
Lower and Upper Bounds on Obtaining

History Independence ⋆

Niv Buchbinder a and Erez Petrank a,∗
aComputer Science Department, Technion, Haifa 32000, Israel. Phone:

+972-4-8294942

Abstract

History independent data structures, presented by Micciancio, are data structures
that possess a strong security property: even if an intruder manages to get a copy of
the data structure, the memory layout of the structure yields no additional informa-
tion on the history of operations applied on the structure beyond the information
obtainable from the content itself. Naor and Teague proposed a stronger notion of
history independence in which the intruder may break into the system several times
without being noticed and still obtain no additional information from reading the
memory layout of the data structure.

An open question posed by Naor and Teague is whether these two notions are
equally hard to obtain. In this paper we provide a separation between the two
requirements for comparison-based algorithms. We show very strong lower bounds
for obtaining the stronger notion of history independence for a large class of data
structures, including, for example, the heap and the queue abstract data structures.
We also provide complementary upper bounds showing that the heap abstract data
structure may be made weakly history independent in the comparison based model
without incurring any additional (asymptotic) cost on any of its operations. (A
similar result is easy for the queue.) Thus, we obtain the first separation between
the two notions of history independence. The gap we obtain is exponential: some
operations may be executed in logarithmic time (or even in constant time) with the
weaker definition, but require linear time with the stronger definition.

Key words: History independent data-structures, Lower bounds, Privacy, The
heap data-structure, The queue data-structure

⋆ This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant
no. 36/03) and by the E. AND J. BISHOP RESEARCH FUND. An extended ab-
stract of this paper appeared in [3] Crypto 2003, California.
∗ Corresponding author
Email addresses: nivb@cs.technion.ac.il (Niv Buchbinder),

erez@cs.technion.ac.il (Erez Petrank).

Preprint submitted to Elsevier Science 6 October 2010

1 Introduction

1.1 History independent data structures

Data structures tend to store unnecessary additional information as a side
effect of their implementation. Though this information cannot be retrieved
via the ’legitimate’ interface of the data structure, it can sometimes be easily
retrieved by inspecting the actual memory representation of the data structure.
Consider, for example, a simple linked list used to store a wedding guest-list.
Using the simple implementation, when a new invitee is added to the list, an
appropriate record is appended at the end of the list. It can be then rather
discomforting if the bride’s “best friend” inspects the wedding list, just to
discover that she was the last one to be added. History independent data
structures, presented by Micciancio [9], are meant to solve such headaches
exactly. In general, if privacy is an issue, then if some piece of information
cannot be retrieved via the ’legitimate’ interface of a system, then it should
not be retrievable even when there is full access to the system. Informally, a
data structure is called history independent if it yields no information about
the sequence of operations that have been applied on it.

An abstract data structure is defined by a list of operations. Any operation
returns a result and the specification defines the results of sequence of op-
erations. We say that two sequences of operations S1 and S2 yield the same
content if for any suffix T , the results returned by T operations on the data
structure created by S1 and on the data structure created by S2 are the same.
For the heap data structure the content of the data structure is the set of
values stored inside it.

We assume that at some point an adversary gains control over the data struc-
ture. The adversary then tries to retrieve some information about the sequence
of operations applied on the data structure. The data structure is called his-
tory independent if the adversary cannot retrieve any more information about
the history other than the information obtainable from the content itself.

Naor and Teague [11] strengthen this definition by allowing the adversary
to gain control more than once without being noted. In this case, one must
demand for any two sequences of operations and two lists of “stop” points in
which the adversary gains control of the data structure, if in all ’stop’ points,
the content of the data structure is the same (in both sequences), then the
adversary cannot gain information about the sequence of operations applied
on the data structure other than the information yielded by the content of the
data structure in those ’stop’ points. For more a formal definition of history
independent data structure see section 3.

2

An open question posed by Naor and Teague is whether the stronger notion
is harder to obtain than the weaker notion. Namely, is there a data structure
that has a weakly history independent implementation with some complexity
of operations, yet any implementation of this data structure that provides
strong history independence has a higher complexity.

1.2 The heap

The heap is a fundamental data structure taught in basic computer science
courses and employed by various algorithms, most notably, sorting. As an
abstract structure, it implements four operations: build-heap, insert, extract-
max and increase-key. The basic implementations require a worst case time
of O(n) for the build-heap operation (on n input values), and O(log n) for the
other three operations 1 . The standard heap is sometimes called a binary heap.

The heap is a useful data structure and is used in several important algorithms.
It is the heart of the Heap-Sort algorithm suggested by Williams [13]. Other
applications of heap use it as a priority queue. Most notable among them are
some of the basic graph algorithms: Prim’s algorithm for finding Minimum
Spanning Tree [12] and Dijkstra’s algorithm for finding Single-Source Shortest
Paths [5].

1.3 This work

In this paper we answer the open question of Naor and Teague in the affir-
mative for the comparison-based computational model. We start by providing
strong and general lower bounds for obtaining strong history independence.
These lower bounds are strong in the sense that some operations are shown
to require linear time. They are general in the sense that they apply to a
large class of data structures, including, for example, the heap and the queue
data structures. The strength of these lower bounds implies that strong data
independence is either very expensive to obtain, or must be implemented with
algorithms that are not comparison-based.

To establish the complexity separation, we also provide an implementation of
a weakly history independent heap. A weakly history independent queue is
easy to construct and an adequate construction appears in [11]. Our result

1 The more advanced Fibonacci heaps obtain better amortized complexity and seem
difficult to be made history independent. We do not study Fibonacci heaps in this
paper.

3

Operation Weak History Strong History

Independence Independence

heap:insert O(log n) Ω(n)

heap:increase-key O(log n) Ω(n)

heap:extract-max O(log n) No lower bound

heap:build-heap O(n) Ω(n log n)

queue: max {insert-first,remove-last} O(1) Ω(n)

Table 1
Lower and upper bounds for the heap and the queue

on the heap is interesting in its own sake and constitutes a second contri-
bution of this paper. Our weakly history independent implementation of the
heap requires no asymptotic penalty on the complexity of the operations of
the heap. The worst case complexity of the build-heap operation is O(n). The
worst case complexity of the increase-key operation is O(log n). The expected
time complexity of the operations insert and extract-max is O(log n), where
expectation is taken over all possible random choices made by the implemen-
tation in a single operation. The worst case complexity of these two operations
is O(log2 n). This construction turned out to be non-trivial and it requires an
understanding of how uniformly chosen random heaps behave. To the best of
our knowledge a similar study has not appeared before.

The construction of the heap and the simple implementation of the queue are
within the comparison based model. Thus, we get a time complexity separation
between the weak and the strong notions of history independent data struc-
tures. Our results for the heap and the queue appear in Table 1. The lower
bound for the queue is satisfied for either the insert-first or the remove-last
operations. The upper bounds throughout this paper assume that operations
on keys and pointers may be done in constant time. If we use a more prudent
approach and consider the bit complexity of each comparison, our results are
not substantially affected. The lower bound on the queue was posed as an
open question by Naor and Teague.

1.4 Related work

History independent data structures were first introduced by Micciancio [9]
in the context of incremental cryptography [2]. Micciancio has shown how
to obtain an efficient history independent 2-3 tree. In [11] Naor and Teague
have shown how to implement a history independent hash table. They have
also shown how to obtain a history independent memory allocation. Naor and
Teague note that all known implementations of strongly independent data

4

structures are canonical. Namely, for each possible content there is only one
possible memory layout. A proof that this must be the case has been shown
recently by [6] (and independently proven by us). Andersson and Ottmann
showed lower and upper bounds on the implementation of unique dictionaries
[1]. However, they considered a data structure to be unique if for each content
there is only one possible representing graph (with bounded degree). This
demands only that the shape of the data structure without considering the
addresses of the elements is the same, which is a weaker demand than canonical
layout. Thus, they also obtained weaker lower bounds for the operations of a
dictionary.

There is a large body of literature trying to make data structures persistent,
i.e. to make it possible to reconstruct previous states of the data structure
from the current one [7]. Our goal is exactly the opposite, that no information
whatsoever can be deduced about the past.

There is considerable research on protecting memories. Oblivious RAM [10]
makes the address pattern of a program independent of the program’s compu-
tation. They showed how to simulate any t steps of a RAM machine with m
memory cells, by an oblivious RAM machine with O(m · poly logm) memory
cells using tO(t·poly log t) steps. This result, however, does not provide history
independence since it assumes that the CPU stores some secret information;
this is an inappropriate model for cases where the adversary gains complete
control.

1.5 Organization

In section 2 we provide some notation to be used in the paper. In section 3
we review the definitions of history independent data structures. In section
4 we present the first lower bounds for strongly history independent data
structures. As a corollary we state lower bounds on some operations of the
heap and queue data structures. In section 5 we review basic operations of
the heap and present some basic properties of randomized heaps. In section
6 we show how to obtain a weak history independent implementation of the
heap data structure with no asymptotic penalty on the complexity of the
operations.

2 Preliminaries

Let us set the notation for discussing events and probability distributions. If
S is a probability distribution then x ∈ S denotes the operation of selecting

5

an element at random according to S. When the notation x ∈R S is used,
it means that x is chosen uniformly at random among the elements of the
set S. The notation Pr [R1;R2; . . . ;Rk : E] refers to the probability of event
E after the random processes R1, . . . , Rk are performed in order. Similarly,
E [R1;R2; . . . ;Rk : v] denotes the expected value of v after the random pro-
cesses R1, . . . , Rk are performed in order.

3 History independent data structures

In this section we present the definitions of history independent data struc-
tures. An implementation of a data structure maps the sequence of operations
to a memory representation (i.e an assignment to the content of the memory).
The goal of a history independent implementation is to make this assignment
depend only on the content of the data structure and not on the path that led
to this content. (See also a motivating discussion in section 1.1 above).

An abstract data structure is defined by a list of operations. We say that two
sequences S1 and S2 of operations on an abstract data structure yield the same
content if for all suffixes T , the results returned by T when the prefix is S1,
are the same as the results returned when the prefix is S2. For the heap data
structure, its content is the set of values stored inside it.

Definition 1 A data structure implementation is history independent if any
two sequences S1 and S2 that yield the same content induce the same distri-
bution on the memory representation.

This definition [9] assumes that the data structure is compromised once. The
idea is that, when compromised, it “looks the same” no matter which sequence
led to the current content. After the structure is compromised, the user is
expected to note the event (e.g., his laptop was stolen) and the structure
must be re-randomized.

A stronger definition is suggested by Naor and Teague [11] for the case that
the data structure may be compromised several times without any action be-
ing taken after each compromise. Here, we demand that the memory layout
looks the same at several points, denoted stop points no matter which se-
quences led to the contents at these points. Namely, if at ℓ stop points (break
points) of sequence σ the content of the data structure is C1, C2, . . . , Cℓ, then
no matter which sequences led to these contents, the memory layout joint
distribution at these points must depend only on the contents C1, C2, . . . , Cℓ.
The formalization follows.

Definition 2 Let S1 and S2 be sequences of operations and let P1 = {i11, i12, . . . i1l }

6

and P2 = {i21, i22, . . . i2l } be two list of points such that for all b ∈ {1, 2} and
1 ≤ j ≤ l we have that 1 ≤ ibj ≤ |Sb| and the content of data structure follow-
ing the i1j prefix of S1 and the i2j prefix of S2 are identical 2 . A data structure
implementation is strongly history independent if for any such sequences the
distributions of the memory representations at the points of P1 and the corre-
sponding points of P2 are identical.

It is not hard to check that the standard implementation of operations on
heaps is not history independent even according to definition 1.

4 Lower bounds for strong history independent data structures

In this section we provide lower bounds on strong history independent data
structures in the comparison based model. Naor and Teague noted that all
implementations of strong history independent data structure were canoni-
cal. In a canonical implementation, for each given content, there is only one
possible memory layout. It turns out that this observation may be general-
ized. Namely, all implementations of (well-behaved) data structure that are
strongly independent, are also canonical. This was recently proven in [6] (and
independently by us). See section 4.1 below for more details. For completeness,
we include the proof in section A.

We use the above equivalence to prove lower bounds for canonical data struc-
tures. In subsection 4.2 below, we provide lower bounds on the complexity
of operations applied on a canonical data structures in the comparison based
model. We may then conclude that these lower bounds hold for strongly his-
tory independent data structures in the comparison based model.

4.1 Strong history independence implies canonical representation

For well-behaved data structures canonical representation is implied by strongly
history independent data structures. We start by defining well-behaved data
structures, via the content graph of the structure. Let C be some possible con-
tent of an abstract data-structure. For each abstract data-structure we define
its content graph to be a graph with a vertex for each possible content C of
the data structure. There is a directed edge from a content C1 to a content
C2 if there is an operation OP with some parameters that can be applied on
C1 to yields the content C2. Notice that this graph may contain an infinite

2 The two lists of ’stop’ points do not have to be ordered, as long as the ’stop’
points are consistent with some possible transitions of the abstract data structure.
This observation is highlighted in [6]

7

number of nodes when the elements in the data-structure are not bounded. It
is also possible that some vertices have an unbounded degree. We say that a
content C is reachable if there is a sequence of operations that may be applied
on the empty content and yield C. For our purposes only reachable nodes are
interesting. In the sequel, when we refer to the content graph we mean the
graph induced by all reachable nodes.

We say that an abstract data structure is well-behaved if its content graph is
strongly connected. That is, for each two possible contents Ci, Cj, there exists
a finite sequence of operations that when applied on Ci yields the content Cj.
We may now phrase the equivalence between the strong history independent
definition and canonical representations. This lemma appears in [6] and was
proven independently by us. For completeness, we include the proof in section
A.

Lemma 3 Any strongly history independent implementation of a well-behaved
data-structure is canonical, i.e., there is only one possible memory represen-
tation for each possible content.

We remark that the proof of this lemma uses the fact that the definition of
strong history independence allows the adversary to choose ’stop’ points at
the same position. One relaxation of this definition that allows the adversary
to choose only distinct ’stop’ points is also considered by [6]. This relaxation
does not imply canonical layout, but some other relaxed property referred in
[6] as canonical distribution. Another possible relaxation is to demand that the
distributions are only statistically or computationally indistinguishable. The
proof does not extend immediately to these cases, but it can be proven that
in this case the data structure must be ’almost’ canonical. Another possible
relaxation is to assume both the above relaxations together. These studies are
beyond the scope of this paper and we do not discuss them here.

