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Abstract. We consider the randomized k-server problem, and give improved re-
sults for various metric spaces. In particular, we extend a recent result of Coté et
al [15] for well-separated binary Hierarchically Separated Trees (HSTs) to well-
separated d-ary HSTs for poly-logarithmic values of d. One application of this
result is an exp(O(

√
log log k log n))-competitive algorithm for k-server on n

uniformly spaced points on a line. This substantially improves upon the prior
guarantee of O(min(k, n2/3) for this metric [16].
These results are based on obtaining a refined guarantee for the unfair metrical
task systems problem on an HST. Prior to our work, such a guarantee was only
known for the case of a uniform metric [5, 7, 18]. Our results are based on the
primal-dual approach for online algorithms. Previous primal-dual approaches in
the context of k-server and MTS [2, 4, 3] worked only for uniform or weighted
star metrics, and the main technical contribution here is to extend many of these
techniques to work directly on HSTs.

1 Introduction

The k-server problem is a central and well studied problem in competitive analysis of
online problems and is considered by many to be the “holy grail” problem in the field.
The k-server problem is defined as follows. There is a distance function d defined over
an n-point metric space and k servers located at the points of the metric space. At each
time step, an online algorithm is given a request at one of the points of the metric space,
and it is served by moving a server to the requested point. The cost is defined to be the
distance traveled by the server. Thus, the goal of an online algorithm is to minimize
the total sum of the distances traveled by the servers so as to serve a given sequence of
requests. The k-server problem can model many problems, and the most widely studied
of these is paging with all its variants [27]. Paging is the special case of k-server on a
uniform metric. In their seminal paper on competitive analysis, Sleator and Tarjan [27]
gave k-competitive algorithms for paging, and also showed that this is the best possible
for any deterministic algorithm.

The k-server problem in its full generality was first posed by Manasse et al. [24],
who conjectured that a k-competitive online algorithm exists in any metric space and for
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any value of k. This is called the k-server conjecture. After a long line of work, a major
breakthrough was achieved by Koutsoupias and Papadimitriou [23] who gave a 2k − 1
competitive algorithm. We note that for special metrics such as the uniform metric, line
metric [13], and more generally trees [14], a competitive factor of k is known for the
k-server problem. The reader is referred to [9] for an excellent survey of various results
and history of the problem.

However, despite much interest, randomized algorithms for k-server remain poorly
understood. No lower bound better than Ω(log k) is known for any metric space, and it
is widely believed that an O(log k)-competitive randomized algorithm exists for every
metric space against an oblivious adversary. This is called the randomized k-server con-
jecture. Yet, better than k-competitive algorithms are known only for few special cases
[17, 5, 2, 26, 16, 15]. The most well-studied of these cases is paging and its variants, for
which several Θ(log k)-competitive algorithms are known [17, 1, 2, 21, 20, 8]†. How-
ever, not much is essentially known beyond the uniform metric. Even for the seemingly
simple case of n uniformly spaced points on a line, which is perhaps the simplest “non-
uniform like” metric, only an O(n2/3)-competitive algorithm [16] is known, which is
o(k)-competitive only for n = o(k3/2).

Given our current level of understanding, resolving a weaker variant of the ran-
domized k-server conjecture – obtaining a polylog(k, n, ∆)-competitive algorithm for
general metrics, where ∆ is the diameter of the metric, would be a major breakthrough.‡

Since a general metric space can be embedded into a probability distribution over hi-
erarchically well-separated trees (HSTs) with logarithmic distortion of the distances,
it suffices to consider the k-server problem on HSTs to obtain the latter bound. This
approach seems particularly promising, as randomized k-server is relatively well un-
derstood for uniform metrics, and algorithms on an HST can often be obtained by re-
cursively applying a suitable algorithm on uniform metrics. This has previously been
done in many other settings, e.g., metrical task systems and metric labeling [5, 18, 22].

