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ABSTRACT
We revisit from a fairness point of view the problem of online load
balancing in the restricted assignment model and the 1-∞ model.
We consider both a job-centric and a machine-centric view of fair-
ness, as proposed by Goel et al. [11]. These notions are equivalent
to the approximate notion of prefix competitiveness proposed by
Kleinberg, Rabani and Tardos [14], as well as to the notion of ap-
proximate majorization, and they generalize the well studied notion
of max-min fairness.

We resolve a question posed by Goel, Meyerson and Plotkin [11]
proving that the greedy strategy is globally O(log m)-fair, where
m denotes the number of machines. This result improves upon the
analysis of [11] who showed that the greedy strategy is globally
O(log n)-fair, where n is the number of jobs. Typically, n � m,
and therefore our improvement is significant. Our proof matches
the known lower bound for the problem with respect to the measure
of global fairness.

The improved bound is obtained by analyzing, in a more accu-
rate way, the more general restricted assignment model studied pre-
viously in [6]. We provide an alternative bound which is not worse
than the bounds of [6], and it is strictly better in many cases. The
bound we prove is, in fact, much more general and it bounds the
load on any prefix of most loaded machines. As a corollary from
this more general bound we get that the greedy algorithm results in
an assignment that is globally O(log m)-balanced. The last result
generalizes the previous result of [11] who proved that the greedy
algorithm yields an assignment that is globally O(log m)-balanced
for the 1-∞ model.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complexity]: Gen-
eral; G.0 [Mathematics of Computing]: General.

General Terms
Algorithms, Theory.
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1. INTRODUCTION
Load balancing is a fundamental problem in distributed and com-

munication systems and it has been studied extensively in a variety
of scenarios and models [4]. Load balancing issues arise, for exam-
ple, in a multi-processor environment in which tasks, or jobs, need
to be assigned to the different processors. The operating system
enhances the overall performance of the system by using a bal-
anced allocation of the jobs to the processors. Another example is
caching web content in multiple locations to balance the load on
web servers, thus achieving fast delivery of content to users. Load
balancing problems have been studied in both offline and online
settings. In the offline setting all the jobs are known in advance to
the load balancing algorithm, while in the online setting the jobs ar-
rive one-by-one and the load balancing algorithm makes decisions
without knowledge of the future.

In this work we revisit the problem of online load balancing in
the restricted assignment model and in the 1-∞ model. In the re-
stricted assignment model there are m identical machines and n
jobs. Each job is associated with a non-negative weight wi and
with a subset of feasible machines that may be used to process it.
We study an online setting in which jobs arrive one-by-one in an
online fashion, and upon arrival of a job we are given its weight as
well as a list of feasible machines (out of the m machines) to which
it can be assigned. The online algorithm must assign each job to a
single machine from its available list and this decision cannot be
revoked later on. A special case of the restricted assignment model
is the 1-∞ model. The only difference is that in the 1-∞ model all
jobs have the same (one unit) weight.

1.1 Fairness
Given a feasible assignment of jobs to machines, the load λi on

machine i is the sum of the weights of jobs assigned to it. For any
job assignment we denote by λ(i) the load on the ith most loaded
machine, and by ~λ = (λ(1), λ(2), . . . , λ(m)) the machine load vec-
tor that corresponds to the assignment. The quality of an assign-
ment of jobs to machines in a load balancing instance is a function
of the load vector. Many quality measures have been suggested.
A popular measure is minimizing the maximum load [6, 3], other
measures are minimizing the `2 norm of the machine load vector
or any other `p norm [5].

A different approach to evaluating the quality of an assignment
is by considering the load balancing problem from a job-oriented
perspective [11]. From a job’s point of view the quality of service it
gets in an assignment depends on the total weight of jobs that share



the resource together with it. Specifically, in the 1-∞ model, if `
jobs share the same machine, then each one of them receives a total
service/bandwidth of 1/`. From this perspective we may wish to
consider the set of bandwidths given to the jobs in the assignment.
For each i, 1 ≤ i ≤ n, let bi be the bandwidth given to the ith
job and let b(i) be the ith smallest bandwidth taken over all jobs.
In order to estimate the quality of an assignment we consider the
corresponding bandwidth vector ~B = (b(1), b(2), . . . , b(n)) con-
taining the bandwidths given to the jobs sorted in a non-decreasing
order. Note that the machine load vector is sorted from the largest
value to the smallest value, whereas the bandwidth vector is sorted
from the smallest value to the largest value. This notation simplifies
our following presentation. One natural quality measure of a solu-
tion from a job-oriented perspective is maximizing the bandwidth
given to the “poorest” job (i.e. maximizing b(1)). This measure
relates to the well studied notion of max-min fairness [7, 13, 1].
A max-min fair solution is an assignment for which the bandwidth
vector is lexicographically maximal. Another quality measure is
maximizing the average bandwidth given to the jobs. Other quality
measures were also proposed by [16].