4.2 Lower bounds on Comparison based data structure implementation

We now proceed to prove lower bounds on implementations of canonical data
structures. Our lower bounds are proven in the comparison based model. A
comparison based algorithm may only compare keys and store them in memory.
That is, the keys are treated by the algorithm as ’black boxes’. In particular,
the algorithm may not look at the inner structure of the keys, or separate
a key into its components. Other then that the algorithm may, of-course,
save additional data such as pointers, counters etc. Most of the generic data-
structure implementations are comparison based. An important data structure
that is implemented in a non-comparison-based manner is hashing, in which
the value of the key is run through the hash function to determine an index.

8

Indeed, for hashing, strongly efficient history independent implementations
(which are canonical) exist and the algorithms are not comparison based [11].
Recall that we call an implementation of data structure canonical if there is
only one memory representation for each possible content.

We assume that a data structure may store a set of keys whose size is un-
bounded k1, k2, . . . , ki, We also assume that there exists a total order on
the keys. We start with a general lower bound that applies to many data struc-
tures (lemma 4 below). In particular, this lower bound applies to the heap.
We will later prove a more specific lemma (see lemma 8 below) that is valid
for the queue, and another specific lemma (lemma 7 below) for the operation
build-heap of the heap.

In our first lemma, we consider data structures whose content is the set of keys
stored in it. This means that the set of keys in the data structure completely
determines its output on any sequence of (legitimate) operations applied on
the data structure. Examples of such data structures are: a heap, a search
tree, a dictionary, and many others. However, a queue does not satisfy this
property since the output of operations on the queue data structure depends
on the order in which the keys were inserted into the structure.

Lemma 4 Let k1, k2, . . . be an infinite set of keys with a total order between
them. Let D be an abstract data structure whose content is the set of keys
stored inside it. Let I be any implementation of D that is comparison based
and canonical. Then the following operations on D,

• insert(D, v)
• extract(D, v)
• increase-key(D, v1, v2) (i.e. change the value from v1 to v2)

require time complexity

(1) Ω(n) in worst case,
(2) Ω(n) amortized time.

Remark 5 property (ii) implies property (i). We separate them for clarity of
the representation.

Remark 6 In fact our proof establishes a stronger claim. We prove that for
each of the above operations and for any data structure of size n, there ex-
ist some parameters for the operation such that the operation requires time
complexity Ω(n).

Proof: We start with the first part of the lemma (worst case lower bound) for
the insert operation. For any n ∈ N, let k1 < k2 < . . . < kn+1 < kn+2 be n+ 2
keys. Consider any sequence of insert operations inserting n of these keys to

9

D. Since the implementation I is comparison based, and the content of the
data structure is the set of keys stored inside it, the keys must be stored in
the data structure. Since the implementation I is canonical, then for any such
set of keys, the keys must be stored in D in the same addresses regardless of
the order in which they were inserted into the data structure. Furthermore,
since I is comparison based, then the address of each key does not depend on
its value, but only on its order within the n keys in the data structure. Denote
by d1 the address used to store the smallest key, by d2 the address used to
store the second key, and so forth, with dn being the memory address of the
largest key. By a similar argument, any set of n + 1 keys must be stored in
the memory according to their order. Let these addresses be d′1, d

′
2, . . . d

′
n+1.

Next, we ask how many of these addresses are different. Let ∆ be the number
of indices for which di ̸= d′i for 1 ≤ i ≤ n.

Now we present a challenge to the data structure which cannot be implemented
efficiently by I. Consider the following sequences of operations applied on
an empty data-structure: S = insert(k2), insert(k3) . . . insert(kn+1). After this
sequence of operations ki must be located in location di−1 in the memory. We
claim that at this state either insert(kn+2) or insert(k1) must move at least half
of the keys from their current location to a different location. This must take
at least n/2 = Ω(n) steps.

If ∆ > n/2 then we concentrate on insert(kn+2). This operation must put kn+2

in address d′n+1 and must move all keys ki (2 ≤ i ≤ n+ 1) from location di−1

to location d′i−1. There are ∆ ≥ n/2 locations satisfying di−1 ̸= d′i−1 and we
are done. Otherwise, if ∆ ≤ n/2 then we focus on insert(k1). This insert must
locate k1 in address d′1 and move all keys ki, 2 ≤ i ≤ n+ 1 from location di−1

to location d′i. For any i satisfying di−1 = d′i−1, it holds that di−1 ̸= d′i (since d
′
i

must be different from d′i−1). The number of such cases is n−∆ ≥ n/2. Thus,
for more than n/2 of the keys we have that di ̸= d′i+1, thus the algorithm must
move them, and we are done.

We remark that the data structure may also store the same key in multiple
addresses. In this case we consider all the addresses used to store the key ki
when the data structure consists of n keys and the same for a data structure
consisting of n + 1 keys. ∆ then counts how many of these sets of addresses
are different. Two sets of addresses used to store a key ki are the same only
if they consist of exactly the same memory addresses. Using this notation
it follows that if ∆ > n/2 then inserting kn+2 will force the data structure
making changes in at least n/2 of the sets. When ∆ ≤ n/2 inserting k1 is
again forcing the data structure making at least n/2 operations.

To show the second part of the lemma for insert, we extend this example to
hold for an amortized analysis as well. We need to show that for any integer
ℓ ∈ N, there exists a sequence of ℓ operations that require time complexity

10

Ω(n · ℓ). We will actually show a sequence of ℓ operations each requiring Ω(n)
steps. We start with a data structure containing the keys l+1, l+2, . . . , l+n+1.
Now, we repeat the above trick ℓ times. Since there are at least ℓ keys smaller
than the smallest key in the structure, the adversary can choose in each step
between entering a key larger than all the others or smaller than all the keys
in the data structure.

The proof for the extract operation is similar. We start with inserting n+1 keys
to the structure and then extract either the largest or the smallest, depending
on ∆. Extracting the largest key cause a relocation of all keys for which d′i ̸= di.
Extracting the smallest key moves all the keys for which di = d′i. One of them
must be larger than n/2. The second part of the lemma may be achieved by
inserting n + ℓ keys to the data structure, and then run ℓ steps, each step
extracting the smallest or largest value, whichever causes relocations to more
than half the values.

Finally, we look at increase-key. Consider an increase-key operation that in-
creases the smallest key to a value larger than all the keys in the structure.
Since the implementation is canonical this operation should move the smallest
key to the address dn and shift all other keys from di to di−1. Thus, n reloca-
tions are due and a lower bound of n steps is obtained. To show the second
part of the lemma for increase-key we may repeat the same operation ℓ times
for any ℓ ∈ N. 2

We remark that the above lemma is tight. We can implement a canonical data
structure that keeps the keys in two arrays. The n/2 smaller keys are sorted
bottom up in the first array and the other n/2 keys are sorted from top to
bottom in the other array. Using this implementation, inserting or extracting
a key will always move at most half of the keys. Since the memory layout
consists of only one long array, we may store the first (virtual) array in the
odd memory addresses while the second (virtual) array is stored in the even
addresses.

Next, we prove a lower bound on the build-heap operation in a comparison
based implementation of the heap.

Lemma 7 For any comparison based canonical implementation of a heap the
operation build-heap must perform Ω(n log n) operations.

Proof: Similarly to sorting, we can view the operation of build-heap in terms
of a decision tree. Note that the input may contain any possible permutation
on the values v1, . . . , vn but the output is unique: it is the canonical heap with
v1, . . . , vn. The algorithm may be modified to behave in the following manner:
first, run all required comparisons between the keys (the comparisons can be
done adaptively), and then, based on the information obtained, rearrange the
input values to form the canonical heap. We show a lower bound on the number

11

of comparisons. Each comparison of keys separates the possible inputs to two
subsets: those that agree and those that disagree with the comparison made.
By the end of the comparisons, each of the n! possible inputs must be dis-
tinguishable from the other inputs. Otherwise, the algorithm will perform the
same rearrangement on two different inputs. Applying the same rearrangement
on two different trees (permutations) results in two different heaps (in which
some of the keys are arranged differently in each heap) since the difference in
the original trees (permutations) reflects a difference in the result. Thinking
of the comparisons as a decision tree, we note that the tree must contain at
least n! leaves, each representing a set with a single possible input. This means
that the height of the decision tree must be Ω(log(n!)) = Ω(n log n) and we
are done. 2

Finally, We show a lower bound on a canonical implementation of the queue
data structure. Note that lemma 4 does not hold for the queue data structure
since its content is not only the set of values inside it. Recall that a queue has
two operations: insert-first and remove-last.

Lemma 8 In any comparison based canonical implementation of a queue ei-
ther insert-first or remove-last work in Ω(n) worst time complexity. The amor-
tized complexity of the two operations is also Ω(n).

Proof: Let k1 < k2 < . . . < kn+1 be n + 1 keys. Consider the following two
sequences of operations applied both on an empty queue: S1 = insert-first(k1),
insert-first(k2) . . . insert-first(kn) and S2 = insert-first(k2), insert-first(k3) . . . insert-
first(kn+1). Since the implementation is comparison based it must store the
keys in the memory layout in order to be able to restore them. Also, since the
implementation is comparison based, it cannot distinguish between the two
sequences and as the implementation is also canonical the location of each key
in the memory depends only on its order in the sequence. Thus, the address
(possibly more than one address) of k1 in the memory layout after running the
first sequence must be the same as the address used to store k2 in the second
sequence. In general, the address used to store ki in the first sequence is the
same as the address used to store the key ki+1 in the second sequence. This
means that after running sequence S1, each of the keys k2, k3, . . . , kn must
reside in a different location than its location after running S2.

Consider now two more operations applied after S1: insert-first(kn+1), remove-
last (i.e., remove k1). The content of the data structure after these two oper-
ations is the same as the content after running the sequence S2. Thus, their
memory representations must be the same. This means that n − 1 keys (i.e
k2, k3, . . . , kn) must have changed their positions. Thus, either insert or remove-
last operation work in worst time complexity of Ω(n). This trick can be re-
peated l times showing a series of insert and remove-last such that each pair
must move Ω(n) keys resulting in the lower bound on the amortized complex-

12

ity. 2

4.3 Translating the lower bounds to strong history independence

We can now translate the results of section 4.2 and state the following lemmas:

Lemma 9 Let D be a well behaved data structure for which its content is the
values stored inside it. Let I be any implementation of D which is comparison
based and strongly history independent. Then the following operations on D

• insert(D, v)
• extract(D, v)
• increase-key(D, v1, v2) (i.e. change the value from v1 to v2)

require time complexity

(1) Ω(n) in worst case,
(2) Ω(n) amortized time.

Proof: The lemma follows directly from lemma 4 and 3. 2

A special case of the above lemma is the heap.

Corollary 10 For any strongly history independent comparison based imple-
mentation of the heap data structure, the operations insert and increase-key
work in Ω(n) amortized time complexity. The time complexity of the build-
heap operation is Ω(n log n).

Proof: The lower bounds on insert and increase-key follow from lemma 9. This
is true since the content of the heap data structure is the keys stored inside
it and the heap abstract data structure is well behaved. The lower bound on
the build-heap operation follows directly from lemma 7 and 3. 2

Last, we may also state a lower bound on the queue data structure.

Lemma 11 For any strong history independent comparison based implemen-
tation of the queue data structure the worst time complexity of either insert-first
or remove-last is Ω(n). Their amortized complexity is Ω(n).

Proof: The lemma follows directly from lemma 8 and 3. 2

13

Last leaf First Vacant place

Heap Height

Path to the last leaf
(in bold)

Fig. 1. The height of this heap is 4. The path to the last leaf is drawn in bold. In
this example, the path to the first vacant place is the same except for the last edge
in the path.

5 The heap

In this section we review the basics of the heap data structure and set up the
notation to be used in the rest of this paper. A good way to view the heap,
which we adopt for the rest of this paper, is as an almost full binary tree
condensed to the left. Namely, for heaps of 2ℓ − 1 elements (for some integer
ℓ), the heap is a full tree, and for sizes that are not a power of two, the lowest
level is not full, and all leaves are at the left side of the tree. Each node in the
tree contains a value. The important property of the heap-tree is that for each
node i in the tree, its children contain values that are smaller or equal to the
value at the node i. This property ensures that the maximal value in the heap
is always at the root. Trees of this structure that satisfy the above property
are denoted well-formed heaps. We denote by parent(i) the parent of a node i
and by vi the content of node i. In a well-formed heap, it holds that for each
node except for the root:

vparent(i) ≥ vi

We will assume that the heap contains distinct elements, v1, v2, . . . , vn. Previ-
ous work (see [11]) justified using distinct values by adding some total ordering
to break ties. In general, the values in the heap are associated with some ad-
ditional data and that additional data may be used to break ties. The nodes
of the heap will be numbered by the integers {1, 2, . . . , n}, where 1 is the root
2 is the left child of the root 3 is the right child of the root etc. In general
the left child of node i is node 2i, and the right child is node number 2i + 1.
We denote the number of nodes in the heap H by size(H) and its height by
height(H).

We will denote the rightmost leaf in the lowest level the last leaf. The position
next to the last leaf, where the next leaf would have been had there been
another value, is called the first vacant place. These terms are depicted in
figure 1

Given a heap H and a node i in the heap, we use H i to denote the sub-heap
(or sub-tree) containing the node i and all its descendants. We will use the

14

notation H i
L for the sub-heap rooted at the left child of the ith node. This is

the heap H2i. Respectively, the sub-heap rooted at the right child of the ith
node is denoted H i

R (which is the sub-heap H2i+1).

We now describe the standard implementation of build-heap. This scheme was
first suggested by Floyd [8]. The procedure build-heap gets n values in its
input and builds a heap for these values with complexity O(n). The proce-
dure build-heap and its main procedure heapify (to be described below) are of
major importance to the rest of this paper. They are used extensively in all
constructions.

The procedure heapify assumes that the left sub-tree and the right sub-tree
of the current node are already arranged as two well-formed heaps. This is
clearly true for any leaf (whose children are empty sub-heaps). Now, focusing
on a node whose descendants are arranged as two sub-heaps, the procedure
heapify makes the node and its two sub-trees a well-formed (one larger) heap.
heapify(i,H i

L, H
i
R) gets as input a node i and its two sub-trees H i

L and H i
R that

are assumed to be well-formed heaps 3 . The tree H i is not necessarily a well-
formed heap since the value v in the node i may be smaller than the values in
i’s children, violating the heap property. heapify lets the value v at location i
“float down” in the heap making the sub-tree H i a sub-heap. More specifically,
between the two children of i, let im be the child with the larger value vm. If
v ≥ vm then we are done. Otherwise, the values of nodes i and im are switched,
thus, floating down the value v one level. This operation is repeated for the
value v until it is placed in a node whose two children contain smaller values.
Note that since we switch with the larger child, this child may legitimately
become the parent of its sibling. The complexity of running heapify(i,H i

L, H
i
R)

on a node at height h is O(h). In the worst case, the value v floats down all
the way to a leaf.

build-heap can now be described recursively as follows: First apply build-heap
on each of the sub-trees of the root’s children recursively. This results in two
well-formed sub-heaps of height at most h − 1 and a value at the root that
may violate the heap property. Next apply heapify on the root to make the
whole tree become a well-formed heap. For the base case note that one node
is always a well-formed heap. When applying recursively the procedure build-
heap it does not work on a sequential array, except for the top level. That
is, when applying build-heap on some sub-tree H i the actual values of the
heap are stored at locations {i, 2i, 2i+1, 4i, . . .}. In a full implementation this
non-sequential operation should be considered. In order to solve the problem
one would probably like to add to the procedure build-heap, and to all other
procedures discussed herein, one more parameter, the ’offset’ value i. In order

3 The last two parameters are redundant since they may be obtained from the
parent node, yet, it will be useful to have a clear notation of these two in the input.