Along these lines, Coté et al. [15] recently gave the first§ completely formal frame-
work to solving the k-server problem on HSTs by defining a related problem, called
the allocation problem by [3], on uniform metrics. In the allocation problem (defined
formally in Section 2), upon each request, two types of cost are incurred: the hit-cost
and the move-cost. Coté et al. [15] showed that designing an online algorithm that,
given any ε > 0, has a hit-cost of at most (1 + ε) times the total optimum cost and
a move-cost of at most poly-logarithmic times the total optimum cost, would imply a
poly-logarithmic competitive algorithm for the k-server problem (see Theorem 5 below
for a formal statement). Note the asymmetry between the guarantees required for the
hit-cost and move-cost. It is crucial that the hit-cost factor is (1 + ε), as the hit-cost
factor multiplies across the levels of the HST, while the move-cost factor only adds up.
In a very interesting result, Coté et al. [15] were able to obtain such a guarantee for the
allocation problem on a metric space with two points. Using their framework, this guar-
antee for the allocation problem implies an O(log ∆)-competitive algorithm for binary

† Due lack to space here, we refer the reader to [9] for an excellent survey of paging and other
results for randomized k-server.
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HSTs. However, being limited to two points, this result is not general enough to imply
any non-trivial guarantees for more general metrics.

Thus, the big outstanding question is to extend the result of Coté et al. [15] to a
uniform metric on an arbitrary number of points. However, as already pointed out by
[15], it is not even clear how to obtain such a guarantee for a space with three points.
In particular, their algorithm crucially uses the fact that the allocation problem on two
points looks like a metrical task system problem (defined later) on a line with a special
cost structure.

1.1 Our Results

In this work we extend the result of Coté et al. [15] for the allocation problem on any
uniform metric on d points. Specifically, we show the following result:

Theorem 1. There exists an algorithm that is (1+ε, O(d log2 k log(k/ε)))-competitive
for the allocation problem on d points.

Exploring the meaning of such a result in the k-server context, let us define an (`, p, α)-
HST as an HST with height `, maximum degree p, and stretch factor α. Given such an
HST and combining the above result with Theorem 5 we get the following.

Theorem 2. Given an (`, p, α)-HST metric, there exists an online algorithm for the
k-server problem with competitive factor:

O

(
min(α, p` log2 k log(k`)) ·

(
1 + O

(
p log2 k log(k`)

α

))`+1
)

.

In particular, if α = Ω
(
`p log2 k log(k`)

)
(i.e. the HST is well-separated), then the

algorithm has a competitive ratio of O
(
`p log2 k log(k`)

)
.

While our result applies to any number of points d, our competitive ratio with respect to
the move-cost linearly varies with d, and hence our result is not strong enough to obtain
poly-logarithmic guarantees for general metrics. (For this, one needs a guarantee which
is poly-logarithmic in d.) Still, our result has useful consequences. Applying Theorem
2, along with standard embedding results for equally spaced points on the line, we get
the following Theorem.

Theorem 3. There is a exp
(
O(
√

log log k log n)
)
-competitive algorithm for k-server

on n equally spaced points on a line. In general, for an arbitrary n-point line with
diameter ∆, our algorithm is exp

(
O(
√

log log k log ∆)
)
-competitive.

This is the first online algorithm with a sublinear competitive ratio for the line, providing
strong evidence that randomization does help for this kind of metric. The line metric is
particularly interesting since it is one of the simplest metrics that is essentially different
from the uniform metric. Historically, new insights gained from the line case have often
been useful for more general metrics. For example, the double coverage algorithm was
first discovered for a line [13], and then extended to tree metrics [14]. Obtaining a better
online algorithm, even for a line or a circle, is already stated as a major open problem
in [9, Problem 11.1] .



Techniques and Comparison with Previous Approaches

Refined Guarantee for Metrical Task Systems: In order to prove Theorem 1, we de-
sign here a new algorithm for the metrical task system problem (MTS) with refined
guarantees, which are interesting on their own. MTS was introduced by Borodin et al.
[10] as a generalization of various online problems. In this problem there is a machine,
or server, which can be in any one of n states 1, 2, . . . , n, and a metric d defining the
cost of moving between states. At each time step t, a new task appears and needs to be
served. The new task is associated with a cost vector ct = (ct(1), . . . , ct(n)) denoting
the processing cost in each of the states. To serve the task, the machine is allowed to
move to any other state from its current state. Assuming the machine is currently in
state i, and it moves to state j, the cost of serving the task is its processing cost ct(j)
plus the movement cost dij . The goal is to minimize the total cost.