In general, it is not always clear how to properly measure the
quality of an assignment. Hence it is desirable to find a solution that
simultaneously approximates several quality measures [10, 5, 11, 2,
18]. For allocation problems, many of the widely discussed mea-
sures of fairness correspond to maximizing a symmetric concave
function U , with U(0) = 0, that is non-decreasing in each argu-
ment [10]. Symmetry corresponds to the assumption that all users
are of the same importance. Concavity of the objective function
corresponds to the principle of diminishing marginal returns from
economics. Note that the constraints of the allocation problem are
not necessarily symmetric. Therefore, the optimal solution may not
be symmetric even though the objective function is symmetric. The
class of such objective functions were called in [10] canonical util-
ity functions . In particular, the max-min fairness measure, as well
as the average bandwidth objective discussed before, correspond to
such canonical utility functions.

Similarly, when considering a congestion problem the goal is,
in many cases, minimizing a symmetric convex function C, with
C(0) = 0, which is non-decreasing in each argument. The class
of such functions were referred to in [10] as canonical congestion
functions. For instance, minimizing the `p norm of the machine
load vector discussed earlier, corresponds to such a canonical con-
gestion function. To capture the notion of simultaneous approxima-
tion, Goel et al. [10] gave two formal definitions. We rewrite these
definitions in the context of our current load balancing problem.

DEFINITION 1.1. A bandwidth vector ~B that corresponds to a
feasible assignment is a simultaneous α-approximation with re-
spect to all feasible bandwidth vectors if U( ~B) ≥ U( ~B′)/α for
all bandwidths vectors ~B′ that correspond to feasible job’s assign-
ments and all canonical utility functions U .

Convex function may be arbitrary steep. Thus, when considering
the machine load vector the analogous definition is:

DEFINITION 1.2. A machine load vector ~λ that corresponds to
a feasible assignment is a simultaneous α-approximation with re-
spect to all feasible machine load vectors if C( 1

α
~λ) ≤ C(~λ′) for

all machine load vectors ~λ′ that correspond to feasible job’s as-
signments and all canonical congestion functions C.

It is not clear a priori why does there exist an assignment that si-
multaneously approximates all canonical utility or congestion func-
tions. Also it seems difficult to verify that a certain assignment is a

simultaneous approximation since this involves an infinite number
of objective functions. To tackle the problem, [10] obtained a dif-
ferent characterization of simultaneous approximation that is more
accessible, via the notions of prefix competitiveness and approxi-
mate majorization. The notion of majorization was first studied in
[9, 17]:

DEFINITION 1.3. Given two n-dimensional vectors x and y, let
x(i) and y(i) denote the the ith smallest coordinates in x and y
respectively. x is said to be majorized by y (y majorizes x), if:

• For all k, 1 ≤ k ≤ n,
∑k

i=1 x(i) ≥
∑k

i=1 y(i).

• For all k, 1 ≤ k ≤ n,
∑k

i=1 x(n+1−i) ≤
∑k

i=1 y(n+1−i).

This relation is denoted by x ≺ y.

Goel et al. [10] defined two approximate notions of majorization
that are equivalent to the notion of prefix competitiveness suggested
by Kleinberg et al. [14] as a fairness measure. We restate these
definitions in the context of our current load balancing problem.

DEFINITION 1.4. Given two bandwidth vectors ~B and ~B′, ~B
is said to be α-supermajorized by ~B′ if for all k, 1 ≤ k ≤ n,
∑k

i=1 b(i) ≥ 1
α

∑k
i=1 b′(i). This is denoted by ~B ≺α ~B′.

DEFINITION 1.5. Given two machine load vectors ~λ and ~λ′,
~λ is said to be α-submajorized by ~λ′ if for all k, 1 ≤ k ≤ n,
∑k

i=1 λ(i) ≤ α ·∑k
i=1 λ′

(i). This is denoted by ~λ ≺α
~λ′.

Note again that the bandwidth vector ~B is sorted from smallest
to largest value, while the machine load vector ~λ is sorted from
largest to smallest value. Based on the work of Hardy, Littlewood,
and Polya [9], Goel et al. [10] proved the following two theorems
which we restate in the context of our load balancing problem:

THEOREM 1.6 (THM. 2.2 IN [10]). An assignment results in
a bandwidth vector ~B that is that is a simultaneous α-approximation
with respect to all feasible bandwidth vectors if and only if the
bandwidth vector ~B is α-supermajorized by any feasible band-
width vector ~B′.

THEOREM 1.7 (THM. 2.3 IN [10]). An assignment results in
a machine load vector ~λ that is a simultaneous α-approximation
with respect to all feasible machine load vectors if and only if the
machine load vector ~λ is α-submajorized by any feasible machine
load vector ~λ′.

Assignments with such properties are referred to as a globally
α-fair assignment and a globally α-balanced assignment:

DEFINITION 1.8. An assignment that results in a bandwidth
vector that is a simultaneous α-approximation with respect to all
feasible bandwidth vectors is called a globally α-fair assignment.

DEFINITION 1.9. An assignment that results in a machine load
vector that is a simultaneous α-approximation with respect to all
feasible machine load vectors is called a globally α-balanced as-
signment.

As already stated, it is not at all clear why should a feasible
1-simultaneous approximate solution exist for resource allocation
problems. Thus, a first question for any resource allocation prob-
lem is whether an α-simultaneous approximate solution exists, for
a small value of α. A second (orthogonal) question is whether a



simultaneous approximation can be computed efficiently, in both
offline and online settings.

