis of online algo-
rithm with respect to this measure is referred to as competitive analysis. The definition
of competitiveness maximization optimization problems is analogues. When considering
a maximization problem each instance is associated with a profit. A c-competitive algo-
rithm is guaranteed to return a solution with cost at least OPT (I)/c−α, where OPT (I)
is the maximum profit solution, and α is independent of the request sequence.

A common concept in competitive analysis that of an adversary. The online solution
is being viewed as a game between an online algorithm and a malicious adversary. While
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the online algorithm would like to minimize its cost, the adversary would like to construct
the worst possible input for the algorithm. Using this view the adversary produces a
sequence σ = σ1, σ2, . . . of requests that define the instance I. A c-competitive online
algorithm should then be able to produce a solution of cost no more than c times OPT (σ)
for every request sequence σ.

It is also possible to define several natural models of randomized online algorithms.
In this work we only consider the model where the adversary knows the algorithm and the
probability distribution the algorithm uses to make its random decisions. The adversary
is not aware, however, of the actual random choices made by the algorithm throughout
its execution. This kind of adversary is called oblivious adversary. A randomized online
algorithm is c-competitive against an oblivious adversary, if for every request sequence
σ, the expected cost of the algorithm on σ is at most c ·OPT (σ)+α. The expectation is
taken over all random choices made by the algorithm. Since the oblivious adversary has
no information about the actual random choices made by the algorithm, the sequence σ
can be constructed ahead of this and OPT (σ) is not a random variable. In the sequel,
whenever we have a random online algorithm, we simply say that it is c-competitive,
and mean that it is c-competitive against an oblivious adversary. Again, the definitions
for maximization problems are analogues.

2.4 Notes

The dual-fitting analysis in Section 2.2.1 of the greedy heuristic is due to [76, 40]. The
algorithm in Section 2.2.3 is due to Bar-Yehuda and Even [17]. The set cover problem
is a classic NP-hard problem that was studied extensively in the literature. The best
approximation factor achievable for it in polynomial time (assuming P 6= NP ) is Θ(log n)
[40, 46, 67, 76].

The introduction here is only meant to provide basic notation and definition for
the rest of our discussion. The area of linear programming, duality, approximation
algorithms and online computation have been studied extensively in many directions.
For more information on linear programming and duality we refer the reader to [41]. For
further information on approximation techniques we refer the reader to [88]. Finally,
for more details on online computation other online models and competitive analysis we
refer the reader to [28].
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Chapter 3

A First Glimpse: The Ski Rental
Problem

Let us start with a Let us start with an example which will provide us with the flavor
of a primal-dual approach in the context of online computations. We demonstrate the
method on a classic, yet very simple problem, called the ski rental problem. A cus-
tomer arrives at a ski resort, where renting skis costs $1 per day, while buying them
costs $B. The unknown factor is the number of skiing days left before the snow melts.
This is the customer’s last vacation, so the goal is to minimize the total expenses. In
spite of its apparently simple description, the ski rental problem captures the essence
of online rent/buy dilemmas. The ski rental problem is well understood. There ex-
ists a simple deterministic 2-competitive algorithm for the problem and a randomized
e/(e − 1)-competitive algorithm. Both results are tight. We show here how to obtain
these results using a primal-dual approach.

The first step towards a primal-dual algorithm is formulating the problem in hand
as a linear program. Since the offline ski-renal problem is so simple casting it as a
linear program may seem a bit unnatural. However, this formulation turn out to be
very useful. We define a variable x which is set to 1 if we decide to buy the skis. For
each day j, 1 ≤ j ≤ k, we define a variable zj which is set to 1 if we decide to rent the
skis on that day. The constraints guarantee that on each day we either rent skis or buy
them. We now relax the problem and allow x and each zj to be in [0, 1]. The linear
program is depicted in Figure 3.1 as the primal program. Note that the optimal solution
is always integral, and thus the relaxation has no integrality gap. The dual program
is also extremely simple and consists of variables yj corresponding to each day j. Note
that the linear programming formulation forms a covering-packing primal-dual pair.

Next, consider the online scenario in which k (the number of ski days) is unknown in
advance. This online scenario is captured in the linear formulation in a very natural way.
Whenever we have a new ski day, the primal linear program is updated by adding a new
covering constraint. The dual program is updated by adding a new dual variable which
is added to the packing constraints. The online requirement is that previous decisions
cannot be regretted. That is, if we already rented skies yesterday, we cannot change
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Dual (Packing) Primal (Covering)

Maximize:
∑k

j=1 yj Minimize : B · x +
∑k

j=1 zj

Subject to: Subject to:
∑k

j=1 yj ≤ B For each day j: x + zj ≥ 1

For each day j: 0 ≤ yj ≤ 1 x ≥ 0, ∀j, zj ≥ 0

Figure 3.1: The fractional ski problem (the primal) and the corresponding dual problem

this decision today. This requirement is captured in the primal linear program by the
restriction that the primal variables cannot be decreased.

Obtaining an optimal deterministic online algorithm for the ski-rental problem is
very simple. Rent skies the first B days, and then buy skies on the Bth day. If k < B,
the algorithm is optimal. If k ≥ B, then the algorithm spends $2B dollars while the
optimal solution buys skies on the first day and spends only $B dollars. Thus, the
algorithm is 2-competitive. This simple algorithm and analysis can be obtained in a bit
less natural way using a primal-dual analysis. The description of the algorithm is the
following. On the jth day, a new primal constraint x+zj ≥ 1 and a new dual variable yj

arrive. If the primal constraint is already satisfied then do nothing. Otherwise, increase
yj continuously until some dual constraint becomes tight. Set the corresponding primal
variable to be 1. The above algorithm is a simple usage of the primal-dual schema and
its analysis is very simple using complementary slackness conditions: If yj > 0 then

1 ≤ x + zj ≤ 2. Moreover, if x > 0 then
∑k

j=1 yj = B, and if zj > 0 then yj = 1. Thus,
by the complementary slackness theorem (Theorem 2.3) the algorithm is 2-competitive.
It is not hard to see that both algorithms are actually identical.

Obtaining an optimal randomized algorithm is a bit harder, but can be done very
easily using a primal-dual approach. The first step is the design of a fractional com-
petitive algorithm. Recall that in the fractional case the primal variables can be in the
interval [0, 1], and we require that they cannot be decreased during the execution of the
algorithm. The online algorithm is the following:

1. Initially, x← 0.

2. Each new day (jth new constraint), if x < 1:

(a) zj ← 1− x.

(b) x← x
(

1 + 1
B

)

+ 1
c·B . (The value of c is determined later.)

(c) yj ← 1.

The analysis is simple. We show that: (i) the primal and dual solutions are feasible;
(ii) in each iteration, the ratio between the change in the primal and dual objective func-
tions is bounded by (1+1/c). Using weak duality theorem (Theorem 2.1) we immediately
conclude that the algorithm is (1 + 1/c)-competitive.

The proof is very simple. First, since we set zj = 1 − x whenever x < 1, the primal
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solution produced is feasible. Second, if x < 1, the dual objective function increases by 1,
and the increase in the primal objective function is B∆x+zj = x+1/c+1−x = 1+1/c,
thus the ratio is (1 + 1/c). Third, to show feasibility of the dual solution, we need to
show

∑k
j=1 yj ≤ B. We prove x ≥ 1 after at most B days of ski. It is easy to verify that

the variable x is the sum of a geometric sequence in which a1 = 1/(cB) and q = 1+1/B.

Thus, after B days, x =
(1+ 1

B )
B
−1

c . Choosing c = (1 + 1
B )B − 1 guarantees that x = 1

after B days. Thus, the competitive ratio is 1 + 1/c ≈ e/(e − 1) when B ≫ 1.
Transforming the fractional solution into a randomized competitive algorithm with

the same competitive ratio is easy. We arrange the increments of x on the interval [0, 1]
and choose uniformly in random α ∈ [0, 1] before executing the algorithm. We buy skies
on the day corresponding to the increment of x to which α belongs. It can be seen that
if there were k days of ski then the probability of buying skis is exactly the value of
x on the kth day. Also, the probability of renting the skis on the jth day (if we did
not buy before the jth day) is 1 − xj , where xj is the value of x on the jth day. Since
zj = 1− xj−1 ≥ 1− xj we get that the probability of renting on the jth day is at most
zj . Thus, by linearity of expectation, for any number of ski days, the expected cost of
the randomized algorithm is at most the cost of the fractional solution.
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Chapter 4

The Basic Approach

In this chapter we generalize the ideas used in the ski rental problem and devise a gen-
eral recipe for the design and analysis of online algorithms for problems which can be
formulated as packing-covering. In Section 4.1 we formally define a general online frame-
work. In Section 4.2 we give several alternative algorithms for this online framework.
In Section 4.3 we prove lower bounds that show these algorithms are optimal for the
problem. Finally, in Section 4.4 we give two simple examples that make use of our ideas
to devise algorithms for certain problems.

4.1 The Online Setting

We formally define our online framework. Think first on an “offline” covering problem.
In such a problem the objective is to minimize the total cost given by a linear cost
function

∑n
i=1 cixi. The feasible solution space is defined by a set of m linear constraints

of the form
∑n

i=1 a(i, j)xi ≥ b(j), where the entries a(i, j), b(j) and ci are non-negative.
For simplicity we consider in this chapter a simpler setting in which b(j) = 1 and
a(i, j) ∈ {0, 1}. In Chapter 14 we show how to extend the ideas we present here to
handle general (non-negative) values of a(i, j) and b(j). In the simpler setting each
covering constraint j is associated with a set S(j) such that i ∈ S(j) if a(i, j) = 1. The
jth covering constraint then reduces to simply

∑

i∈S(j) xi ≥ 1. Any primal covering
instance has a corresponding dual packing problem that provides a lower bound on any
feasible solution to the instance. A general form of a (simpler) primal covering problem
along with its dual packing problem is given in Figure 4.1.

The online covering problem is an online version of the covering problem. In this
setting the cost function is known in advance, but the linear constraints that define
the feasible solution space are given to the algorithm one-by-one. In order to maintain
a feasible solution to the current set of given constraints, the algorithm is allowed to
increase the variables xi. It may not, however, decrease any previously increased variable.
The objective of the algorithm is to minimize the objective function. The reader may
already see that this online setting captures the setting of the ski rental problem (Chapter
3) as a special case.
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(P): Primal (Covering) (D): Dual (Packing)

Minimize:
∑n

i=1 cixi Maximize:
∑m

j=1 yj

Subject to: Subject to:
For each 1 ≤ j ≤ m:

∑

i∈S(j) xi ≥ 1 For each 1 ≤ i ≤ n:
∑

j|i∈S(j) yj ≤ ci

For each 1 ≤ i ≤ n: xi ≥ 0 For each 1 ≤ j ≤ m: yj ≥ 0

Figure 4.1: Primal (covering) and dual (packing) problems

We also define an online version of the packing problem. In the online packing
problem the values ci (1 ≤ i ≤ n) are known in advance. However, the profit function
and the exact packing constraints are not known in advance. In the jth round a new
variable yj is introduced to the algorithm, along with the set of packing constraints it
appears in. The algorithm may increase the value of a variable yj only in the round when
it is given, and may not decrease or increase the values of any previously given variables.
Note that other variables that have not yet been introduced may also later appear in the
same packing constraints. This actually means that each packing constraint is revealed
to the algorithm gradually. The objective of the algorithm is to maximize the objective
function while maintaining all packing constraints feasible. Although this online setting
seems at first glance a bit unnatural, we show later that many natural online problems
reduce to this online setting.

We first observe that these two online settings form a primal-dual pair in the following
sense: At any point of time an algorithm for the online fractional covering problem
maintains a subset of the final linear constraints. This subset defines a sub-instance of a
final covering instance. The dual packing problem of this sub-instance is a sub-instance
of the final dual packing problem. In the dual packing sub-instance, only part of the dual
variables are known, along with their corresponding coefficients. The two sub-instances
form a primal-dual pair. In each round of the online fractional covering problem a new
covering constraint is given. The primal covering sub-instance is updated by adding this
new constraint. To update the dual sub-instance we add a new dual variable to the
profit function along with its coefficients that are defined by the new primal constraint.
Note that the dual update is the same as in the setting of the online packing problem.

The algorithms we propose in the following maintain at each step solutions for both
the primal and dual sub-instances. When a new constraint is given to the online frac-
tional covering problem, our algorithms also considers the new corresponding dual vari-
able and its coefficients. When the algorithms for the online fractional packing problem
receives a new variable along with its coefficients, it also considers the corresponding new
constraint in the primal sub-instance.

4.2 Three Simple Algorithms

In this section we present three algorithms with the same (optimal) performance guar-
antees for the online covering/packing problem. Although the performance of all three
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algorithms in the worst case is the same, some are better fit for certain applications.
Also, the ideas of each algorithm can be extended later to more complex settings. The
first algorithm is referred to as the basic discrete algorithm and is a direct extension of
the algorithm for the ski-rental in Chapter 3. The algorithm is the following:

Algorithm 1:
Whenever a new primal constraint

∑

i∈S(j) xi ≥ 1 and the corresponding dual variable
yj appear:

1. While
∑

i∈S(j) xi < 1:

(a) For each i ∈ S(j): xi ← xi

(

1 + 1
ci

)

+ 1
|S(j)|ci

.

(b) yj ← yj + 1

We analyze the algorithm assuming that each ci ≥ 1. This assumption is not restric-
tive and we discuss this later on. Let d = maxj |S(j)| ≤ m be the maximal “size” of a
covering constraint. We prove the following theorem:

Theorem 4.1. The algorithm produces:

• A fractional covering solution which is O(log d)-competitive.

• An integral packing solution which is 2-competitive and violates each packing con-
straint by at most factor of O(log d).

We remark that it is not hard to make the packing solution feasible by dividing the
update of each yj by O(log d). This, however, will yield a packing solution which is not
integral. It is also beneficial for the reader to note the similarity (in spirit) to the proof
of Theorem 4.1 and the dual fitting based proof of the greedy heuristic for the set cover
problem in Section 2.2.1.

Proof. Let P and D be the values of the objective function of the primal and the dual
solution the algorithm produce respectively. Initially, P = D = 0. Let ∆P and ∆D
be the changes in the primal and dual cost, respectively, in a particular iteration of the
algorithm in which we enter the inner loop. We prove three simple claims:

1. The algorithm produces a primal (covering) feasible solution.

2. In each iteration: ∆P ≤ 2∆D.

3. Each packing constraint in the dual program is violated by at most O(log d).

The Theorem then follows immediately by the three claims along with weak duality.
Proof of (1): Consider a primal constraint

∑

i∈S(j) xi ≥ 1. During the jth iteration
the algorithm increases the values of the variables xi until the constraint is satisfied.
Subsequent increases of the variables cannot make the solution infeasible.
Proof of (2): Whenever the algorithm updates the primal and dual solutions, the
change in the dual profit is 1. The change in the primal cost is:
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∑

i∈S(j)

ci∆xi =
∑

i∈S(j)

ci

(

xi

ci
+

1

|S(j)|ci

)

=
∑

i∈S(j)

(

xi +
1

|S(j)|

)

≤ 2,

where the final inequality follows since the covering constraint is infeasible at the time
of the update.
Proof of (3): Consider any dual constraint

∑

j|i∈S(j) yj ≤ ci. Whenever we increase
some yj such that i ∈ S(j) by one unit we also increase the variable xi in line 1a. We
prove by simple induction that the variable xi is bounded from below by the sum of a
geometric sequence with a1 = 1

dci
and q = (1 + 1

ci
). That is,

xi ≥
1

d

(

(

1 +
1

ci

)

∑

j|i∈S(j) yj

− 1

)

. (4.1)

Initially xi = 0 so the induction hypothesis holds. Next, consider an iteration in
which some yk increases by 1. Let xi(start) and xi(end) be the value of xi before and
after the increment respectively. Then,

xi(end) = xi(start) ·

(

1 +
1

ci

)

+
1

|S(j)| · ci
≥ xi(start) ·

(

1 +
1

ci

)

+
1

d · ci

≥
1

d

(

(

1 +
1

ci

)

∑

j|i∈S(j)\{k} yj

− 1

)

·

(

1 +
1

ci

)yk

+
1

d · ci
(4.2)

=
1

d

(

(

1 +
1

ci

)

∑

j|i∈S(j) yj

− 1

)

,

Inequality (4.2) follows from the induction hypothesis.
Next, observe that the algorithm never updates any variable xi ≥ 1 (since it cannot

be in any unsatisfied constraint). Since each ci ≥ 1 and d ≥ 1 we have that xi <
1(1 + 1) + 1 = 3. Combining this with Inequality (4.1) we get that:

3 ≥ xi ≥
1

d

(

(

1 +
1

ci

)

∑

j|i∈S(j) yj

− 1

)

.

Using again the fact that ci ≥ 1 and simplifying we get the desired result that:

∑

j|i∈S(j)

yj ≤ ci log2(3d + 1) = ci ·O(log d)

The basic discrete algorithm is extremely simple and we show in the following many
applications for it. However, we would like to derive a slightly different algorithm that
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is continuous and is more in the spirit of the primal-dual schema. This algorithm also
helps us in gaining intuition for the right relationship between primal and dual variables.
The algorithm is the following:

Algorithm 2:
Whenever a new primal constraint

∑

i∈S(j) xi ≥ 1 and the corresponding dual variable
yj appear:

1. While
∑

i∈S(j) xi < 1:

(a) Increase the variable yj continuously.

(b) For each variable xi that appears in the (yet unsatisfied) primal constraint
increase xi according to the following function:

xi ←
1

d



exp





ln(1 + d)

ci

∑

j|i∈S(j)

yj



− 1



 .

Note that the exponential function for xi contains variables yj that correspond to
future constraints. However, these variables are all initialized to 0, so they do not con-
tribute to the value of the function. Although the algorithm is described in a continuous
fashion it is not hard to implement it in a discrete fashion in any desired accuracy.
We discuss the intuition of the exponential function we use after proving the following
Theorem:

Theorem 4.2. The algorithm produces:

• A fractional covering solution which is feasible and also O(log d)-competitive.

• A fractional packing solution which is feasible and also O(log d)-competitive.

Proof. Let P and D be the values of the objective function of the primal and the dual
solution the algorithm produce respectively. Initially, P = D = 0. Since our algorithm
is “continuous” we use derivatives. We prove three simple claims:

1. The algorithm produces a primal (covering) feasible solution.

2. In each iteration j: ∂P
∂yj
≤ 2 ln(1 + d) · ∂D

∂yj
.

3. Each packing constraint in the dual program is feasible.

The Theorem then follows immediately by the three claims along with weak duality.
Proof of (1): Consider a primal constraint

∑

i∈S(j) xi ≥ 1. During the jth iteration in
which the the jth primal constraint and dual variable yj appear, the algorithm increases
the values of the variables xi until the constraint is satisfied. Subsequent increases of
variables cannot make the solution infeasible.
Proof of (2): Whenever the algorithm updates the primal and dual solutions, ∂D

∂yj
= 1.

The derivative of the primal cost is:
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∂P

∂yj
=

∑

i∈S(j)

ci
∂xi

yj

=
∑

i∈S(j)

ci





ln(1 + d)

ci
·
1

d



exp





ln(1 + d)

ci

∑

j|i∈S(j)

yj













= ln(1 + d) ·
∑

i∈S(j)





1

d



exp





ln(1 + d)

ci

∑

j|i∈S(j)

yj



− 1



+
1

d





= ln(1 + d) ·
∑

i∈S(j)

(

xi +
1

d

)

≤ 2 ln(1 + d) (4.3)

The last inequality follows since the covering constraint is infeasible.
Proof of (3): Consider any dual constraint

∑

j|i∈S(j) yj ≤ ci. The corresponding variable
xi is always at most 1 since otherwise it cannot be in any unsatisfied constraint. Thus,
we get that:

xi =
1

d



exp





ln(1 + d)

ci

∑

j|i∈S(j)

yj



− 1



 ≤ 1

Simplifying we get the that:
∑

j|i∈S(j)

yj ≤ ci

Discussion: As can be seen from the proof, the basic discrete algorithm and the contin-
uous algorithm are essentially the same. The main idea is that (1+ 1

ci
) is approximately

exp( 1
ci

). The function in the continuous algorithm is then approximated by Inequality
4.1 in Theorem 4.1. The approximate equality is true as long as ci is not too small. This
is why the discrete algorithm needs the assumption that ci ≥ 1. In addition, the discrete
algorithm allows the primal variables to get values of more than 1 which is unnecessary
(and can easily be avoided). For these reasons, the proof of the continuous algorithm
is also a bit simpler. However, the description of the discrete algorithm is simpler and
more intuitive.

The reader may wonder at this point how did we choose the function used in the
algorithm for updating the primal and dual variables. We will try to give here a system-
atic way of deriving this function. Consider the point in time in which the jth primal
constraint is given and assume that it is not satisfied. Our goal is to bound the derivative
of the primal cost (denoted by P ) as a function of the dual profit (denoted by D). That
is, show that

∂P

∂yj
=
∑

i∈S(j)

ci ·
∂xi

∂yj
≤ α ·

∂D

∂yj
,
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where α is going to be the competitive factor. Suppose that the derivative of the primal
cost satisfies:

∑

i∈S(j)

ci ·
∂xi

∂yj
= A ·

∑

i∈S(j)

(

xi +
1

d

)

. (4.4)

Then, since
∑

i∈S(j) xi ≤ 1,
∑

i∈S(j)
1
d ≤ 1, and ∂D

∂yj
= 1, we get that

A ·
∑

i∈S(j)

(

xi +
1

d

)

≤ 2A ·
∂D

∂yj
.

Thus, α = 2A. Now, satisfying Equality (4.4) requires solving the following differential
equation for each i ∈ S(j):

∂xi

∂yj
=

A

ci
·

(

xi +
1

d

)

.

It is easy to verify that the solution is a family of functions of the following form:

xi = B · exp





A

ci

∑

ℓ |i∈S(j)

yℓ



−
1

d
,

where B is any number. Next, we have the following two boundary conditions on the
solution:

• Initially, xi = 0, and this happens when 1
ci

∑

j|i∈S(j) yj = 0.

• If 1
ci
·
∑

j|i∈S(j) yj = 1, (i.e., the dual constraint is tight), then xi = 1. (Then, the
primal constraint is also satisfied.)

The first boundary condition gives B = 1
d . The second boundary condition gives us

A = ln(d + 1). Putting everything together we get the exact function used in the
algorithm.

We next describe a third algorithm for the problem. This algorithm is also con-
tinuous, but different from the previous one. The idea is to combine the primal dual
schema into the online algorithm. This idea, turn out to be useful in some applications
we discuss in later chapters. Again, let d = maxj |S(j)| ≤ m be the maximal “size” of a
constraint. The algorithm description is the following:
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Algorithm 3:
Whenever a new primal constraint

∑

i∈S(j) xi ≥ 1 and the corresponding dual variable
yj appear:

1. While
∑

i∈S(j) xi < 1:

(a) Increase variable yj continuously.

(b) If xi = 0 and
∑

j|i∈S(j) yj = ci then set xi ←
1
d .

(c) For each variable xi,
1
d ≤ xi < 1, that appears in the (yet unsatisfied)

primal constraint, increase xi according to the following function:

xi ←
1

d
exp

(
∑

j|i∈S(j) yj

ci
− 1

)

.

First, note that the exponential function equals 1
d when

∑

j|i∈S(j) yj = ci and so the
algorithm is well defined. We next prove the following Theorem:

Theorem 4.3. The algorithm produces:

• A fractional covering solution which is O(log d)-competitive.

• A fractional packing solution which is 2-competitive and violates each packing con-
straint by at most O(log d).

We remark that similarly to the basic discrete algorithm, it is not hard to make the
packing solution feasible (and O(log d)-competitive) by scaling down each yj by O(log d).

Proof. Let P and D be the values of the objective function of the primal and dual
solutions, respectively. Initially, P = D = 0. Since our algorithm is continuous, we will
use derivatives. We prove three simple claims:

1. The algorithm produces a primal (covering) feasible solution.

2. Each packing constraint in the dual program is violated by at most O(log d).

3. P ≤ 2D.

The Theorem then follows immediately by the three claims along with weak duality.
Proof of (1): Consider a primal constraint

∑

i∈S(j) xi ≥ 1. During the jth round
the algorithm increases the values of the variables xi until the constraint is satisfied.
Subsequent increases of the variables cannot make the solution infeasible.
Proof of (2): Consider any dual constraint

∑

j|i∈S(j) yj ≤ ci. The corresponding variable
xi is always at most 1, since otherwise it cannot belong to any unsatisfied constraint.
Thus, we get that:

xi =
1

d
exp

(
∑

j|i∈S(j) yj

ci
− 1

)

≤ 1.
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Simplifying we get the that

∑

j|i∈S(j)

yj ≤ ci(1 + ln d).

Proof of (3): We partition the total cost of the primal into two parts. Let C1 be the
contribution of the primal cost from Step (1b), due to the increase of primal variables
from 0 to 1

d . Let C2 be the contribution of the primal cost from Step (1c) of the algorithm.
It is also beneficial for the reader to observe the similarity between the arguments used for
bounding C1 and those used for the proof of the approximation ratio of the primal-dual
algorithm in Section 2.2.3.

Bounding C1: Let x̃i = min(xi,
1
d). Our goal is to bound

∑n
i=1 cix̃i. To do this we

observe the following. First, the algorithm guarantees that if xi > 0, and therefore
x̃i > 0 then:

∑

j|i∈S(j)

yj ≥ ci (primal complementary slackness) (4.5)

Next, if yj > 0 then:

∑

i∈S(j)

x̃i ≤ 1 (dual complementary slackness) (4.6)

Inequality (4.6) follows since x̃i ≤
1
d . Thus, even if for all i, x̃i = 1

d ≤
1

|S(j)| , then
∑

i∈S(j) x̃i ≤ 1. By the primal and dual complementary slackness conditions we get
that:

n
∑

i=1

cix̃i ≤
n
∑

i=1





∑

j|i∈S(j)

yj



 x̃i (4.7)

=
m
∑

j=1





∑

i∈S(j)

x̃i



 yj (4.8)

≤
m
∑

j=1

yj (4.9)

Where Inequality (4.7) follows from Inequality (4.5). Equality (4.8) follows by chang-
ing the order of summation. Inequality (4.9) follows from Inequality (4.6). Thus, we get
that C1 is at most the dual cost.
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Bounding C2: Whenever the algorithm updates the primal and dual solutions, ∂D
∂yj

=

1. It is easy to verify that the derivative of the primal cost is:

∂P

∂yj
=

∑

i∈S(j)

ci
∂xi

yj

=
∑

i∈S(j)

ci
xi

ci
≤ 1. (4.10)

The last inequality follows since the covering constraint is infeasible at the update time.
Thus, C2 is also bounded from above by the dual cost.

4.3 Lower Bounds

In this Section we show that the competitive ratios we obtained in Section 4.2 are optimal
up to constants. We prove a lower bound for the online packing problem and another
lower bound for the online covering problem.

Lemma 4.4. There is an instance of the online fractional packing problem with n con-
straints, such that for any B−competitive online algorithm there exists a constraint for

which
∑

j|i∈S(j) yj ≥ ci ·
1
B

(

1 + log2 n
2

)

= ci · Ω( log n
B ).

Proof. Consider the following instance with n = 2k packing constraints. The right
hand side of each packing constraint is 1. In the first round a new variable y(1, 1) that
belongs to all constraints arrives. In the second round two variables y(2, 1) and y(2, 2)
arrive. y(2, 1) belongs to the first 2k−1 constraints and y(2, 2) belongs to the last 2k−1

constraints. In the third round four dual variables y(3, 1), y(3, 2), y(3, 3), and y(3, 4)
arrive that belong each to 2k−2 packing constraints. The process ends in the (k + 1)st
round in which 2k variables arrive, each belong to a single packing constraint. The
optimal solution after the ith round is to set the new 2i−1 variables to 1. Since the
algorithm is B-competitive we get the following set of constraints:

For each 1 ≤ i ≤ k + 1:

i
∑

j=1

2j−1
∑

ℓ=1

y(j, ℓ) ≥
2i−1

B

Multiplying the k + 1st inequality by 1 and each inequality i, 1 ≤ i ≤ k, by 2k−i and
summing up, we get that:

k+1
∑

j=1

2k−j+1 ·





2j−1
∑

ℓ=1

y(j, ℓ)



 ≥
1

B

(

k2k−1 + 2k
)
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However, this sum is also the sum over all packing constraints. Thus, by an averaging
argument since there are 2k constraints we get that there exists a constraint whose right
hand side is at least 1

2k ·B

(

k2k−1 + 2k
)

= 1
B

(

1 + k
2

)

. Since n = 2k we get the desired
bound.

Lemma 4.5. There is an instance of the online fractional covering problem with n
variables such that any online algorithm is Ω(log n)-competitive on this instance.

Proof. Consider the following instance with n = 2k variables x1, x2, . . . , xn. The first

constraint that arrives is
∑n

i=1 xi ≥ 1. If
∑n/2

i=1 xi ≥
∑n

i=n/2+1 xi then the next constraint

that arrives is
∑n

i=n/2+1 xi ≥ 1, otherwise the constraint
∑n/2

i=1 xi ≥ 1 arrives. This
process of halving and continuing with the smaller sum goes on until we remain with a
single variable. The optimal offline solution satisfying all the constraints is to set the
last variable to one. However, for any online algorithm, the sum of the variables in each
round that do not appear in the next covering constraint is at least 1/2. There are
k + 1 rounds and thus the cost of any online algorithm is at least 1 + k

2 , concluding the
proof.

4.4 Two Warm-up Problems

In this Section we demonstrate the use of the online primal-dual framework on two
simple examples, a covering problem and a packing problem.

4.4.1 The Online Set Cover Problem

Consider an online version of the offline set cover problem discussed in Section 2.2. In
the online version of the problem a subset of the elements X arrive one-by-one in an
online fashion. The algorithm has to cover each element upon arrival. The restriction is
that sets already chosen to the cover by the online algorithm cannot be “returned”.

This online setting exactly fits the online covering setting, since whenever a new
element arrives a new constraint is added to the set cover linear formulation. Hence,
we can use any of the algorithms presented in Section 4.2 to derive a monotonically
increasing fractional solution to the set cover problem.