We obtain the following refined guarantee for MTS on an HST.

Theorem 4. Consider the MTS problem on an HST of height ` and n points. For any
0 < γ < 1, there is an online algorithm achieving the following bounds:

– Its service cost is bounded by (1 + γ) times the optimal cost.
– Its movement cost is bounded by O(log(n

γ ) · min{`, log(n
γ )}) times the optimal

cost.

While poly-logarithmic guarantees for randomized MTS on HSTs (and hence general
metrics) are already known [5, 7, 18], the key difference here is that the competitive
ratio with respect to the service cost is only (1 + γ). Previously, such a result was only
known for uniform metrics [5, 7, 19], where this guarantee was referred to as the unfair
MTS guarantee. Thus, Theorem 4 can be viewed as an extension of the unfair MTS
result of [5, 7, 19] to HSTs. Such an extension is crucial to obtain meaningful results for
the allocation problem (see Section 4.1 for more details about this reduction). In fact,
obtaining such a result was already proposed as an approach to attacking the allocation
problem [25] (see e.g. slide 45).

As we explain below, it is quite unclear whether Theorem 4 can be obtained using
previous techniques. Next, we explain the techniques we use here.
Previous Results on Randomized MTS: In a breakthrough paper, Bartal et al. [5] ob-
tained the first polylogarithmic competitive randomized algorithm for HSTs (and hence
general metrics) by recursively solving a stronger variant of the MTS problem on uni-
form metrics. This stronger variant is the unfair MTS problem that, given any γ > 0,
pays a movement cost of O(log(n

γ )) times the optimum, but has service cost only (1+γ)
times the optimum. In particular, previous algorithms obtaining a polylogarithmic com-
petitive ratio on HSTs, achieved it by recursively “combining unfair MTS algorithms”
on uniform metrics.

A natural question is whether the approach of recursively combining an unfair MTS
algorithm for uniform metrics can be used to obtain an unfair MTS algorithm for the
entire HST. However, it is not clear how to use previous techniques toward this task [6].
In particular, any approach based on “combining unfair MTS” loses right away at the
second level of the HST the distinction between the service costs and movements costs.
This happens since the cost vector for the unfair MTS algorithm running at a node at a



higher level must necessarily use the total cost incurred at the lower level (i.e. the sum
of service costs plus movement costs incurred at the lower level). Thus, it is not clear
how to even track the service costs and movement costs for HSTs with 2 or more levels.

Our Techniques: We completely move away from recursively combining unfair MTS
algorithms on uniform metrics. In particular, our algorithm is a “one shot algorithm”
that works directly on the whole metric, and is based on linear programming techniques.
Specifically, we cast the (offline) MTS problem on an HST as a minimization linear
program. We then obtain the dual maximization problem which is used to bound the
cost of our online solution. When a new cost vector arrives, a set of equations is solved
to compute the amount of “flow” it should move from each leaf in the HST to other
leaves. This flow solution is dictated by a single decision implied by a “connecting
function” between primal and dual variables.

At a high level, our approach follows the general primal-dual framework for design-
ing online algorithms developed by Buchbinder and Naor [11, 12, 2, 4, 3]. However, the
main contribution here is that we extend many of the previous techniques to work for
HSTs. In particular, all previous results and techniques [2, 4, 3] hold only for uniform
metrics or weighted star metrics¶. These metrics seem substantially simpler than HSTs,
and in general it is not at all clear how to extend these results from uniform metrics to
HSTs. For example, several ways are known to obtain poly-logarithmic guarantees for
k-server on the uniform metric (paging), but extending these results to HSTs would
prove the weaker randomized k-server conjecture!