15

to simplify our discussion we ignore this extra parameter.

In order to show that build-heap on n values has complexity O(n), we solve a
recursive function for a heap of height h (with h = ⌈log(n + 1)⌉). The time
complexity of building a heap of height h is the time needed for building two
sub-heaps of height h− 1 and applying heapify on the root.

T (h) = O(h) + 2 · T (h− 1)

Expanding the recursive function we get:

T (h) =
h∑

i=1

⌈ n
2i
⌉O(i) = O(n ·

h∑
i=1

i

2i
) = O(n).

The other three operations on the heap have time complexity O(h) = O(log n).
The standard implementation of extract-max operation is as follows. Extract
the maximum value stored at the root of the heap tree. Take the value at the
last leaf and put it at the root. Now, the two sub-heaps under the root are
well-formed, but the value at the root may violate the max-heap property.
Therefore, we apply heapify on the root and let the value ’float’ down to its
’right’ location. The implementation of increase-key operation is also simple.
When we increase the key of some node in the heap, it may violate the max-
heap property because it can now be larger than its parent. Therefore, in the
standard implementation, we let the value at this node ’float’ up by exchanging
place with its parent until it reaches its ’correct’ place. Using increase-key we
can implement the insert operation easily. Just add new leaf at the next vacant
place in the heap with value of −∞. Then use increase-key on that leaf with
the value to be inserted. For more details and motivation the reader is referred
to books on data structures and algorithms (see for example, [4]).

5.1 Uniform heaps and basic machinery

In this section we investigate some properties of randomized heaps and present
the basic machinery required for making heaps history independent. One of
the properties we prove in this section is that the following distributions are
equal on any given n distinct values v1, . . . , vn.

Distribution Ω1: Pick uniformly at random a heap among all possible heaps
with values v1, . . . , vn.

Distribution Ω2: Pick uniformly at random a permutation on the values
v1, . . . , vn. Place the values in an (almost) full tree according to their order
in the permutation. Invoke build-heap on the tree.

16

Note that the shape of a size n heap does not depend on the values contained
in the heap. It is always the (almost) full tree with n vertices. The distributions
above consider the placement of the n values in this tree.

In order to investigate the above distributions, we start by presenting a proce-
dure that inverts the build-heap operation (see section 5 above for the definition
of build-heap). Since build-heap is a many-to-one function, the inverse of a given
heap is not unique. We would like to devise a randomized inverting procedure
build-heap−1(H) that gets a heap H of size n as input and outputs a uniformly
chosen inverse of H under the function build-heap. Such an inverse is a per-
mutation π of the values v1, . . . , vn satisfying build-heap(vπ(1), . . . , vπ(n)) = H.
It turns out that a good understanding of the procedure build-heap−1 is useful
both for analyzing history independent heaps and also for the actual construc-
tion of its operations.

Recall that the procedure build-heap invokes recursively build-heap on each of
the root’s children sub-trees. Next it applies heapify on the value at the root
to create a well-formed heap. The inverse procedure build-heap−1 invokes first
a randomized procedure heapify−1 on the value at the root of the heap. This
creates two well-formed sub-heaps and a (random heap) value at the root,
which is not necessarily in its proper position. Next, we apply recursively
build-heap−1 on each of the sub-heaps. We begin by defining the randomized
procedure heapify−1. This procedure is a major player in most of the construc-
tions in this paper. An example of an execution of the procedure heapify−1

appears in Figure 2.

Recall that heapify gets a node and two well-formed heaps as sub-trees of this
node and it returns a unified well-formed heap by floating the value of the node
down always exchanging values with the larger child. The inverse procedure
gets a proper heap H. It returns a tree such that at the root node there is a
random value from the nodes in the heap and the two sub-trees of the root are
well-formed sub-heaps. The output tree satisfies the property that if we run
heapify on it, we get the heap H back. We make the random selection explicit
and let the procedure heapify−1 get as input both the input heap H and also
the random choice of an element to be placed at the root.

The operation of heapify−1 on input (H, i) is as follows. The value vi of the
node i in H is put in the root and the values in all the path from the root to
node i are shifted down so as to fill the vacant node i and make room for the
value v at the root. The resulting tree is returned as the output. Let us first
check that the result is fine syntactically, i.e., that the two sub-trees of the
root are well-formed heaps. We need to check that for any node, but the root,
the values of its children are smaller or equal to its own value. For all vertices
that are not on the shifted path this property is guaranteed by the fact that
the tree was a heap before the shift. Next, looking at the last (lower) node in

17

10

9

3 6 2

58 4

7

1

2

3 6 5

98 4

7

1

10

(a) (b)

Fig. 2. An example of invoking heapify−1(H, 10). Node number 10 is the node that
contains the value 2. In (b) we can see the output of invoking heapify−1 on the
proper heap in (a). The value 2 is put at the root, the path from the root to the
father of 2 is shifted down. Note that the two sub-trees in (b) are still well-formed
heaps. Applying heapify on (b) will cause the value 2 at the root to float down back
to its position in the original H as in (a)

the path, the value that was shifted into node i is the value that was held in
its parent. This value is at least as large as v and thus at least as large as the
values at the children of node i. Finally, consider all other nodes on this path.
One of their children is a vertex of the path, and was their child before the
shift and cannot contain a larger value. The other child was a grandchild in
the original heap and cannot contain a larger value as well.

Claim 12 Let n be an integer and H be any heap of size n, then for any
1 ≤ i ≤ n,

heapify
(
heapify−1(H, i)

)
= H.

Proof: After running heapify−1(H, i), the value v from node i is placed in
the root. When running the procedure heapify on the resulting tree, the value
v floats down. We argue that v floats down exactly along the shifted path
replacing each of its values, thus shifting all path values up back to their
original location. When v floats down heapify exchange v’s place with the child
that contains the higher value. Upon starting the descend, v must choose the
path first node, since this is the maximum value in the heap (previously shifted
down by heapify−1(H, i) to make room for v) 4 . Next, any node on the shifted
path has one path child and one non-path child. The value in it’s path child
must be larger than the value in the other child. The reason is that before
the path shifted down, the path child was a parent of the non-path child (in a
well-formed heap). Thus, each node on this path is larger than its sibling and
so heapify must choose to replace v with that child down the path towards
building back the heap H. Finally, when v reaches its original node i it will
stop floating down since the children of node i have not been modified by
heapify−1 and they still contain values that are not larger than v, and we are
done. 2

4 Here we use the fact that the values in the heap are distinct. If we have two nodes
with the same values, then Claim 12 becomes false.

18

procedure build-heap−1(H : Heap) : Tree
begin
1. if (size(H) = 1) then return(H)
2. Choose a node i uniformly at random among the nodes in the heap H.
3. H ← heapify−1(H, i)
4. Return TREE(root(H), build-heap−1(HL), build-heap−1(HR))
end

Fig. 3. The procedure build-heap−1(H)

An example of invoking heapify−1(H, i) is depicted in figure 2. The complexity
of heapify−1(H, i) is linear in the difference between the height of node i and
the height of the input heap (or sub-heap), since this is the length of the shifted
path. Namely, the complexity of heapify−1(H, i) is O(height(H)− height(i)).

Using heapify−1(H, i) we now describe the procedure build-heap−1(H), a ran-
domized algorithm for inverting the build-heap procedure. The output of the
algorithm is a permutation of the heap values in the same (almost) full binary
tree T underlying the given heap H. The procedure build-heap−1 is given in
Figure 3. In this procedure we denote by TREE(root, TL, TR) the tree ob-
tained by using node “root” as the root and assigning the tree TL as its left
child and the tree TR as its right child. The procedure build-heap−1 is recursive.
It uses a pre-order traversal in which the root is visited first (and heapify−1

is invoked) and then the left and right sub-heaps are inverted by applying
build-heap−1 recursively.

Claim 13 For any heap H and for any random choices of the procedure build-
heap−1,

build-heap
(
build-heap−1(H)

)
= H

Proof Sketch: The claim follows from the fact that for any 1 ≤ i ≤ n,
H = heapify

(
heapify−1(H, i)

)
, and from the fact that the traversal order is

reversed. The heapify operations cancel one by one the heapify−1 operations
performed on H in the reversed order and the same heap H is built back from
the leaves to the root. 2

In what follows, it will sometimes be convenient to make an explicit notation
of the randomness used by build-heap−1. In each invocation of the (recursive)
procedure, a node is chosen uniformly in the current sub-heap. The procedure
build-heap−1 can be thought of as a traversal of the graph from top to bottom,
level by level, visiting the nodes of each level one by one and for each traversed
node i, the procedure chooses uniformly at random a node xi in the sub-heap
H i and invokes heapify−1(H i, xi). Thus, the random choices of this algorithm
include a list of n choices (x1, x2, . . . , xn) such that for each node i in the heap,
1 ≤ i ≤ n, the chosen node xi is in its sub-tree. The xi’s are independent of

19

the actual values in the heap. They are randomized choices of locations in
the sub-heaps. Note, for example, that for any leaf i it must hold that xi = i
since there is only one node in the sub-heap H i. The vector (x1, x2, . . . , xn) is
called proper if for all i, 1 ≤ i ≤ n, it holds that xi is a node in the heap H i.
The set of proper vectors of size n is thus a cartesian product of sets, one for
each node in the heap of size n consisting of all nodes in its sub-heap. We will
sometimes let the procedure build-heap−1(H) get its random choices explicitly
in the input and use the notation build-heap−1(H, (x1, . . . , xn)).

We are now ready to prove some basic lemmas regarding random heaps with
n distinct values. In the following lemmas we denote by Π(n) the set of all
permutations on the values v1, v2 . . . , vn.

Lemma 14 Each permutation π ∈ Π(n) of values has one and only one heap

H and a proper vector X⃗n = (x1, x2, . . . , xn) such that (vπ(1), vπ(2), . . . , vπ(n)) =

build-heap−1(H, X⃗n).

Proof: We first prove that each permutation π ∈ Π(n) has at most one

heap H and one proper random vector X⃗n such that (vπ(1), vπ(2), . . . , vπ(n)) =
build-heap−1(H, (x1, x2, . . . , xn)). By claim 13 we know that there is only one
heap on which build-heap−1 may yield the permutation π. This is the heap sat-
isfying H = build-heap(vπ(1), vπ(2), . . . , vπ(n)). Therefore we only need to claim
that taking any heap H: For each distinct (proper) vector (x1, x2, . . . , xn) the
permutation induced on the values v1, . . . , vn by applying the procedure build-
heap−1(H, (x1, . . . , xn)) is distinct.

Consider any two distinct proper vectors (x1, x2, . . . , xn) and (y1, y2, . . . , yn).
Suppose the first different value in these vectors appears in location i. In this
case, until build-heap−1 is applied on the sub-heap H i the procedure build-
heap−1(H, (x1, x2, . . . , xn)) creates the same tree as build-heap−1(H, (y1, y2, . . . , yn)).
But then, node i exchanges values with node xi ̸= yi and causes a different
value to be put in node i. In the rest of the traversal the value in node i is
not modified. Thus, the output of build-heap−1(H, (x1, x2, . . . , xn)) is different
from the output of build-heap−1(H, (y1, y2, . . . , yn)).

By now we have shown that for any permutation π there is at most one heap
H and random vector (x1, . . . , xn) such that π = build-heap−1(H, (x1, . . . , xn)).
We now show that for any permutation π, there exist a heap H and a random
(proper) vector (x1, . . . , xn) such that π = build-heap−1(H, (x1, . . . , xn)).

Denote by support(H) the set of all permutations π ∈ Π(n) that satisfy:

build-heap(vπ(1), vπ(2), . . . , vπ(n)) = H

That is support(H) contains all the permutation that result in the heap H.
Since build-heap is deterministic these sets are a partition of all possible per-

20

mutation.

We prove that for any permutation π ∈ Π(n) in support(H) there exists a
proper vector (x1, . . . , xn) such that build-heap−1(H, (x1, . . . , xn)) yields the
order of elements as in π. Since, any permutation is in some set the claim
follows.

We will prove this by induction on the height of the heap. If height(H) = 1
then there is only one permutation π in support(H)and the random vector {1}
yield this permutation.

Consider any heapH of height h and any permutation π ∈ Π(n) such thatH =
build-heap(vπ(1), . . . , vπ(n)). Considering the operation of the procedure build-
heap we extract the last operation of heapify on the root and get: H =build-
heap(vπ(1), vπ(2), . . . , vπ(n)) = heapify(vπ(1), HL =build-heap(vπ(2), vπ(4), vπ(5), . . .),
HR =build-heap(vπ(3), vπ(6), vπ(7), . . .))

In the last operation of heapify the element vπ(1) floats down to the ith position
creating the heap H. Now taking x1 = i will cause build-heap−1 in its first step
creating exactly HL, HR and putting vπ(1) back at the root. Since HL and
HR are of height h − 1, we can use the induction hypothesis. We get that
there exist two series (x2, x4, x5, . . .) and (x3, x6, x7, . . .) that yields the order
elements as in πL = π(2), π(4), . . . and πR = π(3), π(6), Merging the series
along with x1 creates the desired proper vector (x1, x2, . . . , xn). 2

Corollary 15 If H is picked up uniformly among all possible heaps with the
same content then T = build-heap−1(H) is a uniform distribution over all
π ∈ Π(n).

