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Abstract. We consider the online metric matching problem. In this problem,
we are given a graph with edge weights satisfying the triangle inequality, andk
vertices that are designated as the right side of the matching. Over time up tok
requests arrive at an arbitrary subset of vertices in the graph and each vertex must
be matched to a right side vertex immediately upon arrival. A vertex cannot be
rematched to another vertex once it is matched. The goal is to minimize the total
weight of the matching.
We give aO(log2 k) competitive randomized algorithm for the problem. This
improves upon the best known guarantee ofO(log3 k) due to Meyerson, Nanavati
and Poplawski [19]. It is well known that no deterministic algorithm can have
a competitive less than2k − 1, and that no randomized algorithm can have a
competitive ratio of less thanln k.

1 Introduction

Matching is one of the most fundamental and well-studied optimization problems and it
has played a major role in the development of the theory of algorithms; see, e.g., [22] for
the history as well as many details and algorithms. In this paper, we consider anonline
version of the matching problemwhich was first introduced by Khuller, Mitchell and
Vazirani [14], and independently by Kalyanasundaram and Pruhs [9]. In this version,
the input consists of an edge-weighted graph withk vertices designated asright-hand
side vertices, or “servers”. At each step, a new request vertex is designated as aleft-side
vertexor “client”, appears and must be immediately matched to an available right-hand
side vertex. The goal is to minimize the total cost of the matching.

It is easily seen that no online algorithm can be competitive if the edge-weights are
allowed to be arbitrary, and hence a natural restriction is to consider the case when the
edge-weights correspond to distances in ametric spaceand hence satisfy the triangle in-
equality. We call this problem theonline metric matching problem. The problem arises
naturally in many settings: for example, considerk fire stations, each of which can han-
dle exactly one fire; when a new fire starts, an available fire station must be assigned
to it immediately. Both Khuller, Mitchell and Vazirani [14], and Kalyanasundaram and
Pruhs [9] gave2k−1 competitive deterministic algorithms for the online metric match-
ing problem (and showed that no better deterministic algorithm is possible even for the
star graph). Moreover, Kalyanasundaram and Pruhs also showed that the natural greedy



algorithm that matches a request to its closest available point is(2k − 1)-competitive,
and this bound is tight. The online metric matching problem was subsequently studied
for special metric spaces, and also in models with resource augmentation; see Sec-
tion 1.2 for more details and several other lines of related work.

It is not difficult to give a tightΘ(log k)-competitiverandomizedsolution to the
online metric matching problem on the star graph, which is also the bad example in the
deterministic case (see, e.g.,Section 3.1 for both upper and lower bounds). Hence, a nat-
ural question is whether randomization could help obtain an exponential improvement
for general metric spaces. In a recent breakthrough, Meyerson, Nanavati and Poplawski
[19] give a randomized algorithm with anO(log3 k)-competitive ratio for general met-
rics; this is the first algorithm with a performance sublinear ink for general metric
spaces. Their approach is to first use results on approximating general metrics by tree
metrics [2, 3, 6] to obtain an online metric matching problem instance on a class of trees
calledO(log k)-HSTs—these are trees where the edge lengths increase by a factor of
O(log k) as one goes from the leaves to the root. Then, they solve the online met-
ric matching problem on these HSTs with a competitive ratio ofO(log k); since they
loseO(log2 k) in the reduction to the HSTs, the ultimate competitive ratio obtained is
O(log3 k). In the rest of this paper, we refer to the algorithm from [19] as theMNP
Algorithm.

One natural approach to improve the competitive ratio is to show that the MNP
Algorithm also works onα-HSTs forα = O(1); this would immediately remove one
of the logarithmic terms from the competitive ratio. However, [19] sketch an example
where running MNP on anα-HST withα = o(log k) would result in an extremely poor
competitive ratio; We discuss this issue further in Section 3.2.