2 Preliminaries

Allocation Problem: The allocation problem is defined as follows. There is a uniform
metric on n points and there are up to k available servers. At time step t, the total
number of available servers k(t) ≤ k is specified, and a request arrives at some point it.
The request is specified by a (k+1)-dimensional vector ht = (ht(0), ht(1), . . . , ht(k)),
where ht(j) denotes the cost when serving the request using j servers. Upon receiving a
request, the algorithm may choose to move additional servers to the requested point and
then serve it. The cost is divided into two parts. The Move-Cost incurred for moving the
servers, and the Hit-Cost, ht(j), determined by the cost vector. The goal is to minimize
the total cost. In addition, the cost vectors at any time are guaranteed to satisfy the
following monotonicity property: for any 0 ≤ j ≤ k − 1, the costs satisfy ht(j) ≥
ht(j + 1). That is, serving a request with less resources costs more.

Denote by Optcost the optimal cost of an instance of the allocation problem. Coté et
al. [15] showed that if there is an online algorithm that incurs a hit cost of (1+ε)Optcost
and a move cost of β(ε)Optcost, where β(·) is a polylogarithmic function, then there
is a polylogarithmic competitive algorithm for the k-server problem on general metrics.
More generally, the next theorem implicitly follows from their work.

¶ In related work, [3] shows how an unfair MTS algorithm on uniform metrics (i.e. the result
of [5]) can be obtained using the primal-dual framework. It also solves the finely competitive
paging problem [8], and the allocation problem assuming the costs satisfy a certain convexity
assumption.



Theorem 5 ([15, 3]). Suppose there is a (1 + ε, β(ε))-competitive algorithm for the
allocation problem on a uniform metric on d points. Let H be a d-ary HST with depth
` and parameter α. Then, for any ε ≤ 1, there is a β(ε)γ`+1/(γ − 1)-competitive
algorithm for the k-server problem on H , where

γ = (1 + ε)
(

1 +
3
α

)
+ O

(
β(ε)
α

)
.

Hierarchically well-separated trees: We formally define a hierarchically well-separated
tree (HST) with stretch factor α and fix some notation. We denote the leaves of an HST
by 1, . . . , n and use i to index them. In an HST all leaves have the same depth, denoted
by ` (where we use the convention that a star has depth 1). The root r is at level 0. Let
`(v) denote the level of node v. Then, the distance of v to its parent is α`−`(v) and so the
diameter of the HST is O(α`−1). Let Tv denote the set of leaves in the subtree rooted
at node v. For a leaf i, let (i, j) denote the j-th ancestor of i. That is, (i, 0) is i itself,
(i, 1) is the parent of i, and so on. Note that (i, `) is the root r for any leaf i. Let p(v)
be the parent node of v and let C(v) be the set of children of v. The number of children
of v is denoted by |C(v)|; if v is a leaf then we use the convention |C(v)| = 1.

LP Formulation for MTS on an HST: We study the MTS problem on a metric M
defined by an HST. By a standard transformation, we can assume that the cost vector
at any time has the form c · ei, where c is arbitrarily small and ei = (0, 0, . . . , 1, 0, . . .)
has 1 in the i-th position. Hence, we use it to denote the location with non-zero cost at
time t.

We now present our linear programming formulation of the MTS problem on an
HST. Our algorithm keeps a fractional solution in which each leaf i has mass yi,t at
time t. Let yv,t denote the total mass in the subtree rooted at v at time t. Then, by
definition, yv,t =

∑
w∈C(v) yw,t =

∑
i∈Tv

yi,t. Note that this is consistent with the
definition for leaves. The variables will be yi,t for each leaf i and time t. Let zv,t denote
the decrease in the total probability mass in leaves of Tv at time t. Note that there is no
need to define a variable zr,t (for the root) and without loss of generality it suffices to
charge only for removing mass from a subtree (and not for introducing more mass to a
subtree). The linear program is as follows.

(P ) min
∑
v,t

α`−`(v)zv,t +
∑

t

c · yit,t

For any time t:
∑

i yi,t = 1 (1)
For any time t and subtree Tv (v 6= r): zv,t ≥

∑
i∈Tv

(yi,t−1 − yi,t) (2)

Clearly, the formulation is valid. The first constraint says that the total probability mass
on the leaves is exactly 1. The second set of constraints captures the movement cost (i.e.
the cost of decreasing the total probability mass in a subtree) at each internal node.