Considering the restricted assignment model in the online set-
ting, Goel et al. [11] observed that the lower bound in [6] actually
shows that any online algorithm is Ω(log m)-balanced, where m is
the number of machines. For the 1-∞ model the same lower bound
shows that any online algorithm is also Ω(log m)-fair. For the more
general restricted assignment model it is not hard to see that no on-
line algorithm can result in an assignment which is globally fair.
To see this, consider a simple setting with only two machines and
two jobs one of weight 1 and the other of weight w � 1. The first
job that arrives is allowed to be processed on both machines; the
next job can only be processed on the machine that the online al-
gorithm selects for the first job. The amount of bandwidth given to
the jobs is 1/(w + 1), and w/w + 1 respectively. Since there is an
assignment such that both jobs gets bandwidth 1, it means that any
deterministic online algorithm can only be globally Ω(w + 1)-fair.

1.2 Our Results
In this work we revisit the greedy strategy for the online re-

stricted assignment model and reanalyze it more accurately. The
greedy strategy in this setting is the following: upon arrival of a
job, the algorithm assigns it to the least loaded machine that can
process the job. Ties are broken arbitrarily. Goel et al. [11] ana-
lyzed the greedy online algorithm in the 1-∞ model from fairness
perspective. They showed that the greedy strategy results in an
assignment that is globally O(log n)-fair, where n is the number
of jobs. This was contrasted with the observation that any online
algorithm is globally Ω(log m)-fair, where m is the number of ma-
chines. Typically, n � m, and thus the gap between the lower and
upper bound can be quite large. (In general, there is no reason to
assume that m and n are polynomially related.) Closing the gap
by tightening either the upper or the lower bound was stated as an
open question in [11].

Our first result is improving the upper bound on the greedy on-
line algorithm and closing this gap. We show that the greedy strat-
egy is indeed the best online strategy with respect to global fair-
ness, and it yields an assignment which is globally O(log m)-fair.1

As stated earlier, achieving online an assignment which is glob-
ally O(log m)-fair is only possible for the 1-∞ model. Neverthe-
less, we obtain our improved upper bound for the 1-∞ model by a
finer analysis of the more general restricted assignment model. The
greedy algorithm in the restricted assignment model was analyzed
in [6] who obtained an upper bound on the maximum load. As a
second result we state an interesting alternative upper bound on the
maximum load which is always no worse than the bound proved in
[6], and it can be strictly better in many cases. The bound we prove
is, in fact, much more general and it bounds the load on any prefix
of the most loaded machines. As a corollary of this more general
bound we get that the greedy algorithm results in an assignment
which is globally O(log m)-balanced. The last result generalizes
the previous result of [11] who proved that the greedy algorithm
yields an assignment which is globally O(log m)-balanced for the
1-∞ model.

1.3 Related Work
Most of the literature on load balancing problems has focused

on the machine-centric perspective. From this perspective the most
obvious goal is minimizing the maximum load, e.g.,[6, 3]. The re-
stricted assignment model was studied with respect to this measure
in [6]. They analyzed the performance of the greedy online strat-
1We remark that our results can be stated as the minimum between
n and m.

egy, proving that the maximum load is within O(log m) factor of
the optimal load.

Fairness issues in several routing and load balancing models in
the offline case were studied by Kleinberg et al. [14]. They de-
fined the notion of prefix competitiveness and a stronger notion
of coordinate-wise competitiveness, and considered several offline
problems with respect to these measures. Additional offline set-
tings were further studied in [15, 10] who constructed algorithms
for finding such approximate solutions, as well as showing lower
bounds on the existence of such solutions. The work of Goel et
al. [10] made a formal connection between the notion of simulta-
neous approximation of canonical utility/congestion functions and
the notion of approximate majorization and prefix competitiveness.
They also designed a general efficient algorithm that finds the best
simultaneous approximation solution when the set of constraints is
a polynomial-sized linear program.

Offline load balancing in the 1-∞ model was studied in [14]
who proved that for this setting there exist an assignment that is
1-globally fair and designed an offline algorithm that efficiently
computes such an assignment. The restricted assignment model
was studied by Goel et al. [10] and independently by Azar et al.
[5]. The motivation in [5] was to simultaneously approximate all
`p norms. They both showed how to efficiently compute (offline) a
2-globally balanced assignment.

The 1-∞model in an online setting was studied in [11] from fair-
ness perspective. They proved that the greedy strategy is O(log n)-
globally fair and O(log m)-globally balanced. The more general
case of online routing was considered in [12]. For this setting they
showed that there is an Ω(m) lower bound on the competitive ratio
of any online algorithm that splits the bandwidth equally between
the jobs. Thus, they considered a more general model in which the
online algorithm is allowed to assign weights to the requests that
eventually determine the bandwidth given to each request. For this
model they designed a poly-logarithmic globally fair algorithm.
They also proved, in contrast to the simpler setting of load bal-
ancing, that the competitive ratio of any online algorithm in this
model is Ω(min{m,

√
log n}), and therefore must depend on the

number of requests (jobs). The poly-logarithmic upper bound was
recently improved by an O(log m) factor to O(log n log m) in [8].
They also showed a lower bound of Ω(log n log m) for a slightly
more restrictive model in which the online algorithm should allo-
cate bandwidth directly to the requests.