Proof: As shown, for any permutation π in support(H), i.e., a permutation
that satisfies build-heap(vπ(1), vπ(2), . . . , vπ(n)) = H, there is a unique ran-
dom vector (x1, . . . , xn), that creates the permutation. Each random (proper)
vector has the same probability. Therefore π is chosen uniformly among all
permutation in support(H). Since H is picked up uniformly among all heaps
the corollary follows. 2

Lemma 16 Let n be an integer and v1, . . . , vn be a set of n distinct values.
Then, for heap H that contains the values v1, v2, . . . , vn it holds that:

Pr
[
π ∈R Π(n) : build-heap(vπ(1), vπ(2), . . . , vπ(n)) = H

]
= p(H)

Where p(H) is 1/ the number of heaps of size n, and it is a function depending
only on n (the size of H). Furthermore, p(H) = N(H)/|Π(n)| where N(H)
is the number of proper vectors of size n, and can be defined recursively as

21

follows:

N(H) =

 1 if size(H) = 1

size(H) ·N(HL) ·N(HR) otherwise

Proof: For any H the probability that build-heap(vπ(1), vπ(2), . . . , vπ(n)) = H
is the probability that the permutation π belongs to support(H). According
to lemma 14 the size of support(H) is the same for any possible heap H. This
follows from the fact that any random vector (x1, x2, . . . , xn) result in different
permutation in support(H) and each permutation in support(H) has a vector
that yield it.

The size of support(H) is exactly the number of possible random (proper)
vectors. This number can be formulated recursively as N(H) depending only
on the size of the heap. The probability for each heap now follows. 2

Corollary 17 The following distributions Ω1 and Ω2 are equal.

Distribution Ω1: Pick uniformly at random a heap among all possible heaps
with values v1, . . . , vn.

Distribution Ω2: Pick uniformly at random permutation π ∈R Π(n) and
invoke build-heap(vπ(1), vπ(2), . . . , vπ(n)).

Proof: As shown in lemma 16, distribution Ω2 gives all heaps containing the
values v1, v2, . . . , vn the same probability. By definition, this is also the case in
the distribution Ω1. 2

6 Building and maintaining History independent Heap

In this section we prove our main theorem.

Theorem 18 There exists a history independent implementation of the heap
data structure with the following time complexity. The worst case complexity
of the build-heap operation is O(n). The worst case complexity of the increase-
key operation is O(log n). The expected time complexity of the operations insert
and extract-max is O(log n), where expectation is taken over all possible ran-
dom choices made by the implementation. The worst case complexity of the
operations insert and extract-max is O(log2 n).

Our goal is to provide an implementation of the operations build-heap, insert,
extract-max, and increase-key that maintains history independence without in-
curring an extra cost on their (asymptotic) time complexity. We obtain his-
tory independence by preserving the uniformity of the heap. When we create
a heap, we create a uniform heap among all heaps on the given values. Later,

22

procedure build-heap-oblivious(v1, . . . , vn: Values) : Heap
begin
1. Choose π ∈R Π(n) uniformly at random.
2. H = build-heap(vπ(1), . . . , vπ(n)).
3. Return (H)
end

Fig. 4. The procedure build-heap-oblivious(v1, . . . , vn).

each operation on the heap assumes that the input heap is uniform and the
operation maintains the property that the output heap is still uniform for the
new content. Thus, whatever series of operation is used to create the heap
with the current content, the output heap is a uniform heap with the given
content. This means that the memory layout is history independent and the
set of operations make the heap history independent.

This method of obtaining and proving weak history independence is essentially
the same as in [9]. In [9] Micciancio obtained weak history independent 2-3
trees by defining a procedure that build such trees from scratch yielding some
distribution on the structure of the trees. Then, showing that building such
trees by any other sequence of operations yield the same distribution. Notice,
however, that in the case of 2-3 trees this was not a uniform distribution on
all possible trees as in our case.

6.1 The build-heap operation

We start with the randomized implementation of the operation build-heap-
oblivious. We implement it by applying a random permutation on the input
values and then invoking the standard build-heap procedure. The pseudo-code
appears in figure 4.

Lemma 19 For any n ∈ N and for any n distinct values (v1, . . . , vn), the dis-
tribution of heaps output by build-heap-oblivious(v1, . . . , vn) is a uniform dis-
tribution over all possible heaps containing the values v1, . . . , vn.

Proof: The assertion follows from corollary 17. 2

6.2 The increase-key operation

We now provide an implementation of the increase-key operation. This imple-
mentation is similar to the standard implementation of increase-key for stan-
dard (non-oblivious) heaps. However, we extend this operation by allowing

23

procedure increase-key-oblivious(H: Heap, i: location value: the new value)
: Heap

begin
1. if value < vi
2. vi ← value
3. H i ← heapify(i,H i

L,H
i
R)

4. Otherwise:
5. vi ← value
6. while i ̸= 1 and vi > vparent(i)
7. exchange the values at i and parent(i).
8. i← parent(i)
end

Fig. 5. The procedure increase-key-oblivious

both increasing and decreasing the key. Such an operation will be useful for
us in the implementations of insert and extract-max (see below). In the stan-
dard implementation of increase-key the node whose key is to be increased is
identified and its value is increased. The update may create a tree that is not
a well-formed heap. To make the tree a well-formed heap again, the standard
implementation traverses the path from the node toward the root to find the
new proper place for the modified value. During this traversal, it repeatedly
compares the value of the node to its parent, exchanging them if the child
is larger than its parent, when the comparison shows that the node key is
smaller than its parent the procedure terminates, and the tree obtained is a
well-formed heap.

Our history independent implementation of increase-key is the same as the
standard one. We will assert that it is good enough. Implementing the oper-
ation in case the key at node i has decreased is done by invoking the heapify
procedure on H i. Note that H i is an appropriate input for heapify. The root
node (node i) may contain any value, but its two sub-treesH i

L andH i
R are well-

formed heaps. Thus, heapify floats the value down to a proper location modi-
fying H i into a well-formed heap. The pseudo-code of increase-key-oblivious is
provided in figure 5.

We now show that the operation of modifying vi to v using increase-key-
oblivious is a one-to-one transformation from the set of all heaps with values
v1, v2, . . . , vn to the set of all heaps with values v1, v2, . . . , vi−1, v, vi+1, . . . , vn.
Furthermore, the inverse operation is exactly applying increase-key-oblivious
to modify v back to vi. The one-to-one property will be used to show that
uniformity is maintained by the increase-key-oblivious operation.

Lemma 20 For any heap H, any vertex i of H, and any (distinct) new value
v not contained in H, Let H ′ = increase-key-oblivious(H, i, v). Let j be the
vertex with value v in H ′ and let vi be the value of node i in H (the value that

24

was modified). Then H = increase-key-oblivious(H ′, j, vi).

Proof: Let us check the case that v > vi. The other case is similar. When
running increase-key-oblivious, the new value v floats up until it reaches the root
or a parent with a larger value. While going up, all values on the propagation
path are shifted one vertex down. We now argue that if we modify the new
value v in vertex j back to vi, and apply increase-key-oblivious on the node
j, then vi floats back exactly along this shifted path returning vi to vertex
i. This is true since now increase-key-oblivious applies heapify on vertex j and
heapify keeps switching vi with its child that contains the higher value. To
note that vi indeed goes down along the propagation path, we note that the
path vertex must be the larger child since it was the parent of its sibling
before v floated up along that path. Therefore, increase-key-oblivious will always
choose to exchange vi with the previously shifted child returning all vertices
in the propagation path back to their previous locations. The value vi will
stop floating exactly in vertex i since the children of vertex i still contain the
original values v2i and v2i+1, and since H was well-formed, these values must
be smaller than vi. 2

We are now ready to prove that the procedure increase-key-oblivious is history
independent. We will show that if the input heap H is distributed uniformly
among all heaps with the values {v1, v2, . . . , vn} then the output heap H’ is
distributed uniformly among all heaps with the values {v1, v2, . . . , v′i, . . . , vn}
where v′i is the new value that was assigned to vertex i (and perhaps moved
by increase-key-oblivious to a different location).

Claim 21 Let H be a heap of size n uniformly distributed among all heaps
with the values {v1, v2, . . . , vn}, let i be any number 1 ≤ i ≤ n, and let v′i
be a value not contained in H. Then H’ =increase-key-oblivious(H, i, v′i) is
distributed uniformly among all heaps with the values {v1, v2, . . . , vn} \ {vi} ∪
{v′i}.

Proof: From lemma 16 we know that for any given n values, the number of
heaps of size n with these values depends only on n (and not on the actual
values). Now, by lemma 20, we know that increase-key-oblivious gives a one-
to-one correspondence between equal sized sets. Thus, the probability that a
heap with values {v1, v2, . . . , vn}\{vi}∪{v′i} appears in the output of increase-
key-oblivious equals the probability that its corresponding heap with values
{v1, v2, . . . , vn} appears in the input. By the conditions of the lemma, the
latter is uniform. 2

25

procedure extract-max-try-1(H: Heap) : Heap
begin
1. Choose uniformly at random a proper randomization vector (x1, . . . , xn+1)

for the procedure build-heap−1.
2. T = build-heap−1(H, (x1, x2, . . . , xn+1))
3. Let T ′ be the tree obtained by removing the last node with value vi from T .
4. H’ = build-heap(T ′)
5. if vi is the maximum then return (H ′). Otherwise:
6. Modify the value at the root to vi.
7. H ′′ = heapify(H, 1) (i.e. apply heapify on the root)
8. Return (H ′′)
end

Fig. 6. The procedure extract-max-try-1

6.3 The extract-Max operation

We start with a naive implementation of extract-max which we call extract-
max-try-1. This implementation has complexity O(n). Of-course, this is not an
acceptable complexity for the extract-max operation but this first construction
will be later modified to make the real history independent extract-max. The
simplest implementation, given the tools we developed so far, is to apply the
randomized procedure build-heap−1 on the heap H (of size n + 1) to get a
uniformly chosen permutation on the values v1, v2, . . . , vn+1, then replace the
maximum value with the value that turned out last, and re-build the heap
from the obtained random permutation on the first n values (excluding the
maximum value that is now in location n+ 1).

In order to be able to improve the procedure, we start with a similar, yet
somewhat different naive implementation of extract-max denoted extract-max-
try-1. We run build-heap−1 on the heap H to get a uniform permutation π on
the n+ 1 values. Next, we remove the value at the last leaf vπ(n+1). After this
step we get a uniformly chosen permutation of the n values excluding the one
we have removed. Next, we run build-heap on the n values to get a uniformly
chosen heap among the heaps without vπ(n+1). If vπ(n+1) is the maximal value
then we are done. Otherwise, we continue by replacing the value at the root
(the maximum) with the value vπ(n+1) and running heapify on the resulting tree
to ”float” the value vπ(n+1) down and get a well-formed heap. We will show
that this process results in a uniformly chosen heap without the maximum
value. Later, we will show that this process contains many redundant steps and
actually running only O(log n) of the steps in this procedure suffices to receive
the same output. The pseudo code of the naive extract-max-try-1 appears in
figure 6.

Claim 22 Let v1, . . . , vn+1 be n+1 (distinct) values and let H be a uniformly

26

distributed heap over all heaps with values v1, . . . , vn+1. Then, invoking proce-
dure extract-max-try-1 on H implies the following properties on the heap H’
created in step 4.

(1) The value that is contained in H but not in H ′ is uniformly distributed
over the values v1, . . . , vn+1.

(2) Given that vi is contained in H and not in H ′, then H ′ is uniformly
distributed over all possible heaps with content of {v1, . . . , vn+1} \ {vi}.

Proof: By corollary 15 and since the input heap is uniformly distributed,
we get that build-heap−1(H) is a uniformly chosen permutation of the values
{v1, . . . , vn+1}. Thus, removing the last value in the permutation we get a
uniformly chosen removed value, and when conditioning on vi being removed,
we get a uniform permutation over the values {v1, . . . , vn+1} \ {vi}. From
corollary 17 we know that applying build-heap on this permutation results in
uniformly chosen heap among all possible heaps with content {v1, . . . , vn+1} \
{vi}. 2

Claim 23 Let v1, . . . , vn+1 be n+1 (distinct) values, let m denote the index of
the maximum value (i.e., vm is the maximum value), and let H be a uniformly
distributed heap over all heaps with values v1, . . . , vn+1. Then, invoking proce-
dure extract-max-try-1 on H yields an output heap that is uniformly distributed
over all possible heaps with content {v1, . . . , vn+1} \ {vm}.

Proof: By claim 22, for any i, 1 ≤ i ≤ n+1, conditioned on vi being removed,
the heap H ′ created in step 4 is uniformly distributed over all heaps with
content {v1, . . . , vn, vn+1} \ {vi}. If i = m, i.e., vi is the maximal value then
we are done. Otherwise, vm must appear in the root of H ′. We note that step
6 and 7 implement increase-key-oblivious decreasing the value of the root from
vm to vi. By claim 21 the resulting heap is uniform if the input heap H ′ is
uniform among all heaps of its content. By claim 22 this is correct for any
i, 1 ≤ i ≤ n + 1. Thus, we get that for any choice of i (and so, also for
a random i), the resulting heap is uniformly distributed over all heaps with
content {v1, . . . , vn+1} \ {vm} and we are done. 2

Note that in the above proof we did not need to use the first part of claim
22. The index i just happens to be uniformly distributed. Also, we might have
replaced steps 6 and 7 in procedure extract-max-try-1 with an invocation of
increase-key-oblivious. We chose to write steps 6 and 7 explicitly for clarity.

The major reduction of time complexity is presented in our next step in which
we construct procedure extract-max-try-2. It performs a small part of procedure
extract-max-try-1 achieving the same output. This improvement reduces the
complexity of extract-max operation from O(n) to O(log2(n)). We will then
show how to further push the complexity down to O(log n). The intuition of
the saving is as follows. We look at the steps executed by procedure build-

27

heap−1 and check which of them are necessary. It turns out that most of them
are “cancelled” when build-heap is later invoked. Not executing such steps
yields exactly the same output at a lower complexity.

Denote by {a1, a2, . . . , ah} the indices of the nodes that reside on the path
from the last leaf (i.e. the last node in the heap tree) to the root. The leaf is
denoted a1 and the root ah, thus, i is the height of node ai. Recall that the
procedure build-heap−1 invokes first heapify−1 on the value at the root of the
heap. This creates two well-formed sub-heaps and a value at the root, which is
not necessarily in its proper position. Next, it applies recursively build-heap−1

on each of the sub-heaps. When it applies afterward build-heap it invokes
first recursively build-heap on each of the root’s children sub-trees. Next it
applies heapify on the value at the root to create a well-formed heap. The
major reduction is applying build-heap−1 and build-heap recursively only on
the direction to the last leaf and do nothing on the other direction. The result
is that extract-max-try-2 applies heapify−1 only on the nodes (ah, ah−1, . . . , a1)
(from top to bottom) and then heapify on a similar subset in a reverse order.
We will prove that eventually this outputs the same heap as extract-max-try-1.