Getting a randomized integral solution is extremely simple. We may simply use
the same randomized rounding algorithm that appears in Section 2.2.2. Note that the
algorithm chooses a-priori in random a threshold Θ(s) ∈ [0, 1] for each set s. The
algorithm then chooses the set s to the cover if xs ≥ Θ(s). Since xs is monotonically
increasing, the online algorithm simply chooses the set s to the cover once xs ≥ Θ(s).
The analysis is straightforward proving that the algorithm produces a solution covering
all requested elements with high probability and its expected cost is O(log n) times the
fractional solution. Since the fractional solution is O(log m)-competitive with respect to
the optimal solution, we get that the integral algorithm is O(log n log m)-competitive.
In Chapter 6 we show how to obtain a deterministic online algorithm for the set cover
problem with the same competitive ratio.
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Primal Dual
Minimize:

∑

e∈E u(e)x(e) +
∑

ri
z(ri) Maximize:

∑

ri

∑

P∈P(ri)
f(ri, P )

Subject to: Subject to:
∀ri ∈ R, P ∈ P(ri):

∑

e∈P x(e) + z(ri) ≥ 1 ∀ri ∈ R:
∑

P∈P(ri)
f(ri, P ) ≤ 1

∀e ∈ E:
∑

ri∈R,P∈P(ri)|e∈P f(ri, P ) ≤ u(e)

Figure 4.2: The splittable routing problem (Maximize) and its corresponding primal
problem.

4.4.2 Online Routing

In this section we give a simple example of an online packing problem. We study the
problem of maximizing the throughput of scheduled virtual circuits. In the simplest
version of the problem we are given in advance a graph G = (V,E) with capacities u(e)
on the edges. A set of requests ri = (si, ti) (1 ≤ i ≤ n) arrives in an online fashion.
To serve a request, the algorithm chooses a path between si and ti and allocates a
bandwidth of one unit on this path. The decisions of the algorithm are irrevocable, and
all requests are permanent, meaning that once accepted they stay forever. If the total
capacity routed on edge e is ℓ ·u(e), we say that the load on edge e is ℓ. Ideally, the total
bandwidth allocated on any edge should not exceed its capacity (load ℓ ≤ 1). The total
profit of the algorithm is the number of requests served and its performance is measured
with respect to the maximum number of requests that could have be served (offline).

In a fractional version of the problem the allocation is not restricted to an integral
bandwidth of either zero or one; instead, we can allocate to each request a fractional
bandwidth in the range [0, 1]. In addition, the bandwidth allocated to a request can
be divided between several paths. This problem is an online version of the maximum
multi-commodity flow problem. We describe the problem as a packing problem in Figure
4.2. For ri = (si, ti), let P(ri) be the set of simple paths between si and ti. For each
P ∈ P(ri), the variable f(ri, P ) corresponds to the amount of flow (service) given to
request ri on the path P . The first set of constraints guarantees that each client gets at
most a fractional flow (bandwidth) of 1. The second set of constraints are the capacity
constraints of the edges. In the primal problem we assign a variable z(ri) to each request
ri and a variable x(e) to each edge in the graph.

This online setting exactly fits our online packing setting, as the new dual variables
arrive whenever a new request arrives. However, in each round it may happen that
an exponential number of variables arrives. We show in the following that we can still
overcome this problem and get an efficient algorithm. We present two algorithms, each
having different properties, for the problem. Let d ≤ n be the diameter of the graph
(the longest simple path between any two nodes). The first algorithm is the following:
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Routing Algorithm 1:
When a new request ri = (si, ti) arrives:

1. if there exists a path P ∈ P(ri) such that
∑

e∈P x(e) < 1:

(a) Route the request on P and set f(ri, P )← 1.

(b) Set z(ri)← 1.

(c) For each e ∈ P : x(e)← x(e)(1 + 1
u(e)) + 1

|P |·u(e), where |P | is the length of
the path P .

Theorem 4.6. The algorithm is 3-competitive while violating the capacity of each edge
by at most O(log d) (i.e. the load on each edge is at most O(log d)).

The proof of Theorem 4.6 is almost identical to the proof of Theorem 4.1 and we leave
it as a simple exercise to the reader. The main observation is that there is no need to
deal with the exponential number of dual variables. The algorithm only needs to check
the condition in Line (1). If, for example, P (ri) is the set of all simple paths between si

and ti then this condition can be checked by computing a shortest path between si and
ti.

The above algorithm routes more requests on the edges then the capacity of the
edges. We next show a different algorithm that fully respects the edges’ capacities.

Routing Algorithm 2:
Initially: x(e)← 0.
When a new request ri = (si, ti, P(ri)) arrives:

1. If there exists a path P (ri) ∈ P(ri) of length < 1 with respect to x(e):

(a) Route the request on any path P ∈ P(ri) with length < 1.

(b) z(ri)← 1.

(c) For each edge e in P (ri):

x(e)← x(e) exp

(

ln(1 + n)

u(e)

)

+
1

n

[

exp

(

ln(1 + n)

u(e)

)

− 1

]

Theorem 4.7. The algorithm is O
(

u(min) ·
[

exp
(

ln(1+n)
u(min)

)

− 1
])

-competitive and does

not violate the capacity constraints. If u(min) ≥ log n then the algorithm is O(log n)-
competitive.

Proof. Note first that the function
(

u(e) ·
[

exp
(

ln(1+n)
u(e)

)

− 1
])

is monotonically decreas-

ing with respect to u(e). Thus, when a request ri is routed, the increase of the primal
cost is at most:
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1 +
∑

e∈P

u(e)

(

x(e)

[

exp

(

ln(1 + n)

u(e)

)

− 1

]

+
1

n

[

exp

(

ln(1 + n)

u(e)

)

− 1

])

.

This expression is at most 2
(

u(min) ·
[

exp
(

ln(1+n)
u(min)

)

− 1
])

+ 1. This follows since z(ri)

is set to one, and edges on the path P satisfy
∑

e∈P x(e) ≤ 1. Each time a request is
routed, the dual profit is 1. Thus, the ratio between the primal and dual solutions is at
most that ratio.

Second, observe that the algorithm maintains a feasible primal solution at all times.
This follows since z(ri) is set to one for each request in which the distance between si

and ti with respect to x(e)-variables is less than 1.
Finally, it remains to prove that the algorithm routes at most u(e) requests on each

edge e, and so the dual solution it maintains is feasible. To this end, observe that
for each edge e, the value x(e) is the sum of a geometric sequence with initial value
1
n

[

exp
(

ln(1+n)
u(e)

)

− 1
]

and multiplier exp
(

ln(1+n)
u(e)

)

. Thus, after u(e) requests are routed

through edge e, the value x(e) is:

x(e) =
1

n
·

(

exp

(

ln(1 + n)

u(e)

)

− 1

)

·
exp

(

u(e) ln(1+n)
u(e)

)

− 1

exp
(

ln(1+n)
u(e)

)

− 1

=
1

n
· (1 + n− 1) ≥ 1.

Since the algorithm never routes requests on edges for which x(e) ≥ 1, we are done.
Finally, it is not hard to verify that when u(min) ≥ log n, then

2

(

u(min) ·

[

exp

(

ln(1 + n)

u(min)

)

− 1

])

+ 1 = O(log n).

4.5 Notes

The definitions of the online covering/packing framework along with the basic algorithms
in Section 4.2 and the lower bounds in Section 4.3 are based on the work of Buchbinder
and Naor [32]. These algorithms draw on ideas from previous algorithms by Alon et al.
[3, 4]. The third basic algorithm that incorporate the primal-dual schema into the online
algorithm is based on the later work of Bansal, Buchbinder and Naor [14]. The online
set cover problem was considered in [3]. There, they gave a deterministic algorithm
for the problem that is discussed later in Chapter 6. The second routing algorithm in
Section 4.4.2 appeared in [33]. It is basically an alternative description and analysis of
a previous algorithm by Awerbuch, Azar and Plotkin [11].

There is a long line of work on generating a near-optimal fractional solution for offline
covering and packing problems, e.g. [82, 77, 91, 54, 52, 73]. Generating such a solution
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for the offline covering problem with upper bounds on the variables was considered in
[51, 53]. All these methods take advantage of the offline nature of the problems. We
remark that several of these methods use primal-dual analysis. For example, in [54]
some of their algorithms that solves packing and covering linear formulations repeatedly
updates primal and dual variables in an unsatisfied primal constraint. Therefore, our
approach can be viewed as an adaptation of these methods to the context of online
computation.
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Chapter 5

Graph Optimization Problems

In this chapter we describe applications of the primal dual approach for a wide range
of graph and network optimization problems, focusing on problems that arise in the
study of connectivity and cuts in graphs. The first step is to formulate the problem
as either an online covering problem or an online packing problem. This enable us to
use the generic algorithms in Section 4.2, yielding a fractional solution for the problem.
We then transform a known offline rounding method into an online rounding method to
obtain an integral solution. This part of the algorithm is problem dependent.

Connectivity and cut problems in graphs are defined on an input graph G = (V,E)
(directed or undirected), a cost function c : E → R

+, and a requirement function f
(to be defined later). The goal is to find a minimum cost subgraph that satisfies the
requirement function f . Our model is online; that is, the requirement function is not
known in advance and it is given “step by step” to the algorithm, while the input graph
is known in advance. We consider an online version of network design problems which
we call generalized connectivity. The requirement function is a set of demands of the
form D = (S, T ), where S and T are subsets of vertices in the graph such that S∩T = ∅.
A feasible solution is a set of edges, such that for each demand D = (S, T ) there is a
path from a vertex in S to a vertex in T . Examples of problems belonging to this class
are Steiner trees, generalized Steiner trees, and the group Steiner problem. Less obvious
examples are the set cover problem and non-metric facility location.

Cut problems in graphs involve separating sets of vertices from each other. We
concentrate on a family of cut problems which we call generalized cuts. The requirement
function is a set of demands of the form D = (S, T ), where S and T are subsets of
vertices in the graph such that S ∩ T = ∅. A feasible solution is a set of edges that
separates for each demand D = (S, T ), any two vertices s ∈ S and t ∈ T . Examples of
problems belonging to this class are the multiway cut problem and the multicut problem
(see e.g., [88]).

There is a natural linear programming relaxation for the problems that we are con-
sidering. For generalized connectivity problems, a feasible fractional solution associates
a fractional weight (capacity) with each edge, such that for each demand D = (S, T )
a unit of flow can be sent from S to T , where the flow on each edge does not exceed
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its weight. For generalized cuts, a feasible fractional solution associates a fractional
weight (length) with each edge, which we interpret as inducing a distance function. The
constraint is that for each demand D = (S, T ), the distance between any two vertices
s ∈ S and t ∈ T is at least 1. This linear programming relaxation is very useful for
computing (offline) an approximate solution for many problems that are special case
of the connectivity/cuts problem. Please refer to [88] for more details. We note that
fractional solutions have a motivation of their own in certain network design problems
and bandwidth allocation problems (see, for example, [82]).

5.1 Formulating the Problem

Let G = (V,E) be a graph (directed or undirected) with cost function c : E → R
+

associated with the edge set E. Suppose further that there is a weight function (or
capacity function) w : E → R

+ associated with the edge set E. The cost of w is defined
to be

∑

e∈E cewe.
Let A ⊂ V and B ⊂ V be subsets of V such that A ∩ B = ∅. Let G′ be the graph

obtained from G by adding a super-source s connected to all vertices in A and a super-
sink t connected to all vertices in B. The edges from s to A are directed into A and have
infinite weight, and the edges from B to t are directed into t and have infinite weight.
We say that there is a flow from A to B of value α if there exists a valid flow function
that sends α units of flow from s to t satisfying the capacity function w. The shortest
path from A to B is defined to be the shortest path with respect to w from any vertex
u ∈ A to any vertex v ∈ B (i.e. the minimal distance between any pair of vertices in A
and B). A requirement function is a set of demands of the form Di = (Si, Ti), 1 ≤ i ≤ k,
where Si ⊂ V , Ti ⊂ V and Si ∩ Ti = ∅.

We first define the generalized connectivity problem. The input for the problem is a
graph G = (V,E) with cost function c : E → R

+ and a requirement function. A feasible
integral solution is an assignment of weights (capacities) w from {0, 1} to E, such that
for each demand Di = (Si, Ti), 1 ≤ i ≤ k, there is a flow from Si to Ti of value at least
1. A feasible fractional solution is an assignment of weights (capacities) w from [0, 1] to
E, such that for each demand Di = (Si, Ti), 1 ≤ i ≤ k, there is a flow from Si to Ti of
value at least 1. We note that the flow constraint has to be satisfied for each demand
(Si, Ti) separately. The cost of a solution is defined to be the cost of w. It is possible
to define an LP relaxation for the fractional offline problem. For each demand Di let
C(Di) be the set of cuts that cut Si from Ti. The LP formulation is then the following:

(P ) : min
∑

e∈E

cewe

Subject to:
For all 1 ≤ i ≤ k and each cut C ∈ C(Di):

∑

e∈C

we ≥ 1
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∀e ∈ E, we ≥ 0

We next define the generalized cuts problem. The input for this problem is again a
graph G = (V,E) with cost function c : E → R

+ and a requirement function. A feasible
integral solution is a set of edges E′ ⊆ E that separates for each demand Di = (Si, Ti)
any two vertices a ∈ Si and b ∈ Ti. Alternatively, we can think of each edge e ∈ E′

as having weight w(e) = 1. Thus, the weight function w induces a distance function
on the graph such that the distance between vertices separated by E′ is at least 1. A
feasible fractional solution is an assignment of weights w from [0, 1] to E, such that for
each demand Di = (Si, Ti), 1 ≤ i ≤ k, the distance induced by w between each a ∈ Si

and b ∈ Ti is at least 1. The cost of a solution is defined to be the cost of w. Again it is
possible to obtain a covering LP formulation for the generalized cuts problem. For each
demand Di let P (Di) be the set of paths between any two vertices in Si and Ti. The
LP formulation is then the following:

(P ) : min
∑

e∈E

cewe

Subject to:
For all 1 ≤ i ≤ k and each cut P ∈ P (Di):

∑

e∈P

we ≥ 1

∀e ∈ E, we ≥ 0

In an online setting, the graph G = (V,E) along with the cost function c is known
to the algorithm (as well as to the adversary) in advance. The set of requests of the
form Di = (Si, Ti) is then given one-by-one to the algorithm in an online fashion. Upon
arrival of a new demand, the algorithm must satisfy it by increasing the weights of edges
in the graph. However, the algorithm is not allowed to decrease the weight of an edge.
Thus, previous demands remain satisfied.

Online Algorithm: It is not hard to see that the online setting of the generalized con-
nectivity and the generalized cuts problems perfectly fit the primal-dual framework. In
particular, whenever a new demand Di arrives, the new set of constraints that correspond
to all the cuts/paths between Si and Ti are added to the LP. Although this may be an
exponential number of constraints, it is still possible to use the algorithms from Chapter
4 for solving the problem, since it suffices to either determine that a solution is feasible,
or find an unsatisfied primal constraint. This can be done easily using a maximum flow
computation from the set Si to the set Ti for the case of generalized connectivity, or a
shortest path computations in the case of generalized cuts. Thus, it is possible to ob-
tain online a monotonically increasing fractional solution which is O(log m)-competitive.
More precisely, it is possible to improve the factor to O(log |Cmax|), where Cmax is the
maximum cut in the graph in the case of generalized connectivity. In the case of general-
ized cuts, the competitive ratio can be improved to O(log d), where d is the diameter of
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the graph. We next define the special cases that we consider in the context of generalized
connectivity.

5.2 The Group Steiner Problem on Trees

In this section we demonstrate how it is possible to derive a randomized integral solution
to a special problem of the generalized connectivity by transforming an offline random-
ized rounding method into an online randomized rounding method. We demonstrate
these ideas using the group steiner problem on trees.

The group Steiner tree problem in a rooted tree is defined as follows. We are given
a rooted tree T = (V,E, r) with non-negative cost function c : E → R

+, and groups
g1, g2, . . . gk ⊂ V . Let r denote the root of the tree T . The objective is to find a
minimum cost rooted subtree T ′ that contains at least one vertex from each of the
groups gi, 1 ≤ i ≤ k. That is, using the terminology of the generalized connectivity
problem, each request is of the form (r, gi). In the online setting of the group steiner
problem the groups arrive one by one and the algorithm has to choose additional edges
to its solution upon arrival of a new request, so that the solution contains at least one
vertex from the new group. It is easy to verify that the group steiner problem is a special
case of the online generalized connectivity problem.

The group Steiner tree problem has an O(log n log k)-approximation algorithm, where
k is the number of groups, and n is the number of leaves in the tree [55]. This approx-
imation is based on a clever randomized rounding technique. In general (i.e., undi-
rected) graphs, the best approximation factor known for the group Steiner problem is
O(log2 n log k) by combining [55] with [45]. We next show how to derive an online ran-
domized rounding algorithm for the problem. This method basically imitates the offline
randomized rounding method of [55].

The randomized rounding method we propose covers each group with probability
Ω(1/ log N), where N is the maximum size of any group. In addition, its expected cost is
at most the cost of the fractional solution. We then run O(log k log N) independent trials
of this randomized rounding method in parallel, where k is the number of groups asked by
the adversary. The algorithm takes to the solution each edge that was selected in any of
the trials. Using simple probabilistic analysis we get that our algorithm has a competitive
ratio of O(log n log k log N) and each of the groups is covered with probability at least
1 − 1/k. In order to guarantee that the algorithm produces a feasible solution, we can
use the shortest path to a group in case the algorithm fails to cover the group. The
cost of this path is certainly a lower bound on the optimal solution, and since this event
happens with probability at most 1/k, it changes the expected competitive ratio of the
algorithm by a negligible factor. Since we do not know in advance the value of k we
can increase the number of trials gradually by doubling k whenever necessary. Next, we
propose an online randomized rounding method and analyze its performance.

Initially, the algorithm starts with an empty cover C = ∅. Applying the technique
of [55] requires that the fractional weights on a path from the root to any vertex are
monotonically decreasing. However, the fractional solution that our algorithm computes
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may not necessarily satisfy this property. Therefore, we define the weight of each edge to
be the maximum flow that can be routed through this edge to any vertex in its subtree.
In the following we abuse notation and let we denote the flow on edge e, instead of the
actual weight of e. Since the flow routed on each edge is at most its weight, we note
that this can only decrease the fractional value of the solution serving as our baseline
for bounding the competitive analysis.

Consider an iteration in which the fractional weight of some edges is augmented.
Since the weight of an edge is the maximum flow that can be routed through it, the frac-
tional weight of an edge can be augmented when the algorithm augments the weights of
other edges as well. If the weight of several edges is augmented at the same iteration, the
rounding algorithm considers the edges one by one, according to a topological ordering,
starting from the edges closer to the root. Let we and w′

e = we +δe be the weight of edge
e before and after the weight augmentation, respectively. Let δe be the change in the
weight of e. Let e(p) be the edge adjacent to e and closer to the root r. This definition
is, of course, only relevant if the edge e is not incident on the root r. The rounding
algorithm randomly chooses the edges to the solution by the following scheme.
Consider all edges for which δe > 0 in any topological order:

• If w′
e > 1, add e to C.

• If e is incident on r, or w′
e(p) > 1, add e to C with probability δe/(1 − we).

• If e(p) ∈ C, add e to C with probability δe/(w
′
e(p) −we).

Note that for each edge e that is not incident on the root, δe/(w
′
e(p)−we) ≤ δe/(w

′
e−

we) = 1, since w′
e ≤ w′

e(p). Thus, the probabilities are well defined. Furthermore,
note that C induces a connected subtree of T . This follows since the edges that were
augmented at the same iteration are considered in topological order and each edge may
be added to C only if the path connecting it to the root r is already in C. The following
lemma proves a basic important property of the randomized rounding method. The
proof that is based on a simple induction is omitted.

Lemma 5.1. For each edge e, at the end of each iteration, the probability that e ∈ C is
w′

e. If we > 1, then e ∈ C with probability 1.

The next lemma follows from linearity of expectation.

Lemma 5.2. At the end of each iteration, the expected cost of the edges in C is at most
∑

e∈T
cew

′
e, where w′

e is the weight of edge e at the end of the iteration.

Let N be the maximum size of a group g = {{v1, v2, . . . , vk}. Let wg be the total flow
that can be routed to the vertices in g simultaneously. The next lemma bounds from
below the probability that any group g with wg > 1 is covered. The proof is again based
on showing that the some properties of the probability distribution that were needed to
prove the same result in the offline case are kept the same online. We omit the proof.
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Lemma 5.3. In any iteration, if, for a group g = {v1, v2, . . . , vk}, wg ≥ 1, then the
probability that there exists vi ∈ C (1 ≤ i ≤ k) is Ω(1/ log N).

To conclude, we state the performance of the randomized algorithm for the online
group Steiner on trees.

Theorem 5.4. There is a randomized online algorithm for the group Steiner problem
in trees with a competitive ratio of O(log2 n log k).

5.2.1 The Group Steiner Problem on General Graphs

It is possible to combine our Theorem with the results in [45] similarly to what was done
in the offline case. This gives the following result for the online group Steiner in general
graphs.

Theorem 5.5. There is a randomized online algorithm for the group Steiner problem
in general graphs with a competitive ratio of O(log3 n log k).

5.3 Notes

The results in this chapter are based on the work of Alon et al. [4]. The online frac-
tional is analyzed there via a potential function method rather than by the primal-dual
approach. The paper contains several other problems that can be solved using the same
approach. Online network optimization problems have been studied extensively. The on-
line Steiner problem was considered in [62] who gave an O(log n)-competitive algorithm
and showed that in a general metric space this is indeed best possible. Their algorithm
greedily connects the new arrived terminal to the current sub-tree via a shortest path.
We remark that the analysis of this algorithm has also a primal-dual interpretation.
The generalized Steiner problem was considered in [9], where an O(log2 n)-competitive
algorithm is given. This was later improved to an O(log n)-competitive ratio algorithm
by [22].

There is a vast literature on efficient (offline) approximation algorithms for problems
involving connectivity and cuts. The reader is referred to [61, 88] for more details. In
particular, the offline version of the generalized connectivity problem was considered in
[36] who gave a poly-logarithmic (offline) approximation to it.
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Chapter 6

The Online Set Cover Problem

In Section 4.4.1 we saw a simple randomized O(log m log n)-competitive algorithm for
the online set cover problem. An interesting question is whether it is possible to obtain
a deterministic algorithm for the problem with the same competitive ratio. A common
approach for obtaining deterministic algorithms is derandomization, which means trans-
forming randomized algorithms into deterministic algorithms. For more details about
derandomization methods we refer the reader to [6].

One of the basic methods for derandomization is the so-called method of conditional
expectations or pessimistic estimators [6]. In this case one come up with a function
that “guides” the deterministic algorithm to a “good” solution. Interestingly, for the
online set cover problem it is possible to apply such derandomization methods that
actually derandomize the algorithm in an online fashion. This leads to a deterministic
O(log m log n)-competitive algorithm for the problem.

6.1 Obtaining a Deterministic Algorithm

It is quite easy to verify that if the set system is unknown in advance to the algorithm
then any deterministic algorithm is Ω(n)-competitive. Thus, we assume that the universe
of elements X is known to the algorithm along with the sets S. It is unknown, however,
which subset X ′ ⊆ X of the elements the algorithm would eventually have to cover. Let
c(COPT ) denotes the cost of the optimal solution. We design an algorithm that given a
value α ≥ c(COPT ) produces a feasible solution with cost O(α log m log n). In case the
algorithm is given a value α < c(COPT ) it may fail.

Our algorithm guesses the value c(COPT ) by doubling. We start by guessing α =
mins∈Scs, and run the algorithm with this value. If the algorithm fails we “forget” about
all sets chosen so far to C, update the value of α by doubling it, and continue on. We
note that the cost of the sets that we have “forgotten” about can increase the cost of our
solution by at most a factor of 2, since the value of α was doubled in each step. In the
final iteration the value of α is at most 2c(COPT ) and thus our actual cost is at most 4
times the cost of our sub-algorithm. Given a value α ≥ c(COPT ) our algorithm ignores
all sets of cost exceeding α, and also chooses all sets of cost at most α/m to C.
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The algorithm we design is going to use an online algorithm that generates an
O(log m)-competitive fractional solution. This online algorithm maintains a monotoni-
cally increasing fraction ws for each set s. Let we =

∑

s|e∈s ws. Note that the fractional
algorithm guarantees that for each element e that was requested we ≥ 1. Initially, our
algorithm starts with the empty cover C = ∅. Define C to be the set of all elements
covered by the members of C. The following potential function is used throughout the
algorithm:

Φ =
∑

e 6∈C

n2we + n · exp

(

1

2α

∑

s∈S

(csχC(s)− 3wscs log n)

)

.

The function χC above is the characteristic function of C, that is, χC(s) = 1 if s ∈ C,
and χC(s) = 0 otherwise. The algorithm is then the following:

Run the algorithm presented in Section 4.2 to produce a monotonically increasing
fractional solution. When the weight of some set s is increased:

1. If s ∈ C do nothing. Otherwise: add the set s to C if after adding it the value
of the potential function Φ does not exceed its value before the increase of
the weight of s.

2. If the value of the potential function before increasing the weight of s exceeds
its value after increasing the weight of s and possibly choosing s to C then
return “FAIL”.

In the following we analyze the performance of the algorithm in an iteration in which
α ≥ c(COPT ), and prove that the algorithm never fails in that iteration.

Lemma 6.1. Consider a step in which the weight of a set s is augmented by the algo-
rithm. Let Φstart and Φend be the values of the potential function Φ before and after the
step, respectively. Then Φend ≤ Φstart. In particular, when α ≥ c(COPT ) the algorithm
never fails.

Proof. Consider first the case in which s ∈ C. In this case the first term of the potential
function is unchanged. The second term of the potential function is decreasing and
therefore the claim holds.

The second case is when s 6∈ C. The proof for this case is probabilistic. We prove
that either including s in C or not including it does not increase the potential function.
Let ws and ws + δs denote the weight of s before and after the step, respectively. Add
set s to C with probability 1 − n−2δs . (This is roughly the same as choosing s with
probability δs/2 and repeating this 4 log n times.)

We first bound the expected value of the first term of the potential function. This
is similar to the unweighted case. Consider an element e ∈ X such that e /∈ C. If e /∈ s
then the term that is suitable to this element is unchanged in this step. Otherwise, let
the weight of e before the step be we and the weight after the step is we + δs. Before the
step, element e contributes to the first term of the potential function the value n2we . The
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probability that we do not choose the set s that contains element e is n−2δs . Therefore,
the expected contribution of element e to the potential function after the step is at most
n−2δsn2(we+δs) = n2ws . By linearity of expectation it follows that the expected value of
∑

e 6∈C
n2we after the step is precisely its value before the step.

It remains to bound the expected value of the second term of the potential function.
Let

T = n · exp

(

1

2α

∑

s∈S

(csχC(s)− 3wscs log n)

)

denote the value of the second term of the potential function before the step, and let T ′

denote the same term after the weight augmentation and the probabilistic choice of the
set s. Recall that s /∈ C. Then,

Exp[T ′] = T · exp

(

−
1

2α

∑

s∈S

3δscs log n

)

· Exp

[

exp

(

1

2α
csχC′(s)

)]

. (6.1)

Where χC′(s) = 1 is the indicator to the event that the set s is chosen to the cover which
happens with probability 1− n−2δs . We bound this expectation in the following:

Exp

[

exp

(

1

2α
csχC′(s)

)]

= n−2δs + (1− n−2δs) · exp
( cs

2α

)

(6.2)

≤ 1− 2δs log n + 2δs log n exp
( cs

2α

)

(6.3)

= 1 + 2δs log n
(

exp
( cs

2α

)

− 1
)

(6.4)

≤ 1 + 2δs log n
3cs

4α
(6.5)

≤ exp

(

3δscs log n

2α

)

. (6.6)

Here, (6.3) follows since for all x ≥ 0 and z ≥ 1, e−x + (1− e−x) · z ≤ 1− x + x · z, (6.5)
follows since ey− 1 ≤ 3y/2 for all 0 ≤ y ≤ 1/21, and (6.6) follows since 1+ x ≤ ex for all
x ≥ 0. Plugging in (6.1), we conclude that the expected value of the second term after
the augmentation step and random choices is at most

Exp[T ′] = T · exp

(

−
1

2α

∑

s∈S

3δscs log n

)

· exp

(

1

2α
3δscs log n

)

≤ T.

By linearity of expectation it now follows that Exp[Φend] ≤ Φstart. Therefore, either
choosing s to the cover or not choosing it to the cover does not increase the potential
function. We conclude that after each step Φend ≤ Φstart.

1Note that here we use the fact that α ≥ c(COPT ), since we ignored all sets with cs > α.
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Theorem 6.2. Throughout the algorithm, the following properties hold.
(i)Every e ∈ X of weight we ≥ 1 is covered, that is, e ∈ C.
(ii)

∑

s∈C
cs = α ·O(log m log n).

Proof. Initially, the value of the potential function Φ is at most n · n0 + n < n2, and
hence it stays smaller than n2 during the whole algorithm. Therefore, if we ≥ 1 for some
e during the process, then e ∈ C, since otherwise the contribution of the term n2we itself
would be at least n2. This proves part (i). To prove part (ii), note that by the same
argument, throughout the algorithm

n · exp

(

1

2α

∑

s∈S

csχC(s)− 3wscs log n

)

< n2.

Therefore,
∑

s∈S

csχC(s) ≤
∑

s∈S

3wscs log n + 2α log n,

and the desired result follows from the fact that the fractional solution is O(log m)-
competitive.

6.2 Notes

The results in this chapter are based on the work of Alon et al. [3]. The results were not
originally in a primal-dual way. Alon et al. also proved that any deterministic algorithm

for the online set cover problem is Ω
(

log n log m
log log m+log log n

)

for many values of m and n. In

the unweighted version of the set cover problem all sets are of cost 1 and so the goal is
to minimize the number of sets used to cover the elements. Buchbinder and Naor [32]
used the improved offline rounding technique of [87] to obtain an O(log d log(n/OPT ))-
competitive algorithm, where d is the maximum frequency of an element (i.e., the max-
imum number of sets an element belong to), n is the number of elements and OPT is
the optimal size of the set cover. We note that we do not fully understand when deran-
domization methods can be applied in online settings. Using derandomization methods
Buchbinder and Naor [32] obtained an alternative routing algorithm that achieves the
same competitiveness as the second routing algorithm in Section 4.4.2. Their algorithm
is based on the basic algorithms of Section 4.2 along with an online derandomization
of the rounding method in [84, 83]. Another de-randomization of an online algorithm
was designed by Buchbinder, Jain and Naor [30] for the ad-auctions problem (See also
Chapter 11).