We now define the dual program. We associate variables at and bv,t with the above
constraints. For notational convenience, let ∆bv,t+1 = bv,t+1 − bv,t. If v is the j-th



parent of leaf i, we will use the notation v and (i, j) interchangeably (especially if we
need to specify the relation of v to i).

(D) max
∑

t

at

For any time t and leaf i 6= it: at −
∑`−1

j=0 ∆b(i,j),t+1 ≤ 0 (3)

For any time t and leaf it: at −
∑`−1

j=0 ∆b(it,j),t+1 ≤ c (4)

For any time t and subtree Tv: bv,t ≤ α`−`(v) (5)

Equivalently, the last constraint can be written as b(i,j),t ≤ αj for any time t, leaf i, and
index j.

We view the dual as follows. With each node v in the tree there is a variable bv that
varies as a function of time, but is bounded by a fixed constant depending on the level of
v (constraint (5)). The dual profit can only be obtained by increasing at, and hence we
try to increase these variables as much as possible over time. At time t, when a request
arrives at leaf it, constraints (3) require that for every leaf i 6= it, the sum of bv values
along the path from i to the root must increase so as to offset at. Thus, they force the bv

variables to increase as at is raised. However, as the bv’s are bounded from above, this
process cannot go on for too long, thus preventing the growth of the dual profit. The
rescue comes from the slack in the corresponding constraint for leaf it (constraint (4)),
allowing us to decrease the appropriate bv variables as requests arrive over time.

3 The Metrical Task System Algorithm

The algorithm for the MTS problem on an HST is based on a two-step approach. First,
we show how to maintain online a fractional solution, then show how to transform the
fractional online algorithm into a randomized algorithm (the second step is actually
trivial). The randomized algorithm is going to maintain a primal solution (a probability
distribution on states) and a corresponding dual solution. The high level idea of the
algorithm is very simple. It maintains a (carefully chosen) relation between the primal
and dual variables. When a cost arrives at leaf it at time t, we update the dual variables
subject to the dual constraints ((3)-(5)). The relation between the primal and the dual
variables determines how much probability mass should be moved out of leaf it and
how it should be distributed among other leaves.

The relation between the dual and primal variables is that the value of variable yv,t

(amount of mass in subtree Tv) is a function of the dual variable bv,t+1:

yv,t , f(bv,t+1) , γ · |C(v)|
n

(
exp

(
ln (1 + n/γ) bv,t+1

α`−`(v)

)
− 1

)
. (6)

This relation is maintained throughout the execution of the algorithm. Let 0 < γ < 1 be
an arbitrary constant. Recall that if v is a leaf then |C(v)| = 1. Before continuing with
the description of the algorithm, we should derive several properties from the invariant.
These properties are somewhat technical and we omit them due to space limitations.



3.1 The Algorithm

We are now ready to describe our algorithm. At any time t, the algorithm maintains a
distribution on the leaves yi,t. We describe how this distribution is updated upon arrival
of a new request. Suppose, without loss of generality, that the request at time t arrives
at leaf 1 with cost (c, 0, 0, ..., 0). The high level idea of the algorithm is very simple.
Since the cost is non-zero only at leaf 1, we should move some probability mass out of
leaf 1, and distribute it to various other leaves. To determine the exact amount at each
leaf, the algorithm simply should keep the following invariants:

MTS Conceptual Algorithm: When a request arrives at time t at leaf 1 keep the
following invariants:

1. (Tight Duals:) All dual constraints of type (3) on leaves 2, 3, . . . , n are tight.
2. (Hit leaf:) Either y1,t = 0, or the dual constraint (4) on leaf 1 is tight.
3. (Consistency:) For each node v, yv =

∑
w∈C(v) yw.

It turns out that the conceptual algorithm above completely determines how much
mass we should move from leaf 1 to any other leaf in the sub-tree. So, essentially, the
restriction on keeping the dual constraints tight and keeping consistency (i.e., mass in
each sub-tree is equal to the mass in its children) completely determines the algorithm!