1.1 Our results

Given that the MNP algorithm cannot be directly improved, we devise a new algorithm
that proves our main technical result:

Theorem 1 (Upper Bound for 2-HSTs).There is anO(log k)-competitive algorithm
for the online metric matching problem problem on2-HSTs.

Using standard results on approximating general metric spaces by HSTs (see Section 2),
the above theorem immediately implies the following result on arbitrary metric spaces.

Corollary 1 (Upper Bound for Arbitrary Metrics). There is anO(log2 k)-competitive
algorithm for the online metric matching problem problem on arbitrary metric spaces.

Our Techniques. Let us briefly discuss our techniques, as the proof of Theorem 1
requires a few conceptual steps. The first step shows that the natural greedy offline
algorithm that repeatedly matches the closest (request,server) pair is optimal for HSTs.
(This is not immediate, since the greedy algorithm is known to be bad even for a set of
points on the line [21].) This analysis of the greedy algorithm allows us to lower bound
the optimal cost of an instance.

The next step shows that we can imagine working in a more flexible model, where
(some) server reassignments are permitted. In particular, if clientc is previously as-
signed to servers (incurring a cost ofd(c, s)) and a clientc′ arrives, we are allowed



to assignc′ to s, and to reassignc to somes′ incurring an additional cost ofd(c, s′) +
d(c′, s)), as long as the new server (i.e.,s′) for c is no closer to it than the old one (i.e.,
s). Given an online algorithm that works in this (restricted) reassignment model, we
show how to get an online algorithm in the (no reassignment) original model with no
greater cost. Finally, we give an online algorithm in this restricted-reassignment model
which terminates with the greedy assignment, and where the total expected cost in-
curred during all the reassignments is at mostO(log k) times the greedy cost, giving us
the theorem.

1.2 Related Work

Apart from the initial work of Khuller, Mitchell and Vazirani [14], and Kalyanasun-
daram and Pruhs [9] on the online metric matching problem, there are several bodies of
work related to our paper.

Special Metrics.The online metric matching problem has been studied for the case of
special metrics as well. For example, the case of a line metric arises naturally at ski
shops that have skis of various heights. As the skiers arrive one-by-one, the goal is to
match skiers to skis such that the total mismatch between the length of the desired skis
and the actual skis is minimized. The line case also generalizes the well-known “cow-
path” problem [1]. Koutsoupias and Nanavati [15] showed that the Generalized Work
Function algorithm of [10] is not constant competitive for the line metric. Fuchs et
al. [7] showed a lower bound of 9.001 for the line metric, which implies that it is strictly
harder than the cowpath problem. Kalyanasundaram and Pruhs [11] also considered the
problem for general metrics when the adversary is allowed only half as many servers
as the online servers. Recently, Chung, Pruhs and Uthaisombut [5] considered the case
when the online algorithm is allowedone extra serverat each point where the adversary
has a server: somewhat surprisingly, they gave a deterministic algorithm that achieves
a competitive ratio of polylog(k). Many variations of the problem have also been in-
vestigated: e.g., the minimum online bottleneck matching, the maximization version of
the problem, and the case where the points are uniformly distributed on a disk in the
Euclidean plane; for these, we refer the reader to the survey by Kalyanasundaram and
Pruhs [10] and the references therein.

The k-Server Problem. The online metric matching problem is similar to the well-
studiedk-server problemintroduced by Manasse, McGeoch and Sleator [17]: indeed,
it can be viewed as a restricted case of thek-server problem where the location of the
servers is fixed and not allowed to change. The methods used to give lower and upper
bounds for the online matching problem, particularly on the uniform metric, are closely
related to the results fork-server. Moreover, techniques used for thek-server problems,
most notably work-function algorithms, have also been studied for the online metric
matching problem [16, 15]. Throughout this paper, we will adopt thek-server view of
the problem: given an underlying metric space andk “servers” with fixed locations, find
the minimum cost matching between the servers and the requests arriving online.