Offline derandomization methods have been studied extensively. In particular, the
method was used to transform fractional flow into integral flow [84, 83]. There are several
other offline derandomization methods and we refer the reader to [6] for more details.

Another online variation of set cover problem was considered in [10]. There, we are
also given m sets and n elements that arrive one at a time. However, the goal of the
online algorithm is to pick k sets so as to maximize the number of elements that are
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covered. The algorithm only gets credit for elements that are contained in a set that
it selected before or during the step in which the element arrived. The authors of [10]
showed a randomized Θ(log m log n

k ) competitive algorithm for the problem, where the
bound is optimal for many values of n, m, and k. An extension of the online set-cover
problem was studied in [5]. They considered an admission control problem where the
goal is to minimize the number of rejections. They solved it by reducing it to an instance
of online set cover with repetitions, in which each element may be needed to be covered
several times.
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Chapter 7

The Metrical Task System
Problem on a Weighted Star

In this chapter we study the metrical task system (MTS) problem on a metric M defined
by a weighted star. The metrical task system is one of the earliest problems studied
in the context of online computation. The problem captures many online scenarios. In
the MTS problem we are given a finite metric space M = (V, d), where |V | = N . We
view the points of M as states to which the algorithm belongs. The distance between
the points of the metric measures the cost of transition between the possible states. We
use a “server” notation and say that there is a server moving between the states and
serving the requests. Each task (request) r in a metrical task system is associated with
a vector (r(1), r(2), . . . , r(N)), where r(i) denotes the cost of serving r in state i ∈ V .
In order to serve request r in state i the server has to be in this state. Upon arrival of
a new request, the state of the system can first be changed to a new state (paying the
transition cost), and only then the request is served (paying for serving the request in
the new state). The transition cost between the states is assumed to be a metric. The
objective is to minimize the total cost which is the sum of the transition costs and the
service costs.

There is also an equivalent continuous time MTS model. In this model the algorithm
is allowed to change states at any time t, which is a real number, and not only at integral
times. The service cost is generalized in a straight forward way to be an integral instead
of a sum. It is well known [28, Sec. 9.1.1] that any continuous time algorithm can be
transformed to a discrete time algorithm without increasing the total cost. On the other
hand, since the continuous time model is a relaxation of the discrete model it is clear
that the optimal cost can only decrease.

We show in this section how to design an optimal online algorithm for the case
where the metric space is a weighed star. The idea is to define an alternative MTS
model and show that it is “equivalent” up to constant factors to the original model on a
weighted star metric. We then show that the basic algorithms presented in Section 4.2
are applicable to the new model. Finally, we show that a randomized algorithm can be
obtained by a simple rounding technique.
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The leaves of the star are denoted by {1, 2, . . . , N}. We present an O(log N)-
competitive online algorithm. We are going to charge the algorithm by 2d(i) whenever
the server moves from state i to another state, say j. Thus, we are not going to charge
the algorithm for the cost of moving into state j. This assumption can only add an
additive term to the total cost which is independent of the request sequence (we do not
charge for the last state change). From now on we abuse notation and let d(i) denote
the cost of moving from state i to a different state.

7.1 A Modified Model

We are going to start with the (equivalent) continuous time MTS model. In this model
the algorithm is allowed to change states at any time t which is a real number and not
only at integral times. We first define a new MTS model and show that on a star metric
the cost of an optimal solution can only change by a constant factor. The high level
idea of the new model is to cancel the transition cost incurred due to state change and
pay only for serving the requests. To balance, we restrict the algorithm and allow it to
change its state only if certain conditions are fulfilled. For each state we partition the
time interval into phases. We permit the solutions to leave a state i only at the end of
a phase (of state i). The first phase of each state starts at time t = 0. Phase p of state i
starts at time tp−1(i) and ends at the earliest time tp(i) for which the accumulated cost
of service at state i in the interval [tp−1(i), tp(i)] is exactly d(i).

We are now ready to describe the new MTS model in its full generality. An online
algorithm is allowed to leave state i only at the end of a phase (of state i). The algorithm
does not pay any transition cost when moving from one state to another. If the algorithm
is in state i during phase p then it pays a cost d(i). The algorithm pays the full cost of
the phase even if it was in state i only during part of the phase p. This can happen if
the algorithm moves to state i from i′ in the middle of the pth phase of i (and at the
end of a phase of state i′). Given a set of requests σ̄, let OPT n(σ̄) be the minimum
offline cost of serving the set of requests in the new MTS model. Let OPT o(σ̄) be the
minimum offline cost of serving the set of requests in the standard MTS model. We
prove the following two lemmas:

Lemma 7.1. Let σ̄ be a set of requests. Any solution S to σ̄ in the standard MTS model
with cost C can be transformed into a legal solution S′ in the new MTS model with cost
at most 2C. In particular, OPTn(σ̄) ≤ 2OPT o(σ̄).

Proof. Let t1, t2, . . . , tk be the times at which solution S changes its state. Let si be the
state of the algorithm from time ti−1 until time ti. During this time the algorithm pays
for the cost for serving the requests in state si and then pays for moving out of si at ti.
We define a solution S′ in the new model that imitates S but changes state only at the
end of a phase. Initially, S′ starts out from the same state s1 as solution S. At any time
t, if the algorithm is in state j in solution S′, it waits until the some t′ ≥ t, when the
phase in state j ends and then moves to the state in which solution S is at time t′. Note
that if S′ is already in the same state as S at time t′, then S′ does not change its state.
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Clearly, S′ is a feasible solution in the new MTS model by design as it changes its state
only at the end of a phase. Also, it is easily seen that if solution S′ is in state i at some
time during [ti−1, ti], then it stays in i at least until time ti.

We bound the cost of S′. Let Wi be the total cost of serving the requests in state si

during the time interval [ti−1, ti]. The cost of the solution S during [ti−1, ti] is, therefore,
Wi + d(si). By construction, if S′ moves to state si during [ti−1, ti], then it leaves si

no earlier than time ti. The extra cost of solution S′ with respect to S comes from two
sources. First, solution S′ may leave state si after time ti. Second, solution S′ may
move to si in the middle of a phase (of state si), but it still pays the full cost of the
phase. However, each of these can only increase the cost of solution S′ by at most d(si).
Recall, that in the new MTS model the solution does not pay for changing the state,
and thus its cost is at most Wi + 2d(si), which is at most twice the cost incurred by
solution S.

Lemma 7.2. Let σ̄ be a set of requests. Any solution S to σ̄ in the new MTS model
with cost C is a legal solution S′ in the standard MTS model with cost at most 2C.

Proof. We run the solution S in the standard MTS model and upper bound its cost in
this model. First, the cost of serving the requests in the standard MTS model is no more
than the cost of serving the requests in the new model. Suppose that solution S visits
state i during phase p. In this case it pays at least d(i) in the new model, while the cost
in the standard model is at most d(i) (the cost could lower if S did not stay in state i
during the entire phase).

Second, we claim that the transition cost of solution S in the standard model is no
more than the service cost of S in the new model. This follows as S leaves any state i at
most once during its phase (at the end of the phase) and hence the cost d(i) of leaving
the state can be charged to the service cost of the corresponding phase that just ended
(which is also exactly d(i)). Thus, the cost of the solution S in the standard MTS model
is at most twice its cost in the new MTS model.

From Lemmas 7.1 and 7.2 a c competitive algorithm in the new MTS model implies
a 4c-competitive algorithm in the standard MTS model, and hence it suffices to consider
the new MTS model.

7.2 The Algorithm

We next describe a simple linear programming formulation for the offline problem in
the new MTS model. Our online algorithm will generate a fractional solution to this
linear program. We later show how to transform this fractional solution to a randomized
integral solution. Let x(i, p) be an indicator to the event that the solution is in state i
during the pth phase. We relax the solution and allow the algorithm to be at time t in
several states as long as the sum of the fractions of the states is at least 1. (The latter
constraint is valid since our objective function is minimization.). Let ni be the number
of phases of state i. The linear program is then the following:
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(P ) min

N
∑

1=1

ni
∑

p=1

d(i)x(i, p)

For any time t:

N
∑

i=1

∑

p | t∈[tp−1(i),tp(i)]

x(i, p) ≥ 1 (7.1)

It may seem that the linear program contains an unbounded number of constraints.
However, it is easy to see that we need only to consider times t which are the end of a
phase for some state. It can also be easily verified that given an instance of the MTS
problem, any feasible solution in the new MTS model defines a feasible solution to (P )
with the same cost. We also observe that a feasible solution to (P ) defines a (fractional)
solution which is feasible in the new MTS model with the same cost. We should be
a bit more careful in the online case, where the constraints of (P ) are revealed one-
by-one. Upon arrival of a constraint, the algorithm finds a feasible assignment to the
(primal) variables that satisfies the constraint. Consider variable x(i, p). In the offline
case, we can assume without loss of generality that the value of x(i, p) is determined at
the beginning of phase p of state i. However, this is not necessarily true in the online
case; thus, we restrict our attention to solutions that assign values to x(i, p) forming a
monotonically non-decreasing sequence.

The above formulation of the problem is now a covering linear program and thus it
fits the online primal-dual framework. We now can apply the algorithms from Section
4.2 to derive a monotonically increasing fractional solution. The algorithm produces an
O(log N)-competitive solution since the number of variables in each covering constraint
is exactly N .

Rounding the fractional solution. Rounding the fractional solution for this prob-
lem is simple. The algorithm maintains the invariant that it is in state i at time t (in
phase p) with probability equal to x(i, p). Suppose that at the end of phase p of state i,
x(i, p) = a. The distribution mass a is then distributed among the states of the system
(including i) by the fractional solution. Let aj the increase of the fraction associated
with state j at that point of time. As

∑

j aj = a, if the algorithm was in state i at the
end on phase p, it moves to state j with probability aj/a. It is easy to verify that the
expected cost of the algorithm is exactly the cost of the fractional solution.

7.3 Notes

The results in this chapter are based on the work of Bansal, Buchbinder and Naor [14].
The Metrical Task System (MTS) problem has been studied extensively. The MTS model
was originally formulated by Borodin, Linial and Saks [29] who gave tight upper and
lower bound of 2N−1 for any deterministic online algorithm for the problem. They also
designed a 2HN -competitive randomized algorithm for the uniform metric, and showed
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a lower bound of HN for this metric. In fact, our proposed algorithm for the weighed
star can be seen in retrospect as a direct generalization of their approach. For the MTS
problem on a weighted star, Blum et al. [25] gave a randomized O(log2 N)-competitive
algorithm. For general metrics Bartal et al. [19] designed a randomized O(log5 N)-
competitive algorithm which is based on an algorithm for HST’s. Fiat and Mendel
[48] improved this bound and designed an O(log2 N log log N)-competitive algorithm for
general metrics.
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Chapter 8

Generalized Caching

Caching is one of the earliest and most effective techniques of accelerating the perfor-
mance of computing systems. Thus, vast amounts of work have been invested in the
improvement and refinement of caching techniques and algorithms. In the classic two-
level caching problem we are given a collection of n pages and a fast memory (cache)
which can hold up to k of these pages. At each time step one of the pages is requested.
If the requested page is already in the cache then no cost is incurred, otherwise the
algorithm must bring the page into the cache, possibly evicting some other page, and
a cost of one unit is incurred. This simple model can be extended in two orthogonal
directions. First, the cost of bringing a page into the cache may not be uniform for all
pages. This version of the problem is called weighted caching and it models scenarios in
which the cost of fetching a page is not the same due to different locations of the pages
(e.g., main memory, disk, Internet). Second, the size of the pages need not be uniform.
This is motivated by web caching where pages have varying sizes. Web caching is an
extremely useful technique for enhancing the performance of World Wide Web applica-
tions. Since fetching a web page or any other information from the internet is usually
costly, it is common practice to keep some of the pages closer to the client. This is done,
for example, by the web browser itself by keeping some of the pages locally, and also by
internet providers that maintain proxy servers for exactly the same purpose.

We study here several models in which pages have non-uniform sizes. The most
general setting is called the General model in which pages have both non-uniform sizes
and non-uniform fetching costs. Two commonly studied special cases are the so-called
Bit model and Fault model. In the Bit model, the cost of fetching a page is proportional
to its size, thus minimizing the fetching cost corresponds to minimizing the total traffic
in the network. In the Fault model, the fetching cost is uniform for all pages, thus
corresponding to the number of times a user has to wait for a page to be retrieved.

In Section 8.1 and Section 8.2 we study the weighted caching problem. Later in
Section 8.3 and Section 8.4 we extend the ideas used for the weighted caching problem
to the more general problem where pages have both non-uniform sizes and non-uniform
fetching costs.
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8.1 The Fractional Weighed Caching Problem

In this section we study the weighted caching problem. In the weighted caching problem
each page p is associated with a positive fetching cost cp ≥ 1, denoting the cost of
fetching the page into the cache. A request sequence is a sequence of pages, denoted
by p1, p2, . . ., where page pt is requested at time t. The tth request is served by placing
page pt in the cache at time t, for each t ≥ 1. The objective is to minimize the total cost
of fetching pages into the cache.

8.1.1 Linear Programming Relaxation

Consider the following (natural) integer program for the (offline) weighted caching prob-
lem. Instead of charging for fetching pages into the cache we charge for evicting them,
thus increasing the cost of any algorithm by at most an additive term (fetching the last
k pages is “free”). Let x(p, j) be an indicator variable for the event that page p is evicted
from the cache between the jth time it is requested and the (j+1)st time it is requested.
If x(p, j) = 1, we can assume without loss of generality that page p is evicted in the first
time slot following the jth time it is requested. (As we later discuss, this assumption is
not necessarily true in the online case.) For each page p, denote by t(p, j) the time it is
requested for the jth time, and denote by r(p, t) the number of times page p is requested
until time t (including t). For any time t, let B(t) = {p | r(p, t) ≥ 1} denote the set
of pages that were requested until time t (including t). Let pt be the page that was
requested at time t. We need to satisfy the constraint that at any time t, the currently
requested page must be present in the cache, i.e. x(pt, r(p, t)) = 0, and that the total
space used by pages in B(t) can be at most k. Since one unit of space is already used by
pt, this implies that at most k−1 space can be used by pages in B(t)\{pt}. Equivalently,
pages in B(t) \ {pt} with cumulative size at least |B(t)| − 1− (k − 1) = |B(t)| − k must
be absent from the cache at time t. This gives the following exact formulation of the
problem.

min
n
∑

p=1

r(p,t)
∑

j=1

cp · x(p, j)

For any time t:
∑

p∈B(t)\{pt}
x(p, r(p, t)) ≥ |B(t)| − k

For any p, t: x(p, t) ∈ {0, 1}

In a fractional solution, we relax x(p, j) to take any value between 0 and 1, and so we
get the constraint that for each page p and time t, 0 ≤ x(p, t) ≤ 1. In the dual program,
there is a variable y(t) for each time t and a variable z(p, j) for each page p and the jth
time it is requested. The dual program is the following:

max
∑

t

(|B(t)| − k) y(t) −
n
∑

p=1

r(p,t)
∑

j=1

z(p, j)
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For each page p and the jth time it is requested:





t(p,j+1)−1
∑

t=t(p,j)+1

y(t)



− z(p, j) ≤ cp (8.1)

For any p, j: z(p, j) ≥ 0

For all t: y(t) ≥ 0

8.1.2 A Fractional Primal-Dual Algorithm

Our online caching algorithm produces fractional primal and dual solutions to the linear
formulation. In the online case, the constraints of LP (corresponding to the requests
to pages) are revealed one-by-one. Upon arrival of a constraint, the algorithm finds
a feasible assignment to the (primal) variables that satisfies the constraint. Consider
variable x(p, j). In the offline case, we can assume without loss of generality that the
value of x(p, j) is determined at time t(p, j) + 1. However, this is not necessarily true in
the online case; thus, we stipulate that the values assigned to x(p, j) in the time interval
[t(p, j) + 1, t(p, j + 1)− 1] by the online algorithm form a monotonically non-decreasing
sequence.

We start with a high level description of the algorithm. Upon arrival of a new
constraint at time t, if it is already satisfied, then the algorithm does nothing. Otherwise,
the algorithm needs to satisfy the current constraint by increasing some of the primal
variables in the constraint. Satisfying the constraint guarantees that there is a enough
space in the cache to fetch the new page. To this end, the algorithm starts increasing
(continuously) the new dual variable y(t). This, in turn, tightens some of the dual
constraints corresponding to primal variables x(p, j) whose current value is 0. Whenever
such an event happens, the value of x(p, j) is increased from its initial setting of 0 to
1/k. Thus, during the time preceding the increase of x(p, j) from 0 to 1/k, page i
cannot be evicted from the cache. This part is somewhat similar to what happens in the
Randomized Marking algorithm [47]. Meanwhile, variables x(p, j) which are already set
to 1/k are increased (continuously) according to an exponential function of the new dual
variable y(t). Note that this exponential function is equal to 1/k when the constraint is
tight. Thus, the algorithm is well defined. When variable x(p, j) reaches 1, the algorithm
starts increasing the dual variable z(p, j) at the same rate as y(t). As a result, from this
time on, the value of x(p, j) remains 1. The algorithm is presented in a continuous
fashion, but it can easily be implemented in a discrete fashion. The algorithm is the
following:
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Fractional Caching Algorithm: At time t, when page pt is requested:

• Set the new variable: x(pt, r(pt, t)) ← 0. (It can only be increased in times
t′ > t.)

• If the primal constraint corresponding to time t is satisfied, then do nothing.

• Otherwise: increase primal and dual variables, until the primal constraint
corresponding to time t is satisfied, as follows:

1. Increase variable y(t) continuously; for each variable x(p, j) that appears
in the (yet unsatisfied) primal constraint that corresponds to time t:

2. If x(p, j) = 1, then increase z(p, j) at the same rate as y(t).

3. If x(p, j) = 0 and





t(p,j+1)−1
∑

t=t(p,j)+1

y(t)



− z(p, j) = cp,

then set x(p, j)← 1/k.

4. If 1/k ≤ x(p, j) < 1, increase x(p, j) according to the following function:

1

k
· exp





1

cp









t(p,j+1)−1
∑

t=t(p,j)+1

y(t)



− z(p, j)− cp









Note that the exponential function for x(p, j) contains variables y(t) that correspond
to future times. However, these variables are all initialized to 0, so they do not contribute
to the value of the function. We also remark that setting the variable x(p, j) in line 3
to value of 1 instead of 1

k , and removing Line 4 of the algorithm, we get a deterministic
k-competitive algorithm for the weighted caching problem. This algorithm is exactly
Young’s dual-greedy algorithm [90, 42].

The analysis of the primal cost is partitioned into two parts. The first one corre-
sponds to the contribution of the increase of the variables x(p, j) from 0 to 1/k, and the
second part corresponds to the increase of the variables x(p, j) from 1/k till (at most)
1, according to the exponential function. Each part is upper bounded separately by the
dual solution, yielding the desired result. We now prove the following theorem.

Theorem 8.1. The algorithm is O(log k)-competitive. Specifically, the algorithm is
2(1 + ln k)-competitive.

Remark 8.2. It is possible to improve the competitive ratio of the algorithm from 2(1+
ln k) to approximately ln k. To do so simply replace the parameter 1

k in Lines 3 and 4
in the algorithm with the value 1

k ln k . It is not hard to verify in the proof that this will
result an algorithm with competitive ratio ln k plus lower order terms (e.g. ln ln k). In the
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rounding phase, however, we loose several constants so we do not make this optimization.

Proof of Theorem 8.1. First, we note that the primal solution generated by the algo-
rithm is feasible. This follows since, in each iteration, the variables x(p, j) are increased
until the new primal constraint is satisfied. Also, each variable x(p, j) is never increased
to be greater than 1.

Next, we show that the dual solution that we generate is almost feasible. Whenever
x(p, j) increases in some round and reaches 1, the algorithm starts increasing z(p, j) at
the same rate as y(t). Therefore, the value of x(p, j) is not going to change anymore, as
the exponent of the exponential function will not change any more. Thus, for the dual
constraint corresponding to page p and the jth time it is requested, we get that:

x(p, j) =
1

k
exp





1

cp









t(p,j+1)−1
∑

t=t(p,j)+1

y(t)



− z(p, j)− cp







 ≤ 1.

Simplifying, we get that:




t(p,j+1)−1
∑

t=t(p,j)+1

y(t)



− z(p, j) ≤ cp(1 + ln k). (8.2)

Thus, the dual solution can be made feasible by scaling it down by a factor of (1+ ln k).
We now prove that the primal cost is at most twice the dual profit, which means that
the primal solution produced by the algorithm is 2(1 + ln k)-competitive.

We partition the primal cost into two parts. Let C1 be the contribution to the primal
cost from Step (3) of the algorithm, due to the increase of variables x(p, j) from 0 to
1/k. Let C2 be the contribution to the primal cost from Step (4) of the algorithm, due
to the incremental increases of the variable x(p, j) according to the exponential function
from 1/k up to at most 1.

Bounding C1: Let x̃(i, j) = min(x(p, j), 1
k ). We bound the term

∑n
i=1

∑r(p,t)
j=1 cpx̃(i, j).

To do this, we need several observations. First, from design of the algorithm, it follows
that if x(p, j) > 0, and equivalently if x̃(i, j) > 0, then:





t(p,j+1)−1
∑

t=t(p,j)+1

y(t)



− z(p, j) ≥ cp (8.3)

We shall refer to (8.3) as primal complementary slackness.
Next, at time t let B′(t) be the set of pages p ∈ B(t) such that x(p, r(p, t)) = 1. In

the dual solution, if y(t) is being increased at time t then:

∑

p∈B(t)\(B′(t)∪{pt})

x̃(p, r(p, t)) ≤ |B(t)| − k − |B′(t)| (8.4)

We shall refer to (8.4) as dual complementary slackness. Inequality (8.4) follows since
there are |B(t)|−1−|B′(t)| variables in the constraint corresponding to t. By definition
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for each p, x̃(p, r(p, t)) ≤ 1
k . Thus, even if for all p, x̃(p, r(p, t)) = 1

k , then the sum adds up

to |B(t)|−1−|B′(t)|
k ≤ |B(t)|−k−|B′(t)|. The latter inequality holds since |B(t)|−|B′(t)| ≥

k+1, since otherwise the constraint at time t is already satisfied and the algorithm stops
increasing the variable y(t). Also, it follows from the algorithm that if z(p, j) > 0, then:

x(p, j) ≥ 1 (8.5)

We shall refer to (8.5) as the second dual complementary slackness. These primal and
dual complementary slackness conditions imply the following.

n
∑

p=1

r(p,t)
∑

j=1

cpx̃(p, j)

≤
n
∑

p=1

r(p,t)
∑

j=1









t(p,j+1)−1
∑

t=t(p,j)+1

y(t)



− z(p, j)



 x̃(p, j) (8.6)

=
∑

t





∑

i∈B(t)\{pt}

x̃(p, r(p, t))



 y(t)−
n
∑

p=1

r(p,t)
∑

j=1

x̃(p, j)z(p, j) (8.7)

≤
∑

t

(|B(t)| − k) y(t)−
n
∑

p=1

r(p,t)
∑

j=1

z(p, j). (8.8)

Inequality (8.6) follows from Inequality (8.3), Equality (8.7) follows by changing the
order of summation. To see why Inequality (8.8) holds consider some time t. Consider
the derivative of the LHS at time t. By the algorithm behavior (Inequality (8.5)) we
increase z(p, j) at the same rate as y(t) only when x(p, r(p, t)) = 1 and so p ∈ B′(t).
Thus, the derivative of the LHS is

∑

p∈B(t)\(B′(t)∪{pt})
x̃(p, r(p, t)). By Inequality (8.4)

this sum is at most |B(t)| − k − |B′(t)| which is exactly the derivative of the RHS of
the Inequality. Thus, C1 is at most the profit of a feasible dual solution multiplied by
(1 + ln k).

Bounding C2: We bound the derivative of the increase of variables x(p, j) in Step (4)
by the derivative of the dual profit accrued in the same round. In each round only
variables x(p, j) that belong to the new primal constraint (and correspond to the new
dual variable y(t)) are being increased. However, variables x(p, j) that belong to the new
primal constraint but have already reached the value of 1 are not increased anymore and
so do not contribute to the primal cost. In the dual program the new variable y(t) is
raised with rate 1, and also all the variables z(p, j) that correspond to x(p, j) in the
new primal constraint that are already with value 1. It is beneficial for the purpose of
analysis to think of the process as increasing a time variable τ , and then raising the
variable y(t) and the appropriate variables z(p, j) with rate 1 with respect to the virtual
variable τ . Using this notation we get that:
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dC2

dτ
=

∑

p∈B(t)\{pt},1/k≤x(p,j)<1

cp ·
dx(p, r(p, t))

dy(t)
·
dy(t)

dτ

=
∑

p∈B(t)\{pt},1/k≤x(p,j)<1

x(p, r(p, t)) (8.9)

≤ (|B(t)| − k)−
∑

p∈B(t)\{pt},x(p,j)=1

1 (8.10)

= (|B(t)| − k)
dy(t)

dτ
−

∑

p∈B(t)\{pt},x(p,j)=1

dz(p, j)

dτ

Where Equality (8.9) follows since dy(t)
dτ = 1 and also dx(p,j)

dy(t) = 1
cp
· x(p, j) for each

1/k ≤ x(p, j) < 1. Inequality (8.10) holds since the new primal constraint is unsatisfied
yet and thus:

∑

p∈B(t)\{pt},1/k≤x(p,j)<1

x(p, r(p, t)) +
∑

p∈B(t)\{pt},x(p,j)=1

x(p, r(p, t)) < |B(t)| − k

We also remark that by the properties of the algorithm, any variable x(p, j) which
is strictly less than 1/k is actually equal to 0. Finally, the last term exactly equals the
derivative of the dual profit with respect to τ . Therefore, the change in the dual profit
is greater than or equal to the change in C2. Thus, C2 is at most the profit of a feasible
dual solution multiplied by (1 + ln k).

Completing the analysis. It follows that C1 + C2 is at most twice the profit of a
feasible dual solution multiplied by (1 + ln k). Note that the profit of any dual feasible
solution is always a lower bound on the optimal solution. Therefore, we conclude by
weak duality that the algorithm is 2(1 + ln k)-competitive.

8.1.3 A Fractional Algorithm for the Weighted (h, k)-caching Problem

A common approach to proving better performance of an online caching algorithm is
the (h, k)-caching problem where the online algorithm with cache size k is compared to
the offline algorithm with cache size h. In this section we show a simple modification of
the algorithm that improves the competitive ratio for this case.

The modified algorithm generates a primal solution that is suitable to the online
algorithm with cache size k. However, the algorithm generates a dual solution that
corresponds to a primal solution that may only use cache size h ≤ k. We will perform a
primal-dual analysis and show that primal cost is no more than O(log(k/(k − h + 1)))

times the dual cost
∑

t (|B(t)| − h) y(t) −
∑n

p=1

∑r(p,t)
j=1 z(p, j). Since the dual cost is a

lower bound on the offline cost with cache size h, this will imply the desired result. For
convenience, let η denote (k−h+1)/k. To avoid trivialities, we assume that k ≥ h, and
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that h > 1, which implies that 1
k ≤ η < 1. Intuitively, η replaces the value 1/k in our

algorithm. Consider the following modified algorithm:

Fractional Caching Algorithm: At time t, when page pt is requested:

• Set the new variable: x(pt, r(pt, t)) ← 0. (It can only be increased in times
t′ > t.)

• If the primal constraint corresponding to time t is satisfied, then do nothing.

• Otherwise: increase primal and dual variables, until the primal constraint
corresponding to time t is satisfied, as follows:

1. Increase variable y(t) continuously; for each variable x(p, j) that appears
in the (yet unsatisfied) primal constraint that corresponds to time t:

2. If x(p, j) = 1, then increase z(p, j) at the same rate as y(t).

3. If x(p, j) = 0 and





t(p,j+1)−1
∑

t=t(p,j)+1

y(t)



− z(p, j) = cp,

then set x(p, j)← η.

4. If η ≤ x(p, j) < 1, increase x(p, j) according to the following function:

η · exp





1

cp









t(p,j+1)−1
∑

t=t(p,j)+1

y(t)



− z(p, j)− cp









By the description of the algorithm, x(p, j) ≤ 1 implies that

t(p,j+1)−1
∑

t=t(p,j)+1

y(t)− z(p, j) ≤ cp(1 + ln(1/η))

and hence y(t) divided by (1 + ln(1/η)) is a feasible dual solution (to the dual of the
problem with only h pages). As previously, we relate the primal cost to the dual cost in
two parts C1 and C2, where C1 is contribution to the primal cost from Step (3) of the
algorithm, due to the increase of variables x(p, j) from 0 to η, and C2 is the contribution
to the primal cost from Step (4) of the algorithm, due to the incremental increases of
the variable x(p, j) according to the exponential function.

We first observe that the argument for C2 follows exactly as for the case when h = k.
In particular, ∆, the derivative of dual profit with respect to y(t) is equal to |B(t)| − h
minus the number of variables x(p, j) that have already reached 1. Moreover, we have
that

dx(p, j)

dy(t)
=

1

cp
· x(p, j)
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and hence the change in primal cost is equal to the sum of x(p, j) that are at least η and
strictly less than 1. Since the primal constraint is still unsatisfied, the sum of x(p, j) is
at most |B(t)| − k which is at most |B(t)| − h (as k ≥ h), and hence the sum of x(p, j)
that are strict less than 1 is at most ∆. Thus, C2 is bounded by the dual cost.

Bounding C1 is also very similar. The only change is in the dual complementary
slackness condition. We set the primal variables to η instead of 1

k . Again, at time t let
B′(t) be the set of pages i ∈ B(t) such that x(p, r(p, t)) = 1. In the dual solution, if y(t)
is being increased at time t then:

∑

p∈B(t)\(B′(t)∪{pt})

x̃(p, r(p, t)) ≤ |B(t)| − h− |B′(t)| (8.11)

Inequality (8.11) follows since there are |B(t)|−1−|B′(t)| variables in the constraint
corresponding to t. By definition for each i, x̃(p, r(p, t)) ≤ η = k−h+1

k . Thus, even if

for all i, x̃(p, r(p, t)) = k−h+1
k , then the sum adds up to (|B(t)| − 1− |B′(t)|) · k−h+1

k ≤
|B(t)| − h − |B′(t)|. The latter inequality holds since |B(t)| − |B′(t)| ≥ k + 1, since
otherwise the constraint at time t is already satisfied and the algorithm stops increasing
the variable y(t).