For the rest of this section we perform some calculations to give an explicit descrip-
tion of the algorithm, specifying the exact rate at which we should move mass in the
tree. Having obtained these rates, we will bound the total movement cost and the total
service cost by relating it to the growth of the dual profit.

We first give an intuitive description of the process. When the cost arrives at leaf 1 at
time t, if y1,t = 0 then the primal cost is zero and the dual profit is also zero. Moreover,
nothing changes and all the invariants continue to hold. Thus, we consider the case
that y1,t. We start increasing at at rate 1. At each step we would like to keep all dual
constraints tight, as well as consistent. However, raising at violates the dual constraints
on leaves 2, 3, . . . , n, forcing us to raise other dual variables to keep these constraints
tight. Raising these variables may also violate consistency (Invariant (3)), and thus lead
to the update of other dual variables. This process results in the transfer of mass from
leaf 1 to leaves 2, 3, . . . , n, and also the constraint on leaf 1 becomes tighter. We stop
the updating process when either the constraint on leaf 1 is tight, or when y1,t = 0. We
next consider this process more formally.

Consider the root, and let 1j , 1 ≤ j ≤ `, denote the node at level j containing leaf
1 (1` is the leaf itself). Since mass moves out of each subtree containing 1, variable
bv,t+1 decreases for each v = 1j . For every other node v in the tree not containing 1,
the probability mass increases. Any node v not containing 1 must be a sibling of some
unique node 1j . By symmetry, all siblings v of a node 1j must increase bv,t+1 at the
same rate (it can be easily checked that this is indeed necessary to keep consistency). We
wish to determine the increase/decrease rate of all dual variables in the tree with respect
to at. Let us use the following notation. For 1 ≤ j ≤ `, let ∆bj , −db1j ,t+1

dat
be the rate



at which b1j ,t+1 is decreasing with respect to at. For 1 ≤ j ≤ `, let ∆b′j , dbw,t+1
dat

be
the rate at which the siblings of 1j are increasing with respect to at.

We can derive the quantities ∆bj and ∆b′j in a top-down fashion as follows (the
exact arguments are omitted due to lack of space). We first consider the siblings of 11

(i.e. children of root other than 11). Let v be one of these siblings. If we raise bv,t+1 by
∆b′1, by the consistency requirement, the sum of ∆b′ on any path from v to a leaf in Tv

must be δ(1) ·∆b′1. As at is growing at rate 1, keeping the dual constraint (3) tight for
leaves in Tv requires that

δ(1) ·∆b′1 = 1.

This takes care of the dual constraints for these leaves. Now, this increase of mass
must come by decreasing the mass in T11 since the total probability mass is 1. To keep
consistency of the root we should set ∆b1 so that:

∆b′1 = (∆b1 + ∆b′1) ·
(

y11,t +
γ · |C(1)|

n

)
/ (1 + γ) .

We repeat the argument for siblings of node 12. Let v be a sibling. Consider a path from
a leaf in Tv to the root. Their dual constraint (3) already grows at rate 1+δ(1)∆b1. This
must be compensated by increasing bv,t+1, and by consistency all the variables bw,t+1

for w ∈ Tv . Therefore, ∆b′2 has to be set so that:

δ(2) ·∆b′2 = 1 + δ(1)∆b1.

Again, this additional increase of mass must come from an additional decreasing mass
in T12 . To keep consistency of 11 we must set ∆b2 so that:

∆b′2 = (∆b2 + ∆b′2) ·
(

y12,t +
γ · |C(2)|

n

)
/

(
y11,t +

γ · |C(1)|
n

)
.

Continuing on, we obtain a system of linear equations. Due to lack of space, the set of
constraints fully defining our algorithm is omitted. Solving the equations we get:

∆b′j =
(1 + γ)

δ(j)
·
(

y1j−1,t +
γ · |C(j − 1)|

n

)−1

∆bj =
1 + γ

δ(j)
·
((

y1j ,t +
γ · |C(j)|

n

)−1

−
(

y1j−1,t +
γ · |C(j − 1)|

n

)−1
)

.