Offline Heuristics. The metric caseof the matching problem has also been studied
offline in the context of finding fast and simple heuristics. Reingold and Tarjan [21]
showed that greedily matching the closest (request, server) pair, and recursing on the



remaining instance gave anO(klog 3
2 )-approximation to the min-cost matching, and

that this bound was tight. A more sophisticated algorithm achieving an approximation
bound ofO(log k) was given by Plaisted [20]. Finally, Goemans and Williamson [8]
constructed a primal-dual algorithm that achieves an2 − 2/n-approximation for the
minimum-weight perfect matching problem.

The Online Bipartite Matching Problem. A different (and equally natural) version of
the bipartite matching problem was proposed by Karp, Vazirani and Vazirani [13]. In
their version of the problem, the right side of the bipartite graph is given in advance and
the vertices on the left side (along with their incident edges) are revealed sequentially.
Upon arrival, each vertex on the left-hand side must be matched to a right-hand side
vertex (if possible); moreover, these decisions are irrevocable. Karp et al. considered
the unweightedcase of the problem, where the goal is to match as many vertices as
possible, and gave an optimal(1 − 1/e)-competitive randomized algorithm. Note that
in this version of the problem triangle inequality does not hold. A generalization to the
online b-matching was considered in [12], and several extensions have recently been
considered in the context of allocating ad-auctions in electronic markets [18, 4].

2 Preliminaries

The metric matching problemis formally defined as follows. We are given a metric
space(V, d). In addition, we are given a set ofrequestsR ⊆ V where|R| = k, and a
set ofserversS ⊆ V with |S| = k; the setsR andS do not have to be disjoint. The
objective is to find a minimum cost bipartite matching between the requests inR and
the servers inS. In theonlineversion of the problem, we know in advance the metric
space and the server setS; however, the setR of requests arrive one-by-one in an online
fashion. Upon arrival, a request must be immediately and irrevocably matched to some
unmatched server inS; changing the assignment of a previously-matched request or
server is not allowed. LetR = {r1, r2, . . . , rk} be the set of requests according to their
arrival order and letS = {s1, s2, . . . , sk} be the set of servers.

Hierarchically Well-Separated Trees (HSTs).Our results, as well as the previous
results of [19], use a special type of tree metrics calledHSTs. (See Figure 1 for an
illustration.)

Definition 1 (HSTs). Given a parameterα ≥ 1, an α-Hierarchically Well-Separated
Tree (α-HST) is a rooted treeT = (V, E) along with a length functiond on the edges
which satisfies the following properties:

1. For each nodev, all the children ofv are at the same distance fromv.
2. For any nodev, if p(v) is the parent ofv andc(v) is any child ofv, thend(p(v), v) =

α · d(v, c(v)).
3. Each leaf has the same distance to its parent.

We view anα-HST as a leveled tree, where all the leaves are at the same level, and
the edge-lengths increase geometrically by a factor ofα as we go up the tree from the
leaves to the root.
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Fig. 1.Figure (a) shows anα-HST. For a requestr it illustrates the set of nodesN(r, ·). If request
r is matched to servers as in Figure (b), thenL(r) = L(s) = 3.

LetH be anα-HST with n leaves. For each leaf nodei (that can be either request
node or a server node), letT (i, `) be the set of leaf nodes that are in the sub-tree of height
` that contains nodei. Let N(i, `) be the leaf nodes that are in the sub-treeT (i, `) and
not in sub-treeT (i, `− 1). The distance of nodei from each node inN(i, `) is exactly

2 (α`−1)
α−1 . It is easy to verify that for each nodei, the setsN(i, `) induce a partition of

the servers with respect to the nodei. Given a matching in which requestr is matched
with servers we defineL(r) to be the level̀ for whichs ∈ N(r, `). Similarly, letL(s)
be the level for whichr ∈ N(s, `). If servers is not matched yet we defineL(s) = ∞.
(The definitions are illustrated in Figure 1.)