2. PRELIMINARIES
In the restricted assignment model there are m identical ma-

chines, n jobs (where n is not known in advance), and each job
is associated with a non-negative weight. The jobs arrive one-by-
one in an online fashion, and upon arrival of a job we are given its
weight as well as a list of feasible machines (out of the m machines)
to which it can be assigned. Thus, the jobs and machines induce a
bipartite graph in which there is an edge from job j to machine i
if and only if j can be assigned to i. The vertices corresponding
to the jobs in the bipartite graph are revealed one-by-one together
with the edges adjacent to them. The online algorithm assigns each
job to a (single) machine from its available list and this decision
cannot be revoked later on. The increase to the load of the machine
to which the job is assigned is equal to the weight of the job. We
note that the weight of a job is machine independent.

Let W = (w1, w2, . . . , wn) be the non-negative weight vector
of the jobs. Let S(W ) be a feasible assignment of jobs to machines.
The load on machine i, 1 ≤ i ≤ m, denoted by λ

S(W )
i , is the sum

of the weights of the jobs that are assigned to it. Let (λ
S(W )
(1) ≥



λ
S(W )

(2)
≥ . . . ≥ λ

S(W )

(m)
) be the load vector of assignment S(W ),

sorted in a non increasing order. We sometimes use the notation
λ(1) (or λ1) if the assignment S(W ) is obvious from the context.

A job i assigned to a machine with load λ is said to receive ser-
vice (bandwidth) of bi = wi

λ
. For any assignment S(W ), let b(i)

be the ith smallest bandwidth of a job in the assignment, and let
~B = (b(1), b(2), . . . , b(n)) be the bandwidth vector containing the
bandwidth assigned to the jobs sorted in a non-decreasing order.
Note that the machine load vector is sorted from the largest value
to the smallest value, whereas the bandwidth vector is sorted from
the smallest value to the largest value. This notation simplifies our
following presentation.

3. THE GREEDY ALGORITHM
In this section we analyze the simple greedy load balancing strat-

egy and provide improved and more accurate upper bounds on the
load vector generated. We study in this section the more general
restricted assignment model in which the jobs have arbitrary non-
negative weight. The greedy strategy in this setting is the following:
upon arrival of a job, the algorithm assigns it to the least loaded ma-
chine that can process the job. Ties are broken arbitrarily. For each
assignment S(W ) and load b, define

N(S(W ), b) =
m∑

i=1

min
{

λ
S(W )
(i) , b

}

I.e., N(S(W ), b) is the total weight of the jobs that the assignment
S(W ) schedules when we truncate the load of each machine at b.
Let G(W ) be the assignment of the greedy algorithm. For each job
i (1 ≤ i ≤ n), let `i be the load (at the time of assignment) of the
machine that i was assigned to by the greedy algorithm. For load
b, we define a vector of residual weights Wb = (wb

1, w
b
2, . . . , w

b
n),

as follows:

wb
i =







wi `i > b
wi + `i − b `i ≤ b and wi + `i > b
0 wi + `i ≤ b

The residual weight of each job consists of the fraction of the
original weight that was scheduled above load b by the greedy al-
gorithm. In the following, we prove a basic lemma generalizing
[11, Theorem 3.1]. The lemma states that, for any b, if there is
an assignment S of Wb that schedules some weight below load
b′, then the greedy algorithm would schedule at least half of this
weight, with respect to the original weights, between load b and
b + b′. Formally:

LEMMA 3.1. Let S(Wb) be an assignment of the jobs with the
residual weights for some value of b. Then, for any b′:

N(G(W ), b′ + b) − N(G(W ), b) ≥ 1

2
N(S(Wb), b

′).

PROOF. Let T be the set of all residual weights in Wb that were
scheduled by S(Wb) on machines up to load b′. The sum of all
weights in T is N(S(Wb), b

′). Each weight belonging to T is of
value at most b′. Let T ′ ⊆ T be the set of weight fractions that
the greedy algorithm scheduled above load b + b′. Note that if the
greedy algorithm scheduled a weight such that only a fraction of it
is above b+b′ then only this fraction of the original weight belongs
to T ′. Let |T | and |T ′| be the sum of all weights in T and T ′.

We first prove that

|T ′| ≤ N(G(W ), b′ + b) − N(G(W ), b).

To this end, for each weight in T ′ we match a corresponding weight
that the greedy algorithm schedules between b and b+ b′. To do so,
let Tm ⊆ T be the weight fractions from T that were scheduled in
S on some machine m. Let T ′

m ⊆ Tm be the weight fractions of
Tm that were scheduled by the greedy strategy above load b + b′.
Let |Tm| and |T ′

m| be the sum of all weights in Tm and T ′
m respec-

tively. We match the weights in T ′
m to a corresponding weights that

were scheduled by the greedy algorithm on machine m. We show
that the greedy algorithm has enough load on machine m to “pay”
for all weights in T ′

m.
For each machine m, |Tm| is at most b′ since this is the sum

of weights S schedules below load b′ on m. Thus, if the greedy
algorithm schedules on m a total sum of loads of at least b + b′, it
certainly has enough load between b and b + b′ to “pay” for all the
matched weight.