Thus, repeating the same analysis as in Theorem 8.1 implies that C1 is bounded by
the dual cost. It follows that C1 +C2 is at most 2(1+ ln(1/η)) = 2(1+ln(k/(k−h+1)))
times the optimum solution, which implies that the algorithm is O(log(k/(k − h + 1)))-
competitive.

8.2 Randomized Online Algorithm for Weighted Caching

A randomized algorithm is completely specified by a probability distribution on the
various configurations (deterministic states) in each state of the algorithm. For the
caching problem this corresponds to specifying the distribution on k-tuples of pages
that are in the cache. Such a distribution induces another (simpler) distribution x(p, t)
on the pages, specifying the probability that a the page in in the cache at time t. Clearly,
this map is not a bijection. For example, the distribution (1/2, 1/2, 1/2, 1/2) on four
pages A,B,C,D could be induced by the distribution D1 on two states (A,B) and
(C,D) where each state occurs with probability 1/2 each, or it can be induced by the
distribution D2 where each of six possible states (A,B), (A,C), . . . , (C,D) occur with
probability 1/6 each.

For the caching problem, the distribution on the pages can be viewed as a probability
mass of k units distributed among the n pages, and the “move” of an algorithm simply
corresponds to redistributing this mass among the pages. In this view when the algorithm
moves ǫ units of mass from page i to page j, it incurs a cost of ǫ · (w(i) + w(j)). We call
this the fractional view in contrast to working with the probability distribution on states,
that we call the actual view. We note that a fractional view can easily be obtained from
a solution to linear program (LP-Caching), since the variables in the linear program
indicate what fraction of a page is already evacuated from the cache. More formally, at
time t the probability that page p is in the cache is simply 1− x(p, r(p, t)).
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Our goal is to generate a randomized algorithm from a fractional view. The main
problem in doing so is demonstrated in the following example. Consider the distribution
(1/2, 1/2, 1/2, 1/2) on pages A,B,C and D induced by the actual view where cache states
(A,B) and (C,D) each occurring with probability 1/2. Pages A and B have weight 1,
and pages C and D have a large weight M . Suppose the fractional algorithm moves
1/2 unit of mass from page A to page B leading to the state of (0, 1, 1/2, 1/2). In the
fractional view, this algorithm incurs a cost of 1/2. However, it is instructive to see that
it is impossible to modify the actual distribution (to be consistent with the fractional
distribution) without incurring a cost of Θ(M). In fact, the only actual distribution
consistent with (0, 1, 1/2, 1/2) is to have probability 1/2 on state (B,C) and probability
1/2 on state (B,D). Thus, from the previous cache state (C,D), either C or D must be
moved to make room for B, which incurs cost Θ(M).

To get around this problem we restrict our actual distributions to a certain subclass
of distributions (for example in the scenario described above, we do not allow the distri-
bution where states (A,B) and (C,D) have probability half each to correspond to the
distribution (1/2, 1/2, 1/2, 1, 2)). In particular, we show below how to maintain an on-
line mapping from induced distributions to actual distributions, such that any fractional
move with cost c is mapped to a move on actual distributions with cost at most 5c.

We first round up the page fetching costs to their nearest power of 2 (increasing the
competitive ratio by at most a factor of 2). Let c1 < c2 < . . . < cℓ denote the rounded
weights. A page belongs to class i if its rounded weight is ci. We refer to an individual
page as the j-th page of class i. For convenience of analysis, throughout this section we
consider the (equivalent) cost version of the problem where we pay ci/2 for both fetching
and evicting a class i page.

Recall that in the fractional view of the problem, the algorithm maintains a distribu-
tion on the pages with total mass k. Any such distribution P is completely specified by
pij ∈ [0, 1] such that

∑

i

∑

j pij = k, where pij is the mass on the j-th page of weight class
i. Given two distributions P and P ′ on pages, let Cf (P,P ′) denote the cheapest way to
move from P to P ′, where it costs ci/2 to move one unit of mass either into or out of a
class i page. For those familiar, Cf is just the transshipment cost of flow from P to P ′ (we
refer the reader to [37] for details about transshipment cost between distributions). Let
δij = pij − p′ij . Clearly, Cf (P,P ′) is at least

∑

i(ci/2)(
∑

j |δij |) since at least |δij | units
of mass either needs to enter or leave page j of class i. Moreover, any greedy algorithm
that arbitrarily moves mass out of pages with excess (δij > 0) to those with a deficiency
(δij < 0) has cost

∑

i(ci/2)(
∑

j |δij |) implying that Cf (P,P ′) =
∑

i(ci/2)(
∑

j |δij |).
A randomized algorithm on the other hand needs to work with a distribution on

valid cache states. Given two distributions D and D′ on the cache states, let C(D,D′)
denote the cheapest way of moving from D to D′ (by definition, this is the cost incurred
by the randomized algorithm). Let Π(D) denote the distribution induced on the pages
by D. We say that P and D are consistent if P = Π(D). Clearly, Cf (Π(D),Π(D′) is a
lower bound on C(D,D′).

For the unweighted caching problem, Blum, Burch and Kalai [24] showed that given
any P , P ′ and D such that Π(D) = P , there exists some D′ such that Π(D′) = P ′

64



and C(D,D′) ≤ 2Cf (P,P ′). Their procedure is the following. Suppose without loss
of generality that P ′ is obtained from P by removing ǫ units of mass from page a and
putting it on page b. Remove page a arbitrarily from ǫ measure of caches that contain a,
and add page b to ǫ measure of caches that do not contain b. Now, some caches may have
k +1 pages (an excess) while some may have k−1 pages (a hole). Arbitrarily match the
caches with an excess to those with a hole (clearly, the measure of caches with excess is
equal to those with a hole). Consider any matched pair; the cache with an excess must
contain a page that does not lie in its matched cache, so we simply transfer this page.
It can easily be verified that C(D,D′) ≤ 2ǫ, while the fractional cost Cf (P,P ′) = ǫ.

However the situation for weighted caching is more involved. Recall our example that
shows that there exist P,P ′ and D consistent with P , such that C(D,D′) ≫ Cf (P,P ′)
for every D′ satisfying P ′ = Π(D′). Thus, we cannot work with any arbitrary D that is
consistent with P , as in the unweighted case. Interestingly, we get around this problem
by carefully restricting the space of distributions D that we are allowed to work with.
Formally, we show the following.

Theorem 8.3. Let the costs ci be such that ci+1/ci ≥ 2 for 1 ≤ i ≤ ℓ − 1. There is a
subclass D of distributions on cache states, along with a map T from (D×P)→ D with
the following property: Given any two distributions on pages P and P ′, and given any
D ∈ D satisfying Π(D) = P , we can obtain another distribution D′ = T (D,P ′) such
that Π(D′) = P ′, D′ ∈ D and C(D,D′) ≤ 5Cf (P,P ′).

The theorem gives us the desired mapping between a distribution P on pages and
a distribution D on cache states. Whenever the fractional algorithm moves from state
P to P ′, the randomized algorithm moves from D to D′ = T (D,P ′). Since Π(D′) = P ′

and D′ ∈ D, the process can be applied repeatedly.

Proof. Let P be a distribution on pages with total mass k. Let D(P ) denote the set of
distributions D ∈ D that are consistent with P . Specifying D(P ) for each P suffices to
describe D completely. Each distribution D ∈ D is specified by associating a cache state
C(α) with each real number α in the interval [0, 1).

Let ki =
∑

j pij denote the mass on class i pages as determined by P . Consider the
interval I = [0, k], and imagine this interval partitioned into I1, . . . , Il where I1 = [0, k1),
I2 = [k1, k1 + k2),. . . , Il = [k1 + . . . , kl−1, k1 + . . . + kl). Consider an α ∈ [0, 1). Let T (α)
denote the set of real numbers {α, 1 + α, 2 + α, . . . , k − 1 + α}. For every D ∈ D(P ),
the cache C(α) has ni pages of ci where ni = |T (α) ∩ Ii|. By construction, each cache
C(α) has either ⌊ki⌋ or ⌈ki⌉ pages of fetching cost ci, and the expected number of pages
of cost ci is ki. Consider any arbitrary way of filling the caches C(α), for 0 ≤ α < 1,
with pages such that: (i) no C(α) contains two identical pages and (ii) it is consistent
with P (i.e. the probability measure of caches that contain page j of class i is exactly
pij). Such a filling always exists since, for example, we can put the first page of class 1
in C(α) corresponding to α = [0, p11), the second page of class 1 in C(α) corresponding
to α = [p11, p11 + p12) (where the range of α is considered modulo 1) and so on. Any
way of filling C(α)’s that satisfies the properties above is a valid element D ∈ D(P ).
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We now describe the transformation T . Suppose we are given some D ∈ D(P ), and
the fractional algorithm changes state from P to P ′. By separating the pages for which
p′ij > pij and those for which p′ij < pij and arbitrarily matching the increases in mass
with decreases, we can decompose the move P to P ′ into the sequence P = P0 → P1 →
P2 → . . .→ P ′ such that Cf (P,P ′) =

∑

i≥0 Cf (Pi, Pi+1) and each move Pi to Pi+1 is an
exchange where some infinitesimally small ǫ units of mass is moved from some page pa

to some page pb. Thus, it suffices to prove the theorem for such exchanges P → P ′. Let
i be the weight class of page a, and j be that of page b. For this move, the fractional
algorithm pays ǫ(ci + cj)/2.

We now describe and analyze the move D → D′. We divide the cost into two parts.
One due to cache size changes, and the second due to the change in the composition of
the cache. We first consider the simpler case when i = j. Here, the quantities k1, . . . , kℓ

and the intervals I1, . . . , Iℓ associated with P remain unchanged, and hence the structure
of C(α)’s remains unchanged. We essentially apply the argument of Blum et al. [24] to
class i pages. The only difference is that we need to verify that their argument works
even when caches contain either ⌈ki⌉ or ⌊ki⌋ class i pages (in [24] all caches have the
same size). We arbitrarily remove page a from an ǫ measure of caches that contain a,
and arbitrarily add b to an ǫ measure of caches that do not contain b. We say that a
cache has a hole if it has one fewer page than it is supposed to, and it has an excess
if it has one extra page than it is supposed to. Any cache with a hole has size either
⌊ki⌋ − 1 or ⌊ki⌋, and every cache with excess has size either ⌈ki⌉ or ⌈ki⌉+ 1, and hence
is strictly larger. We arbitrarily pair up the caches with a hole to those with excesses,
and transfer some page from the larger cache that does not lie in the smaller cache. The
cost incurred is at most 2ǫci/2 + 2ǫci/2 = 2ǫci.

We now consider the case when i < j (the case when i > j is analogous). Consider
the intervals I1, . . . , Iℓ. When we move from P to P ′ the right boundary of Ii shifts ǫ
units to the left, the intervals Ii+1, . . . , Ij−1 shift to the left by ǫ units, and finally, the
left boundary of Ij shifts left by ǫ and its right boundary stays fixed.

We break the analysis into two parts. We first consider the classes h for i < h < j.
For each such h at most ǫ fraction of caches C(α) must lose a page of cost ch (as their
quota for class h shrinks from ⌈kh⌉ to ⌊kh⌋ and similarly, at most ǫ fraction of caches
must gain a page. Moreover, the fraction of caches that must lose a cost ch page is exactly
equal to the fraction that must gain such a page. We arbitrarily pair these caches. As
any cache that must lose a page is strictly larger than a cache that must gain one, for
every matched pair of caches, there is some page in the larger cache that does not lie
in the smaller cache and hence can be transferred to it. The movement cost incurred
per class is at most 2ǫ(ch/2), and hence the total contribution due to such classes h is
∑

i<h<j ǫch ≤ ǫ(ci + cj), as consecutive weights differ by a factor of at least 2.
Finally, we consider the case when h = i (the argument for h = j is analogous).

Without loss of generality we assume that ⌈ki⌉ = ⌈ki − ǫ⌉ (otherwise we can split ǫ into
at most 2 parts ǫ1, ǫ2, and apply the argument separately). Consider the caches C(α)
that are supposed to lose a cost ci page (because ki becomes ki − ǫ). We say that these
caches have an excess, and note that they all contain exactly ⌈ki⌉ class i pages. Next, we
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arbitrarily choose ǫ measure of caches that contain a, and remove a from them. These
caches have a hole, and strictly fewer class i pages than caches with excess (a cache with
a hole has either ⌊ki⌋ or ⌊ki⌋ − 1 pages). We arbitrarily pair caches with an excess to
caches with a hole, and transfer some page from the larger cache that does not lie in the
smaller cache. The cost incurred is at most 3ǫci/2. By an identical argument for class
j, the cost incurred is at most 3ǫcj/2.

The distribution D′ obtained satisfies all the conditions required to lie in the set
D(P ′). Moreover, the total cost incurred in moving from D to D′ is 5ǫ(ci + cj)/2 which
is at most 5 times the fractional cost.

8.3 The Generalized Caching Problem

In this section we extend the main ideas and design an algorithm for the generalized
caching problem. In the general caching problem there is a cache of size k and n pages
of sizes w1 ≤ w2 ≤ . . . ≤ wn, belonging to ∈ [1, k]. It is not assumed that page sizes are
integral and k can be viewed as the ratio between cache size and the smallest page size.
For any subset S of pages, let W (S) =

∑

p∈S wp be the sum of the sizes of the pages in
S. Page p has a fetching cost of cp. With this terminology, in the Fault model cp = 1
for each page p, in the Bit model cp = wp for each page p, and in the general model cp

and wp are arbitrary.

8.3.1 LP formulation for general caching

The formulation that we used for the weighted caching can easily be extended to the case
of generalized caching. This obvious extension gives us the following integer formulation
for the problem.

min
n
∑

p=1

r(p,t)
∑

j=1

cp · x(p, j)

For any time t:
∑

p∈B(t)\{pt}
wpx(p, r(p, t)) ≥W (B(t))− k

For any p, j: x(p, j) ∈ {0, 1}

In a fractional solution, we relax x(p, j) to take any value between 0 and 1. However,
there is a fundamental problem with this relaxation. The problem is that this relaxation
can have an integrality gap of Ω(k), and therefore is not suitable for our purposes. For
example, suppose the cache size is k = 2ℓ−1, and there are two pages of size ℓ, requested
alternately. Only one page can be in the cache at any time and hence there is a cache
miss in each request. A fractional solution on the other hand can keep almost one unit
of each page and then it only needs to fetch an O(1/k) fraction of a page in each request.

To get around this problem, we use an idea introduced by Carr et al. [35] of adding
exponentially many knapsack cover inequalities. These constraints are redundant in the
integer program, but they dramatically reduce the integrality gap of the LP relaxation.
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There are two main ideas. First, consider a subset of pages S ⊂ B(t) such that pt ∈ S
and W (S) > k. The pages in S \ {pt} can occupy at most k − wpt size in the cache
at time t. Thus, at least W (S) − wpt − (k − wpt) = W (S) − k cumulative size of
pages in S \ {pt} must be absent from the cache. Hence, we can add the constraint
∑

p∈S\{pt}
wpx(p, r(p, t)) ≥W (S)−k for each such set S at time t. The second idea is that

for each such constraint, we can truncate the size of a page to be equal to the right hand
size of the constraint, i.e. we have

∑

p∈S\{pt}
min(W (S)−k,wp)x(p, r(p, t)) ≥W (S)−k.

Clearly, truncating the size has no effect on the integer program. Our LP is as follows.

min
n
∑

p=1

r(p,t)
∑

j=1

cp · x(p, j)

For any time t and any set of requested pages S ⊆ B(t) such that pt ∈ S and W (S) > k:

∑

p∈S\{pt}

min{W (S)− k,wp}x(p, r(p, t)) ≥W (S)− k (8.12)

For any p, j: 0 ≤ x(p, j) ≤ 1 (8.13)

We now note a simple observation about knapsack cover inequalities that will be quite
useful.

Observation 8.4. Given a fractional solution x, if a knapsack cover inequality is vio-
lated for a set S at time t, then it is also violated for the set S′ = S\{p : x(p, r(p, t)) = 1},
obtained by omitting pages which are already completely evicted from the cache.

Proof. Suppose Inequality (8.12) is violated for some S and x(p, r(p, t)) = 1 for p ∈ S.
First, it must be the case that min(W (S)−k,wp) < W (S)−k, otherwise (8.12) is trivially
satisfied. Suppose we delete p from S. The right hand size decreases by exactly wp. The
left hand side decreases by wp and possibly more since the term min(W (S)−k,wp′) may
decrease for pages p′ ∈ S. Thus, Inequality (8.12) is also violated for S \{p}. The result
follows by applying the argument repeatedly.

Observation 8.4 implies that in any feasible solution to the constraints given by
(8.12), it does not help to have x(p, j) > 1. Hence, it can be assumed that x(p, j) ≤ 1
without loss of generality. Thus, we can drop the upper bounds on x(p, j) and simplify
the LP formulation to:

min
n
∑

p=1

r(p,t)
∑

j=1

cp · x(p, j) (LP-Caching)

For any time t and any set of requested pages S ⊆ B(t) such that pt ∈ S and W (S) > k:

∑

p∈S\{pt}

min{W (S)− k,wp}x(p, r(p, t)) ≥W (S)− k (8.14)

For any p, j: 0 ≤ x(p, j) (8.15)
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In the dual program, there is a variable y(t, S) for each time t and set S ⊆ B(t) such
that pt ∈ S and W (S) > k. The dual program is the following:

max
∑

t

∑

S⊆B(t),pt∈S

(W (S)− k) y(t, S)

For each page p and the jth time it is requested:

t(p,j+1)−1
∑

t=t(p,j)+1

∑

S | p∈S

min{W (S)− k,wp}y(t, S) ≤ cp (8.16)

We will sometimes denote min{W (S)− k,wp} by w̃S
p .

8.3.2 Computing a Competitive Fractional Solution

Our online caching algorithm that produces fractional primal and dual solutions to LP-
Caching is a lot similar to the weighted caching case. In the online case, the constraints
of LP-Caching are revealed one-by-one. At any time t, exponentially many new linear
knapsack-cover constraints are revealed to the online algorithm. The goal is to produce a
feasible assignment to the (primal) variables that satisfies all the constraints. Since there
are exponentially many constraints, this process may not run in polynomial-time. How-
ever, we show later that for our purposes we can make the algorithm run in polynomial
time.

Upon arrival of the new constraints at time t, if all constraints are already satisfied,
then the algorithm does nothing. Otherwise, the algorithm needs to satisfy all the cur-
rent constraints by increasing some of the primal variables. We call a set S minimal if
x(p, r(p, t)) < 1 for each p ∈ S. By Observation 8.4, it suffices to consider primal con-
straints corresponding to minimal sets. Satisfying all the constraints at time t guarantees
that there is enough space (fractionally) in the cache to fetch the new page.

To this end, the algorithm arbitrarily picks an unsatisfied primal constraint corre-
sponding to some minimal set S and starts increasing continuously its corresponding
dual variable y(t, S). This, in turn, tightens some of the dual constraints corresponding
to primal variables x(p, j) whose current value is 0. Whenever such an event happens,
the value of x(p, j) is increased from its initial setting of 0 to 1/k. Meanwhile, variables
x(p, j) which are already set to 1/k are increased (continuously) according to an expo-
nential function of the new dual variable y(t, S). When variable x(p, j) reaches 1, the
set S is no longer minimal, and page p is dropped from S. As a result, from this time
on, the value of x(p, j) remains 1. When this primal constraint is satisfied the algorithm
continues on to the next infeasible primal constraint.

Since there are exponentially many primal constraints in each iteration this process
may not be polynomial. However, the rounding process we design in Section 8.4 does not
need the solution to satisfy all primal constraints. Specifically, for each model we show
that there exists a (different) value γ > 1 such that the algorithm needs to guarantee that
at time t the primal constraint of the set S = {p | x(p, r(p, t)) < 1

γ } is satisfied. Thus,
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the algorithm may actually consider only that set1. Fortunately, the requirement of the
online primal-dual framework that variables can only increase monotonically makes this
task simple. In particular, as the primal variables increase some pages reach 1/γ and
“leave” the set S. The algorithm then tries to satisfy the set S′ that contains the rest
of the pages. Since pages can only leave S, this process may continue for at most n
rounds. For simplicity, we describe the algorithm that satisfies all the constraints. The
algorithm is presented in a continuous fashion, but it can easily be implemented in a
discrete fashion. The algorithm is the following:

Fractional Caching Algorithm: At time t, when page pt is requested:

• Set the new variable: x(pt, r(pt, t)) ← 0. (It can only be increased at times
t′ > t.)

• Until all the primal constraint corresponding to time t are satisfied do the
following:

• Assume that the primal constraint of a minimal set S is not satisfied.

1. Increase variable y(t, S) continuously; for each variable x(p, j) such that
p ∈ S \ {pt}:

2. If x(p, j) = 1, then remove p from S, i.e. S ← S \ {p}.

3. If x(p, j) = 0 and

t(p,j+1)−1
∑

t=t(p,j)+1

∑

S:p∈S

w̃S
p y(t, S) = cp, then x(p, j)← 1/k.

4. If 1/k ≤ x(p, j) < 1, increase x(p, j) according to the following function:

1

k
· exp





1

cp









t(p,j+1)−1
∑

t=t(p,j)+1

∑

S:p∈S

w̃S
p y(t, S)



− cp









where w̃S
p denotes min{W (S)− k,wp}.

Theorem 8.5. The algorithm is O(log k)-competitive.

Proof. The proof of the theorem is in the same lines of the proof of Theorem 8.1. First, we
note that the primal solution generated by the algorithm is feasible. This follows since,
in each iteration, the variables x(p, j) are increased until all new primal constraints are
satisfied. Also, each variable x(p, j) is never increased to be greater than 1.

Next, we show that the dual solution that we generate is feasible up to an O(log k)
factor. Whenever x(p, j) reaches 1, the variables y(t, S) for sets S containing p do not
increase anymore, and hence the value of x(p, j) does not change any more. Thus, for
the dual constraint corresponding to page p and the jth time it is requested, we get that:

1In general, for knapsack cover constraints in an offline setting, all possible subsets may be needed
since it is not clear apriori which set S will have this property, nor can it be expressed as a linear or
even a convex program. See [35] for more details.
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x(p, j) =
1

k
· exp





1

cp









t(p,j+1)−1
∑

t=t(p,j)+1

∑

S:p∈S

w̃S
p y(t, S)



− cp







 ≤ 1

where w̃S
p = min{W (S)− k,wp}. Simplifying, we get that:

t(p,j+1)−1
∑

t=t(p,j)+1

∑

S | p∈S

min{W (S)− k,wp}y(t, S) ≤ cp(1 + ln k).

Thus, the dual solution can be made feasible by scaling it down by a factor of (1+ ln k).
We now prove that the primal cost is at most twice the dual profit, which means that
the primal solution produced is O(log k)-competitive.

We partition the primal cost into two parts, C1 and C2. Let C1 be the contribution
to the primal cost from Step (3) of the algorithm, due to the increase of variables
x(p, j) from 0 to 1/k. Let C2 be the contribution to the primal cost from Step (4) of
the algorithm, due to the incremental increases of the variable x(p, j) according to the
exponential function.

Bounding C1 Let x̃(p, j) = min(x(p, j), 1
k ). We bound the term

∑n
p=1

∑r(p,t)
j=1 cpx̃(p, j).

To do this, we need two observations. First, from design of the algorithm, it follows that
if x(p, j) > 0, and equivalently if x̃(p, j) > 0, then:

t(p,j+1)−1
∑

t=t(p,j)+1

∑

S | p∈S

min{W (S)− k,wp}y(t, S) ≥ cp (8.17)

We shall refer to (8.17) as primal complementary slackness.
Next, in the dual solution if y(t, S) > 0, then:

∑

p∈S\{pt}

min{W (S)− k,wp}x̃(p, r(p, t)) ≤W (S)− k (8.18)

We shall refer to (8.18) as dual complementary slackness. To see why (8.18) holds,
consider the following two cases depending on whether W (S) ≥ k+1 or not. Recall that
x̃(p, r(p, t)) ≤ 1/k for all pages. If W (S) ≥ k + 1 then:

∑

p∈S\{pt}

1

k
·min{W (S)− k,wp} ≤

1

k
·
∑

p∈S\{pt}

wp

=
W (S)− w(pt)

k
≤

W (S)− 1

k
≤W (S)− k.

If W (S) < k + 1, then the set S contains at most k pages. In this case we get that:

∑

p∈S\{pt}

1

k
·min{W (S)− k,wp} ≤

1

k
·
∑

p∈S\{pt}

(W (S)− k)

≤
k − 1

k
· (W (S)− k) ≤W (S)− k.
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The last inequality follows since W (S) ≥ k. These primal and dual complementary
slackness conditions imply the following.

n
∑

p=1

r(p,t)
∑

j=1

cpx̃(p, j) (8.19)

≤
n
∑

p=1

r(p,t)
∑

j=1





t(p,j+1)−1
∑

t=t(p,j)+1

∑

S | p∈S

w̃S
p y(t, S)



 x̃(p, j) (8.20)

=
∑

t

∑

S⊆B(t),pt∈S





∑

p∈S\{pt}

w̃S
p x̃(p, r(p, t))



 y(t, S) (8.21)

≤
∑

t

∑

S⊆B(t),pt∈S

(W (S)− k) y(t, S). (8.22)

Inequality (8.20) follows from Inequality (8.17), Equality (8.21) follows by changing the
order of summation, and Inequality (8.22) follows from Inequality (8.18). Thus, C1 is at
most the profit of a feasible dual solution multiplied by (1 + ln k).

Bounding C2 We bound the derivative of the primal cost of variables x(p, j) in Step
(4) by the derivative of the dual profit accrued in the same round. Variables x(p, j) that
have already reached the value of 1 do not contribute anymore to the primal cost. The
derivative of a variable x(p, j), 1/k ≤ x(p, j) < 1, as a function of y(t) is:

dx(p, j)

dy(t, S)
=

min{W (S)− k, wp}

cp

· x(p, j). (8.23)

Therefore, the derivative of the primal is at most:

dX

dy(t, S)
=

∑

p∈S\{pt}:x(p,r(p,t))<1

w̃S
p x(p, r(p, t))

≤ W (S)− k =
dY

dy(t, S)
.

The inequality in the second step above follows since the primal constraint of the set
S is unsatisfied yet. Thus, C2 is at most the profit of a feasible dual solution multiplied
by (1 + ln k).

Completing the analysis It follows that C1 + C2 is at most twice the profit of a
feasible dual solution multiplied by (1 + ln k). Note that the profit of any dual feasible
solution is always a lower bound on the optimal solution. Therefore, we conclude by
weak duality that the algorithm is O(log k)-competitive.

8.4 Rounding the Fractional Solution Online

In this section we show how to obtain a randomized online algorithm from the fractional
solution generated previously. The ideas here generalize the ideas in the simpler weighted
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caching case. For convenience of analysis, throughout this section we consider the (equiv-
alent) cost version of the problem where we pay cp for both fetching and evicting a page
p. This assumption can change the cost of the fractional solution by at most a factor of
two. At any time step, the LP solution x1, . . . , xn, where we denote by xp , x(p, r(p, t)),
specifies the probability that each of the pages is absent from the cache. However, to
obtain an actual randomized algorithm we need to specify a probability distribution over
the various cache states that is consistent with the LP solution. That is, we need to
simulate the moves of the LP over the set of pages by consistent moves over the actual
cache states. We adopt the following approach to do this simulation.

Let γ ≥ 1 be a parameter and set yp = min(γxp, 1). Let µ be a distribution on
subsets of pages. We say that µ is consistent with y (or γ-consistent with x) if µ induces
the distribution y on the page set. That is,

∀p :
∑

D

AD
p · µ(D) = yp, (8.24)

where, for a set of pages D, AD
p = 1 if p ∈ D and 0 otherwise. We will view µ as a

distribution over the complement of the cache states. To be a meaningful simulation, it
suffices to require the following.

1. Size Property: For any set D with µ(D) > 0, the sum of the sizes of the pages in
D is at least W (B(t)) − k. That is, D corresponds to the complement of a valid
cache.

2. Bounded Cost Property: If y changes to y′ while incurring a fractional cost of d,
the distribution µ can be changed to another distribution µ′ which is consistent
with y′, while incurring a (possibly amortized) cost of at most βd, where β > 0.

It is easy to see that if xp changes by ǫ, then yp changes by at most γǫ. Hence, given
a fractional algorithm with competitive ratio c, the existence of a simulation with the
above properties implies an actual randomized online algorithm with competitive ratio
γβc. We provide three different simulation procedures for the Bit model, General model,
and the Fault Model. These are organized in increasing order of complexity.

8.4.1 The Bit Model

In this section we will show how to obtain an O(log k)-competitive randomized algorithm
for the general caching problem in the Bit model. Let U , ⌊log2 k⌋. For i = 0 to U ,
we define the size class S(i) to be the set of pages of sizes between 2i and less than size
2i+1. Formally, S(i) = {p | 2i ≤ wp < 2i+1}. Let x1, . . . , xn be the LP solution at the
current time step. Recall that it satisfies the knapsack cover inequalities for all subsets.
For each page p let yp = min{1, 3xp} (i.e. γ = 3).

Definition 8.1 (Balanced subsets). We say that a subset of pages D is balanced with
respect to y if:
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1. If yp = 1 then p is evicted in all cache states, i.e. AD
p = 1 for all D with µ(D) > 0.

2. The following holds for all 0 ≤ j ≤ U :








U
∑

i=j

∑

p∈S(i)

yp







 ≤
U
∑

i=j

∑

p∈S(i)

AD
p ≤









U
∑

i=j

∑

p∈S(i)

yp









. (8.25)

We first show that the size property follows from the requirement that sets are
balanced.

Lemma 8.6. Let x and y be defined as above. Then, for any subset D which is balanced
with respect to y, the sum of the sizes of all the pages in D is at least W (B(t))− k.

We first prove a simple mathematical claim.