The procedure build-heap−1 uses randomness for choosing a descendant xi for
each visited vertex i. We denote the randomness by a vector (x1, . . . , xn+1).
But since we will only be interested in the vertices (a1, . . . , ah), we will use the
notation (xa1 , xa2 , . . . , xah) to denote the sequence of random choices made for
the vertices (a1, . . . , ah) that interest us. Thus, xaj is the random choice for
vertex aj.

Now, let us show how to reduce most of the steps in procedure extract-max-try-
1. The heart of the matter is a procedure extract-recursive-try-2 that substitutes
steps 2,3, and 4 in extract-max-try-1. Note that these steps require O(n) time
steps since build-heap−1 and build-heap are run. The idea is that instead of
performing build-heap−1 on the heap, removing the last leaf and performing
build-heap again (as in extract-max-try-1), it is enough to perform only parts
of these two procedures: the parts that are relevant for the vertices a1, . . . , ah.

Recall our notational convention from section 5.1. The heapify procedure gets
3 parameters (two sub-heaps and an index): heapify(i,H i

L, H
i
R) and outputs a

well-formed heap H i, whereas the inverse function heapify−1 gets a well formed
heap, and a choice xj and it returns a tree containing two well formed sub-
heaps HL and HR and the value vxj

(of the input heap) at the root. The
procedure extract-recursive-try-2 runs heapify−1 only on the vertices ah, . . . , a1
(from root to leaf) instead of running it on all vertices. It then removes the
value at the last leaf and reconstructs the heap by running heapify on the
vertices a2, . . . , ah in a reverse order: from leaf to root (there is no need to
run heapify on a1 since the value at this node is extracted from the heap).
To simplify the analysis later, we present procedure extract-recursive-try-2 in

28

procedure extract-recursive-try-2(H: Heap, (xa1 , xa2 , . . . , xah): Random choices)
: Heap, value
begin
1. if H = vi (i.e. H is one node) return (empty heap, vi). Otherwise:
2. (HL,HR, vxah

) = heapify−1(H,xah).

3. If the path to the last leaf in H is going to the left:
4. (H ′

L, last) ←extract-recursive-try-2(HL, {xa1 , xa2 , . . . , xah−1})
H ′

R ← HR.
Otherwise:

5. (H ′
R, last) ← extract-recursive-try-2(HR, {xa1 , xa2 , . . . , xah−1})

H ′
L ← HL.

6. Return((heapify(H ′
R,H

′
L, vxah

), last)).

end

Fig. 7. The procedure extract-recursive-try-2

a recursive manner. First, heapify−1 is run on the root. In the bottom of the
recursion, we have one vertex in the tree. In this case, this vertex is the last
leaf, and it is removed. Otherwise, extract-recursive-try-2 is run recursively on
the subtree that contains the path (ah−1, . . . , a1). Procedure extract-recursive-
try-2 is assumed to return a well-formed heap from which the value vi (that
resides in the last leaf) has been removed. Finally, heapify is applied on the
root (containing the value vxaj

of the input heap at recursion level j), and the
two sub-heaps: the one returned by the recursion and the one that was not
modified (since it was not on the (a1, . . . , ah) path). Thus, extract-recursive-
try-2 returns a well-formed heap. The procedure also returns the value of the
last leaf (that was removed from the heap). The pseudo code appears in figure
7.

Procedure extract-max-try-2 is the procedure in which we switch steps 2,3,
and 4 in extract-max-try-1 with the sub-procedure extract-recursive-try-2. The
pseudo-code of this procedure is given in figure 9. We now claim that extract-
max-try-1 and extract-max-try-2 have the same output distribution. The essence
of the proof will be to show that lines 2,3,4 above (that will be denoted extract-
recursive-try-1) output the same heap as extract-recursive-try-2 when they get
the same input. We define extract-recursive-try-1 to be the sub-procedure that
gets H and a proper random vector (x1, . . . , xn+1) in the input. It performs
lines 2,3, and 4 of extract-max-try-1 and returns the H ′ defined in line 4, and vi,
the value of the (removed) last leaf returned in step 3. For clarity we explicitly
provide this procedure in figure 8.

To make the syntax equal, we let extract-recursive-try-2 take a full proper ran-
dom vector (x1, . . . , xn+1) although it uses only the values (xa1 , xa2 , . . . , xah)
out of this vector. We now state and prove the claim.

Claim 24 For any heap H of size n+1 and proper random vector (x1, . . . , xn+1):

29

procedure extract-recursive-try-1(H: Heap, (x1, x2, . . . , xn+1): Random choices)
: Heap, value
begin
1. T = build-heap−1(H, (x1, x2, . . . , xn+1))
2. Let T ′ be the tree obtained by removing the last node with value vi from T .
3. H’ = build-heap(T ′)
4. Return (H ′, vi)
end

Fig. 8. The procedure extract-recursive-try-1

procedure extract-max-try-2(H: Heap) : Heap
begin
1. Choose uniformly at random a proper randomization vector (xa1 , . . . , xah)

for the procedure extract-recursive-try-2.
2. (H ′, vi) = extract-recursive-try-2(H, (xa1 , xa2 , . . . , xah))
3. if vi is the maximum return (H ′). Otherwise:
4. Modify the value at the root to vi.
5. H ′′ = heapify(H, 1) (i.e. apply heapify on the root)
6. Return (H ′′)
end

Fig. 9. The procedure extract-max-try-2

extract-recursive-try-1(H, (x1, . . . , xn+1)) = extract-recursive-try-2(H, (x1, . . . , xn+1))

Proof: The proof is by induction on the height of the heap H.

Induction Base: When the heap is of height 1, there is no difference between
the operation of extract-recursive-try-1 and extract-recursive-try-2. Therefore the
claim holds.

Induction Step: Consider the first operation of heapify−1, applied in the
same manner in both extract-recursive-try-1 and extract-recursive-try-2. Let
(H ′

L, H
′
R, vxah

)= heapify−1(H, xah). Assume without loss of generality that the

first step from the root on the path to the last leaf goes left. Let X⃗n+1 be a
proper vector of size n+1, (x1, x2, . . . , xn+1). Now by reordering the operation
of extract-recursive-try-1 we get that:

30

extract-recursive-try-1(H, X⃗n+1)

= build-heap(remove last node(build-heap−1(H, X⃗n+1)))

= heapify(extract-recursive-try-1(H ′
L, X⃗n+1),

build-heap(build-heap−1(H ′
R, X⃗n+1)), vxah

) (1)

= heapify(extract-recursive-try-1(H ′
L, X⃗n+1), H

′
R, vxah

) (2)

= heapify(extract-recursive-try-2(H ′
L, X⃗n+1), H

′
R, vxah

) (3)

= extract-recursive-try-2(H, X⃗n+1) (4)

We remark that the output of extract-recursive-try-1 and extract-recursive-try-2
are two values: A new heap and a value extracted from the previous heap.
The equation is only between the first parameter, the resulting heap. Since
the resulting heaps are the same, the extracted value must also be the same.
Equality 1 follows from reordering the operations of extract-recursive-try-1. To
see that equality 1 holds, note that build-heap−1 applies heapify−1 on the root
and then continues recursively to the sub-heaps of the root’s children. The
operation of build-heap−1 on each of the sub-heaps can be done independently
of the other sub-heap. This is true since the operation of heapify−1 affects only
the sub-tree it operates on. The same holds for the operation of build-heap,
that can be done independently on both sub-heaps. Therefore, we can separate
the operations done on the right child from the operations done on the left
child. Equality 2 follows from removing the cancelling operations build-heap
and build-heap−1. Equality 3 follows from the induction hypothesis. The last
equality is exactly the definition of extract-recursive-try-2. 2

Corollary 25 For any heap H extract-max-try-1(H) and extract-max-try-2(H)
produce the same output distribution.

Proof: The only difference between extract-max-try-1 and extract-max-try-2
is the use of extract-recursive-try-2 instead of extract-recursive-try-1. Thus, the
corollary follows directly from claim 24 2

Though it is not needed for our final result, it is interesting to note that the
worst time complexity of the procedure extract-recursive-try-2 and therefore
the complexity of extract-max-try-2 is O((log n)2). Each iteration of extract-
recursive-try-2 has worst time complexity O(h) and there are h such invoca-
tions, where h = O(log n). This bound also holds for the next (final) im-
plementation of the extract-max operation, because the final implementation
always executes less operations than the above implementation. However, for
this final implementation, we will show that the expected time complexity is
only O(log n).

We are now ready to provide the last improvement over the extract-max op-

31

eration, which reduces the complexity of extract-max to O(log(n)). We start
with some intuition. Recall that the idea behind the first procedure extract-
recursive-try-1 is to use build-heap−1 to get one of the possible permutations
that could create the input heap H. This is done only in order to remove the
value in the last leaf of the generated tree and build back the heap. When we
build back the heap the value at the last leaf is removed and therefore it is
possible that some of the operations that previously involved this value will
change. In our improvement we try to determine which of the operations re-
ally involved the value at the last leaf. We then run the reversing and building
only with these operations. We will show that in most cases there aren’t many
operations that involve the value of the last leaf. For instance, if the value
is very small it probably stays at the last leaf and won’t affect most of the
operation in build-heap.

Practically, we will not change the procedure extract-recursive-try-2, but we
will manipulate its input vector of random choices. Notice that when a node
chooses to stay in its place and not replace another node during heapify−1

(i.e. when xai = ai) then the complexity of the heapify−1 is O(1). We will
manipulate the random choices so that most of the operations will become as
efficient as that and we will show that the output remains the same.

Next we provide the sub-routine that manipulates a series of random choices
(xa1 , xa2 , . . . , xah) and return instead a series (ya1 , ya2 , . . . , yah) that is cheaper
to run. This is done in complexity O(log(n)). We then prove that running
extract-recursive-try-2 with the new series of random choices does not change
the procedure’s output.

The sub-routine produce-y that execute this manipulation appears in figure
10. Notice that it gets as input only the size of the heap tree and the random
choices, and does not depend on the actual values in the heap. The procedure
returns the new series (ya1 , ya2 , . . . , yah) plus an internal variable leaf-h. This
value is not used by the calling routine but it will help us proving some prop-
erties about the functionality of the series. Informally, this variable contains
the height of the value in the heap H that has been removed from the heap.
The procedure produce-y works in a bottom-up manner. When it gets a vector
(xa1 , xa2 , . . . , xah), it first manipulate the sub-series of its sub-heap and last
manipulates the last value yah . When the procedure manipulates the last value
it can also increase the value of leaf-h by 1. This happens only when xah is
a location inside the sub-heap of node aleaf-h, where leaf-h is the value been
calculated for the sub-heap.

We now prove a few claims that shed light on the leaf-h index. The first claim
asserts that when we apply extract-recursive-try-2 on a heap H of size n + 1
to get new heap H’ of size n then the value that is removed from H is the
value at node aleaf-h and the heaps H and H ′ are equal except for changes in

32

procedure produce-y(n: Heap size, (xa1 , xa2 , . . . , xah): Random choices)
: (ya1 , ya2 , . . . , yah), leaf-h
begin
1. if n = 1 (i.e. the heap is of size 1, and the vector is of size 1)
2. Return((xa1), 1) (i.e. in this case xa1 = a1 always)
3. ((ya1 , ya2 , . . . , yah−1

), leaf-h) = produce-y(n′, (xa1 , xa2 , . . . , xah−1
))

where n′ is the size of the sub-heap to the direction of the last leaf.
4. if xah is a location in the sub-heap of aleaf-h,H

aleaf-h then:
5. Return((ya1 , ya2 , . . . , yah−1

, xah), leaf-h + 1)
6. Otherwise:
7. Return((ya1 , ya2 , . . . , yah−1

, ah), leaf-h)
end

Fig. 10. The procedure produce-y

the sub-heap Haleaf-h .

Claim 26 Let H be a heap with n+1 values. Let a1, a2, . . . , ah be the path from
the root to the last leaf. Let (xa1 , xa2 , . . . , xah) be a proper random choice for the
nodes (a1, a2, . . . , ah). Let H ′ = extract-recursive-try-2(H, (xa1 , xa2 , . . . , xah)),
and let leaf-h be the one returned by produce-y(size(H), xa1 , xa2 , . . . , xah)). Then:

(1) The heaps H and H ′ are identical except for the sub-tree Haleaf-h of the
node aleaf-h.

(2) The value of the node aleaf-h in H is the one that has been removed from
H by extract-recursive-try-2.

Proof: The proof is by induction on the height of the heap.

Induction Base: If H is of size 1 then H contains one node and H’ is empty.
In this case leaf-h is always 1 and the claim holds trivially.

Induction Step: We consider a heap of height h and assume the claim holds
for all heaps of height less than h. Assume without loss of generality that the
first step on the path from the root to the last leaf goes left. Let (HL, HR, vxah

)
= heapify−1(H, xah), and let leaf-h’ = produce-y(size(HL), (xa1 , xa2 , . . . , xah−1

)).
Consider the operation of extract-recursive-try-2 we may write:
extract-recursive-try-2(H, (xa1 , xa2 , . . . , xah)) =
heapify(extract-recursive-try-2(HL, (xa1 , xa2 , . . . , xah−1

)), HR, vxah
)

We partition the analysis into two cases according to whether leaf-h= leaf-h’ or
leaf-h = leaf-h’ +1. Recall that the value of leaf-h on a series (xa1 , xa2 , . . . , xah)
is at least the value of leaf-h on the sub-series (xa1 , xa2 , . . . , xah−1

), and may be
increased by at most by one in any recursive level of the procedure produce-y.

Case 1: leaf-h = leaf-h’: By the operation of produce-y this means that xah is a
location not in the sub-heap of node aleaf-h′ . By the induction hypothesis H ′

L=

33

extract-recursive-try-2(HL, (xa1 , xa2 , . . . , xah−1
)) is different from HL only in the

sub-heap of aleaf-h′ = aleaf-h. The rest of HL remains unchanged. The values in
the sub-heap under aleaf-h′ are all the values that were there in the heap HL

except for the value that was removed by extract-recursive-try-2. The removed
value was at node aleaf-h′ in HL and thus was the maximum value among its
sub-heap. Therefore, the value at location aleaf-h′ in the modified heap HL’ is
smaller than the value at the same location is HL.

When we applied heapify−1 in step 2 of the procedure extract-recursive-try-2
the value at node xah got to the root and shifted all the values on the path
from the root to node xah one step down. We claim that when we apply heapify
in step 6 of extract-recursive-try-2 on the root location of the modified heap
letting the value at the root ’float’ down, the value ’floats’ exactly along this
previously shifted path returning all the values on this path to their original
positions. This is true for two reasons: First, we know that this path does not
intersect the changed sub-heap Haleaf-h′ . Second, the value at location aleaf-h′ is
now smaller from the value that had been there before the operation of extract-
recursive-try-2. By the definition of heapify a value that floats down exchange
places with the maximal child so it will not change the floating route at the
parent of node aleaf-h (that got smaller). For this reason the heaps H and H ′

remain different only in the sub-heap of aleaf-h′ = aleaf-h. This proves the first
part of the claim.