Next, assume that the greedy algorithm schedules on machine m
a total sum of weights of b + ` such that 0 ≤ ` < b′. If |T ′

m| =
0, we are done. Otherwise, let w′ ∈ T ′

m be a strictly positive
weight fraction in T ′

m. The weight fraction w′ is part of an original
weight w. The main observation is that this original weight w was
scheduled by the greedy algorithm on a machine which had load at
most b + `. This is true since the job can be scheduled on machine
m, and the load on machine m, at the time w arrived, is no more
than the load on machine m at the end, and the greedy algorithm
always prefers the machine with the least load. Also, a positive
fraction of the weight w, w′, is above b+ b′. From this observation
it follows that the weight fraction of w, which is above b and below
b + b′, is of value at least b′ − `. This weight fraction belongs to
Tm and not to T ′

m. Thus,

|T ′
m| ≤ |Tm| − (b′ − `) ≤ b′ − (b′ − `) = `,

which proves our claim. If the final load on machine m in the
greedy assignment is less than b, it means that each job that belongs
to Tm was scheduled by the greedy algorithm on a machine with
load less than b. If such a job has a fraction that belongs to T ′

m

(scheduled by the greedy algorithm above b + b′), it means that the
fraction of it that was scheduled by the greedy between b and b+ b′

is b′. Thus, it is not possible that S schedules this weight fraction
below b′. This means that |T ′

m| = 0.

The above observations imply on one hand that

N(G(W ), b′ + b) − N(G(W ), b) ≥ |T ′|.
On the other hand,

N(G(W ), b′ + b)−N(G(W ), b) + |T ′| ≥ |T | = N(S(Wb), b
′),

since each weight in T is either scheduled by the greedy between b
and b + b′ and is therefore counted as part of N(G(W ), b′ + b) −
N(G(W ), b), or scheduled above b + b′ and, thus, counted as part
of |T ′|. By the above two inequalities we get the desired bound that

N(G(W ), b′ + b) − N(G(W ), b) ≥ 1

2
N(S(Wb), b

′),

which concludes the proof.

For the next lemma, let (λ(1) ≥ λ(2) ≥ . . . ≥ λ(m)) be the load
vector of the greedy assignment sorted in non increasing order. We
compare the greedy assignment to an arbitrary assignment S. For
the assignment S, let (λ∗

(1) ≥ λ∗
(2) ≥ . . . ≥ λ∗

(m)) denote the load
vector. Note that the identity of the ith most loaded machine may be
different in the greedy assignment and in S. Our next lemma shows
that the greedy strategy results in a quite balanced assignment. The
lemma bounds from below the sum of loads that the greedy assigns
below load b, N(G(W ), b), for interesting values of b. The bound
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(i) in the assignment S. An

example of such a lower bound is shown in Figure 1.

LEMMA 3.2. For any 1 ≤ j ≤ m:

N

(

G(W ),

k∑

i=0

λ∗
(j·2i)

)

≥ j

2

(
k∑

i=0

λ∗
(j·2i)

)

+
k∑

i=0

2i+1 − 1

2i+1
·
min{m,j·2i+1}

∑

r=j·2i+1

λ∗
(r)

Where k is the largest value for which j · 2k ≤ m.

PROOF. We prove the claim by reverse induction on j. In the
following, we sometimes sum over λ∗

(r) for values r > m. For
these indices we treat λ∗

(r) as zero.

Base. For j > m
2

the total weight that is scheduled in S, counting
at most λ∗

(j) jobs in each machine is:

N(S(W ), λ∗
(j)) = N(S(Wb=0), λ

∗
(j)) = j · λ∗

(j) +

m∑

r=j+1

λ∗
(r)

where Wb=0 is the vector of residual weights, setting b = 0. This
yields precisely the original weight vector. Thus, by Lemma 3.1,
the total weight scheduled by the greedy below λ∗

(j) is at least:

N(G(W ), λ∗
(j)) ≥

1

2
N(S(Wb=0), λ

∗
(j)) =

j

2
·λ∗

(j)+
1

2

m∑

r=j+1

λ∗
(r).

Inductive Step. Assume the claim holds for j > m
2t . We prove it

for m
2t+1 < j ≤ m

2t . Let b =
∑k

i=1 λ∗
(j·2i) =

∑k−1
i=0 λ∗

(2j·2i). The
weight assigned by the greedy algorithm below b is N(G(W ), b).
Thus,

N(S(Wb), λ
∗
(j)) ≥

(

j · λ∗
(j) +

m∑

r=j+1

λ∗
(r)

)

− N (G(W ), b) .

Thus, by lemma 3.1 the total load of jobs that the greedy assign-
ment schedules on machines that have load between b and b + λ∗

(j)

is at least

1

2

(

j · λ∗
(j) +

m∑

r=j+1

λ∗
(r) − N (G(W ), b)

)

.