Reducing from General Metrics to HSTs.The results of [6] imply that given any
metric (V, d) on n points, there is a probability distribution onα-HST’s with the fol-
lowing properties:(a) For each HSTT in the support of the distribution, the leaves of
T correspond to the nodes ofV , and the distance in the treedT (u, v) ≥ d(u, v) for all
u, v ∈ V , and(b) the expected distanceE[dT (u, v)] between two nodesu, v ∈ V is at
mostO(α log n)d(u, v), where the expectation is taken over the random choice of the
HSTT . Furthermore, one can sample from this distribution in polynomial time.

Using this result, aβ-competitive randomized algorithm for our problem on anα-
HST directly implies anO(αβ log n)-competitive randomized algorithm on the original
metric. Note that a-priori, the number of nodesn in the metric space can be much larger
thank. However, we can still replacelog n by log k following an idea of Meyerson et
al. [19]: we construct the HST only for the submetric induced on thek server nodes.
Now, whenever a request arrives at some pointp, we pretend that it has arrived at the
servers(p) closest to it, and handle it accordingly. Using the triangle inequality and the
fact thatd(p, s(p)) summed over all requests is a lower bound on the optimum solution,
can change the competitive ratio by at most a constant factor.

3 Previous algorithms

In this section we describe several basic results and arguments, which will crucially be
used in the rest of the paper. We also describe the randomized greedy algorithm which



is the basis of the previousO(log3 k) result of [19]. We show that the analysis is in fact
tight, and hence a different algorithm is necessary to obtain a better result.

3.1 The Uniform Metric

We begin by describing theΘ(log k) lower and upper bounds for the uniform metric.
Recall that the uniform metric consists of a set of points such that any two points are
at unit distance from each other. For the lower bound, consider the uniform metric on
k + 1 points labeled0, 1, . . . , k, and suppose that points1, 2, . . . , k (i.e., all except
0) contain one server each. The adversary places the first request at point0. At each
subsequent step for the nextk−1 steps, the adversary requests a point that has not been
requested thus far and is most likely to have a matched server. Note that just before the
ith request is made (fori ≥ 2), there are(k− i+2) unrequested points each containing
a server, and one of these servers has already been matched. Hence the probability that
the server at the requested point is already matched is at least1/(k − i + 2). Summing
over all the requests, the expected cost incurred by any online algorithm is at least
1 +

∑k
i=2 1/(k − i + 2) = Hk = Ω(log k). The offline algorithm on the other hand

only incurs a cost of 1.
We now show a matching upper bound. For a uniform metric (on, sayn ≥ k points),

each request is either collocated with a server, or else it is at unit distance from it. Con-
sider the following algorithm inspired by the above lower bound: when a request ar-
rives, if there a collocated server still available, we match the request to it; otherwise
we choose an available server at unit distance uniformly at random and match the re-
quest to it. Consider an instance whereu of the arriving requests are not collocated
with a server (i.e., lie outside the setS). Clearly, the optimum offline algorithm has cost
u; moreover, the online algorithm also pays cost for each such non-collocated request.
Now consider the requests that arrive at points collocated with a server. Just before the
ith such request arrives, suppose there have already beenui non-collocated requests.
The crucial observation is that all the previousi − 1 server locations where collocated
requests arrived have already been matched (either to some collocated request or one
of the ui requests). Morever, for each of the remainingk − i + 1 server locations,
each of them is unavailable with probability exactlyui/(k − i + 1), which is at most
u/(k − i + 1). Hence, theith request has an expected cost of at mostu/(k − i + 1);
summing up over the non-collocated and the collocated requests, the total expected cost
incurred is

u +
∑k−u

i=1
u

k−i+1 ≤ u + uHk = O(u log k).