Claim 8.7. Let x1, x2, . . . , xn and y1, y2, . . . , yn be two sequences of non-negative real
numbers and let 0 = a0 ≤ a1 ≤ a2 ≤ . . . ,≤ an be a non-decreasing sequence of positive
numbers. If for every 1 ≤ j ≤ n:

∑n
i=j xi ≥ −1 + (

∑n
i=j yi), then:

∑n
i=1 aixi ≥

−an +
∑n

i=1 aiyi.

Proof. For every j, 1 ≤ j ≤ n, multiply the jth inequality by (aj − aj−1) (which is non
negative), yielding:

(aj − aj−1)

n
∑

i=j

xi ≥ −(aj − aj−1) + (aj − aj−1)

n
∑

i=j

yi.

Summing up over all the inequalities yields the desired result.

Proof. (Lemma 8.6). For the proof it suffices to use the LHS of condition (8.25) (i.e.,
the lower bound). Let S′ ⊆ S be the set of pages with yp < 1, and let S′(i) = S′ ∩ S(i)
be the class i pages in S′. Since AD

p = 1 whenever yp = 1, condition (8.25) implies that
for every 0 ≤ j ≤ U :

U
∑

i=j

∑

p∈S′(i)

AD
p ≥









U
∑

i=j

∑

p∈S′(i)

yp







 ≥





U
∑

i=j

∑

p∈S′(i)

yp



− 1. (8.26)

The sum of the sizes of the pages in D is
∑

p∈S wpA
D
p . Since AD

p = 1 for p ∈ S \ S′, it
suffices to show that

∑

p∈S′ wpA
D
p ≥W (S′)− k for the proof. Consider the following:

∑

p∈S′

wpA
D
p ≥

∑

p∈S′

min{wp, W (S′)− k}AD
p

=

U
∑

i=0

∑

p∈S′(i)

min{wp, W (S′)− k}AD
p

≥
1

2

U
∑

i=0

∑

p∈S′(i)

min{2wp, W (S′)− k}AD
p
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≥
1

2

U
∑

i=0

min{2i+1, W (S′)− k}
∑

p∈S′(i)

AD
p (8.27)

≥ −
1

2
min{2U+1, W (S′)− k}

+
1

2

U
∑

i=0

min{2i+1, W (S′)− k}
∑

p∈S′(i)

yp (8.28)

≥ −
1

2
(W (S′)− k)

+
1

2

U
∑

i=0

∑

p∈S′(i)

min{wp, W (S′)− k}yp (8.29)

≥ −
1

2
(W (S′)− k) +

3

2
(W (S′)− k) ≥W (S′)− k. (8.30)

Here, Inequality (8.27) follows since wp ≥ 2i for each p ∈ S′(i). Inequality (8.28)
follows by applying Claim 8.7 with ai = min{2i+1,W (S′) − k}, xi =

∑

p∈S′(i) AD
p and

yi =
∑

p∈S′(i) yp, and observing that (8.26) implies that the conditions of the claim are

satisfied. Inequality (8.29) follows since wp < 2i+1, and finally Inequality (8.30) follows
since by the LP knapsack constraints, and the fact that yp = 3xp for each p ∈ S′:

U
∑

i=0

∑

p∈S′(i)

min{wp, W (S′)− k}yp

= 3
∑

p∈S′

min{wp, W (S′)− k}xp ≥ 3(W (S′)− k).

We show how to maintain the bounded cost property using both the LHS and RHS
of condition (8.25).

Lemma 8.8. Let µ be any distribution on balanced sets that is consistent with y. Then
the cost property holds with β = 10. That is, if y changes to y′ while incurring a
fractional cost of d, then the distribution µ can be modified to another distribution µ′

over balanced sets such that µ′ is consistent with y′ and the cost incurred while modifying
µ to µ′ is at most 10d.

Proof. By considering each page separately, it suffices to show that the property holds
whenever yp increases or decreases for some page p. Assume first that the weight yp of
page p for p ∈ S(i) is increased by ǫ. The argument when yp is decreased is analogous.
Page p belongs to S(i), and so wp ≥ 2i. Thus, the fractional cost is at least ǫ2i.

We construct µ′ as follows. To ensure the consistency with y′,i.e., Equation (8.24),
we add page p to ǫ measure of the sets D that do not contain p. Since this is the Bit
model, this incurs a cost of at most 2i+1ǫ. However this may violate condition (8.25)
for classes j ≤ i. We iteratively fix condition (8.25) starting with class i. Consider class
i. Let s = ⌈

∑U
j=i

∑

p∈S(j) yp⌉ and suppose first that ⌈
∑U

j=i

∑

p∈S(j) y′p⌉ remains equal to
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s. Then in µ′, let ǫ′ be the measure of sets that have s + 1 pages in classes i or higher.
Note that ǫ′ ≤ ǫ. Consider the sets with s− 1 pages in classes i or higher and arbitrarily
choose ǫ′ measure of these (this is possible since s = ⌈

∑U
j=i

∑

p∈S(j) y′p⌉). Arbitrarily

pair the sets with s+1 pages to those with s−1 pages. Consider any pair of sets (D,D′).
Since µ′ satisfies condition (8.25) is for class i + 1, the number of pages in D and D′

that lie in classes i + 1 or higher differ by at most 1. Hence, D \D′ contains some class
i page. We move this page from D to D′. Note that (8.25) is satisfied for i after this
procedure. Now, consider the case when ⌈

∑U
j=i

∑

p∈S(j) y′p⌉ increases to s+1. Note that

in this case, the condition (8.25) is be violated for class i for at most ǫ′ ≤ ǫ of sets that
have precisely s − 1 pages in classes i or higher. We arbitrarily pair the classes with
s− 1 to pages to those with s + 1 pages and apply the argument above. The total cost
incurred in this step is at most (2ǫ′) · 2i+1 ≤ 2i+2ǫ.

After applying the above procedure to fix class i, condition (8.25) might be violated
for class i−1 for at most ǫ measure of sets. We apply the matching procedure sequentially
to i− 1 and lower classes incurring an additional cost of

∑i−1
j=0 2ǫ · 2j+1 < 4ǫ2i. Thus the

total cost incurred is at most 10ǫ2i.

Theorem 8.9. There is an O(log k)-competitive algorithm for the general caching prob-
lem in the Bit model.

8.4.2 The General Cost Model

In this section we study the General cost model and show how to obtain an O(log2 k)-
competitive randomized caching algorithm for this model. Let U , ⌊log2 k⌋. Let C =
⌊log2 Cmax⌋. For i = 0 to U , and j = 0 to C, we define S(i, j) to be the set of pages
of sizes at least 2i and less than 2i+1, and fetching cost between 2j and less than 2j+1.
Formally, S(i, j) = {p | 2i ≤ wp < 2i+1 and 2j ≤ cp < 2j+1}. Let x1, . . . , xn be the LP
solution at the current time step that satisfies the knapsack cover inequalities for all
subsets. Let γ = U + 3. Thus, for each page p, yp = min{1, (U + 3) · xp} = O(log k) · xp.

Definition 8.2. A set D of pages is balanced with respect to y if the following two
conditions hold:

1. If yp = 1 then p is evicted in all cache states, i.e. AD
p = 1 for all D with µ(D) > 0.

2. For each size class 0 ≤ i ≤ U , it holds that for each 0 ≤ j ≤ ⌊log Cmax⌋:








C
∑

z=j

∑

p∈S(i,z)

yp







 ≤
C
∑

z=j

∑

p∈S(i,z)

AD
p ≤









C
∑

z=j

∑

p∈S(i,z)

yp









. (8.31)

We first show that the size property follows from the requirement that the sets are
balanced.

Lemma 8.10. Let x and y be defined as above. Then, for any subset D that is balanced
with respect to y, the sum of sizes of all pages in D is at least W (B(t))− k.
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Proof. For the proof it suffices to use the LHS of condition (8.31) (i.e., the lower bound).
Let S′ denote the subset of pages with yp < 1. As yp = 1 whenever AD

p = 1 , it suffices

to show that
∑

p∈S′ wpA
D
p ≥W (S′)− k. Moreover, condition (8.31) implies that for any

0 ≤ i ≤ U :

C
∑

z=0

∑

p∈S′(i,z)

AD
p ≥ ⌊

C
∑

z=0

∑

p∈S′(i,z)

yp⌋ ≥ −1 +

C
∑

z=0

∑

p∈S′(i,z)

yp. (8.32)

Thus, the total size of pages from S′ that are in D can be lower bounded as follows:
∑

p∈S′

wpA
D
p ≥

∑

p∈S′

min{wp, W (S′)− k}AD
p

=

U
∑

i=0

C
∑

j=0

∑

p∈S′(i,j)

min{wp, W (S′)− k}AD
p

≥
1

2

U
∑

i=0

C
∑

j=0

∑

p∈S′(i,j)

min{2wp, W (S′)− k}AD
p

≥
1

2

U
∑

i=0

min{2i+1, W (S′)− k}
C
∑

j=0

∑

p∈S′(i,j)

AD
p (8.33)

≥
1

2

U
∑

i=0

min{2i+1, W (S′)− k}



−1 +

C
∑

j=0

∑

p∈S′(i,j)

yp



 (8.34)

≥ −
U + 1

2
(W (S′)− k)

+
1

2

U
∑

i=0

C
∑

j=0

∑

p∈S′(i,j)

min{wp, W (S′)− k}yp (8.35)

≥ −
U + 1

2
(W (S′)− k) +

U + 3

2
(W (S′)− k)

= W (S′)− k. (8.36)

Inequality (8.33) follows since wp ≥ 2i for each page p ∈ S′(i, j), and Inequality (8.34)
follows from (8.32). Inequality (8.35) follows since wp ≤ 2i+1 for each page p ∈ S′(i, j) .
Finally, Inequality (8.36) follows by the knapsack constraints:

U
∑

i=0

C
∑

j=0

∑

p∈S′(i,j)

min{wp,W (S′)− k}yp

=
∑

p∈S′

min{wp,W (S′)− k}yp

= (U + 3)
∑

p∈S′

min{wp,W (S′)− k}xp

≥ (U + 3)(W (S′)− k).

Here we use the fact that yp = (U + 3)xp for p ∈ S′.
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We now show how to maintain the bounded cost property with β = 10. For this we
need to use both the LHS and RHS of condition (8.31), and we use an argument similar
to the one used in the proof of Lemma 8.8.

Lemma 8.11. Give any distribution µ over balanced sets that is consistent with y. If y
changes to y′ incurring a fractional cost of d, then the distribution µ can be modified to
another distribution µ′ over balanced sets consistent with y′ such that total cost incurred
is at most 10d.

Proof. Suppose that yp increases by ǫ and p lies in the class S(i, j). Note that the balance
condition (8.31) holds for every size class different from i, and moreover for size class i
the condition also holds for all cost classes higher than j. We apply the procedure used
in Lemma 8.8 to size class i. Note that applying this procedure does not have any effect
on size classes different from i, and we can thus iteratively balance cost classes starting
from j down to 0 in size class i. To bound the cost, observe that the analysis in the proof
of Lemma 8.8 only used the fact that the cost of the classes are geometrically decreasing.
Thus, a similar analysis implies that the cost incurred is no more than 10ǫ · 2j .

We conclude with the next theorem:

Theorem 8.12. There is an O(log2 k)-competitive algorithm for the caching problem in
the General model.

8.4.3 The Fault Model

In this section we study the Fault model and show how to obtain an O(log k)-competitive
randomized caching algorithm for this model. Note that an O(log2 k)-competitive algo-
rithm follows directly from the result for the General model. Recall that in the proofs
for the Bit model and the General model we crucially used the fact that the cost in the
different classes is geometrically decreasing. However, this is not the case for the Fault
model, making the proof significantly more involved and requiring the use of a potential
function so as to perform an amortized analysis.

We sort the n pages with respect to their size, i.e., w1 ≤ w2 ≤ . . . ≤ wn. Let
x1, . . . , xn be the LP solution at the current time step that satisfies the knapsack cover
inequalities for all subsets. For each page p, let yp = min{1, 15 · xp}. Let S′ denote the
set of pages with yp < 1. During the execution of the algorithm we maintain a grouping
G of pages in S′ into groups G(i), 1 ≤ i ≤ ℓ. Each group G(i) contains a sequence of
consecutive pages in S′. As the pages are ordered in non-decreasing order with respect
to size, for any i the largest page size in group G(i) is at most the smallest page size in
G(i + 1).

Definition 8.3 (Good Grouping). A grouping G of pages in S′ is called good if it
satisfies the following properties.

1. For each i, 1 ≤ i ≤ ℓ, we have
∑

p∈S(i) yp ≤ 12.
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2. If
∑

p∈S′ yp ≥ 3, then for each group i, 1 ≤ i ≤ ℓ, we have
∑

p∈G(i) yp ≥ 3. If
∑

p∈S′ yp < 3, then there is exactly one group G(1) containing all the pages in S′.

We define
∑

p∈G(i) yp to be the weight of group G(i).

Definition 8.4 (Balanced Set). Given a good grouping G, a set of pages D is called
balanced if the following two properties hold.

1. If yp = 1, then AD
p = 1.

2. For each i, the number of pages |D ∩G(i)| =
∑

p∈G(i) AD
p satisfies









∑

p∈G(i)

yp







 ≤
∑

p∈G(i)

AD
p ≤









∑

p∈G(i)

yp









. (8.37)

The simulation procedure works as follows. At any time the algorithm maintains a
good grouping G of the pages. It also maintains a probability distribution µ on balanced
sets D which is consistent with y. At each step of the algorithm, as the value of y
changes, the algorithm modifies the distribution µ to be consistent with y. Additionally,
as y changes, the grouping G may also possibly change (so as to remain good), in which
case a previously balanced set need not remain balanced anymore. In such a case, we
also modify µ since only balanced sets can belong to the support of µ.

We first show that the size property holds for balanced sets D, and then show how
to update G and µ as y changes, such that the cost property holds with β = O(1) in an
amortized sense.

Lemma 8.13. Let y be as defined above and let G be a good grouping with respect to y.
Then any balanced set D with respect to G has size at least W (S)− k.

Proof. Let S′ be the set of pages p for which yp < 1. As D is balanced, each page with
yp = 1 belongs to D and hence it suffices to show that

∑

p∈S′ wpA
D
p ≥ W (S′) − k. If

W (S′)− k ≤ 0, then we are already done. Henceforth we assume that W (S′)− k > 0.
The linear program constraint for the set S′ implies that

∑

p∈S′ min{wp,W (S′) −
k}xp ≥W (S′)− k. This implies that

∑

p∈S′ xp ≥ 1 and so
∑

p∈S′ yp ≥ 15. Hence by the
second condition for a good grouping, each group G(i) has weight at least 3.

For each group G(i) let wi(min) and wi(max) denote the smallest and largest page
size in G(i). Recall that for each i, we have that wi(min) ≤ wi(max) ≤ wi+1(min).
(Define wℓ+1(min) = wℓ(max).) Let mi = min(wi(min),W (S′)− k) for i = 1, . . . , ℓ + 1.
We lower bound the total size of pages in D ∩ S′ as follows.

∑

p∈S′

wpA
D
p ≥

∑

p∈S′

min{wp, W (S′)− k}AD
p

=

ℓ
∑

i=1

∑

p∈G(i)

min{wp, W (S′)− k}AD
p
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≥
ℓ
∑

i=1

mi

∑

p∈G(i)

AD
p ≥

ℓ
∑

i=1

mi(−1 +
∑

p∈G(i)

yp)

≥
2

3

ℓ
∑

i=1

mi

∑

p∈G(i)

yp (8.38)

=
2

3





ℓ
∑

i=1
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∑

p∈G(i)

yp





−
2

3





ℓ
∑

i=1

(mi+1 −mi)
∑

p∈G(i)

yp





≥
2

3





ℓ
∑

i=1

mi+1

∑

p∈G(i)

yp



− 8

(

ℓ
∑

i=1

(mi+1 −mi)

)

(8.39)

=
2

3





ℓ
∑

i=1

mi+1

∑

p∈G(i)

yp



− 8mℓ+1 + 8m1

≥
2

3





ℓ
∑

i=1

∑

p∈G(i)

min{wp, W (S′)− k}yp





− 8(W (S′)− k) (8.40)

≥ 2(W (S′)− k).

Here inequality (8.38) follows since D is balanced, and hence for each 1 ≤ i ≤ ℓ,

∑

p∈G(i)

AD
p ≥









∑

p∈G(i)

yp







 ≥ −1 +
∑

p∈G(i)

yp,

and by observing that G is good and hence
∑

p∈G(i) yp ≥ 3 for each 1 ≤ i ≤ ℓ and thus

−1 +
∑

p∈G(i)

yp ≥
2

3





∑

p∈G(i)

yp



 .

Inequality (8.39) follows since mi+1 −mi ≥ 0 for each 1 ≤ i ≤ ℓ, and since G is good,
for each 1 ≤ i ≤ ℓ we have that

∑

p∈G(i) yp ≤ 12: Finally, Inequality (8.40) follows by

considering the knapsack cover inequality for the set S′ and observing that yp = 15xp

for each p ∈ S′:

ℓ
∑

i=1

∑

p∈G(i)

min{wp,W (S)− k}yp

=
∑

p∈S′

min{wp,W (S′)− k}15xp ≥ 15(W (S′)− k).
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Lemma 8.14. As the solution y changes over time we can maintain a good grouping
G and a consistent distribution on balanced sets with amortized cost at most a constant
times the fractional cost.

Proof. The online fractional algorithm has the following dynamics. After a page p is
requested variable yp can only increase (the page is gradually evicted). This process
stops when page p is requested again and yp is set to zero. Whenever yp changes, we
need to modify the distribution µ on balanced sets D to remain consistent. Moreover, a
change in yp may change the structure of the groups. This happens if either the weight
of G(i) exceeds 12, or if it falls below 3, or if yp becomes 1 and leaves the group G(i)
(recall that groups only contain pages q with yq < 1). We view a change in yp as a
sequence of steps where yp changes by an infinitesimally small amount ǫ. Thus at each
step exactly one of the following events happens.

Event 1: Variable yp < 1 of page p increases or decreases by ǫ.

Event 2: The weight of group G(i) reaches 12 units.

Event 3: The weight of group G(i) drops to 3 units.

Event 4: The value of yp for page p reaches 1 and p leaves the set S(i).

We prove that in all cases the amortized cost of the online algorithm is at most O(1)
times the fractional cost. For amortization we use the following potential function:

Φ = 13
∑

p∈S′

yp + 11

ℓ
∑

i=1

∣

∣

∣

∣

∣

∣

6−
∑

p∈G(i)

yp

∣

∣

∣

∣

∣

∣

.

In each possible event let Con be the total cost of the online algorithm. Let Cf be the
fractional cost, and let ∆Φ be the change in the potential function. We show that in
each of the events:

∆Con + ∆Φ ≤ 405∆Cf (8.41)

Since Φ is always positive, this will imply the desired result.

Event 1 Assume first that yp such that p ∈ G(i) is increased by ǫ. If yp increases by
ǫ it must be that xp is increased by at least ǫ

15 . Thus, in the fault model the fractional
cost is at least ǫ

15 .
To maintain consistency, we add p to ǫ measure of the sets D that do not contain

p. However this might make some of these sets unbalanced by violating (8.37). Suppose
first that s = ⌈

∑

p∈G(i) yp⌉ does not change when yp is increased by ǫ. In this case, we
match the sets with s + 1 pages in G(i) (the measure of these is at most ǫ) arbitrarily
with sets contains s−1 pages, and transfer some page from the larger set (that does not
lie in the smaller set) to the smaller set. An analogous argument works when s increases
as yp is increased. Note that after this step, the sets become balanced.
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The total online cost is 3ǫ. Moreover, the potential change ∆Φ is at most 13ǫ+11ǫ =
24ǫ and hence (8.41) holds. An analogous argument works if yp is decreased (in fact it
is even easier since the potential only decreases).

Event 2 Consider an event in which the total weight of a group G(i) reaches 12
units. In this case we split G(i) into two sets such that their weight is as close to
6 as possible. Suppose one set is of size 6 + x and the other is of size 6 − x where
0 ≤ x ≤ 1/2. Let Φ(s) and Φ(e) denote the potential function before and after the
change respectively. The contribution of the first term does not change. The second
term corresponding to G(i) initially is at least 11(12−6) = 66 and the final contribution
is 11(|6− (6−x)|+ |6− (6+x)|) = 22x ≤ 11. Thus ∆Φ = Φ(e)−Φ(s) = 11− 66 ≤ −55.

Next, we redistribute the pages in the original group G(i) among the sets D such
that they are balanced with respect to the two new groups. Observe that in the worst
case, each set D might need to remove all the 12 pages it previously had and bring in
at most ⌈6 + x⌉ + ⌈6 − x⌉ ≤ 13 new pages. Since the measure of sets is D, the total
cost incurred is at most 25. Again, (8.41) holds as the fractional cost Cf is 0 and the
decrease in potential more than offsets the cost Con.

Event 3 Consider the event when the weight of a group G(i) decreases to 3 units.
If G(i) is the only group (i.e. ℓ = 1) then all properties of a good grouping still hold.
Otherwise, we merge G(i) with one of its neighbors (either G(i− 1) or G(i+1)). If G(i)
has a neighbor with weight at most 9, then we merge G(i) with this neighbor. Note that
before the merge, each balanced set D has exactly 3 pages from G(i) and hence it also
remains balanced after the merge. Also, since |6 − 3| + |6 − x| ≥ |6 − (x + 3)| for all
3 ≤ x ≤ 9, and hence the potential function does not increase in this case. Thus (8.41)
holds trivially.

Now suppose that all neighbors of G(i) have weight greater 9. Consider any such
neighbor and let x > 9 be its weight. We merge G(i) with this neighbor to obtain a
group with weight 3 + x which lies in the range (12, 15]. Then as in the handling of
Event 8.4.3, we split this group into two groups with as close weight as possible. Since
the weight is at most 15, the cost of balancing the sets D is at most 16 + 15 = 31 (using
argument similar to that in Event 8.4.3). We now consider the change in potential. The
only change is due to second terms corresponding to G(i) and its neighbor (the first
term does not matter since total weight of pages in S′ does not change upon merging or
splitting). Before the merge, the contribution was 11 · 3 + 11 · (x− 6) = 11x− 33 ≥ 66.
After the merge (and the split) the maximum value of the potential is obtained for the
case when the size of the merged group is 15 which upon splitting leads to sets of size
7 + y and 8− y where y ≤ 0.5, in which case its value is 11(1 + y + 2 − y) = 33. Thus,
the potential function decreases by at least 33 while the online cost is at most 31, and
hence (8.41) holds.

Event 4 Suppose some yp increases to 1 and exits the group G(i). Note that if yp = 1,
then all balanced sets D contain p. Thus, removing p from G(i) keeps the sets balanced.
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Let us first assume that the weight of G(i) does not fall below 3 when p is removed. In
this case, the groups and the balanced sets remain unchanged. Thus the online algorithm
incurs zero cost. The first term of the potential decreases by 13, and the second term
increases by at most 11, and hence (8.41) holds. Now consider the case when the weight
of G(i) falls below 3. We apply an argument similar to that for Event 8.4.3. If G(i)
can be merged with some neighbor without weight exceeding 12, then we do so. This
merge may cause some sets D to become imbalanced. However, this imbalance is no
more than one page and can be fixed by transferring one page from each set to another
appropriate set. The total cost incurred in this case is at most 2. We now consider the
change in potential. The first term decreases by 13. For the second term, the original
group G(i) contributes function 11(6− (3+x)) = 11(3−x), with x < 1 and its neighbor
contributes 11(|6 − z|) where 3 ≤ z ≤ 9 is its weight. After the merge, the second term
corresponding to the merged group contributes 11(|6 − (z + 2 + x)|) which is at most
11(|6− z|+(2+x)). Overall, ∆Φ ≤ −13+11(2+x)− 11(3−x) = 22x− 24 < −2. Thus
(8.41) holds.

If we need to split the merged set, we note that the above analysis, showing that
(8.41) holds, is also valid when 9 ≤ z ≤ 12. Next, when this merged set is split, we can
apply the analysis in Event 8.4.3, and then the potential function decreases by at least
33 units, while the cost incurred is at most 31, and hence (8.41) holds.

We conclude with the next theorem:

Theorem 8.15. There is an O(log k)-competitive algorithm for the caching problem in
the Fault model.

8.5 Notes

The results in this chapter are based on the work of Bansal, Buchbinder and Naor
[14, 15]. The weighted caching problem was studied in [14], while the more general
setting where pages have both sizes and fetching costs was studied in [15]. Transforming
a fractional view to an actual view has been considered previously by [19, 24]. Blum
et al. [24] showed that for the unweighted caching problem it is possible to transform
online a fractional view to an actual view such that the expected cost incurred is at most
twice the cost of the fractional view.

The unweighted paging problem is very well understood. In their seminal paper,
Sleator and Tarjan [86] showed that any deterministic algorithm is at least k-competitive,
and also showed that LRU (Least Recently Used) is exactly k-competitive. They also
considered the more general (h, k)-paging problem where the online algorithm with cache
size k is compared to the offline algorithm with cache size h. They showed that any de-
terministic algorithm is at least k/(k − h + 1)-competitive, and that LRU is exactly
k/(k− h + 1)-competitive. When randomization is allowed, Fiat et al. [47] designed the
Randomized Marking algorithm which is 2Hk-competitive against an oblivious adver-
sary, where Hk is the k-th Harmonic number. They also showed that any randomized
algorithm is at least Hk-competitive. Subsequently, McGeoch and Sleator [79] gave a
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matching Hk-competitive algorithm, and Achlioptas, Chrobak and Noga [1] gave an-
other Hk-competitive algorithm that is easier to state and analyze. For (h, k)-paging,
Young [89] gave a 2 ln(k/(k − h))-competitive algorithm (ignoring lower order terms)
and showed that any algorithm is at least ln(k/(k − h))-competitive. There has been
extensive work on paging along several other directions, and we refer the reader to the
excellent text by Borodin and El-Yaniv [28] for further details.

For weighted paging, a tight k-competitive deterministic algorithm follows from the
more general work of Chrobak et al. [39] for k-server problem on trees (see below).
Subsequently, Young [90] gave a tight k/(k−h+ 1)-competitive deterministic algorithm
for the more general (h, k)-paging problem. The randomized competitiveness of the
weighted paging problem was not clear until the work of Bansal, Buchbinder and Naor
[14]. Irani [65] gave an O(log k)-competitive algorithm for the two weight case, i.e. when
each page weight is either 1 or some fixed M > 1. In another direction, Blum, Furst and
Tomkins [25] gave an O(log2 k)-competitive algorithm for the case of n = k + 1 pages.
Later, Fiat and Mendel [49] gave an improved O(log k) competitive algorithm for the
case of n = k + c pages, where c is a constant. For large n however, no o(k)-competitive
algorithm was known even for the case of three distinct weights.

Paging can be viewed as a special case of the much more general and challenging k-
server problem. In this problem, there are k servers located on points in an n-point metric
space. At each time step a request is placed at one of the points and the algorithm must
move one of the servers to this point to serve the request. The goal is to minimize the
overall distance traveled by the servers. The unweighted paging problem is exactly the
k-server problem on a uniform metric space. The weighted paging problem is identical
(up to an additive constant) to the k-server problem on the metric space in which the
distance between any two pages a and b is (w(a)+w(b))/2, where w(·) denotes the page
weights.

The k-server problem has a fascinating history and substantial progress has been
made on deterministic algorithms for the problem. It is known that any deterministic
algorithm must be at least k-competitive on any metric space with more than k points.
Fiat, Rabani and Ravid [50] gave the first algorithm for which the competitive ratio
was only a function of k. Their algorithm was O((k!)3)-competitive. After a series
of results, a breakthrough was achieved by Koutsoupias and Papadimitriou [74] who
gave an almost tight 2k − 1 competitive algorithm. This is still the best known bound
(both for deterministic and randomized algorithms) for general metric spaces. The tight
guarantee of k is also known for many special cases. In particular, Chrobak et al. [39]
gave a k-competitive algorithm for trees. We refer the reader to [28] for more details on
the k-server problem.

Nevertheless, randomized algorithms for the k-server problem remain poorly under-
stood. No lower bound better than ln k is known for any metric space. Moreover, from
the work of Bartal, Bollobas and Mendel [18] and Bartal, Linial, Mendel and Naor [20],
it follows that no metric space with more than k points can admit a o(log k/ log log k)-
competitive algorithm. A widely believed conjecture is that O(log k)-competitive algo-
rithms exist for every metric space. In a breakthrough result, Bartal, Blum, Burch and
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Tomkins [19] gave a poly-log(N) competitive algorithm for the metrical task system prob-
lem (see definitions in the following paragraph) that implies a poly-log(k)-competitive
algorithm for the k-server on a space with k + c points, where c is a constant indepen-
dent of k. This guarantee was improved by Fiat and Mendel [49] to O(log2 k log log k).
However, for n much larger than k, no algorithms with sublinear competitive ratio are
known except for very few special cases. Besides paging and weighted paging with two
weights, a poly-logarithmic competitive algorithm is known for a special subclass of
certain well-separated spaces [85]. Csaba and Lodha [43] gave an O(n2/3) competitive
algorithm, which is o(k) competitive for n = o(k3/2), for n uniformly spaced points on a
line2.

General caching where the page sizes are also non-uniform is substantially harder. In
contrast to uniform page size caching, even the offline version of the problem is NP-hard,
as it captures the knapsack problem3. Following a sequence of results [64, 2, 42], Bar-Noy
et al. [16] gave a 4-approximation for the problem based on the local-ratio technique.
This is currently the best known approximation for (offline) general caching. For the
online case it is known that LRU is (k+1)-competitive for the Bit model and also for the
Fault model [64], where k denotes the ratio between cache size and the size of the smallest
page. Later on, Cao and Irani [34] and Young [92] gave a (k + 1)-competitive algorithm
for the General model based on a generalization of the Greedy-Dual algorithm of Young
[90]. An alternate proof of this result was obtained by [42]. When randomization is
allowed, Irani [64] designed an O(log2 k)-competitive algorithm for both Fault and Bit
models. These algorithms are very complicated and are based on an approach combining
offline algorithms with the Randomized Marking algorithm. For the General model, no
o(k) randomized algorithms are known. There has been extensive work on caching in
other directions, and we refer the reader for further details to the excellent text by
Borodin and El-Yaniv [28] and to the survey by Irani [63] on paging.