On the other hand, by the applying the inductive hypothesis on
2j > m

2t , we get that:

N [G(W ), b]

= N

(

G(W ),

k∑

i=1

λ∗
(j·2i)

)

= N

(

G(W ),

k−1∑

i=0

λ∗
(2j·2i)

)

≥ j

(
k−1∑

i=0

λ∗
(2j·2i)

)

+

k−1∑

i=0

2i+1 − 1

2i+1

min{m,2j·2i+1}
∑

r=2j·2i+1

λ∗
(r)

= j

(
k∑

i=1

λ∗
(j·2i)

)

+

k∑

i=1

2i − 1

2i

min{m,j·2i+1}
∑

r=j·2i+1

λ∗
(r)

Finally, we add the load that the greedy assignment already sched-
uled below b together with the total load it schedules between b =
∑k

i=1 λ∗
(j·2i) and b + λ∗

(j), and get the desired lower bound:

N
(

G(W ), b + λ∗
(j)

)

≥
j · λ∗

(j)
+
∑m

r=j+1 λ∗
(r)

− N (G(W ), b)

2
+ N (G(W ), b)(1)

=
j · λ∗

(j)
+
∑m

r=j+1 λ∗
(r)

+ N (G(W ), b)

2
(2)

≥
j · λ∗

(j)
+
∑m

r=j+1 λ∗
(r)

2

+
1

2



j

(
k∑

i=1

λ∗
(j·2i)

)

+
k∑

i=1

2i − 1

2i

min{m,j·2i+1}
∑

r=j·2i+1

λ∗
(r)



 (3)

=
j

2

(
k∑

i=0

λ∗
(j·2i)

)

+
1

2

m∑

r=j+1

λ∗
(r) +

1

2

k∑

i=1

2i − 1

2i

min{m,j·2i+1}
∑

r=j·2i+1

λ∗
(r) (4)



λ
∗

(3) λ
∗

(4) λ
∗

(5) λ
∗

(6) λ
∗

(7)λ
∗

(2)λ
∗

(1) λ
∗

(8) λ
∗

(9) λ
∗

(10)λ
∗

(11)

︸ ︷︷ ︸

1

︸ ︷︷ ︸

1/4

︸ ︷︷ ︸

1/2

︸ ︷︷ ︸

1

λ(3) λ(4) λ(5) λ(6) λ(7)λ(2)λ(1) λ(8) λ(9) λ(10)

︸ ︷︷ ︸

λ(11)

(a) (b)

Figure 2: An example of an upper bound on the total load on the first two most loaded machines. Applying the lemma for j = 2 we
get: λ(1) + λ(2) ≤ λ∗

(1) + . . . + λ∗
(4) + 1

2

(
λ∗

(5) + . . . + λ∗
(8)

)
+ 1

4

(
λ∗

(9) + . . . + λ∗
(11)

)

=
j

2

(
k∑

i=0

λ∗
(j·2i)

)

+
k∑

i=0

2i+1 − 1

2i+1

min{m,j·2i+1}
∑

r=j·2i+1

λ∗
(r) (5)

Next, we derive an upper bound on the sum of loads of any prefix
of machines, ordered in a non-increasing order of loads. As in
Lemma 3.2, the bound is stated as a function of the loads λ∗

(i) in any
assignment S against which we compare the greedy assignment.
An example of an assignment S is shown in Figure 2(a) while
Figure 2(b) shows a corresponding possible assignment generated
by the greedy algorithm online. Setting j = 2 in Lemma 3.3 yields
a lower bound on the total sum of weights of jobs that the greedy
assignment schedules on the two most loaded machines (shown in
gray in Figure 2(b)). The lower bound corresponds to the gray area
in Figure 2(a). The crucial observation is that the height of the gray
area in Figure 2(a) drops exponentially.

LEMMA 3.3. For any 1 ≤ j ≤ m:

j
∑

i=1

λ(i) ≤
j
∑

i=1

λ∗
(i) +

k∑

i=0

1

2i

min{m,2j·2i}
∑

r=j·2i+1

λ∗
(r)

Where k is the largest value for which j · 2k ≤ m.

PROOF. The total sum of weights is
∑m

i=1 λ∗
(i). Therefore, for

any capacity b we can bound from above the sum of weights of jobs
on the j most loaded machines in the greedy assignment by

[
m∑

i=1

λ∗
(i) − N (G(W ), b)

]

+ j · b.

We set b =
∑k−1

i=0 λ∗
(2j·2i). Note that the value k − 1 is indeed

feasible for the value 2j. Using Lemma 3.2 we get the following
bound for any 1 ≤ j ≤ m:

j
∑

i=1

λ(i) ≤

m∑

i=1

λ∗
(i) − N (G(W ), b) + j ·

(
k−1∑

i=0

λ∗
(2j·2i)

)

≤

m∑

i=1

λ∗
i −

2j

2

(
k−1∑

i=0

λ∗
(2j·2i)

)

−

k−1∑

i=0

2i+1 − 1

2i+1

min{m,2j·2i+1}
∑

r=2j·2i+1

λ∗
(r) + j ·

(
k−1∑

i=0

λ∗
(2j·2i)

)

=
m∑

i=1

λ∗
i −

k−1∑

i=0

2i+1 − 1

2i+1

min{m,2j·2i+1}
∑

r=2j·2i+1

λ∗
(r)

=

j
∑

i=1

λ∗
(i) +

k∑

i=0

1

2i

min{m,2j·2i}
∑

r=j·2i+1

λ∗
(r),

where the second inequality follows from Lemma 3.2.

Lemma 3.3 yields two almost immediate results. The first result
is an alternative bound on the maximum load, stated as a function of
any assignment S (and specifically the optimal assignment). This
bound never exceeds the bound proved in [6] and in most cases it is
strictly tighter. The bounds are only equal in the case in which there
is an optimal assignment which is fully balanced, i.e. the loads on
the machines are all equal. The second result is that the greedy
assignment is O(log m)-balanced. This property was proved in
[11] for the simpler 1-∞ model in which all jobs have the same
weight.