3.2 The Randomized Greedy Algorithm

Meyerson et al. [19] considered the following simple randomized greedy algorithm:
whenever a request arrives, match it to the nearest unmatched server. If there are several
unmatched servers that qualify, choose one of these unmatched servers uniformly at
random. In general metrics this approach can yield a competitive ratio as bad as2k −
1 [9]. However, this algorithm performs quite well onα-HST metrics with large enough
value ofα. Specifically, Meyerson et al. analysed this algorithm on anα-HST with



α ≥ 2 ln k + 1, and proved it isO(log k)-competitive. This immediately implied an
O(α log2 k) = O(log3 k) competitive algorithm for general metrics.

An appealing approach to improve the competitive factor is to try to remove the
requirement thatα ≥ 2 ln k+1. Meyerson et al. showed thatα = Ω(log k) is necessary
for the randomized greedy algorithm to work. Specifically, it is possible to prove the
following Lemma:

Lemma 1 ([19]). For any constant̀ , there exists aǹ level α-HST and an input in-
stance with optimal costO(α`−1), such that the MNP Algorithm incurs
a cost ofΩ(

∑`−1
i=0(log k)i+1α`−i−1).

We remark that it is easily checked that ifα = o(log k), then the online cost is
substantially larger than the offline cost. A close inspection of the lower bound example
reveals that the lower levels have a disproportionately higher contribution to the on-
line cost as compared with the offline algorithm. The main problem is that the MNP
algorithm incurs too much cost in the lower levels until it realizes that there are no
available servers in a subtree and that it needs to find a server outside the subtree. The
lower bound example motivates a different approach that is used by our new constructed
algorithm.

4 An O(log k) Algorithm for 2-HST’s

In this section we present a simple online algorithm which isO(log k)-competitive on
an α-HST, for any constant value ofα. For simplicity we setα = 2. Our algorithm
has three conceptual steps. First, in Section 4.1 we describe a simple offline algorithm
that computes an optimal matching on an HST. In Section 4.2 we define a restricted
reassignment online model which is easier to handle. We then prove that we can obtain
an online algorithm withno reassignmentsfrom any online algorithm in the restricted
reassignment model without compromising the competitive ratio. Finally, in Section
4.3, we design a simple online algorithm in the restricted reassignment model and prove
that it isO(log k)-competitive.

4.1 An Offline Algorithm

In this section we design a simpleoffline algorithm that computes an optimal solution
on an HST metric. This algorithm is essentially the greedy approach that matches the
closest request-server pair, and then recurses on the remaining instance. Reingold and
Tarjan [21] proved that this approach leads to a very poorθ(klog 3

2 )-approximation in
general metrics. However, we show here that this greedy approach leads to an optimal
solution in the special case of HST metrics.

1. Let R andS be the current sets of unmatched requests and unmatched servers,
respectively. Initially,R andS contain all requests and servers.

2. Iterate on the levels from level` = 0 and up until the highest level.
3. Iterate on the requestsr ∈ R in any order.
4. For each requestr, if N(r, `) ∩ S 6= ∅ matchr to any server in N(r, `) ∩ S

and remover ands from R andS, respectively. Otherwise, continue to the
next request inR.



We refer to this algorithm as theGeneric Algorithm, since it considers the requests
in arbitrary order, and the server it chooses for each requestr from the setN(r, `) ∩ S
is also arbitrary. Thus, the algorithm isflexiblewith respect to these choices, meaning
that the output of the algorithm is not unique. This property of the algorithm will be
very important in the sequel. We say that a matchingM is feasiblewith respect to the
Generic Algorithm if there exists a run of the algorithm that can generateM . The next
Lemma proves that the algorithm outputs an optimal matching on any HST metric.

Lemma 2. The Generic Algorithm generates an optimal matching on an HST metric.