Moving to the second part we note that by the induction hypothesis, the value
that is removed by extract-recursive-try-2 from HL is the value at location
aleaf-h′ = aleaf-h in HL. Since xah is a location not in the sub-heap of node aleaf-h′

then the first operation of heapify−1 in step 2 does not change the value at
that location. Thus, the removed value is at location aleaf-h also in H and we
are done with the second part of the claim.

Case 2: leaf-h = leaf-h’ +1. From the operation of produce-y this means that
xah is a location in the sub-heap of node aleaf-h′ .

By the induction hypothesis we know that the differences between HL and
HL’ are only in the sub-tree of node aleaf-h′ . When applying the first heapify−1

in step 2 of the procedure extract-recursive-try-2 the value at node xah got to
the root and shifted all the values on the path from the root to node xah one
step down. We claim that when we apply heapify in step 6 of the procedure
extract-recursive-try-2 on the root location of the modified heap letting the
value at the root ’float’ down, the value ’floats’ exactly along this previously
shifted path at least until it reaches the location of the parent of node aleaf-h′ .
This is true since HL’ is different from HL only in the sub-heap of node aleaf-h′ .
This claim implies that all the values on this sub-path return to their original
positions. Thus, the heaps H and H’ can now be different only in the sub-heap
of the parent of location aleaf-h′ . Since leaf-h = leaf-h’ +1, it is exactly node

34

aleaf-h, and we are done with the first part of the claim.

By the induction hypothesis, the value that was removed from H is the value
that was in node aleaf-h′ in HL. Remember that the operation heapify−1 moves
the value at node xah to the root and shift all the values on the path to location
xah one step down. Since xah is a location in the sub-heap of node aleaf-h′ this
value is the value that was in location aleaf-h (the parent node of aleaf-h′) in H
and was shifted down one step by the first operation of heapify−1 in step 2.
This proves the second part of the claim. 2

We have shown that H ′ =extract-recursive-try-2(H, (xa1 , xa2 , . . . , xah)) is dif-
ferent from H only inside the sub-heap of node aleaf-h. We now prove that the
changes in that sub-heap do not depend on the values in the rest of the heap.
That is, if two heaps H1, H2 satisfy Haleaf-h

1 = Haleaf-h
2 (but the rest of their

values may be different) then the sub-heaps Haleaf-h
1 and Haleaf-h

2 remain equal
also after applying extract-recursive-try-2 on both heaps.

Claim 27 Let H1, H2 be two heaps of size n. Let ah, ah−1, . . . , a1 be the nodes
on the path from the root to the last leaf in both heaps. Let (xa1 , xa2 , . . . , xah)
be a proper random choices for the nodes (a1, a2, . . . , ah) respectively. Let
H ′

1 = extract-recursive-try-2(H1, (xa1 , . . . , xah)) and H ′
2 = extract-recursive-try-

2(H2, (xa1 , . . . , xah)), and let leaf-h be the one returned by produce-y(size(H1)
= size(H2), (xa1 , xa2 , . . . , xah)). Then:

if H
aleaf-h
1 = H

aleaf-h
2 then H

′aleaf-h
1 = H

′aleaf-h
2 .

Proof: The proof is by induction on the height of the heaps.

Induction Base: If The height of the heaps is 1 then leaf-h is always 1, and
the claim holds trivially.

Induction Step: We consider two heaps of height h and assume the claim
holds for every two heaps of height less than h. Assume without loss of gen-
erality that the first step on the path from the root to the last leaf goes left.
This direction is the same in both heaps since they are of the same size. Let
(H1L, H1R, vxah

) = heapify−1(H1, xah) and (H2L, H2R, v
′
xah

) = heapify−1(H2, xah).

Let leaf-h’ = produce-y(size(H1L)= size(H2L) , (xa1 , xa2 , . . . , xah−1
)). Looking

at the operation of extract-recursive-try-2 we note that for both heaps:

extract-recursive-try-2(H, (xa1 , xa2 , . . . , xah)) =

heapify(extract-recursive-try-2(HL, (xa1 , xa2 , . . . , xah−1
)), HR, vxah

)

We partition the analysis into two cases according to whether leaf-h= leaf-h’ or
leaf-h = leaf-h’ +1. Recall that the value of leaf-h on a series (xa1 , xa2 , . . . , xah)
is at least the value of leaf-h on the sub-series (xa1 , xa2 , . . . , xah−1

), and may
increase by at most one in the top recursion level of the procedure produce-y.

35

Case 1: leaf-h = leaf-h’: By the operation of produce-y this means that xah

is a location not in the sub-heap of node aleaf-h′ in both heaps. If before the
operation of heapify−1 at step 2 of extract-recursive-try-2 Haleaf-h

1 equals Haleaf-h
2

then Haleaf-h
1L must equal also Haleaf-h

2L , because the operation heapify−1 does not
affect this sub-heap.

By claim 26, after applying recursively extract-recursive-try-2 on the sub-heaps
H1L, H2L, the only change in the sub-heaps is in the sub-heaps of node aleaf-h′ .
The new value at node aleaf-h′ after applying extract-recursive-try-2 is the max-
imal value among the values in this sub-heap and it is smaller than the value
that was located in aleaf-h′ inHL, because the value that was removed by extract-
recursive-try-2 is the value at location aleaf-h′ that contained the maximal value
in this sub-heap.

We now return to the operation heapify−1 in step 2 in the procedure extract-
recursive-try-2. On both heaps the value at node xah got to the root and shifted
all the values on the path from the root to node xah one step down. We claim
now that when we apply the last heapify (i.e in step 6 in extract-recursive-try-2)
on the root location on the modified heaps letting the value at the root ’float’
down, the value ’floats’ exactly along this previously shifted path returning
all the values on this path to their original positions. This is true for two
reasons: First, we know that this path does not intersect the modified sub-
heap Haleaf-h′ . Second, the value at location aleaf-h′ is now smaller then the value
that had been there before the operation of extract-recursive-try-2. Therefore,
the value of the root that ’floats’ down exchanging places with its maximal
child will not change its floating route at the parent of node aleaf-h. For this
reason the this ’float’ does not change the sub-heaps of node aleaf-h′ on both
sub-heaps. We know from the induction hypothesis that the sub-heaps H

aleaf-h′
1L

and H
aleaf-h′
2L were equal before the last operation of heapify in step 6, and that

leaf-h = leaf-h’. Thus, in the end the sub-heap Haleaf-h
1 equals the sub-heap

Haleaf-h
2 and we are done with case 1.

Case 2: leaf-h = leaf-h’ +1. By the operation of produce-y this means xah is
a location in the sub-heap under aleaf-h′ . In this case, it is possible that H1L is
different from H2L also inside the sub-heaps of node aleaf-h, but we will show
that eventually the sub-heaps of node aleaf-h′ remain equal. This is true since
the first operation of heapify−1 on the root in step 2 of procedure extract-
recursive-try-2 applied both on H1 and H2 shifts the path to node xah one step
down, therefore can cause only the location aleaf-h to become different in H1L

and H2L. Other then that both sub-heaps of node aleaf-h are equal in H1L and
H2L.

By the induction hypothesis after applying recursively extract-recursive-try-2
on H1L and H2L, they remain the same in the sub-heap of node aleaf-h′ . Also
by claim 26 the rest of the heap is not modified and thus, the other sub-heap

36

of the child of node aleaf-h not on the path to the last leaf remains unchanged
in H1L’ and H2L’ and therefore remains identical on both H1L’ and H2L’.

Notice first that the value at the root of H1 is the same as the value at the
root of H2. This is true since it is the value that got there via the operation of
heapify−1 in step 2 that took the value at node xah to the root. The location
xah is inside the identical sub-heap of H1 and H2 and therefore it is the same
in both heaps.

When applying heapify−1 in step 2 on both heaps H1 and H2, the value at
node xah got to the root and shifted all the values on the path from the root
to node xah one step down. We claim that when we apply heapify in step 6 on
the root location letting the value at the root ’float’ down, the value ’floats’
exactly along this previously shifted path at least until it reaches the location
of the parent of node aleaf-h′ (i.e. to node aleaf-h). This returns all the values
on this sub-path to their original positions. This is true since H ′

1L is different
from H1L only in the sub-heap of node aleaf-h′ and the same holds for H2L.

From this point both sub-heaps of the children of node aleaf-h are the same in
both heaps, therefore from this location the value continues to ’float’ down in
the same route in H1’ and H2’ resulting in equivalent sub-heaps under location
aleaf-h. Thus, in the end the sub-heap Haleaf-h

1 equals the sub-heap Haleaf-h
2 and

we are done with claim 27 2

We are now ready to prove our main lemma regarding extract-max.

Lemma 28 Let H be a heap with n values, let ah, ah−1, . . . , a1 be the nodes
on the path from the root to the last leaf, let (xa1 , xa2 , . . . , xah) be a proper
random choice for the nodes (a1, a2, . . . , ah), let ((ya1 , ya2 , . . . , yah), leaf-h) =
produce-y(size(H), (xa1 , xa2 , . . . , xah)). Then:
extract-recursive-try-2(H, (xa1 , . . . xah)) = extract-recursive-try-2(H, (ya1 , . . . yah))

Proof: The proof is by induction on the height of the heap.

Induction Base: If the height of H is 1, then H contains only one node. In
this case ya1 = xa1 = a1 and the lemma holds.

Induction Step: We consider a heap of height h and assume the claim
holds for all heaps of height less than h. Assume without loss of general-
ity that the first step on the path from the root to the last leaf goes left. Let
(HLx, HRx, vxah

) = heapify−1(H, xah) and (HLy, HRy, vyah) = heapify−1(H, yah).
These are the sub-heaps created after applying the first heapify−1 at step 2 of
extract-recursive-try-2 with the random choice xah and with yah . Let leaf-h’ =
produce-y(size(HLx), (xa1 , xa2 , . . . , xah−1

)) Looking at the operation of extract-
recursive-try-2 we may write:
extract-recursive-try-2(H, (xa1 , xa2 , . . . xah)) =

37

heapify(extract-recursive-try-2(HLx, (xa1 , xa2 , . . . xah−1
)), HRx, vxah

).

We partition the analysis into two cases according to whether yah = xah or
yah ̸= xah .

Case 1: yah = xah . If this is the case then HLx = HLy and HRx = HRy. By
the induction hypothesis we get that:
extract-recursive-try-2(HLx, (xa1 , xa2 , . . . xah−1

)) =
extract-recursive-try-2(HLy = HLx, (ya1 , ya2 , . . . yah−1

)). Thus, just before apply-
ing heapify on the root at step 6. The value at the root, and both its sub-heaps
are equal, this means that the heaps are also equal after executing heapify and
we are done.

Case 2: yah ̸= xah . From the operation of produce-y this means that at step 7
in produce-y yah got the value ah. This means that xah is a location not in the
sub-tree of node aleaf-h′ . In this case the following equalities hold:

extract-recursive-try-2(H, (xa1 , xa2 , . . . xah))

= heapify(extract-recursive-try-2(HLx, (xa1 , xa2 , . . . xah−1
)), HRx, vxah

)

= heapify(extract-recursive-try-2(HLy, (xa1 , xa2 , . . . xah−1
)), HRy, vyah) (5)

= heapify(extract-recursive-try-2(HLy, (ya1 , ya2 , . . . yah−1
)), HRy, vyah) (6)

= extract-recursive-try-2(H, (ya1 , ya2 , . . . yah))

Equality 6 follows by the induction hypothesis. The main point here is equality
5. We first consider the changes happen in the two sub-heaps HLx and HLy

when we apply extract-recursive-try-2 on them. Then we consider the changes
after applying heapify on the root. Finally, we claim the result heap is the
same.

HLx and HLy are not equal, but they are equal in the sub-heap of node aleaf-h′ .
This is true since xah is not a location in the sub-heap of aleaf-h′ . Thus, by claim
27 after applying extract-recursive-try-2 recursively on HLx and HLy the two
sub-heaps remain equal in the sub-heap of node aleaf-h′ . Note also that by claim
26 the other parts node in the sub-heap of node aleaf-h′ of both HLx and HLy

remain unchanged. Consider now the operation of heapify at step 6 in extract-
recursive-try-2 on HLx and HLy. In HLy the value at the root is the maximal
value and therefore nothing happens. When we applied the first heapify−1 in
step 2 in the procedure extract-recursive-try-2 with the value xah , the value
at node xah got to the root and shifted all the values on the path from the
root to node xah one step down. We claim now that when we apply heapify
in step 6 of extract-recursive-try-2 on the root location of the modified heap
letting the value at the root ’float’ down, the value ’floats’ exactly along this
previously shifted path returning all the values on this path to their original
positions. This is true for two reasons: First, we know that this path does not

38

procedure extract-max-oblivious(H: Heap) : Heap
begin
1. Choose uniformly at random a proper randomization vector (xa1 , . . . , xah)

for the procedure extract-recursive-try-2.
2. (ya1 , ya2 , . . . , yah) = produce-y(size(H),(xa1 , xa2 , . . . , xah))
3. (H ′, vi) = extract-recursive-try-2(H, (ya1 , ya2 , . . . , yah))
4. if vi is the maximum return (H ′). Otherwise:
5. Modify the value at the root to vi.
6. H ′′ = heapify(H, 1) (i.e. apply heapify on the root)
7. Return (H ′′)
end

Fig. 11. The procedure extract-max-oblivious

intersect the modified sub-heap Haleaf-h′ . Second, the value at location aleaf-h′ is
now smaller then the value been there before the operation of extract-recursive-
try-2, the value ’floats’ down exchanging places with its maximal child so it
will not change the floating route at the parent of node aleaf-h. This shifts back
all the values shifted by the operation heapify−1 applied at step 2.Thus, both
heaps become equal both in the sub-heap of node aleaf-h′ and the other parts
of the heap after applying heapify at step 6 and we are done. 2

We are now ready to provide the pseudo-code of extract-max-oblivious oper-
ation appears in figure 11. The only change in the algorithm from extract-
max-try-2 is the use of the modified random vector produced by produce-y.
We can now state the following corollary asserts that the procedure is history
independent.

Corollary 29 Let v1, . . . , vn+1 be n + 1 (distinct) values, let m denote the
index of the maximum value (i.e., vm is the maximum value), and let H be
a uniformly distributed heap over all heaps with values v1, . . . , vn+1. Then,
invoking procedure extract-max-oblivious on H yields an output heap that is
uniformly distributed over all possible heaps with content {v1, . . . , vn+1}\{vm}.