THEOREM 3.4. Let k be the largest value for which 2k ≤ m.
Then:

1. λ(1) ≤ λ∗
(1) +

∑k
i=0

1
2i

∑min{m,·2i+1}

r=·2i+1
λ∗

(r)

2. The greedy assignment is globally O(log m)-balanced.

PROOF. Part (1) follows immediately from Lemma 3.3 by set-
ting j = 1. Part (2) is obtained from the following observation. By
Theorem 1.7 we only need to show that the machine load vector
~λ that corresponds to the online greedy assignment is O(log m)-
submajorized by any feasible machine load vector ~λ∗. For a given
j, 1 ≤ j ≤ m, let k be the largest value for which j · 2k ≤ m.



Applying Lemma 3.3 we get that:

j
∑

i=1

λ(i) ≤
j
∑

i=1

λ∗
(i) +

k∑

i=0

1

2i

min{m,2j·2i}
∑

r=j·2i+1

λ∗
(r)

≤
j
∑

i=1

λ∗
(i) +

k∑

i=0

min{m,j·2i+j}
∑

r=j·2i+1

λ∗
(r)

≤
j
∑

i=1

λ∗
(i) +

min{m,j·2i+j(k+1)}
∑

r=j·2i+1

λ∗
(r)

≤
j·(k+2)
∑

i=1

λ∗
(i) ≤

j·O(log m)
∑

i=1

λ∗
(i)

= O(log m) ·
j
∑

i=1

λ∗
(i)

All inequalities follow since the values λ∗
(i) are sorted in a non-

decreasing order.

4. GREEDY IS GLOBALLY O(log m)-FAIR
In this section we use the tighter bounds proved in Section 3 to

obtain our main result proving that the greedy algorithm is globally
O(log m)-fair. As we noted earlier, for the more general restricted
assignment model in which the job weights are arbitrary it is not
possible to achieve this result. Thus, we study the simpler setting
in which all jobs have equal weight (the 1-∞ model), assumed to
be 1 without loss of generality. In this setting the load on each ma-
chine is simply the number of jobs that are assigned to it. There-
fore, all our previous lemmas now reduce to bounds on the total
number of jobs on the machines. Before proving our main theorem
we need an additional technical lemma regarding the properties of
supermajorization.

LEMMA 4.1. For any two positive n-dimensional vectors x and
y, x ≺α y if and only if, for each coordinate j such that x(j+1) >

x(j), it holds that α ·∑j
i=1 x(i) ≥

∑j
i=1 y(i), and α ·∑n

i=1 x(i) ≥∑n
i=1 y(i).

PROOF. If x ≺α y then the statement is true for all values of j
and so this direction is immediate. For the other direction, assume
to the contrary that for each coordinate j such that x(j+1) > x(j)

it holds that α ·∑j
i=1 x(i) ≥

∑j
i=1 y(i) and also α ·∑n

i=1 x(i) ≥∑n
i=1 y(i), yet x ≺α y does not hold. Let j′ be the smallest co-

ordinate for which α · ∑j′

i=1 x(i) <
∑j′

i=1 y(i). Since j′ is the
smallest coordinate for which this happens, then α ·∑j′−1

i=1 x(i) ≥
∑j′−1

i=1 y(i). Thus, it must hold that α · x(j′) < y(j′). Let j′′ > j′

be the first coordinate such that x(j′′+1) > x(j′′) or j′′ = n if there
is no such coordinate. Thus, we get that:

α ·
j′′
∑

i=1

x(i) = α ·
j′
∑

i=1

x(i) + α ·
j′′
∑

i=j′+1

x(i)

<

j′
∑

i=1

y(i) + α ·
j′′
∑

i=j′+1

x(i) (6)

=

j′
∑

i=1

y(i) + α(j′′ − j′) · x(i) (7)

<

j′
∑

i=1

y(j′) + (j′′ − j′) · y(j′) (8)

≤
j′
∑

i=1

y(i) +

j′′
∑

i=j′+1

y(i) =

j′′
∑

i=1

y(i) (9)

Inequality 6 follows by our contradiction assumption. Equality 7
follows since j′′ is the first coordinate for which x(j′′+1) > x(j′′)

so until this coordinate all coordinates are equal. Inequality 8 fol-
lows by our observation that α · x(j′) < y(j′). Inequality 9 follows
since the values of the vector y are sorted in a non-decreasing order.
Since j′′ is a coordinate such that x(j′′+1) > x(j′′) or j′′ = n this
contradicts our assumption that α ·∑j′′

i=1 x(i) ≥
∑j

i=1 y(i).