This fully defines our explicit MTS algorithm in terms of derivatives. To implement it,
the algorithm simply does a binary search for the correct value of at defining the correct
flow.



MTS Explicit Algorithm: When a request arrives at time t at leaf 1 keep the
following invariants:

1. While the dual constraint of leaf 1 is not tight and y1,t > 0:
2. Increase at with rate 1.
3. Decrease each b1j

with rate:

db1j ,t+1

dat
=

1 + γ

δ(j)
·
[(

y1j ,t +
γ · |C(j)|

n

)−1

−
(

y1j−1,t +
γ · |C(j − 1)|

n

)−1
]

.

4. For each sibling w of 1j increase bw,t+1 with rate:

dbw,t+1

dat
=

(1 + γ)
δ(j)

(
y1j−1 +

γ · |C(j − 1)|
n

)−1

.

5. For every node w, recursively, top to bottom, if the variable of the parent of
w, bv,t+1 is increasing/decreasing with rate c, then decrease/increase bw,t+1

with rate c/α.

Based on these rates, we can now calculate the movement cost and the service cost as
a function of the dual profit. This allows us to show our main result, Theorem 4. The
proof is omitted.

4 Applications of the MTS algorithm

In this section we will describe applications of our method to several problems.

4.1 The Allocation Problem

The allocation problem on d points and k servers can be viewed as an MTS problem
on O((k + 1)d) states. There is a state for each possible way of distributing (up to) k
servers among the d points. There is a natural metric on these states (equal to half the
hamming distance between vectors corresponding to two states). The diameter (ratio of
maximum to minimum distance between any two distinct points) of this space is k.

One issue in the allocation problem is that the number of available servers k(t) can
change with time. This can be handled as follows. Suppose we have an instance of
the allocation problem on d points. Now, imagine that there are d + 1 points and the
number of servers is fixed at k. The number of servers at point d + 1 is supposed to
be at least k − k(t). We can enforce this via MTS, by setting an infinite cost to states
having less than k− k(t) servers at d + 1. Thus, the number of states in MTS is at most
O((k + 1)d+1).

We embed the metric space of the MTS problem into a probability distribution over
dominating HSTs. Note that the embedding only affects the move costs. Moreover,
the distortion is at most O(log ∆) = O(log k), where ∆ is the diameter of the space.
The depth of the HST is ` = O(log k). Theorem 4 implies an (1 + ε, O(` log(n/ε)))
competitive algorithm for MTS on an HST with depth `. By the application to an



allocation problem on d points, in which n = O(kd) and adding an addition factor
log(∆) = O(log k) due to distortion in the movement costs, we obtain that

Theorem 6. There exists an (1 + ε, O(d log2 k log(k/ε)))-competitive algorithm for
the allocation problem of degree d.

4.2 Application to k-Server on d-ary HSTs

We use theorem 5 that relates the k-server problem on HSTs to the allocation problem.
By Theorem 6 we have β(ε) = O(d log2 k log(k/ε))). Thus we obtain:

Theorem 7. Let T be a d-ary HST with depth ` and parameter α, then for any ε ≤ 1,
there exists a competitive algorithm for the HST with competitive factor:

O

(
min(α, d log2 k log(k/ε)/ε) ·

(
1 + ε + O(

d log2 k log(k/ε)
α

)
)`+1

)
.

Choosing ε = 1
` , if α = Ω

(
`d log2 k log(k`)

)
, the algorithm is O

(
`d log2 k log(k`)

)
-

competitive.

4.3 The k-server Problem on Equally Spaced Points on the Line

A well known (folklore) result for embedding a line into an HST is the following‖.

Lemma 1. For any α ≥ 2, the line metric can be embedded into an (` = log ∆/ log α, d =
O(α), α)-HST, with distortion of α log ∆.

Apply Theorem 7 with ε = 1 and α = exp(O(
√

log log k log ∆)) (which turn out to
optimal choices of parameters), yielding:

Theorem 8. There exists an exp
(√

O(log log k log ∆)
)

-competitive algorithm for the
the k-server problem on the line.
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