Proof. Consider a subtreeTi rooted at a nodei at height`. Let R(i) andS(i) be the
number of requests and the number of servers inTi respectively. Clearly, any solution
must match at leastE(i) = max(0, R(i) − S(i)) requests belonging toTi to servers
that lie outsideTi. These requests must incur a cost of2α` · E(i) when going up from
level ` to level` + 1 (nodei’s parent) and then coming down from level` + 1 back to
level`. Thus, the optimum cost OPT(T ) on the whole HST is at least

∑
i∈T 2α`(i)E(i),

where the summation is over all nodesi of T , and`(i) denotes the level ofi.
Now consider the behavior of our Generic Algorithm. When it first considers level

`, in each subtreeTi rooted at level̀ , no server inTi can be occupied by a request
outsideTi. Moreover, at Step (3), the unsatisfied requests inTi are matched withinTi

as much as possible. Thus, exactlyE(i) requests remain unmatched inTi after level̀ is
processed, and hence, by the same reasoning as above, the matching produced has cost
exactly

∑
i∈T 2α`(i)E(i).

4.2 A Restricted Reassignment Online Model

In this section we define a different online model and prove that it suffices to design
a competitive online algorithm for this modified model. We refer to the new model
as therestricted reassignment online model; as the name suggests, this model allows
some reassignment of previously arrived requests. Specifically, in the new model we
are allowed to reassign a previously matched requestrp with the following restriction:
if, currently, rp is matched to a server belonging toN(rp, `) for some valuè , then
the algorithm is allowed to reassignrp only to a server belonging toN(rp, `

′), where
`′ ≥ `. The online algorithm in the restricted reassignment model pays the cost ofall
reassignments performed, and not just the cost of the final matching computed.

We claim that any online algorithm in the restricted reassignment model can be
transformed to an online algorithm in the original model (where no reassignments are
allowed) with no additional cost. This is done by a very simple method. First, we can
assume without loss of generality that the algorithm in the new model is lazy and does
not reassign requests unnecessarily. That is, it only reassigns a request if a currently
occupied server by it must be used to match another request. Consider a move of the
algorithm, wherer is matched tos1 that was previously matched tor1. Requestr1 is
then matched to servers2 which was previously matched tor2, and so on, until request
rt which was previously matched tost is reassigned to a vacant serverst+1. The change
in the matching is viewed in the following:

s1 ← r1, s2 ← r2, . . . , st ← rt︸ ︷︷ ︸ ⇒ r → s1, r1 → s2, . . . , rt−1 → rt, rt → st+1︸ ︷︷ ︸
The original matching The matching after the reassignment process



The cost of reassigning the requests in the new model isd(r, s1)+
∑t

i=1 d(ri, si+1).
An algorithm in an online model with no reassignments would simulate this move by
simply matchingr directly tost+1, paying a cost ofd(r, st+1). The following lemma
shows that the total cost of this algorithm with no reassignments is no more than the
cost incurred in the restricted reassignment model.

Lemma 3. In any iteration of the algorithm:d(r, st+1) ≤ d(r, s1) +
∑t

i=1 d(ri, si+1)

Proof. The claim follows directly from the restrictions on the reassignments in the new
model. Assume thatri was matched to a serversi in level`. Thus,ri andsi both belong
to the treeT (ri, `). By the restriction on the reassignments,ri cannot be reassigned to a
server inT (ri, `−1). Thus, the path fromri to serversi+1 passes through the root of the
treeT (ri, `). Therefore, the path fromsi (that is, in the sub-treeT (ri, `)) to si+1 is at
mostd(ri, si+1). Thus, we get that for anyi ∈ {1, 2, . . . , t}, d(si, si+1) ≤ d(ri, si+1).
Using the triangle inequality we get that:

d(r, st+1) ≤ d(r, s1) +
∑t

i=1 d(si, si+1) ≤ d(r, s1) +
∑t−1

i=1 d(ri, si+1)

4.3 An O(log k)-Competitive Algorithm in the Restricted Reassignment Model

In this section we present anO(log k)-competitive algorithm for the online metric
matching in the restricted reassignment model. The algorithm is as follows:

Initially, setL(s) = ∞ for all servers inS.
When requestr arrives, setL(r) = 0:

1. Find the lowest level̀ ≥ L(r) in which there exists a servers ∈ N(r, `) ∩ S
such thatL(s) > `.

2. Choose uniformly at random a servers among the servers inN(r, `) ∩ S for
whichL(s) > `.

3. Matchr to s (and setL(r) = L(s) = `).
4. If s was previously matched to another requestr′, then reassignr′ using the

same procedure (return to Step (1) withr′).