Proof: We only need to prove that for any heap H extract-max-oblivious and
extract-max-try-2 produce the same output distribution. The only difference
between extract-max-oblivious and extract-max-try-2 is the use of the new ran-
dom series produced by the procedure produce-y. Thus, the corollary follows
directly from lemma 28. 2

It remains to analyze the complexity of extract-max-oblivious. We start with
a useful claim. Informally, we claim that if we take a uniformly chosen per-
mutation and build a heap from it then the last value of the permutation will
not ascend too much. That is, the expected height of the value appears last
in the permutation is O(1). We will later relate this height to the complexity
of extract-max-oblivious.

39

Claim 30 Let v1, v2, . . . , vn be n distinct values. Let π ∈R Π(n) be a random
permutation on these values specifying their order in an almost full tree, and
let h(H, vπ(n)) be the height of vπ(n) in the heap H. Then,

E
[
π ∈R Π(n);H = build-heap(vπ(1), vπ(2), . . . , vπ(n)) : h(H, vπ(n))

]
≤ 4

Proof: By corollary 15 we can rephrase the above expected value as:

E
[
H ∈R H : π = build-heap−1(H) : the height of vπ(n) in the heap H

]
Where H is the set of all heaps of size n.

When applying build-heap−1 one of the values on the path from the last leaf to
the root gets to be the last leaf (this is the opposite of build-heap in which the
value at the last leaf can only ascend during the operation of build-heap). In
extract-max-try-1, the value that got to the last leaf is removed. Thus, what we
are looking for is the height of the value that was removed by extract-max-try-1,
this is the value that got to the last leaf. Using claims 24 and 28 we know that
extract-recursive-try-2 results in the same heap and removes the same value
even when we apply the procedure with the values (ya1 , ya2 , . . . , yah) produced
by produce-y instead of the original random series (xa1 , xa2 , . . . , xah). Therefore
the value that is removed from the heap has the same distribution as in extract-
max-try-1. Last, from the second part of claim 26 the value that got to the
last leaf and was removed is the value in location aleaf-h in H with height leaf-
h, where leaf-h is the value returned by produce-y(size(H),(xa1 , xa2 , . . . , xah)).
Notice that the location of the value that is removed does not depend on the
actual values of the heap, but only on the vector (xa1 , xa2 , . . . , xah). Therefore,
we can further rephrase the above expectation into:

E
[
X⃗h ∈R X; leaf-h = produce-y(size(H), X⃗h) : leaf-h

]
Where X is the set of all proper vectors (xa1 , xa2 , . . . , xah).

We analyze the expectation of leaf-h by looking at the inside operation of
the procedure produce-y. The procedure has h− 1 recursive calls. On the way
back from each recursive call the procedure considers the random choice of
the current sub-heap root. Let i be the current index of random choice (i.e the
index that we consider after the recursive call with i − 1 indices). We define
h− 1 random variables X1, X2, Xh−1 where X∆ is defined to be the number of
returns from recursive calls of the procedure produce-y for which the difference
between the index that is considered by the procedure and the value of leaf-
h is ∆ (i.e ∆ = i− leaf-h). At the first return from a recursion call this
difference is 1 (the index that is considered is 2 and the value leaf-h returned
from the recursion base is 1). This difference can only grow throughout the
procedure and get up to h − 1 depend upon the exact values of the series

40

(xa1 , xa2 , . . . , xah). In each return from recursive call leaf-h may grow by one
in step 5 or remain the same in step 7.

By the operation of produce-y if xai is a location inside Haleaf-h then leaf-h
increases by one and the difference between the index that is considered by
the procedure and the value of leaf-h remains the same (they both grow by
1). Otherwise, leaf-h does not increase and thus the difference increases by
one. This means that if the difference between the iteration number and leaf-h
remains steady for l iteration then leaf-h increases by l− 1. Let the difference
at the end of the procedure be k.

Using this notation, we can write the value leaf-h as the sum of increments of
it during the procedure:

leaf-h =
k∑

∆=1

(X∆ − 1) =
k∑

∆=1

X∆ − k (7)

We now analyze the expected value of X∆ and bound it from above. The
analysis for X1 is a little different from the others. We start by analyzing the
expected value of X1. The difference between the random index and leaf-h is
1. In order to increase leaf-h the random choice must be inside the sub-heap
of the child in the direction to the last leaf. The ’worst’ case is when this sub-
heap is of maximal size and the other child is small. The heap is an almost full
binary tree, therefore if the ’small’ sub-heap of a child is of size a the other
child’s sub-heap can be at most of size 2a + 1. The probability of choosing
the ’large’ child is therefore always at most 2a+1

3a+2
< 2

3
(i.e. choosing one of the

2a + 1 locations inside the ’large’ sub-heap of size 2a + 1 and not the other
smaller sub-heap of size a or the location of the root itself). This means that
the probability that a random choice is a location not in the sub-heap to the
last leaf and therefore increase the difference is at least 1

3
in each iteration.

Thus, E(X1) ≤ 3.

Extending this idea to i > 1 we may claim that if the difference is ∆ > 1
then the probability of choosing a location inside the ’bad’ heap (that keeps

the difference unchanged) is at most 2a+1
(2∆+1)a+2∆

< 2(a+1)
2∆(a+1)

= 1
2∆−1 . Therefore,

the probability that the difference increases in the each time for which the
difference is ∆ is at least 1− 1

2∆−1 = 2∆−1−1
2∆−1 . Thus E(X∆) ≤ 2∆−1

2∆−1−1
≤ 1+ 1

2∆−2

Plugging this result in 7 we get that:

E[leaf-h] = E[
k∑

∆=1

X∆−k] ≤ 3+
k∑

∆=2

(1 +
1

2∆−2
)−k = 2+

k∑
∆=2

1

2∆−2
≤ 4 = O(1)

2

41

We now ready to analyze the complexity time of extract-max-oblivious and
prove the following claim:

Claim 31 The expected time complexity of extract-max-oblivious operation is
O(log(n)). Where the expectation is over all random choices of the operation.

Proof: Step 1 in the extract-max-oblivious chooses randomly a vector of size
h Therefore works in worst time complexity of O(h) = O(log(n). In step
2 we operate produce-y on the random choices. This procedure manipulates
the vector by one recursive call on each member in the vector. Each re-
cursive call is done in O(1). Thus, the time complexity of the procedure is
O(h) = O(log(n)). The complexity of steps 4-7 is just the complexity of one
operation of heapify which is O(h). The only problematic part is therefore the
expected complexity of extract-recursive-try-2. This complexity depends on the
random vector (ya1 , ya2 , . . . yah) which depend on the previous random choice
of (xa1 , xa2 , . . . xah). Looking at the operation of extract-recursive-try-2, we see
that in each recursive call if xah = ah (i.e. the node ’decides’ to stay in its
place) then applying heapify−1 at step 2 is redundant. In that case the op-
eration of heapify when we return from the recursive calls in step 6 is also
redundant, since we only removed a value from the heap, and therefore the
value at the root is still the maximum and the max-heap property is preserved.
In real implementation we probably want to skip these two steps if this is the
case. Therefore the complexity of extract-recursive-try-2 is only the complexity
of the non trivial operations (i.e. where yah ̸= ah) of heapify and heapify−1

inside it.

Since the complexity of both heapify and heapify−1 is O(h), we only need to
prove that the expected number of recursive calls for which xah ̸= ah is O(1).
Looking back at the procedure produce-y this number is exactly the value of
leaf-h returned by produce-y. Therefore the claim follows directly from claim
30, and we are done. 2

6.4 The insert operation

We start with a naive implementation of insert which we call insert-try-1. This
implementation has complexity O(n). This is of-course unacceptable for the
insert operation but it allows a construction of a simple and useful implemen-
tation that will be improved later. The general goal is to get an input heap
that is uniformly distributed and output a heap that is also uniformly dis-
tributed. The basic idea behind this implementation is as follows. Since we
may assume we have a uniformly chosen heap, we can sample in the inverse
of build-heap and get a uniformly chosen permutation (in Π(n)) of the heap
values. Now, to insert the new value a and get a random heap on n+1 values,

42

procedure insert-try-1(H: Heap, a: Value) : Heap
begin
1. Think of the input value a as being located in an additional node

numbered n+ 1. (This is the first vacant place as in figure 5.)
Choose uniformly at random a number 1 ≤ i ≤ n+ 1, let the value
of node i by vi.

2. If (i = n+ 1) then H’=H and skip to step 4. Otherwise:
3. H ′ ← increase-key-oblivious(H, i, a)
4. Choose uniformly at random a proper randomization vector (x1, . . . , xn)

for the procedure build-heap−1.
5. Invoke T = build-heap−1(H ′, (x1, . . . , xn))
6. Let T ′ be the tree obtained by adding to T the next vacant node

with value vi.
7. H = build-heap(T ′)
8. Return (H)
end

Fig. 12. The procedure insert-try-1

we first choose a random location i, 1 ≤ i ≤ n + 1. If i ≤ n then we put a at
location i and move the previous value of i to the end (which is now location
n+ 1). If i = n+ 1 we just put the value a at the end. This yields a uniform
permutation on the n+1 values. Now, invoking build-heap on these values, we
get a uniform heap with the n+ 1 values.

The above procedure can be easily shown to yield a uniform heap but is
so naively designed that it is difficult to improve it. We start with a little
twist of this procedure, changing the order of operations and fixing the heap
in between. The twisted procedure will allow improving its complexity as
required. More specifically, we first choose the location i, 1 ≤ i ≤ n + 1 to
which we insert the new value a. (The choice i = n + 1 means no insertion.)
We put the value a at the node i and remember the value vi that was replaced
at node i. This may yield a tree which is not a well-formed heap because the
value a may not “fit” the node i. Hence, what we really do is applying increase-
key-oblivious on the location i with the new value a. After the new value a is
properly placed in the heap, we run build-heap−1. We will show that this yields
a uniform permutation of the values (v1, v2, . . . , vi−1, a, vi+1, . . . , vn). Now, we
add the value vi at the end of this ordering, getting a uniform permutation
on the n + 1 values v1, v2, . . . , vn, a. Running build-heap on this order of the
values yields a random heap on the n+ 1 values.

The pseudo-code of the naive insert-try-1 appears in figure 12. Next we prove
that this naive implementation is history independent.

Claim 32 Let H be a heap of size n uniformly distributed among all heaps
with the values {v1, v2, . . . , vn}, and let a be a new distinct value. Then:

43

(1) The heap H ′ returned by insert-try-1 in step 3 is distributed uniformly
among all heaps with the values {v1, v2, . . . , vn} ∪ {a} \ {vi}.

(2) T returned by insert-try-1 in step 5 is distributed uniformly among all
permutations with the values {v1, . . . , vn} ∪ {a} \ {vi}.

Proof: The first part of the claim follows directly from claim 21. The second
part follows from corollary 15. 2

Next we prove the history independence of insert-try-1.

Claim 33 Let H be a heap of size n uniformly distributed among all heaps
with the values {v1, v2, . . . , vn}, and let a be new distinct value. Then H’
= insert-try-1(H, a) is distributed uniformly among all heaps with the values
{v1, . . . , vn} ∪ {a}.

Proof: Consider the value that is chosen in the first step of insert-try-1. We
first claim that vi is chosen uniformly among the values {v1, . . . , vn} ∪ {a}.
This is true since insert-try-1 chooses random location i, 1 < i < n + 1. Each
random location i implies a unique value vi. Thus, each value is selected with
equal probability.

By the second part of claim 32 the tree T returned by insert-try-1 in step 5 is
distributed uniformly among all permutations with the values {v1, . . . , vn} ∪
{a} \ {vi}.Thus, we get that T ′ obtained in step 6 is distributed uniformly
among all permutations with the values {v1, . . . , vn}∪{a}. Hence, by corollary
17 the heap returned by insert-try-1 is uniformly distributed among all heaps
with the values {v1, . . . , vn} ∪ {a} and we are done. 2

Next we present insert-try-2. This is an essential step in the improvement
of the insert operation. We will show that we can execute a small part of
the operations of insert-try-1 and still get the same result. This improvement
reduces the complexity of the insert operation from O(n) to O(log2(n)), and
will be the basis of the final version of insert-oblivious.

Denote by {a1, a2, . . . , ah} the indices of the nodes that reside on the path from
the first vacant place (i.e. the next free leaf in the heap tree) to the root (see
figure 1). The first vacant place is denoted a1 and the root is ah, thus, i is the
height of node ai (in the heap of size n+ 1). Recall that the procedure build-
heap−1 invokes first heapify−1 on the value at the root of the heap. This creates
two well-formed sub-heaps and a value at the root, which is not necessarily
in its proper position. Next, we apply recursively build-heap−1 on each of the
sub-heaps. When we apply afterward build-heap it invokes first recursively
build-heap on each of the root’s children sub-trees. Next it applies heapify on
the value at the root to create a well-formed heap. The major reduction is
applying build-heap−1 and build-heap recursively only on the direction to the
first vacant place and do nothing on the other direction. The result is that

44

procedure recursive-insert-try-1(H: Heap, v : value, (x1, . . . , xn): Random
choices) : Heap
begin
1. T = build-heap−1(H, (x1, . . . , xn))
2. Let T ′ be the tree obtained by adding to T the next vacant node

with value v.
3. Return (H = build-heap(T ′))
end

Fig. 13. The procedure recursive-insert-try-1

insert-try-2 applies heapify−1 only on the nodes (ah, ah−1, . . . , a1) (from top to
bottom) and then heapify on a similar subset in a reverse order. We will prove
that eventually its output is the same heap as insert-try-1. Notice that the
path contains a node that is not in the heap, and therefore we really apply the
operations of heapify−1 only until a2. Though, on the way back, when applying
heapify, we already insert the new value at the vacant node and it becomes
part of the new heap tree.

The procedure build-heap−1 uses randomness for choosing a descendant xi for
each visited vertex i. We denote these random choices by a vector (x1, . . . , xn).
But since we will only be interested in the vertices (a1, . . . , ah), we will use the
notation (xa1 , xa2 , . . . , xah) to denote the sequence of random choices made for
the vertices (a1, . . . , ah) that interest us. Thus, xaj is the random choice for
vertex aj.

The heart of our improvement is a new sub-procedure recursive-insert-try-2.
This procedure substitutes steps 5,6,7 in insert-try-1. Note that these steps
require O(n) time since build-heap−1 and build-heap are run. Steps 5,6,7 in
insert-try-1 take as input a heap H a value vi and random vector of size n.
Step 7 returns a new heap of size n + 1. We define recursive-insert-try-1 to be
the sub-procedure that gets H and a value vi and executes exactly these steps.
For clarity we explicitly provide this procedure appears in figure 13. The new
procedure, recursive-insert-try-2, is provided in figure 14. In this procedure we
only invoke heapify and heapify−1 on the nodes ah, ah−1, . . . , a1.