2A generalization of this result was considered by Bartal and Mendel [21], who proposed a
∆1−ǫpolylogk competitive algorithm for bounded growth metrics with diameter ∆. Unfortunately, their
result seems to have a serious error [M. Mendel, personal communication].

3It remains NP-hard for the Bit model. For the Fault model it is open whether the problem is
polynomially solvable [64].
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Chapter 9

Load Balancing on Unrelated
Machines

In this chapter we show how to use the primal dual method to design an optimal algo-
rithm for the problem of online load balancing on unrelated machines. In this setting we
are given a set of m machines S = {s1, s2, . . . , sm}. For each job ri ∈ R and machine sj,
there is an arbitrary load p(i, j) of processing job the job on that machine. The load on
each machine is the sum of p(i, j) of jobs that are processed on that machine. Our goal
is to distribute the jobs between the m machines so as to minimize the maximum load
on a machine. In the online setting the jobs arrive one-by-one and need to be assigned
to a machine upon arrival. The assignment of a job cannot be changed.

9.1 LP formulation and Algorithm

The first idea we need is the idea of guessing the value of the optimum. That is, our
online algorithm is going to “guess” the value of the maximum load Λ∗ that is needed in
order to process all jobs. This will be done by starting from value α = minm

j=1{p(1, j)}
and doubling our guess whenever needed until α ≥ Λ∗. We design an algorithm that
never assigns more than α · O(log m) units of load on any machine. The algorithm
guarantees success in assigning all jobs when it is given a value α ≥ Λ∗. When it is given
a value α < Λ∗ it may return a failure. It is not hard to see that due to this doubling
process the competitive ratio is multiplied by 4.

Given a guess α we define the normalized load of job ri on machine sj to be p̃(i, j) =
p(i,j)

α . When job j arrives we can only consider machines for which p̃(i, j) ≤ 1, since when
α ≥ Λ∗ the job can only be processed by the optimal solution on such machines. If there
is no such machine then our guess of Λ∗ is wrong and the algorithm can return failure.
Next, we formulate the problem as a packing linear program. For each job ri, let S(ri) be
the set of machines for which p̃(i, j) ≤ 1. We have a variable y(i, j) indicating that job
ri is assigned to machine sj. The objective function is to maximize the number of jobs
assigned to the machines. The formulation appears as the dual program (maximization)
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Primal Dual
Minimize:

∑

sj∈S
x(j) +

∑

ri∈R
z(i) Maximize:

∑

ri∈R

∑

sj∈S(ri)
y(i, j)

Subject to: Subject to:
∀ri ∈ R, sj ∈ S(ri): p̃(i, j)x(j) + z(i) ≥ 1 ∀ri ∈ R:

∑

sj∈S(ri)
y(i, j) ≤ 1

∀sj ∈ S:
∑

ri∈R,sj∈S(ri)
p̃(i, j)y(i, j) ≤ 1

Figure 9.1: A primal dual pair for the load balancing problem on unrelated machines.

in Figure 9.1 along with its corresponding primal program.
Let N = |R| be the number of jobs. The important observation is that when we

guess a value α ≥ Λ∗ then it is possible to process all jobs on the machines without
exceeding the load. This means that the value of the optimal solution to the dual LP is
exactly N . On the negative side it means that there is no primal LP solution that has
value strictly less than N . We are now ready for our algorithm:

Balance Algorithm: Initially: x(j)← 1
2m . When a new job ri arrives:

1. If there is no machine j such that p̃(i, j) ≤ 1, or there exists a machine with
x(j) > 1 return “failure”. Otherwise:

(a) Let sℓ ∈ S(ri) be a machine with minimal value of p̃(i, ℓ)x(ℓ).

(b) Assign request ri to machine sℓ and set y(i, ℓ)← 1.

(c) Set z(i)← 1− p̃(i, ℓ)x(ℓ).

(d) x(ℓ)← x(ℓ)(1 + p̃(i,ℓ)
2 ).

Theorem 9.1. If there exists a feasible solution to the LP that processes all jobs, then
the algorithm processes all jobs with load O(log m).

Proof. To prove the theorem we prove the following claims:

1. The load on each machine is at most O(log m).

2. If the algorithm returns “failure” in line 1 then there is a primal feasible solution
that is strictly smaller than |R| = N .

Proof of (1): To prove the first part of the claim note that the algorithm never assigns
a job on machines with x(j) > 1 (otherwise, it already fails in Line 1. Also, since for
each job and each machine, p̃(i, j) ≤ 1 then x(j) ≤ 3/2. Let R(sj) be the set of jobs
that the algorithm routed on machine sj . We, thus, have the following inequalities:

1

2m
exp



ln
3

2

∑

ri∈R(sj)

p̃(i, j)



 ≤
1

2m

∏

ri∈R(sj)

(
3

2
)p̃(i,j) ≤

1

2m

∏

ri∈R(sj)

(

1 +
p̃(i, j)

2

)

= x(j) ≤ 3/2.
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Simplifying, we get that:

∑

ri∈R(sj)

p̃(i, j) ≤
ln 3m

ln 3
2

= O(log m).

Proof of (2): First note that our algorithm produces a feasible primal solution. This
follows since for each job we set z(i) ← 1 − p̃(i, ℓ)x(ℓ), where ℓ is the machine that
minimizes the value p̃(i, ℓ)x(ℓ). Thus, we satisfy all the new primal constraints that
arrived in the current iteration. Since x(i) are only increasing all previous constraints
remain feasible. Next, observe that whenever we assign a job to a machine the change
in the primal cost is 1 − p̃(i, ℓ)x(ℓ) + p̃(i,ℓ)x(ℓ)

2 = 1 − p̃(i,ℓ)x(ℓ)
2 . Note, however, that the

change in x(ℓ) due to the assignment of job ri is exactly p̃(i,ℓ)x(ℓ)
2 . Let x(j)init be the

initial value of x(j) (which is 1/2m). Thus, by this observation at any time during the
execution of the algorithm the cost of the primal solution is:

P =
m
∑

j=1

x(j)init + N −
m
∑

j=1

(x(j)− x(j)init)

= 2

m
∑

j=1

x(j)init + N −
m
∑

j=1

x(j) = 1 + N −
m
∑

j=1

x(j)

where N is the number of jobs. Assume now that there exists some x(j) > 1. This
means that we have a primal solution with cost strictly less than N , meaning that there
can be no dual solution with profit exactly N , concluding the proof.

9.2 Notes

The results in this chapter are based on the work of Buchbinder and Naor [33]. The
algorithm described in this chapter and its analysis are actually a primal-dual view of a
previous algorithm by Aspnes et al. [8].

Many load balancing models were studied in the literature. Perhaps the simplest
model is the identical machines model in which there are m identical machines. n jobs
arrive online each with load pi and the assignment of a job cannot be changed. For this
model Graham [60] proved that the simple greedy heuristic that assigns the next task
to the least loaded machine is 2 − 1/n-competitive. Another model that was studied
is the restricted assignment model. In this model each job can be assigned only to a
subset of the machines (and not to all of them as in the identical machines model). For
this model [13] analyzed the performance of the same greedy strategy, proving that it
is O(log m)-competitive. They also showed that this factor is optimal for this model.
More refined performance measures of the greedy strategy were later studied in [57, 33].
For further discussion about load balancing in many models we refer the reader to [12].
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Chapter 10

Routing

In this chapter we study routing problems. We already discussed two simple routing
algorithms and a primal dual approach for solving routing problems in Section 4.4.2. In
this chapter we will design more complex routing algorithms taking into account other
objective functions.

Routing and call admission problems in various models have been studied extensively
in both offline and online settings. Consider a network modeled by a graph G = (V,E)
(|V | = n, |E| = m), which can be either directed or undirected. The edges in the
graph have capacities, denoted by u : E → N, which provide an upper bound on the
sum of the demands of the routes that can be packed into an edge. The set of routing
requests is R and, for simplicity, each request ri ∈ R is associated with a bandwidth
demand of one unit1 between a source vertex si and a target vertex ti. In order to serve
a request ri one should allocate bandwidth for the request on paths that connect the
source vertex si to the target vertex ti. There are several common ways by which this
can be done. The setting in which each request should be served via a single path is
referred to as unsplittable routing. A less restrictive setting in which each request can be
served via multiple routes is called splittable routing. We associate each request with a
set of allowed paths (routes) P(ri), capturing the fixed routes model, in which requests
can only be served via a unique given path, as a special case. Let b(ri) be the sum of all
bandwidth allocations assigned to request ri on all paths P ∈ P(ri). The total bandwidth
of a routing solution is the total bandwidth allocated to all the requests. A feasible
routing solution is an allocation of bandwidth to requests that does not violate any of
the edge capacities. When the routing solution is infeasible, the load on an edge is the
total bandwidth allocated to it divided by its capacity. The load of a routing solution is
the maximum load taken over all edges.

An important parameter that is used in our analysis is U , which is defined to be the
minimum value by which the capacities in the network need to be multiplied so as to
obtain a feasible splittable solution that routes all requests. When routes are fixed, U
reduces to the maximum, taken over all edges, of the number of routes that pass through

1The results in this chapter can be extended, with obvious limitations, to handle scenarios in which
requests have different bandwidth demands.

91



an edge divided by its capacity.
One issue separating routing models is whether requests have to be fully served or

not. All-or-nothing routing means that a request has to be allocated a total bandwidth
(splittable or unsplittable) of one unit. Other models relax this requirement and allow
the routing algorithm to allocate requests less than one unit of bandwidth.

Routing algorithms are designed to achieve several natural goals. One goal is to
maximize the utility of the network which is the total bandwidth allocated to all requests.
In a somewhat dual setting, the routing algorithm is not allowed to reject any of the
requests, in which case the goal is to minimize the maximum load. Another important
routing goal is fairness. An accepted notion of fairness is max-min fairness. To define
a fair routing solution, we consider the bandwidth allocation to the requests (b(ri) to
request ri) as a vector in which the entries (allocations) are sorted from small to large.
This vector is called a bandwidth vector. A max-min fair routing solution is then an
allocation of bandwidth to requests which defines a lexicographically maximal bandwidth
vector. An intuitive way of viewing a max-min fair solution is that one cannot increase
the bandwidth allocation to a request ri without decreasing the bandwidth allocated to
requests that have received at most the bandwidth given to ri.

An even more general fairness measure studied in the literature as well is the notion
of coordinate-wise competitive solution. A routing solution is called γc-coordinate-wise
competitive if for every i, the ith coordinate of the bandwidth vector is at least 1/γc

times the ith coordinate in any feasible routing solution. The beauty of this definition
is that a γc-coordinate-wise competitive routing approximates all possible routings. In
particular, it approximates the max-min fair routing, as well as the routing solution that
maximizes the total bandwidth allocated, achieving, in some sense, a solution which is
the “best of all worlds”.

Two parameters are of particular interest in routing problems. The first one is the
amount of bandwidth that the algorithm routes with respect to an optimal routing,
and the second one is the maximum load on the edges. A (c1, c2)-competitive routing
algorithm routes at least 1/c1 of the maximum possible bandwidth, while guaranteeing
that the load on each edge is at most c2. With this notation in mind we re-examine the
first algorithm in Section 4.4.2 and conclude that it is (3, O(log n))-competitive. This
algorithm is actually a bicriteria competitive algorithm that routes a constant fraction
of the optimal number of requests while incurring a load of O(log n).

It turns out that getting a uni-criteria competitive algorithm (i.e. an (1, O(log n))-
competitive algorithm) is a crucial non-trivial step for getting better routing solutions
for many routing goals2. In particular, we will show that given such an algorithm it is
easy to design an algorithm that achieves fair routing. A simple example shows that
such a result is optimal for an online algorithm. In addition, the generic algorithm we
design here generates an unsplittable all-or-nothing routing; however, to allow the use
of the algorithm in a wide variety of routing models, its performance is compared to a

2Note that we can easily transform a (c1, c2)-competitive algorithm to a (c1 · c2, 1)-competitive algo-
rithm by scaling down all allocated bandwidth. However, obtaining a (1, c1 · c2)-competitive factor is
problematic, since requests should be allocated bandwidth of at most 1.
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splittable optimal routing which is allowed to allocate to each request (total) bandwidth
in the interval [0, 1]. It turns out that this stronger performance allows the use of the
generic algorithm as a “building block” for the design of online routing solutions for
several models and objectives, yielding improved bounds. Here we will only show one
such application for getting a fair routing.

10.1 A Generic Routing Algorithm

In this section we design a generic online routing algorithm which is based on the
primal-dual approach. The algorithm generates in an online fashion an unsplittable
all-or-nothing routing which is (1, O(log n))-competitive with respect to all splittable
routings. To achieve these stronger bounds it is not enough to maintain a single primal
solution, leading us to maintain simultaneously several primal solutions that will be used
throughout to make clever routing decisions. We will use the same primal-dual pair that
was used in Section 4.4.2. The primal-dual pair appears in Figure 4.2.

The algorithm decomposes the graph G = (V,E) into graphs G0, G1, . . . , Gk. For
each j, the vertices of Gj are the same as in G. The edges of Gj are all edges in G
having capacity at least mj . The capacity of each edge in the jth copy, Gj , is then set
to u(e, j)← min{u(e),mj+2}. Let Gk be the last copy of the graph which is non-empty
(i.e. the maximum capacity in G, u(max) ≤ mk). The algorithm maintains a primal
solution in each copy of the graph. We denote by x(e, j) and z(ri, j) the primal variables
corresponding to the jth copy. Let u(min, j) be the minimal edge capacity in the jth
copy (which is at least mj).
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Routing Algorithm: Initially, ∀j: x(e, j) ← u(min,j)
m·u(e,j) .

When new request ri = (si, ti, P(ri)) arrives:

1. Consider all copies of the graph from Gk to G0. In each copy Gj :

(a) Let P (ri, j) ∈ P(ri, j) be the shortest path with respect to x(e, j) and
let α be the length of P (ri, j).

(b) If α < 1:

i. Route the request on P (ri, j).

ii. For each edge e in P (ri, j):
x(e, j)← x(e, j)(1 + 1

u(e,j)).

iii. z(ri, j)← 1− α.

(c) Else (α > 1):

i. If the total bandwidth routed in this step in Gj is less than u(min, j),
and the current request can be routed in Gj , route the request in
an arbitrary feasible path P ∈ P(ri, j).

(d) If the request is routed - finish.

2. Reject requests that are rejected from all copies.

The analysis of the algorithm is done via the following claims.

Lemma 10.1. Let Nj be the total number of requests that are introduced to the jth copy.
Let M be the maximum total bandwidth of any feasible splittable routing in Gj (out of
Nj). Then, the algorithm accepts at least M requests in Gj , and the load on each edge
in Gj is O(log n).

Proof. First, observe that when the algorithm decides to route a request in Step (1b), the
total primal cost maintained in the jth copy increases by (1−α)+

∑

e∈P (ri,j)
x(e, j) = 1.

When a request is rejected from the jth copy, the primal cost in the jth copy does not
change. Second, observe that the primal solution maintained in each copy is feasible
with respect to the requests introduced to this copy. This follows, since, if the shortest
path in P(ri, j) is already at least 1, the constraints of the new request are all satisfied.
If the shortest path is of length α < 1, then the algorithm updates z(ri, j) to be 1−α to
make the current new set of constraints feasible. All previous constraints remain feasible.
Finally, note that the total initial primal cost in the jth copy is

∑

e∈E u(e, j)u(min,j)
m·u(e,j) =

u(min, j).
Assume to the contrary that the algorithm routes in Step (1b) a total bandwidth

M ′ < M − u(min, j). This immediately implies that we have a feasible primal solution
with cost strictly less than M − u(min, j) + u(min, j) = M , contradicting the fact that
we have a feasible dual solution with profit M (out of Nj). This means that M −M ′

is at most u(min, j) and thus, at least M −M ′ (or zero, if this value is negative) are
routed in Gj in Step (1c), proving the first part of the claim. We next prove the second

part of the claim. The initial value of each x(e, j) is u(min,j)
m·u(e,j) . Each time a new request is
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routed on edge e in Step (1b), x(e, j) is multiplied by 1 + 1/u(e, j) ≤ 2. The algorithm
never routes requests in Step (1b) on edges with x(e, j) > 1, thus, x(e, j) ≤ 2. Let R(e)
be the set of requests that are routed on an edge e. We get that:

u(min, j)

m · u(e, j)
exp





ln 2

u(e, j)

∑

ri∈R(e)

1



 =
u(min)

m · u(e, j)

∏

ri∈R(e)

21/u(e,j)

≤
u(min, j)

m · u(e, j)

∏

ri∈R(e)

(

1 +
1

u(e, j)

)

≤ 2

Simplifying, the total bandwidth that the algorithm routes on edge e in Step (c)

is u(e, j) · O
(

log m·u(e,j)
u(min,j)

)

. Since u(e, j) ≤ m2u(min, j), this expression is equal to

u(e, j)O(log n). The total bandwidth that the algorithm routes on edge e in the jth
copy in step (d) is at most u(min, j), thus completing the proof.

Theorem 10.2. The routing algorithm is (1, O(log n))-competitive with respect to all
splittable routing solutions.

Proof. Let M be the maximal bandwidth that can be routed splittably in G. We start by
proving that the total bandwidth that the algorithm routes is at least M . As we assumed,
there exists a feasible solution that routes a total bandwidth M without violating the
constraints. Let P ∗

1 , P ∗
2 , . . . , P ∗

ℓ be the routes that are used by this feasible solution and
let b∗1, b

∗
2, . . . , b

∗
ℓ be the bandwidth allocated on each of the paths. Note that each request

can be served via multiple routes and get a total bandwidth in the interval [0, 1].
For each of the ℓ routing paths, let wj ← mine∈P ∗

j
u(e), i.e., wj is the capacity of the

minimal capacity edge that is used in path P ∗
j . We divide the paths into separate groups

M0,M1, . . . ,Mk. Group Mi consists of all paths for which mi ≤ wj ≤ mi+1. Let |Mi| be

the total bandwidth of all paths in Mi. Note that
∑k

i=1 |Mi| = M . We prove by reverse
induction that the total bandwidth allocated by the algorithm in levels Gj to Gk is at
least |Mj |+ |Mj+1|+ . . . ,+|Mk|. By this claim the total bandwidth that the algorithm
allocates in levels G0 to Gk is at least M , proving the first part of the theorem.
Induction Base: For j = k the graph Gk consists of edges with capacity at least mk.
In this graph the capacities of all the edges are the same as their capacities in the graph
G. Mk consists of paths such that the minimal capacity of an edge on P ∗

j is at least mk.
Thus, all the paths in Mk exist in the graph Gk. By Lemma 10.1, the algorithm routes
a total bandwidth of at least |Mk| out of N (all the requests).
Induction Step: Let Gj be any level j < k. Let M ′

j+1,M
′
j+2, . . . ,M

′
k be the groups of

requests that were routed by the algorithm in Gj+1, . . . , Gk. By the induction hypothesis:
|M ′

j+1|+ |M
′
j+2|+ . . . + |M ′

k| ≥ |Mj+1|+ |Mj+2|+ . . . + |Mk|.
We consider the set of paths S in (Mj ∪Mj+1 ∪ . . . ∪Mk) that do not belong to

requests that are routed by the routing algorithm in Gk to Gj+1. Let |S| be the total
bandwidth allocated by the feasible solution on these paths. These paths all belong to
requests that are presented to the graph Gj (i.e. counted as part of Nj). We claim
that it is possible to route in Gj a total bandwidth of at least min{|Mj |, |S|} out of the
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requests that are given to the algorithm on level j. In order to prove this, we prove that
if we take any part of the total flow of the paths in S with total bandwidth of at most
|Mj |, it is possible to route this flow on the graph Gj without violating the capacities.

Set S consists of paths in groups of at least Mj , thus each path P ∗
j ∈ S contains only

edges with capacity at least mj . Gj contains all the edges whose capacity is at least
mj, so the path P ∗

j exists in the graph Gj . Each path in Mj also contains an edge with

capacity at most mj+1. This means that the total bandwidth allocated by the feasible
solution on all paths that belong to Mj is at most mj+2. The capacity of the edges in
Gj is restricted to min{u(e),mj+2}. Thus, if we take part of the total flow of the paths
in S with a total bandwidth of at most |Mj| ≤ mj+2, it is possible to route this flow on
the graph Gj without violating the capacities.

By the above claim and Lemma 10.1, the total bandwidth of requests that are routed
in Gj is at least min{|Mj |, |S|}. If |S| ≥ |Mj | then a total bandwidth of at least |Mj | will
be routed in Gj and since |M ′

j+1|+ |M
′
j+2|+ . . . + |M ′

k| ≥ |Mj+1|+ |Mj+2|+ . . . + |Mk|
the induction hypothesis holds. If |S| < |Mj | then at least |S| ≥ (|Mj |+ |Mj+1|+ . . . +
|Mk|)− (|M ′

j+1|+ |M
′
j+2|+ . . .+ |M ′

k|) will be routed in Gj and the induction hypothesis
holds again.

To prove the second part of the theorem consider an edge e with capacity mj ≤
u(e) < mj+1. Its capacity in levels ℓ > j is zero. Therefore, no requests are routed
through e in Gℓ for ℓ > j. The capacity of e in levels j, j − 1, j − 2 is u(e) and in levels
j− 3, j − 2, . . . 0 the edge capacity drops to mj−1,mj−2, . . . m2. Thus, the total capacity
of the copies of the edge e in all levels is at most four times its capacity. In each level
Gj the ratio between the maximal and the minimal edge is at most m2. Thus, the total
bandwidth of requests that are routed on edge e in each level is at most u(e, j)O(log n).
Therefore, the total number of requests routed on the edge in all levels is at most O(log n)
times the sum of capacities of the edge in all levels, which remains O(log n) times the
capacity of edge e in G.

10.2 Achieving Coordinate-wise Competitive Allocation

In this Section we show application of the generic algorithm so as to achieve a fair
allocation. We design an almost optimal online algorithm for achieving a coordinate-wise
routing solution. In this setting the algorithm should output an unsplittable routing and
assign bandwidth b ∈ [0, 1] to each request. We design an O(1

ǫ log n log U(log log U)1+ǫ)-
competitive algorithm for any ǫ > 0 and prove an almost matching lower bound of
Ω(log n log U +log U log log U) even when splittable routing is allowed. The algorithm is
quite simple. It considers copies of the graph referred to as levels. In levels ℓ = 0, 1, 2, . . .
we multiply all edge capacities by 2ℓ.
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Algorithm: When a request ri = (si, ti, P(ri)) arrives:

1. Run the routing algorithm on levels ℓ = 0, 1, 2, . . . in an increasing order.

2. Route the request in the lowest level ℓ in which the routing algorithm accepts
the request.

3. Assign bandwidth of ǫ
c log n2ℓ(1+ℓ)(H(1+ℓ))1+ǫ to the request, where c is a con-

stant and H(·) is the harmonic number.

Theorem 10.3. The algorithm is O(1
ǫ log n log U(log log U)1+ǫ)-coordinate-wise compet-

itive.

Proof. We first prove a useful lemma that will help us in the analysis:

Lemma 10.4. If it is possible to route M (out of N) requests in a splittable way when
multiplying the capacities of the edges in G by 2k, then the algorithm:

• Routes at least M requests using levels 1 to k.

• The total number of requests that are routed on edge e in level k is at most
2ku(e)O(log n).

Proof. Let M ′ be the group of requests that were routed in levels 1 to k−1. If |M ′| ≥ |M |,
then we are done. Otherwise, it is possible to route in level k a total bandwidth of at
least |M | − |M ′| out of the requests that were rejected by levels 1 to k − 1. Thus, by
Theorem 10.2, the algorithm routes at least |M | − |M ′| requests in level k, and we are
done. The second claim is immediate from Theorem 10.2.

To prove that the algorithm is γc-coordinate-wise competitive, we need to show that
any coordinate i in the bandwidth vector of the solution we generate is at least 1/γc of
this coordinate in any other feasible solution. To prove this, we show that if there exists
a solution that assigns the ith coordinate in the bandwidth vector (i.e. the ith “poorest”
request) bandwidth b, then our algorithm assigns to at least N−i+1 requests bandwidth
b·Ω( ǫ

log m log U(log log U)1+ǫ ). Assume there exists a feasible solution that assigns bandwidth

b to the ith coordinate in the bandwidth vector, then it must assign bandwidth of at
least b to at least N − i + 1 coordinates. This means that there exists a feasible solution
that routes at least N − i + 1 requests when we multiply the capacities in the graph G
by 1/b. Thus, by Lemma 10.4, at least N − i + 1 requests will be routed in the first k
levels where 2k ≤ 2/b. All these requests are, therefore, assigned bandwidth of at least

b·ǫ
2c log m(1+k)(H(1+k))1+ǫ = b · Ω( ǫ

log m log U(log log U)1+ǫ ). The last equation follows since by

Lemma 10.4 and the definition of U all the requests will be routed until level k, such
that 2k ≤ 2U .

It is left to prove that the online algorithm does not violate the capacity of any of the
edges. By Lemma 10.4, the number of requests routed on an edge e in level k is at most
2ku(e)O(log n). Thus, when we choose a large enough constant c, the total bandwidth
assigned to each edge e is at most:
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∞
∑

j=0

2ju(e)O(log n)
ǫ

c log n2j(1 + j)(H(1 + j))1+ǫ
≤

u(e)

c′

∞
∑

j=1

ǫ

j(H(j))1+ǫ
≤ u(e).

Lower bounds: In [58] a lower bound of (approximately) Ω(log n+log U log log U) was
proved. We improve the lower bound and prove an almost matching lower bound for the
problem.

Lemma 10.5. Any deterministic algorithm (splittable or unsplittable) is Ω(log n log U)-
coordinate-wise competitive.

Proof. Let G = (V,E) be a directed line with n nodes. The first U requests can be
routed either from node 1 towards node n/2 or from node n/2 + 1 towards node n. In
order to be able to produce such requests, the graph contains an additional source node
that is connected to nodes 1 and node n/2 + 1. In addition, the graph has a sink node
that has directed edges incoming from nodes n/2 and n.

After the first U requests the adversary continues to produce requests either in the
left half of the line, or the right half, depending on which half contains more than half of
the bandwidth. For instance, if it is the left half, then the adversary introduces U new
requests that can be routed either from node 1 to node n/4 or from node n/4+1 to node
n/2. The adversary continues on with this strategy log n rounds. We note that in order
to be able to produce such a sequence of requests we only add O(n) new source/target
vertices to the graph.

Next, consider an optimal solution that routes at most U requests on each edge.
With this choice of paths there is a feasible bandwidth allocation that allocates log n
requests bandwidth 1. There is also a feasible solution that allocates bandwidth 1/2
to 2 log n requests. In general, there is a feasible solution that allocates i log n requests
bandwidth of value 1/i, where 1 ≤ i ≤ U . This means that an algorithm that is
γc coordinate-wise competitive must allocate at least log n requests bandwidth of more
than 1/γc. In general, for any 1 ≤ i ≤ U , the algorithm must give at least i log n requests
bandwidth of at least 1/iγc. By this observation, the total bandwidth allocated by any
γc coordinate-wise online algorithm must be at least

∑U
i=1

log n
iγc
≥ log n log U

γc
. By the

adversary’s strategy, there exists an edge such that at least half of the total bandwidth
is routed on that edge. Since the total bandwidth allocated to this edge is at most 1, we
get that γc ≥

log n log U
2 = Ω(log n log U).

10.3 Notes

The results in this chapter are based on the work of Buchbinder and Naor [32]. In this
work they designed, using the generic algorithm, several routing algorithms that achieve
certain routing goals in several models. They also studied other models such as the
fixed routes model and another model that allows the algorithm to allocate weights to
requests instead of actual bandwidths (see [33]).

98



Routing algorithms have been studied extensively. In [8, 11] two different (but similar
in spirit) online routing algorithms were suggested. The objective in [11] is maximiz-
ing the total throughput, while the algorithm in [8] minimizes the load. Both these
algorithms can be viewed within the primal-dual framework (see [33]).

The notion of all-or-nothing routing was defined in [38]. The elegant notion of max-
min fairness was considered in many settings [23, 66]. The general framework of prefix
and coordinate-wise competitiveness was suggested in [72]. More properties of these
measures (in the offline case) were studied later on in [75, 56]. For example, in [75]
they proved that any fixed route instance has an allocation that is O(log U)-coordinate-
wise competitive. Goel et al. [58] studied the problem of achieving coordinate-wise
competitiveness online. They designed an algorithm which is O(1

ǫ log2 n(log U)1+ǫ)-
coordinate-wise competitive for any ǫ > 0. In a relaxed setting where the algorithm
is allowed to assign weights instead of allocating bandwidth directly, [58] designed an
algorithm which is O(log2 n log U)-coordinate-wise competitive.
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Chapter 11

Maximizing Ad-auctions revenue

Maximizing the revenue of a seller in an auction has received much attention recently
and studied in many models and settings. In particular, the way search engine companies
such as MSN, Google and Yahoo! maximize their revenue out of selling ad-auctions has
been studied extensively. In the search engine environment, advertisers link their ads
to (search) keywords and provide a bid on the amount paid each time a user clicks on
their ad. When users send queries to search engines, along with the (algorithmic) search
results returned for each query, the search engine displays funded ads corresponding to
ad-auctions. The ads are instantly sold, or allocated, to interested advertisers (buyers).
The total revenue out of this fast growing market is currently billions of dollars. Thus,
algorithmic ideas that can improve the allocation of the ads, even by a small percentage,
are crucial.