Note that Step (1) above ensures that for each requestr, its level L(r) can only
increase during the execution of the algorithm. Thus, the algorithm satisfies the re-
quirement of the restricted reassignment model. Suppose the arrival of a new requestr
causes the reassignment of requestsr1, r2, . . . , rp. Then, the number of reassignments
is at most the height of the HST, since for alli < p, L(ri) < L(ri+1). Also, by the
condition in Step (1) above, the levelL(s) of each servers can only decrease during
the execution of the algorithm. The next lemma shows that the final solution produced
by the algorithm is optimal (without taking into account the cost of reassignments).

Lemma 4. The final matching produced by the online algorithm is optimal.

Proof. We show that the solution produced by the online algorithm is feasible with
respect to the offline Generic Algorithm of Section 4.1. Thus, by Lemma 2 the solution
is optimal.



Consider the final matching produced upon termination of the online algorithm. Let
Ri ⊆ R be the set of requests such thatL(r) = i. We show how to obtain the final
online solution using the Generic Algorithm. In the first round we match all the servers
in R0 to the servers that are used by the online algorithm. In the second round we match
the requests inR1 to the servers used by the online algorithm, and so on. It suffices to
show that this corresponds to a feasible run of the Generic Algorithm. To this end, it
is enough to show that for anyi, after having matched the subsetRi, we cannot match

any requestr ∈ R \
(⋃i

j=0 Ri

)
to servers in leveli with respect tor.

Assuming that this is not true, then after having matched the requests inRi, there
still exists an unmatched requestr that can be matched with a servers ∈ N(r, i).
Consider the online iteration in which requestr hadL(r) ≤ i and was matched (or
reassigned) to a server in a level higher thani. Such an iteration must exist asL(r) starts
from zero and the requestr is eventually matched to a level higher thani. Moreover, in
this iteration,L(s) > i, since upon termination of the algorithmL(s) > i (none of the
requests from the subset

⋃i
j=1 Rj is matched tos), and the levelL(s) of each server can

only decrease during the execution of the algorithm. Therefore, at this iteration, request
r could have been matched with a server in leveli (with respect tor). This contradicts
the fact that in that iteration requestr chose to be matched with a server with a level
strictly larger thani.

Lemma 5. The expected cost of the reassignments of a requestr which is matched upon
termination of the online algorithm to a servers (at distanced(r, s)) is O(log k)d(r, s).

Proof. Consider a requestr which is matched upon termination of the online algo-
rithm to a servers at levelL(r) = L(s). During the execution of the algorithm,L(r)
is monotonically non-decreasing. Consider a level`, 0 ≤ ` ≤ L(r). We prove that
the expected number of timesr is matched (or reassigned) to servers inN(r, `) is
O(log N(r, `)) = O(log k). The intuition is the following. During the execution of
the algorithm, requestr can cause a reassignment of requestr′ only if r′ is matched to
a servers′ which is strictly closer tor (i.e. s′ ∈ N(`, r), s′ ∈ N(`′, r′) and` < `′). In
this case we say thatr is strongerthanr′. Requestr′ then chooses a new server which
is at least at the same distance fromr′ ass′ and is not occupied by any request which
is at least as strong asr′. The set of servers satisfying the latter condition is the feasible
set forr′ and its size is monotonically (strictly) decreasing over the execution of the
algorithm. The main observation is thatr′ always chooses uniformly at random a new
server from the set of feasible servers. Thus, the probability that the next request which
is stronger thanr′ will cause another reassignment ofr′ is at most the inverse of the
size of the set of feasible servers forr′. This gives us the harmonic number as an upper
bound on the expected number of reassignments, similarly to the uniform metric case.