Finally, we prove that the bandwidth vector the corresponds to
the greedy assignment is globally O(log m)-fair. This is done by
proving that this vector is O(log m)-supermajorized by any other
feasible bandwidth vector. Let the machine load vector that cor-
responds to the greedy assignment be (λ(1) ≥ λ(2) ≥ . . . ≥
λ(m)). Then, the corresponding bandwidth vector that is composed
of bandwidths given to the n jobs is:

~B = (
1

λ(1)

,
1

λ(1)

, . . . ,
1

λ(1)
︸ ︷︷ ︸

λ(1) times

,
1

λ(2)

, . . . ,
1

λ(2)
︸ ︷︷ ︸

λ(2) times

, . . . ,
1

λ(m)

, . . . ,
1

λ(m)
︸ ︷︷ ︸

λ(m) times

)

The vector ~B is an n-dimensional vector (coordinate for each
job) in which the first λ(1) coordinates are 1

λ(1)
, the next λ(2) co-

ordinates are 1
λ(2)

, and so on. Note that it might be that the greedy
assignment does not use all the possible machines. In that case, sev-
eral of the last machines have λ(i) = 0 (the least loaded machines
in the assignment). Thus, the last coordinates in the bandwidth
vector are actually 1

λ(i)
that corresponds to jobs on the least loaded

machine that is still used by the greedy assignment. Let B(i) be the
ith smallest coordinate in the vector ~B. We compare ~B to the band-
width vector ~B′ of any that corresponds to any other assignment S.
This bandwidth vector is of the form:

~B′ = (
1

λ∗
(1)

,
1

λ∗
(1)

, . . . ,
1

λ∗
(1)

︸ ︷︷ ︸

λ∗

(1)
times

,
1

λ∗
(2)

, . . . ,
1

λ∗
(2)

︸ ︷︷ ︸

λ∗

(2)
times

, . . . ,
1

λ∗
(m)

, . . . ,
1

λ∗
(m)

︸ ︷︷ ︸

λ∗

(m)
times

)

THEOREM 4.2. The greedy algorithm results in an assignment
which is globally O(log m)-fair.

PROOF. By Theorem 1.6 we only need to show that the band-
width vector ~B that corresponds to the online greedy assignment
is O(log m)-supermajorized by any feasible bandwidth vector ~B′.
By Lemma 4.1, we only need to prove that O(log m)·∑j

i=1 B(i) ≥
∑j

i=1 B′
(i) for coordinates j, such that B(j) < B(j+1) and that

α ·∑n
i=1 B(i) ≥

∑n
i=1 B′

(i). This means that the following values
of j should be inspected: λ(1), λ(1) +λ(2), λ(1) +λ(2) +λ(3), etc.
First, note that we may assume without loss of generality that for
any i, λ∗

(i) > 0. That is, the assignment that we compare ourselves
to uses all the machines. If this is not true we can either change the
assignment so it has a strictly better bandwidth vector, or discard
some of the machines in the load balancing instance. Using this
assumption we get by Lemma 3.3 that:

m/2−1
∑

i=1

λ(i) ≤
m−2∑

i=1

λ∗
(i) +

1

2

(
λ∗

(m−1) + λ∗
(m)

)
<

m∑

i=1

λ∗
(i)



This simply tell us that λ(m/2) > 0 which means that the greedy
algorithm uses in its solution at least half of the machines. This
means that for values of j for which we sum on the bandwidth of
at least m/2 machines, the total bandwidth allocated to the jobs is
at least m/2. Since any assignment can allocate a total bandwidth
of at most m, we should not concern ourselves with these prefixes.

For all other values of j we know that the greedy algorithm uses
these machines and thus for these values of j,

∑j
i=1 B(i) = `,

where ` is the number of machines that we sum up on. Thus, for
each 1 ≤ ` ≤ m/2 and j =

∑`
i=1 λ(i), we need to prove that:

j
∑

i=1

B′
(i) ≤ ` · O(log m)

In the schedule B′, the first λ∗
(1) jobs get bandwidth 1

λ∗

(1)
, the next

λ∗
(2) jobs get bandwidth 1

λ∗

(2)
, and so on. We sum up the bandwidth

that the first
∑`

i=1 λ(i) jobs get, and to this end we define an indi-
cator χt for the event t ≤ ∑`

i=1 λ(i). Using this notation we get

that
∑j

i=1 B′
(i) =

∑m
p=1

∑λ∗

(p)

i=1
χt

λ∗

(p)
, where t =

∑p−1
r=1 λ∗

(r) + i.

Thus, we would like to find out when
∑`

i=1 λ(i) =
∑p−1

r=1 λ∗
(r) + i

happens, since after this point χt = 0. If we take k to be the largest
value for which ` · 2k ≤ m, then by Lemma 3.3 we get that:

∑̀

i=1

λ(i) ≤
∑̀

i=1

λ∗
(i) +

k∑

i=0

1

2i

min{m,2`·2i}
∑

r=`·2i+1

λ∗
(r)

≤
∑̀

i=1

λ∗
(i) +

k∑

i=0

min{m,`·2i+`}
∑

r=`·2i+1

λ∗
(r)

≤
∑̀

i=1

λ∗
(i) +

min{m,`·2i+`(k+1)}
∑

r=`·2i+1

λ∗
(r)

≤
`·(k+2)
∑

i=1

λ∗
(i) ≤

`·O(log m)
∑

i=1

λ∗
(i)

Thus, when p > ` · c · log m, for some constant c, χt = 0, and
therefore,

j
∑

i=1

B′
(i) =

m∑

j=1

λ∗

(j)
∑

i=1

χt

λ∗
(j)

≤
`·O(log m)
∑

j=1

λ∗

(j)
∑

i=1

χt

λ∗
(j)

≤
`·O(log m)
∑

j=1

1 = ` · O(log m)

concluding the proof.
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