The ad-auctions problem is modeled as a generalization of online bipartite matching.
There is a set I of n buyers, each buyer i (1 ≤ i ≤ n) has a known daily budget
of B(i). We consider an online setting in which m products arrive one-by-one in an
online fashion. Let M denote the set of all the products. Upon arrival of a product j,
each buyer provides a bid b(i, j) for buying item j. The online algorithm can allocate
(or sell) the product to any one of the buyers. We distinguish between integral and
fractional allocations. In an integral allocation, a product can only be allocated to a
single buyer. In a fractional allocation, products can be fractionally allocated to several
buyers, however, for each product, the sum of the fractions allocated to buyers cannot
exceed 1. The revenue received from each buyer is defined to be the minimum between
the sum of the costs of the products allocated to a buyer (times the fraction allocated)
and the total budget of the buyer. That is, buyers can never be charged by more than
their total budget. The objective is to maximize the total revenue of the seller. Let
Rmax = maxi∈I,j∈M{

b(i,j)
B(i) } be the maximum ratio between a bid of any buyer and its

total budget.
A linear programming formulation of the fractional (offline) ad-auctions problem

appears in Figure 11.1. Let y(i, j) denote the fraction of product j allocated to buyer
i. The objective function is maximizing the total revenue. The first set of constraints
guarantees that the sum of the fractions of each product is at most 1. The second set
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Dual (Packing) Primal (Covering)
Maximize:

∑m

j=1

∑n

i=1 b(i, j)y(i, j) Minimize :
∑n

i=1 B(i)x(i) +
∑m

j=1 z(j)

Subject to: Subject to:
For each 1 ≤ j ≤ m:

∑n

i=1 y(i, j) ≤ 1 For each (i, j): b(i, j)x(i) + z(j) ≥ b(i, j)
For each 1 ≤ i ≤ n:

∑m

j=1 b(i, j)y(i, j) ≤ B(i) For each i, j: x(i), z(j) ≥ 0

For each i, j: y(i, j) ≥ 0

Figure 11.1: The fractional ad-auctions problem (the dual) and the corresponding primal
problem

of constraints guarantees that each buyer does not spend more than its budget. In the
primal problem there is a variable x(i) for each buyer i and a variable z(j) for each
product j. For all pairs (i, j) the constraint b(i, j)x(i) + z(j) ≥ b(i, j) needs to be
satisfied.

11.1 The Basic Algorithm

The basic algorithm for the online ad-auctions produces primal and dual solutions to
the linear programs in Figure 11.1.

Allocation Algorithm: Initially ∀i x(i)← 0.
Upon arrival of a new product j allocate the product to the buyer i that maximizes
b(i, j)(1 − x(i)). If x(i) ≥ 1 then do nothing. Otherwise:

1. Charge the buyer the minimum between b(i, j) and its remaining budget and
set y(i, j)← 1

2. z(j)← b(i, j)(1 − x(i))

3. x(i)← x(i)
(

1 + b(i,j)
B(i)

)

+ b(i,j)
(c−1)·B(i) (c is determined later).

Theorem 11.1. The allocation algorithm is (1− 1/c) (1 − Rmax)-competitive, where

c = (1 + Rmax)
1

Rmax . When Rmax → 0 the competitive ratio tends to (1− 1/e).

Proof. Let P and D be the values of the primal and dual solution during the run of the
algorithm. We prove three simple claims:

1. The algorithm produces a primal feasible solution.

2. In each iteration ∆P ≤ (1 + 1
c−1) ·∆D, where ∆P and ∆D are the changes in the

values of the primal and dual objective functions.

3. The algorithm produces an almost feasible dual solution.

Proof of (1): Consider a primal constraint corresponding to buyer i and product j.
If x(i) ≥ 1 then the primal constraint is satisfied. Otherwise, the algorithm allocates
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the product to the buyer i′ for which b(i′, j)(1 − x(i′)) is maximized. Setting z(j) =
b(i′, j)(1 − x(i′)) guarantees that the constraint is satisfied for all (i, j). Subsequent
increases of the variables x(i)’s cannot make the solution infeasible.
Proof of (2): Whenever the algorithm updates the primal and dual solutions, the
change in the dual profit is b(i, j). (Note that even if the remaining budget of buyer i,
to which product j is allocated, is less than its bid b(i, j), variable y(i, j) is still set to
1.) The change in the primal cost is:

B(i)∆x(i) + z(j) =

(

b(i, j)x(i) +
b(i, j)

c− 1

)

+ b(i, j)(1− x(i)) = b(i, j)

(

1 +
1

c− 1

)

.

Proof of (3): The algorithm never updates the dual solution for buyers satisfying
x(i) ≥ 1. We prove that for any buyer i, when

∑

j∈M b(i, j)y(i, j) ≥ B(i), then x(i) ≥ 1.
This is done by proving that:

x(i) ≥
1

c− 1

(

c

∑

j∈M b(i,j)y(i,j)

B(i) − 1

)

. (11.1)

Thus, whenever
∑

j∈M b(i, j)y(i, j) ≥ B(i), we get that x(i) ≥ 1. We prove (11.1)
by induction on the (relevant) iterations of the algorithm. Initially, this assumption is
trivially true. We are only concerned with iterations in which a product, say k, is sold
to buyer i. In such an iteration we get that:

x(i)end = x(i)start ·

(

1 +
b(i, k)

B(i)

)

+
b(i, k)

(c− 1) · B(i)

≥
1

c− 1

[

c

∑

j∈M\{k} b(i,j)y(i,j)

B(i) − 1

]

·

(

1 +
b(i, k)

B(i)

)

+
b(i, k)

(c− 1) · B(i)
(11.2)

=
1

c− 1

[

c

∑

j∈M\{k} b(i,j)y(i,j)

B(i) ·

(

1 +
b(i, k)

B(i)

)

− 1

]

≥
1

c− 1

[

c

∑

j∈M\{k} b(i,j)y(i,j)

B(i) · c(
b(i,k)
B(i) ) − 1

]

=
1

c− 1

[

c

∑

j∈M b(i,j)y(i,j)

B(i) .− 1

]

(11.3)

Inequality (11.2) follows from the induction hypothesis, and Inequality (11.3) follows

since, for any 0 ≤ x ≤ y ≤ 1, ln(1+x)
x ≥ ln(1+y)

y . Note that when b(i,k)
B(i) = Rmax then

Inequality 11.3 holds with equality. This is the reason why we chose the value c to be

(1 + Rmax)
1

Rmax . Thus, it follows that whenever the sum of charges to a buyer exceeds the
budget, we stop charging this buyer. Hence, there can be at most one iteration in which
a buyer is charged by less than b(i, j). Therefore, for each buyer i:

∑

j∈M b(i, j)y(i, j) ≤

B(i) + maxj∈M{b(i, j)}, and thus the profit extracted from buyer i is at least:




∑

j∈M

b(i, j)y(i, j)





B(i)

B(i) + maxj∈M{b(i, j)}
≥





∑

j∈M

b(i, j)y(i, j)



 (1−Rmax).
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Dual (Packing)

Maximize:
∑m

j=1

∑n

i=1

∑k

ℓ=1 b(i, j, ℓ)y(i, j, ℓ)

Subject to:
∀1 ≤ j ≤ m, 1 ≤ k ≤ ℓ:

∑n

i=1 y(i, j, k) ≤ 1

∀1 ≤ i ≤ n:
∑m

j=1

∑ℓ

k=1 b(i, j, k)y(i, j, k) ≤ B(i)

∀1 ≤ j ≤ m, 1 ≤ i ≤ n:
∑ℓ

k=1 y(i, j, k) ≤ 1

Primal (Covering)

Minimize :
∑n

i=1 B(i)x(i) +
∑m

j=1

∑ℓ

k=1 z(j, k) +
∑n

i=1

∑m

j=1 s(i, j)

Subject to:
∀i, j, k: b(i, j, k)x(i) + z(j, k) + s(i, j) ≥ b(i, j, k)

Figure 11.2: The fractional multi-slot problem (the dual) and the corresponding primal
problem

By the second claim the dual value it at least 1 − 1/c times the primal value, and
thus (by weak duality) we conclude that the competitive ratio of the algorithm is (1 −
1/c) (1−Rmax).

11.2 Multiple Slots

In this section we show how to extend the algorithm in a very elegant way to sell different
advertisement slots in each round. Suppose there are ℓ slots to which ad-auctions can
be allocated and suppose that buyers are allowed to provide bids on keywords which are
slot dependent. Denote the bid of buyer i on keyword j and slot k by b(i, j, k). The
restriction is that an (integral) allocation of a keyword to two different slots cannot be
sold to the same buyer. The linear programming formulation of the problem is in Figure
11.2. Note that the algorithm does not update the variables z(·) and s(·) explicitly.
These variables are only used for the purpose of analysis. The algorithm for the online
ad-auctions problem is as follows.
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Dual (Packing) Primal (Covering)

Maximize:
∑n

i=1

∑ℓ

k=1 b(i, j, k) (1− x(i)) y(i, j, k) Minimize :
∑n

i=1 s(i, j) +
∑ℓ

k=1 z(j, k)
Subject to: Subject to:
∀1 ≤ k ≤ ℓ:

∑n

i=1 y(i, j, k) ≤ 1 ∀(i, k): s(i, j) + z(j, k) ≥ b(i, j, k) (1− x(i))

∀1 ≤ i ≤ n:
∑ℓ

k=1 y(i, j, k) ≤ 1 ∀i, k: s(i, j), z(j, k) ≥ 0
∀i, k: y(i, j, k) ≥ 0

Figure 11.3: The matching problem solved for product j. Here x(i), 1 ≤ i ≤ n, is a
constant.

Allocation Algorithm: Initially, ∀i, x(i) ← 0. Upon arrival of a new product
j:

1. Generate a bipartite graph H: n buyers on one side and ℓ slots on the other
side. Edge (i, k) ∈ H has weight b(i, j, k)(1 − x(i)).

2. Find a maximum weight (integral) matching in H, i.e., an assignment to the
variables y(i, j, k).

3. Charge buyer i the minimum between
∑ℓ

k=1 b(i, j, k)y(i, j, k) and its remain-
ing budget.

4. For each buyer i, if there exists slot k for which y(i, j, k) > 0:

x(i)← x(i)

(

1 +
b(i, j, k)y(i, j, k)

B(i)

)

+
b(i, j, k)y(i, j, k)

(c− 1) ·B(i)

Theorem 11.2. The algorithm is (1− 1/c) (1 − Rmax)-competitive, where c tends to e
when Rmax → 0.

Proof. We prove three simple claims:

1. The algorithm produces a primal feasible solution.

2. In each iteration, ∆P ≤
(

1 + 1
c−1

)

·∆D.

3. The algorithm produces an almost feasible dual solution.

To prove the claims, we crucially use the fact that a maximum weight (integral)
matching in H can be computed via a primal-dual algorithm. The primal and dual
matching programs are in Figure 11.3. The algorithm outputs an optimal primal and
dual solutions satisfying:

n
∑

i=1

ℓ
∑

k=1

b(i, j, k) (1− x(i)) y(i, j, k) =

n
∑

i=1

s(i, j) +

ℓ
∑

k=1

z(j, k).

Proof of (1): Recall that the primal constraint in the linear program of the multiple
slot problem (see Figure 11.2) is:

∀i, j, k : b(i, j, k)x(i) + z(j, k) + s(i, j) ≥ b(i, j, k).
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Since z(j, k) + s(i, j) ≥ b(i, j, k) ((1− x(i)), the above constraint is satisfied.

Proof of (2): When the jth product arrives,

∆P =
n
∑

i=1

z(j, i) +
ℓ
∑

k=1

s(j, i) +
n
∑

i=1

B(i)∆x(i)

=

n
∑

i=1

ℓ
∑

k=1

b(i, j, k) (1− x(i)) y(i, j, k)

+

n
∑

i=1

ℓ
∑

k=1

B(i)

(

b(i, j, k)x(i)y(i, j, k)

B(i)
+

b(i, j, k)y(i, j, k)

(c− 1) · B(i)

)

=

n
∑

i=1

ℓ
∑

k=1

b(i, j, k)y(i, j, k)

(

1 +
1

c− 1

)

.

Since ∆D =
∑n

i=1

∑ℓ
k=1 b(i, j, k)y(i, j, k), the claim follows.

Proof of (3): The algorithm never updates the dual solution for buyers satisfying

x(i) ≥ 1. We prove that for any buyer i, when
∑m

j=1

∑ℓ
k=1 b(i, j, k)y(i, j, k) ≥ B(i), then

x(i) ≥ 1. This is done by showing that

x(i) ≥
1

c− 1

(

c

∑m
j=1

∑ℓ
k=1 b(i,j,k)y(i,j,k)

B(i) − 1

)

. (11.4)

Thus, whenever
∑m

j=1

∑ℓ
k=1 b(i, j, k)y(i, j, k) ≥ B(i), we get that x(i) ≥ 1. We prove

(11.4) by induction on the (relevant) iterations of the algorithm. Initially, this assump-
tion is trivially true. We are only concerned about iterations in which the kth slot of
product t is sold to buyer i. In such an iteration we get that:

x(i)end = x(i)start ·

(

1 +
b(i, t, k)

B(i)

)

+
b(i, t, k)

(c− 1) ·B(i)

≥
1

c− 1

[

c

∑

j∈M\{t}
∑ℓ

k=1 b(i,j,k)y(i,j,k)

B(i) − 1

]

·

(

1 +
b(i, t, k)

B(i)

)

+
b(i, t, k)

(c− 1) ·B(i)
(11.5)

=
1

c− 1

[

c

∑

j∈M\{t}
∑ℓ

k=1 b(i,j,k)y(i,j,k)

B(i) ·

(

1 +
b(i, t, k)

B(i)

)

− 1

]

≥
1

c− 1

[

c

∑

j∈J\{t}
∑ℓ

k=1 b(i,j,k)y(i,j,k)

B(i) · c

(

b(i,t,k)
B(i)

)

− 1

]

(11.6)

=
1

c− 1

[

c

∑

j∈M
∑ℓ

k=1 b(i,j,k)y(i,j,k)

B(i) − 1

]

.
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Inequality (11.5) follows from the induction hypothesis and Inequality (11.6) follows

since, for any 0 ≤ x ≤ y ≤ 1, ln(1+x)
x ≥ ln(1+y)

y .

By the above, it follows that whenever the sum of the charges to a buyer is more
than its budget, we stop charging this buyer. Thus, there can be at most one itera-
tion in which we charge the buyer by less than b(i, j, k). Therefore, for each buyer i:
∑

j∈M

∑ℓ
k=1 b(i, j, k)y(i, j, k) ≤ B(i)+maxj∈M,k{b(i, j, k)}, and thus the profit extracted

from buyer i is at least:




∑

j∈M

b(i, j, k)y(i, j, k)





B(i)

B(i) + maxj∈M,k{b(i, j, k)}
≥





∑

j∈M

ℓ
∑

k=1

b(i, j, k)y(i, j, k)



 (1−Rmax).

By the second claim the profit of the dual it at least 1 − 1/c times the cost of the
primal, and thus, by weak duality theorem we conclude that the competitive ratio of the
algorithm is (1− 1/c) (1−Rmax).

11.3 Incorporating Stochastic information

In this Section we improve the worst case competitive ratio when additional stochastic
information is available. We assume that stochastically or from historical experience we
know that a bidder i is likely to spend a good fraction of her budget. We want to tweak
the algorithm so that the algorithm’s worst case performance improves. As we tweak the
algorithm it is likely that the bidder may spend more or less fraction of his budget. So
we propose to tweak the algorithm gradually until some steady state is reached, i.e., no
more tweaking is required. Suppose at the steady state buyer i is likely to spend a good
fraction of his budget. Let 0 ≤ gi ≤ 1 be a lower bound on the fraction of the budget
buyer i is going to spend. We show that having this additional information allows us
to improve the worst case competitive ratio to 1 − 1−g

e1−g , where g = mini∈I{gi} is the
minimal fraction of budget extracted from a buyer.

The main idea behind the algorithm is that if a buyer is known to have spent at least
gi fraction of his budget, then it means that the primal variable x(i) will be large at the
end. Thus, the value of z(j) can be made smaller. This, in turn, gives us additional
“money” that can be used to increase x(i) faster. The main issue is to determine the
value of x(i) once the buyer has spent gi fraction of his budget. This value is denoted
by xs(i) and we choose it so that after the buyer has spent gi fraction of its budget,
x(i) = xs(i), and after having extracting all of its budget, x(i) = 1. In addition, we
need the change in the primal cost to be the same with respect to the dual profit in
iterations where we sell the product to a buyer i who has not yet spent the threshold of
gi of his budget. The optimal choice of xs(i) turns out to be gi

c1−gi−(1−gi)
, and the growth

function of the primal variable x(i), as a function of the fraction of the budget spent,
should be linear until the buyer has spent a gi fraction of his budget, and exponential
from that point on. The modified algorithm is the following:
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Allocation Algorithm: Initially ∀i x(i) ← 0. Upon arrival of a new product j
Allocate the product to the buyer i that maximizes b(i, j)(1 − max{x(i), xs(i)}),
where xs(i) = gi

c1−gi−(1−gi)
. If x(i) ≥ 1 then do nothing. Otherwise:

1. Charge the buyer the minimum between b(i, j) and its remaining budget

2. z(j)← b(i, j)(1 −max{x(i), xs(i)})

3. x(i)← x(i)+max{x(i), xs(i)}
b(i,j)
B(i) + b(i,j)

B(i)
1−gi

c1−gi−(1−gi)
(c is determined later).

Theorem 11.3. If each buyer spends at least gi fraction of its budget, then the algorithm

is:
(

1− 1−g
c1−g

)

(1−Rmax)-competitive, where c = (1 + Rmax)
1

Rmax .

Proof. We first prove a more general claim regarding the final value of x(i). During the
execution of the algorithm we increase the value of primal variables x(i). For buyer i,
let x(i, end) be the final (highest) value of x(i) (upon termination). By our assumption,
buyer i extracted at least gi fraction of its budget. Whenever we charge a buyer i for an
item and x(i) < xs(i), the algorithm updates:

x(i)← x(i) +
b(i, j)

B(i)

(

xs(i) +
1− gi

c1−gi − (1− gi)

)

.

Thus, the final value of x(i) is:

x(i, end) ≥ gi ·

(

xs(i) +
1− gi

c1−gi − (1− gi)

)

= gi · xs(i) + (1 − gi)xs(i) = xs(i) (11.7)

We next prove three simple claims:

• The algorithm produces a primal feasible solution.

• In each iteration, ∆P ≤ (1 + 1−g
c1−g−(1−g)

) ·∆D.

• The algorithm produces an almost feasible dual solution.

Proof of (1): Consider a primal constraint of buyer i and any item j. In order to
make this constraint feasible, we need to set z(j) ≥ max {0, b(i, j)(1 − x(i, end))}. By
Equation 11.7, x(i, end) ≥ xs(i). Thus, when item j arrives, setting z(j) to be b(i, j)(1−
max{x(i), xs(i)}) ≥ b(i, j)(1 − x(i, end)) suffices to satisfy the constraint. Since the
algorithm chooses the buyer i that maximizes this value, and sets z(j) according to this
maximal value, we get that the constraint corresponding to any buyer i and item j is
satisfied.

Proof of (2): Whenever the algorithm updates the primal and dual solutions the
change in the dual profit is b(i, j). (Note that even if the remaining budget of buyer i to
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which product j is allocated is less than its bid b(i, j), variable y(i, j) is still set to 1.)
The change in the primal cost is:

B(i)∆x(i) + z(j) = B(i) ·

(

b(i, j)max{x(i), xs(i)}

B(i)
+

b(i, j)

B(i)

1− gi

c1−gi − (1− gi)

)

+ b(i, j)(1−max{x(i), xs(i)})

= b(i, j)

(

1 +
1− gi

c1−gi − (1− gi)

)

≤ b(i, j)

(

1 +
1− g

c1−g − (1− g)

)

Proof of (3): The algorithm never updates the dual solution for buyers satisfying
x(i) ≥ 1. We prove that for any buyer i, when

∑

j∈M b(i, j)y(i, j) ≥ B(i), then x(i) ≥ 1.
This is done by proving that if the buyer i extracted g′i fraction of its budget (i.e.
∑

j∈M b(i, j)y(i, j) = g′i ·B(i)) then:

x(i) ≥







g′i

[

xs(i) + 1−gi

c1−gi−(1−gi)

]

if g′i ≤ gi

xs(i)c
g′

i−gi + 1−gi

c1−gi−(1−gi)

[

cg′
i−gi − 1

]

if g′i > gi

(11.8)

It is easy to check that when g′i = gi, the two are the same and equal to xs(i). Thus,
if the claim is correct, then whenever buyer i extracts all his budget we get that:

x(i) ≥ xs(i)c
1−gi +

1− gi

c1−gi − (1− gi)

[

c1−gi − 1
]

=
gi

c1−gi − (1− gi)
c1−gi +

1− gi

c1−gi − (1− gi)

[

c1−gi − 1
]

= 1

We prove Inequality (11.8) by induction on the (relevant) iterations of the algorithm.
Initially, this assumption is trivially true. We are only concerned about iterations in
which an item, say k, is sold to buyer i. Let g′i be the fraction of the budget buyer i

spent before the current allocation, and let g′′i = g′i + b(i,j)
B(i) be the fraction of the budget

buyer i spends after the current allocation. In iterations in which x(i) < xs(i), we get
by Equality 11.7 that g′i < gi, and thus:

x(i)end = x(i)start + xs(i)
b(i, k)

B(i)
+

b(i, k)

B(i)

1− gi

c1−gi − (1− gi)

≥ g′i

[

xs(i) +
1− gi

c1−gi − (1− gi)

]

+ xs(i)
b(i, k)

B(i)
+

b(i, k)

B(i)

1− gi

c1−gi − (1− gi)
(11.9)

= g′′i

[

xs(i) +
1− gi

c1−gi − (1− gi)

]

,

where Inequality (11.9) follows by the induction hypothesis. We also remark here that
if the budget extracted from buyer i before the iteration is less than gi, and the budget
extracted after the iteration is strictly more than gi, then it is possible to divide the cost
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of the item b(i, j) into two costs b(i, j)1 +b(i, j)2 = b(i, j), such that the budget extracted
after virtually selling b(i, j)1 is exactly gi. We virtually sell both items to buyer i and
change x(i) in two iterations. It is easy to verify that the change of x(i) is the same as
if this was done in a single iteration.

In iterations in which x(i) ≥ xs(i) we get by Equality (11.7) that g′i ≥ gi and so:

x(i)end = x(i)start

(

1 +
b(i, k)

B(i)

)

+
b(i, k)

B(i)

1− gi

c1−gi − (1 − gi)

≥

[

xs(i)c
g′

i−gi +
1− gi

c1−gi − (1 − gi)

[

cg′
i−gi − 1

]

](

1 +
b(i, k)

B(i)

)

+
b(i, k)

B(i)

1− gi

c1−gi − (1− gi)
(11.10)

= xs(i)c
g′

i−gi

(

1 +
b(i, k)

B(i)

)

+
1− gi

c1−gi − (1− gi)

(

cg′
i−gi

(

1 +
b(i, k)

B(i)

)

− 1

)

≥ xs(i)c
g′

i−gi · c(
b(i,k)
B(i) ) +

1− gi

c1−gi − (1− gi)

(

cg′
i−gi · c(

b(i,k)
B(i) ) − 1

)

(11.11)

= xs(i)c
g′′

i −gi +
1− gi

c1−gi − (1− gi)

[

cg′′
i −gi − 1

]

,

where Inequality (11.10) follows from the induction hypothesis, and Inequality (11.11)

follows since for any 0 ≤ x ≤ y ≤ 1, ln(1+x)
x ≥ ln(1+y)

y .
By the above, it follows that whenever the sum of the charges to a buyer is more than

its budget, we stop charging this buyer. Thus, there can be at most one iteration in which
we charge the buyer by less than b(i, j). Therefore, for each buyer i:

∑

j∈M b(i, j)y(i, j) ≤
B(i) + maxj∈M{b(i, j)}, and thus the profit extracted from buyer i is at least:





∑

j∈M

b(i, j)y(i, j)





B(i)

B(i) + maxj∈M{b(i, j)}
≥





∑

j∈M

b(i, j)y(i, j)



 (1−Rmax).

By the second claim the profit of the dual it at least 1 − 1−gi

c1−gi
≥ 1− 1−g

c1−g times the
cost of the primal, and thus, by weak duality theorem we conclude that the competitive
ratio of the algorithm is (1−Rmax) (1− 1−g

c1−g ).

11.4 Notes

The results in this chapter are based on the work of Buchbinder, Jain and Naor [30]. The
paper has further extensions and variants of the algorithm to other scenarios. Maximiz-
ing the revenue of a seller in both offline and online settings has been studied extensively
in many different models, e.g., [80, 7, 78, 27, 26]. Mehta et al. [80] also proposed a sim-
ple deterministic (1 − 1/e)-competitive algorithm. Their analysis uses a new notion of
trade-off revealing LP. The work of [80] builds on online bipartite matching [71] and
online b-matching [68]. The online b-matching problem is a special case of the online
ad-auctions problem in which all buyers have a budget of b dollars, and the bids are
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either 0 or 1. In [68] a deterministic algorithm is given for b-matching with competitive
ratio tending to (1− 1/e) (from below) as b grows.

The work of Buchbinder, Jain and Naor [30] also includes (1 − 1/e)-competitive
algorithms for other problems as well. For instance, the description and analysis of the
ski rental problem in Chapter 3 is taken from their work. The tight randomized upper
bound on the ski rental problem was originally obtained in a non-primal dual approach
by Karlin et al. [70].
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Chapter 12

Dynamic TCP-Acknowledgement
Problem

In this chapter we consider the dynamic TCP acknowledgement problem. The dynamic
TCP acknowledgment problem is the following. A stream of packets arrives at a des-
tination from a source. The source needs to get an acknowledgement for each of the
packets, however, it is possible to acknowledge several packets by a single acknowledge-
ment message. This can save on communication overhead, but requires delaying the
acknowledgement of certain messages (which is in general undesirable). Thus, the ob-
jective function is to minimize the number of acknowledgement messages sent along with
the sum of latencies of the packets.

Let M be the set of packets. For each packet j ∈ M , let t(j) be the time of arrival
at the destination. Assume now that packets can only arrive in discrete times of 1

d .
We later take d → ∞ so this assumption is not limiting. With the time discretization
assumption, we can formulate the TCP acknowledgement problem as a covering linear
program which appears in Figure 12.1. In this formulation we have a variable xt for each
discrete time t which is set to 1 if the algorithm sends an acknowledgement message at
t. For each packet j and time t ≥ t(j), we have a variable z(j, t) which is set to 1 if
packet j is delayed between time t and time t + 1

d . By this formulation, our objective
is minimizing

∑

t∈T xt +
∑

j∈M

∑

t|t≥t(j)
1
dz(j, t). For each j and {t|t ≥ t(j)}, we require

that
∑t

k=t(j) xk + z(j, t) ≥ 1. This guarantees that either the packet is delayed between

Dual (Packing) Primal (Covering)
Maximize:

∑

j∈M

∑

t|t≥t(j) y(j, t) Minimize :
∑

t∈T xt +
∑

j∈M

∑

t|t≥t(j)
1
d
z(j, t)

Subject to: Subject to:

For each t ∈ T :
∑

j | t≥t(j)

∑

t′≥t y(j, t′) ≤ 1 For each j, t|t ≥ t(j):
∑k=t

k=t(j) xk + z(j, t) ≥ 1

For each j, t|t ≥ t(j): y(j, t) ≤ 1
d

Figure 12.1: The fractional TCP problem (the primal) and the corresponding dual prob-
lem
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time t and time t + 1
d , or an acknowledgement message was sent to the source since the

arrival time of the packet. The dual packing problem has variables y(j, t) for each packet
j and t ≥ t(j).

12.1 The Algorithm

Based on the covering LP formulation of the dynamic TCP-acknowledgment problem, we
design a simple primal-dual based algorithm for the problem. The algorithm is similar
in spirit to the online algorithm presented for the ski rental in Chapter 3.

Initially, ∀k xk ← 0.
At each discrete time t (iteration), consider each of the packets j for which
∑k=t

k=t(j) xk < 1.
For each such packet j do the following update:

1. z(j, t)← 1−
∑k=t

k=t(j) xk

2. xt ← xt + 1
d

∑k=t
k=t(j) xk + 1

(c−1)·d (c is determined later).

3. y(j, t)← 1
d .

The analysis is not very difficult: First, the primal solution we produce is feasible.
This follows since we update for each unsatisfied packet z(j, t)← 1−

∑k=t
k=t(j) xk in each

time t.
The second observation is that for each packet j and time t in which we updated,

the change in the dual profit is 1
d , while the change in our primal cost is:



1−
k=t
∑

k=t(j)

xk





1

d
+

1

d





k=t
∑

k=t(j)

xk +
1

c− 1



 =
1

d

(

1 +
1

c− 1

)

.

Finally, we want to choose the parameter c such that the dual solution we produce is
feasible. Consider a time t and a corresponding dual constraint

∑

j | t≥t(j)

∑

t′≥t y(j, t′) ≤

1. We want to guarantee that after d updates of y(j, t′) that “belongs” to the constraint,
all packets that have arrived prior to t are satisfied, and therefore there are no more
updates of y(j, t′) belonging to the constraint. We prove that after d such updates,
∑

k≥t xk ≥ 1, and so all packets that have arrived until time t are satisfied.

We prove by induction on the updates that
∑

k≥t xk ≥
(1+1/d)q−1

c−1 , where q is the
number of updates. Before the first update, the claim trivially holds. Consider an
update of y(j, t′) (at time t′) such that t′ ≥ t and packet j arrived at time ≤ t. By the
algorithm we get that:

xt′ ← xt′ +
1

d

k=t′
∑

k=t(j)

xk +
1

(c− 1) · d
≥ xt′ +

1

d

k=t′
∑

k=t

xk +
1

(c− 1) · d
.
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Therefore,
∑

k≥t xk satisfies:

(1 + 1/d)
∑

k≥t

xk +
1

(c− 1) · d
≥ (1 + 1/d)

(1 + 1/d)q−1 − 1

c− 1
+

1

(c− 1) · d
=

(1 + 1/d)q − 1

c− 1
,

where the inequality follows by the induction hypothesis. Thus, choosing c = (1+1/d)d

suffices, and when d→∞ we get a (1− 1/e) competitive algorithm.
In order to get a randomized integral solution we arrange the variables xt on the

infinite line. We choose a random number p ∈R [0, 1]. We then send an acknowledgement
message at each time segment xt that falls in p + k for some integer value k. We remark
that we need the random choices to be correlated. It can be verified that our expected
cost is the same as the cost of our fractional algorithm, completing the analysis.