Formally, fix any sequence of requests. Assume that at some time during the online
algorithm requestr is matched to a server inN(r, `) (if there is no such iteration then
we are done). Next, define the setW ⊆ N(r, `) of feasible matchings for requestr to
be the set of servers inN(r, `) for which L(s) > `. The size ofW can only decrease
throughout the execution of the algorithm. Next, consider the arrival order of requests
which are at least as strong asr and are matched to servers inW (until either requestr
is matched to a higher level or until the end of the execution). If some request having



the same strength asr arrives the probability that it causes a reassignment ofr is zero.
Otherwise, since in each reassignment, the requestr chooses uniformly at random a
server among the remaining servers inW , the probability that such a request causes
r to be reassigned is at most1|W | , where|W | is the current size of the set of feasible
servers forr. In either case the size ofW decreases by1 after each such arrival. Since
initially |W | ≤ |N(r, `)| (similarly to the uniform metric), it follows that the expected
number of reassignments untilr is matched to a higher level, or is matched to its final
server, isO(HN(r,`)) = O(log |N(r, `)|) = O(log k).

Since the metric is a2-HST, the cost of each reassignment of requestr in level i
costs2(2i − 1). Therefore, the total expected cost of reassigning requestr is at most:
O(log k)

∑L(r)
i=0 2(2i−1) = O(log k)2L(r) = O(log k)d(r, s), where the last inequality

follows sinced(r, s) = 2(2L(r) − 1).

Theorem 2. The online algorithm isO(log k) competitive on HST’s.

Proof. By linearity of expectation and Lemma 5 the total expected cost of the algorithm
is O(log k) times the final cost of the solution of the online algorithm. By Lemma 4
the final solution is optimal and thus the total expected cost of the algorithm is actually
O(log k) times the optimum. Finally, by Lemma 3 we can translate this algorithm easily
to the model with no reassignments without increasing the cost.

5 Conclusions

In this paper, we designed an algorithm for the online metric matching problem which is
O(log k)-competitive on2-HST’s, and thusO(log2 k)-competitive for general metrics.
The main open question is to design an algorithm with competitive ratioO(log k), or
to improve the known lower bound. The analysis of such an algorithm cannot proceed
along the same lines as we pursue, since approximating general metrics by an HST
incurs a loss ofΩ(log k) in the worst case, and moreover, there is anΩ(log k) lower
bound for the online metric matching problem even on HSTs.

Interestingly, the claims in Sections 4.2 and 4.3 can be extended easily to general
metrics, which implies that our algorithm isO(log k)-competitive for those metrics on
which the greedy approach of Section 4.1 generates a constant factor approximation.
However, since the lower bound of Reingold and Tarjan [21] shows the existence of
metrics for which the greedy approach produces anΩ(klog 3

2 )-approximate solution,
applying our algorithm directly on such metrics might be as bad asΩ(klog 3

2 log k)-
competitive. Nonetheless, a possible direction to obtain anO(log k)-competitive algo-
rithm for general metrics might be to combine our techniques in Sections 4.2 and 4.3
with a different offline heuristic, that results in anO(1)-approximation. It is some-
what strange to look for anO(1)-approximation for a problem that is in polynomi-
ally solvable. However, such an algorithm that takes advantage of the metric properties
of the graph might be a key ingredient. A possible starting point can be the “hyper-
greedy” heuristic of Supowit, Plaisted, and Reingold [23] that achieves anO(log k)-
approximation to the offline metric matching problem, or the2 − 2/n primal dual ap-
proximation algorithm of Goemans and Williamson [8].
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