12.2 Notes

The results in this chapter are based on the work of Buchbinder, Jain and Naor [30]. The
TCP acknowledgment problem was introduced by Dooly, Goldman and Scott [44] who
gave a 2-competitive algorithm for the problem. This bound was later improved by [69]
to a randomized (1−1/e)-competitive algorithm. Our algorithm is an alternative primal-
dual view of this algorithm. Buchbinder et al. [31] studied an online inventory problem
that is a variant of the classical joint replenishment problem (JRP) that has been studied
extensively over the years. This inventory problem is actually a generalization of the
dynamic TCP-acknowledgment. They designed a deterministic 3-competitive algorithm
for the problem which is also based on a primal-dual approach.
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Chapter 13

The Bounded Allocation
Problem: Beating 1− 1/e

In this chapter we consider a special case of the ad-auctions problem that was studied in
chapter 11 called the allocation problem. In the allocation problem, a seller is interested
in selling products to a group of buyers, where buyer i has budget B(i). The seller
introduces the products one-by-one and sets a fixed price b(j) for each product j1. Each
buyer then announces to the seller (upon arrival of a product) whether it is interested
in buying the current product for the set price. The seller then decides (instantly) to
which of the interested buyers to sell the product. There is a lower bound example that
shows that without further assumptions any algorithm for the problem has competitive
ratio of at most 1 − 1/e. However, in many realistic settings we may assume that for
each product j the set of interested buyers is much smaller than the total number of
buyers. The question is whether we can take advantage of this fact to improve on the
competitiveness of the algorithm. We answer this question in the affirmative for the
allocation problem. The main interesting idea we demonstrate here is a non-intuitive
fractional algorithm for the problem.

For each product j let S(j) be the set of interested buyers. We assume that there
is an upper bound d such that for each product j, |S(j)| ≤ d. We are interested in
the case in which d ≪ n, where n is the total number of buyers. We design an online

1In the ad-auctions problem considered in chapter 11 the price is not fixed for all buyers

Lower Bound Upper Bound Lower Bound Upper Bound

d = 2 0.75 0.75 d = 10 0.662 0.651
d = 3 0.704 0.704 d = 20 0.648 0.641
d = 5 0.686 0.672 d→∞ 0.6321. . . 0.6321 . . .

Table 13.1: Summary of upper and lower bounds on the competitive ratio for certain
values of d.
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Dual (Packing) Primal (Covering)
Maximize:

∑m

j=1

∑

i∈S(j) b(j)y(i, j) Minimize :
∑n

i=1 B(i)x(i) +
∑m

j=1 z(j)

Subject to: Subject to:
For each 1 ≤ j ≤ m:

∑

i∈S(j) y(i, j) ≤ 1 For each j, i ∈ S(j): b(j)x(i) + z(j) ≥ b(j)

For each 1 ≤ i ≤ n:
∑

j|i∈S(j) b(j)y(i, j) ≤ B(i) For each i, j: x(i), z(j) ≥ 0

For each i, j: y(i, j) ≥ 0

Figure 13.1: The fractional allocation problem (the dual) and the corresponding primal
problem

algorithm with competitive ratio C(d) = 1 − d−1

d(1+ 1
d−1)

d−1 . This factor is strictly better

than 1−1/e for any value of d, and approaches (1−1/e) from above as d goes to infinity.
We also prove lower bounds for the problem that indicate that the competitive factor
of the online algorithm is quite tight. The improved bounds for certain values of d are
shown in Figure 13.1.

13.1 The algorithm

The first step is to cast the problem as a linear program using the same formulation as
in Chapter 11. Let y(i, j) be an indicator to the event that item j was allocated to buyer
i. Then the offline problem can be cast as the dual linear formulation in Figure 13.1

The main interesting idea for obtaining the improved competitive factor is in the
production of a fractional solution to the problem. A fractional solution for the problem
allows the algorithm to sell each product in fractions to several buyers. This problem
has a motivation of its own in case products can be divided between buyers. An example
of a divisible product is the allocation of bandwidth in a communication network. The
fractional algorithm we design that generates a fractional solution in an online fashion is
somewhat counter-intuitive. In particular, a newly arrived product is not split equally
between buyers who have spent the least fraction of their budget. Such an algorithm
is referred to as a “water level” algorithm and it is not hard to verify that it does not
improve upon the (1− 1/e) worst case ratio, even for small values of d. Rather, the idea
is to split the product between several buyers that have approximately spent the same
fraction of their total budget.

The idea is to divide the buyers into levels according to the fraction of the budget
that they have already spent. For 0 ≤ k ≤ d, let L(k) be the set of buyers that have
spent at least a fraction of k

d and less than a fraction of k+1
d of their budget (buyers in

level d have exhausted their budget). We refer to each L(k) as level k and say that it is
nonempty if it contains buyers. The formal description of the algorithm is the following:
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Figure 13.2: The function fd for d = 2 and d = 3. The y middle value for d = 2 is 1/3.
The y middle values for d = 3 are 4/19 and 10/19.

Allocation Algorithm: Upon arrival of a new product j, allocate the product to
the buyers according to the following rules:

• Allocate the product equally and continuously between interested buyers in
the lowest non empty level that contain buyers from S(j). If, during the
allocation some of the buyers have moved to a higher level, then continue to
allocate the product equally only among the buyers in the lowest level.

• If all interested buyers in the lowest level have moved to a higher level, then al-
locate the remaining fraction of the product equally and continuously between
the buyers in the new lowest level. If all interested buyers have exhausted
their budget, then stop allocating the remaining fraction of the product.

The idea behind the analysis is to find the best tradeoff function, fd, that relates the
value of each primal variable to the value of its corresponding dual constraint. It turns
out that the best function is a piecewise linear function that consists of d linear segments.
As d grows, the function approximates the exponential function f(d=∞)(x) = ex−1

e−1 . In
order to define the linear pieces we define a geometric sequence at (1 ≤ t ≤ d) inductively
as follows:

a1 = 1

d(1+ 1
d−1 )

d−1
−(d−1)

, . . . , at = a1 ·
(

1 + 1
d−1

)t−1

.

The sequence at is a geometric sequence and we only consider the first d elements
in the sequence. The potential function fd is defined for any 0 ≤ j ≤ d to be fd(

j
d) ,

∑j
t=1 at. A simple calculation yields the following, for any j, 1 ≤ j ≤ d:

fd

(

j

d

)

=

j
∑

i=1

ai = a1 ·

(

1 + 1
d−1

)j

− 1

(1 + 1
d−1)− 1

= a1 ·

[

d

(

1 +
1

d− 1

)j−1

− (d− 1)

]

.

In particular, setting j = d, we get fd

(

d
d

)

= 1. This piecewise linear approximation
allows us to analyze more accurately the algorithm and obtain better competitive factors.
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The function fd for d = 2, d = 3, and for d tending to infinity appears in Figure 13.2.
Next, we use the potential function to prove that the allocation algorithm has the desired
competitive factor.

Theorem 13.1. The allocation algorithm is C(d)-competitive with respect to the optimal
offline fractional solution, where: C(d) = 1− d−1

d(1+ 1
d−1)

d−1 .

Proof. Let Y (j) denote the total profit of the algorithm (the dual packing) in the jth
iteration. In each iteration we maintain a corresponding feasible primal solution whose
value is denoted by X(j). Upon arrival of a new product we update both primal and
dual programs. The dual (packing) program is updated by adding a new constraint
corresponding to the new product which has arrived, and by adding a new term b(j)y(i, j)
to each constraint of an interested buyer. The primal program is updated by adding a
new variable z(j) for the new product and a constraint of the form b(j)x(i)+z(j) ≥ b(j)
for each buyer who is interested in the new product.

Initially, the dual and primal programs are empty. In the jth iteration, the change in
values of the primal and dual solutions is denoted by ∆X(j) and ∆Y (j), correspondingly.
We prove that in each iteration:

∆X(j) ≤
1

C(d)
·∆Y (j)

The primal solution is an assignment of values to the variables x(i) and z(j). Since
these values are not used by the allocation algorithm, we can set them using future
knowledge. For each buyer i, let t(i) (0 ≤ t ≤ d) be the largest level i to which this
buyer belongs during the algorithm. Thus, buyer i spent overall at least t(i)/d fraction
of his budget. The variable x(i) grows as a function of the fraction of money that buyer
i spent, which in fact depends on the corresponding dual constraint. Specifically, for
buyer i:

x(i) =







fd

(

1
B(i)

∑

j | i∈S(j) b(j)y(i, j)
)

if 1
B(i)

∑

j | i∈S(j) b(j)y(i, j) ≤ t(i)
d

fd

(

t(i)
d

)

if 1
B(i)

∑

j | i∈S(j) b(j)y(i, j) ≥ t(i)
d

The variables x(i) are monotonically increasing and thus, once a primal constraint
is satisfied, it remains satisfied throughout the run of the algorithm. Hence, in each
iteration, it suffices to satisfy the newly added primal constraints.

Consider first the case in which product j was not fully sold by the algorithm. This
means that at the end of the jth iteration all the buyers in S(j) exhausted their budget.
In this case the corresponding variables x(i) at the end of the iteration are all 1, and
thus all the new primal constraints are satisfied, and we can set z(j) = 0. We only need
to show that the change in the primal profit in this iteration is not too large. When we
increase a variable y(i, j), the derivative of the dual profit of the algorithm is b(j). The
derivative of the primal cost is:

B(i) ·
dfd

d(y(i, j))
≤ B(i) ·

b(j)

B(i)
· d · ad =

1

C(d)
· b(j).
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The inequality follows by taking the maximum derivative of the (convex) function fd

which is:

d · ad = da1

(

1 +
1

d− 1

)d−1

=
1

C(d)
.

Thus, we get that in this iteration ∆X(j) ≤ 1
C(d) ·∆Y (j).

Assume now that product j was fully sold to the buyers. Let t, 0 ≤ t ≤ d − 1, be
the highest level of buyers to which the product was sold. Since the algorithm always
allocates the product to buyers in the lowest possible level it means that all buyers in
S(j) used at least t/d fraction of their money. Let ∆0, ∆1, . . . , ∆t be the fraction of the
product that was allocated in each level k ≤ t. By our assumption:

∑t
k=1 ∆k = 1. We

consider two cases.

Case 1: All the buyers in S(j) spend during the algorithm at least t′/d of their budget
for t′ > t. In this case, for each buyer i, the derivative of the primal cost due to the
change in x(i) is:

B(i) ·
dfd

d(y(i, j))
≤ B(i) ·

b(j)

B(i)
· d · at+1 = b(j) · d · at+1.

The inequality follows by taking the derivative of fd in the highest level in which the
product was sold. We fully allocate the product and hence

∑

i∈S(j) y(i, j) = 1. Thus,

the total change of the primal cost due to the change in the variables x(i) is at most
b(j) · d · at+1. Since all buyers in S(j) eventually spend during the algorithm at least
(t+1)/d of their budget, variable x(i) corresponding to buyer i ∈ S(j) will be at the end of
the allocation process at least f( t+1

d ). Therefore, it is safe to set z(j) = b(j) ·(1−f( t+1
d ))

in order to satisfy all the new primal constraints. Thus, the total change in the primal
cost in this iteration is:

z(j) +
∑

i∈S′(j)

B(i)∆(x(i)) ≤ b(j)

(

1− f(
t + 1

d
)

)

+ b(j) · d · at+1

= b(j)

(

1− a1 ·

[

d

(

1 +
1

d− 1

)t

− (d− 1)

])

+ b(j) · d · a1 ·

(

1 +
1

d− 1

)t

= b(j) (1 + a1 · (d− 1)) = b(j)






1 +

d− 1

d
(

1 + 1
d−1

)d−1

− (d− 1)






=

1

C(d)
· b(j).

Since the product was fully sold the dual profit in this case is b(j) and hence we are
done with this case.

Case 2: There exists at least one buyer in S(j) who eventually spends (throughout
the algorithm) less than a fraction of (t + 1)/d of his budget (but spend at least t/d).
In this case, in order to satisfy the new primal constraint, it is only safe to set z(j) =
b(j) · (1 − f( t

d)). However, note that the buyer that spent less than (t + 1)/d fraction
of its money was present throughout the whole process of dividing the product equally
between all buyers in last level t. Thus, by our algorithm, this buyer receives at least a
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fraction ∆t

d of the product. By the definition of the function associated with the variable
x(i), the growth function of x(i) in this segment (which is larger than t(i)) is zero. Thus,
the change in the primal cost due to the increase of the dual variables in the highest
level is at most:

b(j)at+1d ·
d− 1

d
∆t = b(j) · (d− 1) · at+1 ·∆t. (13.1)

The change in the primal cost due to the increase of the dual variables in lower levels

is at most b(j) · d · at · (1−∆t). But, at+1 = at ·
(

1 + 1
d−1

)

, and so at = d−1
d · at+1. Thus,

the change in the primal cost due to change in the variables x(i) is at most:

b(j) · d · at · (1−∆t) = b(j) · d ·
d− 1

d
· at+1 · (1−∆t) = b(j) · (d− 1) · at+1 · (1 −∆t). (13.2)

Adding up Equations (13.1) and (13.2), we get that the total change in the primal
cost due to the increase in the primal variables x(i) is b(j)(d − 1)at+1. Since f( t+1

d ) =

at+1 + f( t
d), the total change in the primal cost is at most:

b(j)

(

1− f(
t

d
)

)

+ b(j) · (d− 1) · at+1 = b(j)

(

1− f(
t + 1

d
) + at+1)

)

+ b(j) · (d− 1) · at+1

= b(j)

(

1− f(
t + 1

d
)

)

+ b(j)dat+1 =
1

C(d)
· b(j).

This change is exactly the same as in case (1). Similarly to case (1), the product was
fully sold and so the dual profit is b(j) and we are done with this case.

Lower Bounds. For any value of d it is not hard to prove the following lower bound.

Lemma 13.2. For any value d: C(d) ≤ 1 −
k−kH(d)+

∑k
i=1 H(d−i)

d , where H(·) is the
harmonic number, and k is the largest value for which H(d)−H(d− k) ≤ 1

This bound is only tight for d = 2, but it is also possible to derive better tailor-
made lower bounds for specific values of d. In particular it is not hard to show that the
algorithm is optimal for d = 3.

Rounding the fractional solution It is possible to apply standard randomized
rounding techniques in an online fashion. The main issue is that when applying random-
ized rounding the algorithm may allocate buyer i products with total value of more than
B(i). However, using standard techniques one can prove that when the budget of each
buyer is much larger than the price of the individual products, then with high probabil-
ity the budget excess is not going to be large, i.e., the additional loss in the competitive
factor is o(1). In this case it is also possible to apply de-randomization methods to the
randomized rounding algorithm to obtain a deterministic algorithm for the problem.
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13.2 Notes

The results in this chapter are based on the work of Buchbinder, Jain and Naor [30].
They also showed how to de-randomize the algorithm to obtain a deterministic algorithm
for the problem. The same technique can be used to improve the competitive ratio for
other problems. In the ski rental problem, for example, one can obtain using this method
an algorithm with improved competitive factor of C(B), where B is the cost of buying
the skis. In the dynamic TCP acknowledgment problem studied in Chapter 12 it is also
possible to improve the competitive ratio in certain scenarios. If it is possible to assume
that packets only arrive in certain discrete times of 1/d (and not at any continuous time)
then the competitive ratio can be improved to C(d).
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Chapter 14

Extension to General
Packing/Covering Constraints

In this chapter we design primal-dual algorithms for more general settings of covering
packing linear formulations. In the more general (fractional) covering problem the ob-
jective is still to minimize the total cost given by a linear cost function

∑n
i=1 c(i)x(i).

However, the feasible solution space is defined by a set of m linear constraints of the
form

∑n
i=1 a(i, j)x(i) ≥ b(j), where the entries a(i, j) and b(j) are non-negative. This

generalizes the setting of Chapter 4 in which a(i, j) ∈ {0, 1} and b(j) = 1. Given an
instance of a covering problem we can always normalize each constraint to the form:
∑n

i=1 a(i, j)x(i) ≥ 1. Any primal covering instance has a corresponding dual packing
problem that provides a lower bound on any feasible solution to the instance. A general
form of a (normalized) primal covering problem along with its (normalized) dual pack-
ing problem is given in Figure 14.1. Throughout this chapter we refer to the covering
problem as the “primal problem” and the packing problem as the “dual problem”.

The online setting we study here is the same as the online setting studied in Chapter
4. In the general online fractional covering problem the cost function is known in advance,
but the linear constraints that define the feasible solution space are given to the algorithm
one-by-one. Again we are only allowed to increase the variables x(i), but not to decrease
any previously increased variable. In the general online fractional packing problem the
values c(i) (1 ≤ i ≤ n) are known in advance. However, the profit function and the exact
packing constraints are not known in advance. In the jth round a new variable y(j) is
introduced to the algorithm, along with its set of coefficients a(i, j) (1 ≤ i ≤ n)1. The
algorithm may increase the value of a variable y(j) only in the round where it is given,
and may not decrease or increase the values of any previously given variables.

1We can always normalize the new variable such that its coefficient in the objective function is 1.
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Primal (Covering) Dual (Packing)
Minimize:

∑n

i=1 c(i)x(i) Maximize:
∑m

j=1 y(j)

Subject to: Subject to:
For each 1 ≤ j ≤ m:

∑n

i=1 a(i, j)x(i) ≥ 1 For each 1 ≤ i ≤ n:
∑m

j=1 a(i, j)y(j) ≤ c(i)

For each 1 ≤ i ≤ n: x(i) ≥ 0 For each 1 ≤ j ≤ m: y(j) ≥ 0

Figure 14.1: Primal (covering) and dual (packing) problems

14.1 The General Online Fractional Packing Problem

In this section we describe an online scheme for computing a near-optimal fractional
solution for the general online fractional packing problem. The scheme gets the desired
competitive ratio B > 0 and returns a solution which is within a factor of B of the
optimal, and which does not violate the packing constraints by too much (to be made
more precise shortly). We prove that the scheme is optimal up to constant factors. Our
scheme simultaneously maintains primal (covering) and dual (packing) solutions for the
primal and dual instances.

Initially, each variable x(i) is initialized to zero. In each round a new variable y(j)
is introduced along with its coefficients a(i, j) (1 ≤ i ≤ n). In the corresponding primal
sub-instance a new constraint is introduced of the form

∑n
i=1 a(i, j)x(i) ≥ 1. Without

loss of generality, we can assume that this constraint has at least one non-zero coefficient,
otherwise it means that there is no bound on the value of y(j) and the profit function is
unbounded. The algorithm increases the value of the new variable y(j) and the values of
the primal variables x(i) until the new primal constraint is satisfied. The augmentation
method is described here in a continuous fashion, but it is not hard to implement the
augmentation in a discrete way in any desired accuracy. In our continuous description
the variables x(i) behave according to a monotonically increasing function of y(j). To
implement the scheme in a discrete fashion, one should find the minimal y(j) such that
the new primal constraint is satisfied. Note that variable y(j) is being increased only in
the jth round and the values of the primal variables never decrease. In the following we
describe the jth round. The performance of the scheme is analyzed in Theorem 14.1.

1. y(j)← 0; For each x(i): ai(max)← maxj
k=1{a(i, k)}.

2. While
∑n

i=1 a(i, j)x(i) < 1:

(a) Increase y(j) continuously.

(b) Increase each variable x(i) by the following increment function:

x(i)← max

{

x(i),
1

nai(max)

[

exp

(

B

2c(i)

j
∑

k=1

a(i, k)y(k)

)

− 1

]}

.

Theorem 14.1. For any B > 0, the above scheme is a B−competitive algorithm for the

126



general online fractional packing problem. Also, for any constraint it holds:

m
∑

k=1

a(i, k)y(k) = c(i) ·O





log n + log ai(max)
ai(min)

B



 .

Where, ai(max) = maxm
k=1{a(i, k)} and ai(min) = minm

k=1{a(i, k)|a(i, k) 6= 0}.

Proof. Let X(j) and Y (j) be the values of the primal and dual solutions, respectively,
obtained in round j. We prove the following claims on X(j) and Y (j):

1. In each round j: Y (j) ≥ X(j)/B.

2. The primal solution produced by the scheme is feasible.

3. For any dual constraint:

m
∑

k=1

a(i, k)y(k) ≤ c(i) ·
2 log

(

1 + nai(max)
ai(min)

)

B
= c(i) ·O





log n + log ai(max)
ai(min)

B



 .

The proof of the theorem then follows directly from weak duality.

Proof of (1): Note first that when the value of ai(max) increases, the value of the
primal solution does not change. Thus, the value of the primal solution only increases
when the dual solution increases. Initially, the values of the primal and dual solutions
are zero. Consider the jth round in which y(j) is being increased continuously. We prove

that ∂X(j)
∂y(j) ≤ B ∂Y (j)

∂y(j) , concluding that X(j) ≤ B · Y (j).

∂X(j)

∂y(j)
=

n
∑

i=1

c(i)
∂x(i)

∂y(j)

≤
n
∑

i=1

c(i)Ba(i, j)

2c(i)

1

nai(max)
exp

(

B

2c(i)

j
∑

k=1

a(i, k)y(k)

)

(14.1)

=
B

2

n
∑

i=1

a(i, j)

[

1

nai(max)

(

exp

(

B

2c(i)

j
∑

k=1

a(i, k)y(k)

)

− 1

)

+
1

nai(max)

]

≤
B

2

n
∑

i=1

a(i, j)

[

x(i) +
1

nai(max)

]

≤
B

2
(1 + 1) = B = B ·

∂Y (j)

∂y(j)
, (14.2)

where Inequality (14.1) follows from the derivative of x(i), and (14.2) follows since:

(i)
∑n

i=1 a(i, j)x(i) < 1, (ii) x(i) ≥ 1
nai(max)

[

exp
(

B
2c(i)

∑j
k=1 a(i, k)y(k)

)

− 1
]

, and (iii)

1
n

∑n
i=1

a(i,j)
ai(max) ≤ 1. The final equality follows since the value of the dual is

∑j
k=1 y(k),

and so ∂Y (j)
∂y(j) = 1.
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Proof of (2): This claim is trivial since we increase the primal variables until the
current primal constraint becomes feasible. We never decrease any x(i), so (feasible)
constraints remain feasible.

Proof of (3): Consider the ith dual constraint of the form
∑j

k=1 a(i, k)y(k) ≤ c(i).
Each time a variable y(k) with coefficient a(i, k) > 0 is increased, the primal vari-
able x(i) is increased too. Let ai(min) = minm

k=1{a(i, k)|a(i, k) 6= 0} and ai(max) =
maxm

k=1{a(i, k)} be as defined previously. During the run of the algorithm, x(i) ≤
1/ai(min), since if equality holds, then each primal constraint (1 ≤ j ≤ m) with
a(i, j) > 0 is already feasible. Thus, we get the following:

1

nai(max)

[

exp

(

B

2c(i)

j
∑

k=1

a(i, k)y(k)

)

− 1

]

≤ x(i) ≤ 1/ai(min).

Simplifying, we obtain:

j
∑

k=1

a(i, k)y(k) ≤
2 log

(

1 + nai(max)
ai(min)

)

B
· c(i).

14.1.1 Lower Bounds

In this section we prove a simple lower bound showing that the additional additive factor
of log ai(max)

ai(min) is indeed necessary.

Lemma 14.2. There is an instance of the general fractional packing problem with a sin-
gle constraint such that

∑m
j=1 a(i, j)y(j) ≥ H(a(max)/a(min))

B for any online B−competitive
algorithm, where H(m) denotes the mth harmonic number, and a(max)/a(min) is the
ratio between the maximum and minimum entries in the (single) constraint.

Proof. Consider the following instance, for any m:

max
m
∑

j=1

y(j)

subject to

m
∑

j=1

(m− j + 1)y(j) ≤ 1.

Note that for this instance a(max)/a(min) = m. The variables y(j) arrive one by one.
After the jth round (for each j), the optimal offline value is 1/(m − j + 1). Thus, the
value of the objective function given by a B-competitive algorithm must be at least
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1/B(m− j + 1). This yields the following sequence of inequalities:

y(1) ≥ 1/Bm

y(1) + y(2) ≥ 1/B(m− 1)

y(1) + y(2) + y(3) ≥ 1/B(m− 2)

. . .

Summing up over all m inequalities we get the desired bound:

m
∑

j=1

(m− j + 1)y(j) ≥
1

B

m
∑

j=1

1

m− j + 1
=

H(m)

B
.

14.2 The General Online Fractional Covering Problem

In this section we describe our online scheme for computing a near-optimal fractional
solution for the online fractional covering problem. Our scheme for the general online
fractional covering problem gets a parameter B > 0. With B > 0 the competitive ratio
of the scheme is O( log n

B ) and the following holds for each constraint:
∑n

i=1 a(i, j)x(i) ≥
1
B . The scheme works in phases: When the first constraint is introduced, the scheme
generates the first lower bound:

α(1)←
1

B
·

n
min
i=1

{

c(i)

a(i, 1)

}

≤
OPT

B
.

During the rth phase, it is assumed that the lower bound on the optimum is α(r),
as long as the total primal cost does not exceed α(r). When the primal cost exceeds
this bound, the scheme “forgets” about all the values given to the primal and dual
variables so far, and starts a new phase in which the lower bound is doubled, i.e.,
α(r+1)← 2α(r). Nevertheless, the values of the “forgotten” variables are accounted for
in the total cost of the solution. That is, the algorithm maintains in each phase r a new
set of variables x(i, r). However, since the variables of the linear program are required
to be monotonically non-decreasing, the value of each variable x(i) is actually set to
maxr{x(i, r)} (or alternatively

∑

r x(i, r)). The cost of maintaining the variables of the
linear program is, thus, at most the cost of maintaining the new variables in each phase.
When we start processing a new phase we also set to zero all dual variables, and start
processing again all primal constraints from the first one. Thus, in each such phase, our
algorithm produces “fresh” primal and dual solutions.

In the following we describe the behavior of our scheme in one round of the rth
phase. Let

∑n
i=1 a(i, j)x(i) ≥ 1 be the new primal constraint that is introduced and let

y(j) be the corresponding dual variable. The values of the primal and dual variables are
increased as follows. Note that during each phase x(i) only increases. The performance
of the scheme is analyzed in Theorem 14.3.
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1. y(j)← 0

2. While
∑n

i=1 a(i, j)x(i) < 1
B :

(a) increase y(j) continuously.

(b) Increase each variable x(i) by the following increment function:

x(i)←
α(r)

2nc(i)
exp

(

log 2n

c(i)

j
∑

k=1

a(i, k)y(k)

)

.

Theorem 14.3. For any B > 0, the scheme for the general online fractional cov-
ering problem achieves a competitive ratio of O( log n

B ), such that for each constraint
∑n

i=1 a(i, j)x(i) ≥ 1
B .

Proof. Let X(r) and Y (r) be the values of the primal and dual solutions, respectively,
generated during the rth phase. We prove the following claims on X(r) and Y (r):

1. For each finished phase r: Y (r) ≥ Bα(r)
2 log 2n .

2. The dual solution generated during the rth phase is feasible.

3. The total cost of the primal solutions generated from the first phase until the rth
phase is less than 2α(r).

4. For any primal constraint given to the algorithm,
∑n

i=1 a(i, j)x(i) ≥ 1
B .

From the first three claims together with weak duality we conclude that the total cost
of the primal solutions in all the phases up to phase r is at most:

2α(r) ≤ 4α(r − 1) ≤ 8 ·
log 2n

B
· Y (r − 1) ≤ 8 ·

log 2n

B
·OPT.

Notice that if the scheme finishes in the first phase, then the total cost is at most
α(1) ≤ OPT

B .

Proof of (1): Initially, x(i) = α(r)
2nc(i) , and so X(r) is initially at most α(r)/2. The total

profit of the dual solution is initially zero. From then on, the primal cost increases only
when some dual variable y(j) is increased. When the phase ends, X(r) ≥ α(r). Thus,
it suffices to prove that during the phase

∂X(r)

∂y(j)
≤

log 2n

B

∂Y (r)

∂y(j)
.
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This follows since,

∂X(r)

∂y(j)
=

n
∑

i=1

c(i)
∂x(i)

∂y(j)

=

n
∑

i=1

c(i) log(2n)a(i, j)

c(i)

α(r)

2nc(i)
exp

(

log 2n

c(i)

j
∑

k=1

a(i, k)y(k)

)

= log 2n

n
∑

i=1

a(i, j)x(i) ≤
log 2n

B
=

log 2n

B
·
∂Y (j)

∂y(j)
, (14.3)

where (14.3) follows since
∑n

i=1 a(i, j)x(i) ≤ 1
B . The final equality follows since the value

of the dual solution is
∑j

k=1 y(k) and thus ∂Y (j)
∂y(j) = 1.

Proof of (2): Consider the ith dual constraint of the form
∑m

k=1 a(i, k)y(k) ≤ c(i).
Each time variable y(k) with coefficient a(i, k) > 0 is increased, the corresponding primal

variable x(i) is increased too. During the rth phase of the algorithm, x(i) ≤ α(r)
c(i) , since

otherwise it would have contributed to the cost of the primal solution more than α(r),
and the current phase would have ended. Thus, we get the following equation:

x(i) =
α(r)

2nc(i)
exp

(

log 2n

c(i)

j
∑

k=1

a(i, k)y(k)

)

≤
α(r)

c(i)
.

Simplifying we get the desired result:

m
∑

k=1

a(i, k)y(k) ≤ c(i).

Proof of (3): We bound the total cost paid by the online algorithm. The total primal
cost in the rth phase is at most α(r). Since the ratio between α(k) and α(k − 1) is 2,
we get that the total cost until the rth phase is at most

∑r
k=1 α(k) ≤ 2α(r).

Proof of (4): The claim is trivial, since each round terminates only when the value
of the left hand side of the new primal constraint is at least 1/B. The value of each
variable x(i) never decreases, thus all previous primal constraints remain feasible.

14.3 Notes

The results in this chapter are based on the work of Buchbinder and Naor [32]. In this
work a more general setting is considered in which each variable in the covering problem
has an upper bound (box constraint).
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Chapter 15

Conclusions and Further Research

We showed in this thesis how to extend the primal-dual method to the setting of online
algorithms, and also showed that it is applicable to a wide variety of problems. There
are other online problems not discussed here that can be stated and analyzed via the
primal-dual approach. Such problems are, for example, the admission control problem
in [5], the parking permit problem in [81] and the inventory problem in [31]. We are
certain that many other online problems and algorithms also fit our online framework.

There are many questions and directions for further research. First, it will be nice
to show other online scenarios that can benefit from the primal-dual framework. One
such interesting problem is the k-server problem. For this problem the randomized
competitiveness is a major open question. Another interesting problem is the metrical
task problem in general metrics. It will be nice to use the primal-dual framework to close
the gap between the upper and lower bounds. Another research direction is to extend
the primal-dual framework itself beyond covering/packing formulations. The framework
cannot be extended to any general LP formulation. However, there can be other special
linear program formulations that can be solved online.
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