To make syntax equal, we let recursive-insert-try-2 take full proper random
vector (x1, x2, . . . xn) although it uses only the values (xa1 , xa2 , . . . , xah) out of
this vector. Notice that since a1 is outside the heap there exist no xa1 . Since
this sub-heap is of size one, we may treat the value xa1 as a1, i.e. it stays in
place. We now show that these two procedures produce the same output.

Claim 34 For any heap H, new distinct value a, and a proper random vector
(x1, x2, . . . xn).
recursive-insert-try-1(H, a, (x1, . . . xn)) = recursive-insert-try-2(H, a, (x1, . . . xn))

45

procedure recursive-insert-try-2(H: Heap, v : value, (xa1 , . . . , xah): Random
choices) : Heap
begin
1. if height(H) = 0 return H = v (i.e put value v in a new node). Otherwise:
2. (HL,HR, vxah

) = heapify−1(H,xah).

3. If the path to the first vacant place in H is going to the left:
4. H ′

L ←recursive-insert-try-2(HL, v, (xa1 , xa2 , . . . , xah−1
))

H ′
R ← HR.

Otherwise:
5. H ′

R ← recursive-insert-try-2(HR, v, (xa1 , xa2 , . . . , xah−1
))

H ′
L ← HL.

6. Return(heapify(HR,HL, vxah
)).

end

Fig. 14. The procedure recursive-insert-try-2

Proof: The proof is by induction on the height of the heap H.

Induction Base: When the height of the heap is 0, there is no difference
between the operations of recursive-insert-try-1 and recursive-insert-try-2.

Induction Step: Assume without loss of generality that the first step in the
path to the first vacant place goes left. Consider the first operation of heapify−1,
applied in the same manner in both recursive-insert-try-1 and recursive-insert-
try-2. Let (H ′

L, H
′
R, vxah

) = heapify−1(H, xah). Let X⃗n = (x1, x2, . . . , xn) be a
proper vector of size n. Now by the operation of recursive-insert-try-1 we get
that:

recursive-insert-try-1(H, v, X⃗n)

= heapify(recursive-insert-try-1(H ′
L, v, X⃗n),

build-heap(build-heap−1(H ′
R, X⃗n)), vxah

) (8)

= heapify(recursive-insert-try-1(H ′
L, v, X⃗n), H

′
R, vxah

) (9)

= heapify(recursive-insert-try-2(H ′
L, v, X⃗n), H

′
R, vxah

) (10)

= recursive-insert-try-2(H, v, X⃗n) (11)

Where equality 8 follows from reordering the operations of recursive-insert-try-
1. To see that equality 8 holds, note that build-heap−1 applies heapify−1 on the
root and then continues recursively to the sub-heaps of the root’s children. The
operation of build-heap−1 on each of the sub-heaps can be done independently
of the other sub-heap. This is true since the operation of heapify−1 affects only
the sub-tree it operates on. The same holds for the operation of build-heap,
that can be done independently on both sub-heaps. Therefore, we can separate
the operations done on the right child from the operations done on the left

46

procedure insert-try-2(H: Heap, a: Value) : Heap
begin
1. Think of the input value a as being located in an additional node

numbered n+ 1. (This is the first vacant place as in figure 5.)
Choose uniformly at random a number 1 ≤ i ≤ n+ 1, let the value
of node i be vi.

2. If (i = n+ 1) then H’=H and skip to step 5. Otherwise:
3. H ′ ← increase-key-oblivious(H, i, a)
4. Choose uniformly at random a proper randomization vector (xa1 , . . . , xah)

for the procedure recursive-insert-try-2.
5. Return (recursive-insert-try-2(H ′, vi, (xa1 , xa2 , . . . , xah)))
end

Fig. 15. The procedure insert-try-2

child.

Equality 9 follows from removing the cancelling operations build-heap and
build-heap−1. Equality 10 follows from the induction hypothesis. The last
equality follows from the definition of recursive-insert-try-2. 2

The code of insert-try-2 appears in figure 15. Let us prove our main claim
about the operation of insert-try-2 .

Claim 35 For any heap H and value a. The procedures insert-try-1 and insert-
try-2 produce the same output distribution.

Proof: Steps 1 to 3 in both procedures are the same. Thus, the claim follows
from claim 34 2

It now follows that the worst time complexity of the procedure insert-try-2
is O((log n)2). The complexity of insert-try-2 is dominated by the procedure
recursive-insert2, which operates at the most O(log n) times the heapify and the
heapify−1 operations, each costing O(log n) operations. This bound also holds
for the next (final) implementation of the insert operation, because the final
implementation always executes less operations than the above implementa-
tion. However, for this final implementation, we will show that the expected
time complexity is only O(log n).

We now proceed to the last improvement that further reduces the complexity
of insert to the desired O(log(n)). We focus on improving over the proce-
dure recursive-insert-try-2. The improved procedure, recursive-insert, gets one
more parameter in its input. The input of recursive-insert-try-2 was H, v, and
(xa1 , xa2 , . . . , xah). We add an input parameter j specifying the maximal i for
which vai < v. This value is a number between 1 and h, and is always larger or
equal to 1 since the index a1 is outside the heap, and therefore is considered

47

procedure recursive-insert(H: Heap, v : value, {xa1 , xa2 , . . . , xah}: Random
choices, j : index) : Heap
begin
1. if height(H) = 0 return H = v (i.e put value v in a new node). Otherwise:
2. If xah is a location not in Haj then xah ← ah, Otherwise: j ← j − 1
3. (HL,HR, vxah

) = heapify−1(H,xah).

4. If the path to the first vacant place in H is going to the left:
5. H ′

L ← recursive-insert(HL, v, (xa1 , xa2 , . . . , xah−1
), j)

H ′
R ← HR.

Otherwise:
6. H ′

R ← recursive-insert(HR, v, (xa1 , xa2 , . . . , xah−1
), j)

H ′
L ← HL.

7. Return(heapify(H ′
R,H

′
L, vxah

)).

end

Fig. 16. The procedure recursive-insert

smaller than v.

Also since H is a well-formed heap then va1 < va2 < . . . , vah , and therefore
j is the maximal index (i.e. the ’highest’ node on the path) for which the
value at node ai in the heap is still smaller than the value v at the input of
recursive-insert.

The intuition of this new input is that if the value v is small (This happens
most of the time since v is chosen uniformly by insert-try-2) then it does not
affect most of the calls of build-heap. The procedure tries to reverse only the
operations for which the value of v may influence the building of the heap. We
prove that at the end of the procedure the value v gets exactly to the height
of j. The code of recursive-insertis provided in figure 16.

Notice that the only difference between recursive-insert and recursive-insert-
try-2 is adding step 2. If xah = ah it means that both heapify−1 in step 3
and heapify in step 7 are redundant. In a real implementation we would skip
them both. Our main claim asserts that this modification has no affect on the
output of the procedure. We prove now some useful claims that allow proving
this main claim. Notice that some of the claims relate to the properties of
recursive-insert-try-2 and not to recursive-insert.

Claim 36 Let H be a heap with n values. Let ah, ah−1, . . . , a1 be the path from
the root to the first vacant place. Let (xa1 , xa2 , . . . , xah) be a proper random
choice for the nodes (a1, a2, . . . , ah). Let v be new distinct value and let j be
the maximal index for which vaj < v in the heap H.
Let H ′ = recursive-insert-try-2(H, v, (xa1 , xa2 , . . . , xah)). Then,

(1) The heaps H and H ′ are identical except for the sub-heap of node aj.

48

(2) The value v is at node aj in the heap H ′.

Proof: The proof is by induction on the height of the heap.

Induction Base: For heap of height 0 it is easy to verify the claim.

Induction Step: We consider a heap of height h and assume the claim holds
for all heaps of height less than h. Assume without loss of generality that the
first step on the path from the root to the first vacant place goes left.

Let (HL, HR, vah) = heapify−1(H, xah) be the first operation in step 2 of the
procedure recursive-insert-try-2. If j = h then the first part of the lemma
trivially holds. It also means that the value v is larger than all the values in
the heap H and therefore located at the root (location ah) in H ′. Otherwise:
Let H ′

L = recursive-insert-try-2(HL, v, (xa1 , xa2 , . . . , xah−1)). We partition the
analysis into two cases according to whether xah is a location in the sub-heap
of node aj or not.

Case 1: If xah is a location in the sub-heap of node aj then all the values on
the path from the root to aj are shifted one step down by the operation of
heapify−1 in step 2 of procedure recursive-insert-try-2. If this is the case then
when we apply recursive-insert-try-2 on HL the maximal index j′ for which
vaj < v in HL equals now j − 1. This is true because the parent of aj that is
larger than v moved one step down to the direction of the first vacant place.
By the induction hypothesis we get that H ′

L is different from HL only in the
sub-heap of node aj−1.

When applying heapify−1 in step 2 of recursive-insert-try-2 the value at node
xah got to the root and shifted all the values on the path from the root to
node xah one step down. We claim now that when we apply heapify in step 6
on the root location in the modified heap letting the value at the root ’float’
down, the value ’floats’ exactly along this previously shifted path at least until
it reaches the location of the parent of node aj′ (that is node aj). This returns
all the values on this sub-path to their original positions. This is true since
H ′

L is different from HL only in the sub-heap of node aj′ . Thus, the heaps H
and H ′ can now be different only in the sub-heap of the parent of location aj′ .
Since j = j′ + 1, it is exactly node aj, and we are done with the first part of
the claim.

In addition, from the second part of the induction hypothesis, the value that
is at node aj′ in H ′

L is the new value v. The value v is larger than the value
at location aj in H and hence larger than all the values in its sub-heap.
This means that the value at the root, that was taken from this sub-heap,
is strictly smaller than v. From the induction hypothesis the other sub-heap
under location aj (not to the direction of the next vacant place and v) is the
same in HL and H ′

L. This means that the value at the top of this sub-heap in

49

H ′
L is smaller than v, since it is can be at most the value located previously

at node aj in H. This means that in the operation of heapify at step 6 when
the value at the root floats down and reaches node aj it must choose to switch
with v and not his sibling. Thus, moving v to location aj. This proves the
second part of the claim.

Case 2: If xah is not a location in the sub-heap of aj, then the maximal
index in HL for which vi < v is still j. Applying the induction hypothesis on
the recursive call of recursive-insert-try-2 on HL, we get that H ′

L and HL are
only different in the sub-heap of node aj. By the second part of the induction
hypothesis the value at node aj in H ′

L is v which is strictly smaller than all
the values of the ancestors of node aj in H.

When we applied heapify−1 in step 2 in the procedure recursive-insert-try-2 the
value at node xah got to the root and shifted all the values on the path from
the root to node xah one step down. We claim now that when we apply heapify
in step 6 of recursive-insert-try-2 on the root location of the modified heap
letting the value at the root ’float’ down, the value ’floats’ exactly along this
previously shifted path returning all the values on this path to their original
positions. This path does not intersect the modified sub-heap of node aj, thus
if the path does not pass the parent of node aj there is no problem. If the
path passes through the parent of node aj then we claim that the value never
switches with the value v at node aj (i.e does not change its route). This is
true because the value that was previously at location of the parent of aj in H
is strictly larger than v. This value is either the value that floats down from
the root (if xah is the location of the parent of aj), or it was shifted one step
down to the direction of xah and is now the sibling of node aj and larger than
v. Therefore, the value at node aj remain the value v, and we are done with
both parts of the claim. 2

We have shown that the heap H ′ = recursive-insert-try-2(H, v, (xa1 , . . . , xah))
is different from H only inside the sub-heap of node aj where j is the maximal
index for which the value at node aj in H is still smaller then the new value
v. We now show that the modifications in that sub-heap do not depend on
the rest of the heap. That is, if two sub-heaps H1 and H2 are equal in the
sub-heap of node aj, but the rest of their values may be different, then the
sub-heaps H

aj
1 and H

aj
2 remain equal after applying recursive-insert-try-2 on

both heaps.

Claim 37 Let H1 and H2 be two heaps of size n. Let ah, ah−1, . . . , a1 be the
path from the root to the first vacant place. Let (xa1 , xa2 , . . . , xah) be a proper
random choice for the nodes (a1, a2, . . . , ah). Let v be new distinct value and
let j1, j2 be the maximal indices for which in H1 and H2 respectively vaji < v.
Let H ′

1 = recursive-insert-try-2(H1, v, (xa1 , xa2 , . . . , xah)) H
′
2 = recursive-insert-

try-2(H2, v, (xa1 , . . . , xah)) Then, if j1 = j2 (and denote j
△
= j1 = j2) and

50

H
aj
1 = H

aj
2 (i.e. the sub-heaps of node aj are equal) then H ′

1 and H ′
2 are equal

in the sub heap of node aj.

Proof: The proof is by induction on the height of the heaps.

Induction Base: When H1 and H2 are of size 0, it is easy to verify that the
claim holds.

Induction Step: We consider two heaps of height h and assume the claim
holds for every two heaps of height less than h.

Assume without loss of generality that the first step on the path from the root
to the first vacant place goes left. This direction is the same in both heaps
since they are of the same size. Let (H1L, H1R, vah) = heapify−1(H1, xah), and
(H2L, H2R, vah) = heapify−1(H2, xah).

We partition the analysis into two cases according to whether the location xah

is in the sub-heap of node aj or not.

Case 1: If the location xah is not in the sub-heap of node aj (both in H1 and
H2) then H

aj
1L is equal H

aj
2L. By claim 36 we know that after applying recursive-

insert-try-2 recursively on H1L and on H2L the heaps only change is in the
sub-heaps of node aj, and that the value at location aj is the value v. Since
H

aj
1L is equal H

aj
2L and the value j was not changed in both sub-heaps, we can

apply the induction hypothesis on the recursive operation of recursive-insert-
try-2. By the induction hypothesis H

aj
1L is equal H

aj
2L before applying heapify

in step 6.

When we applied heapify−1 in step 2 in the procedure recursive-insert-try-2 the
value at node xah got to the root and shifted all the values on the path from
the root to node xah one step down. We claim now that when we apply heapify
in step 6 of recursive-insert-try-2 on the root location of the modified heaps
letting the value at the root ’float’ down, the value ’floats’ exactly along this
previously shifted path returning all the values on this path to their original
positions. This path does not intersect the modified sub-heap of node aj, thus
if the path do not pass the parent of node aj there is no problem. If the
path passes through the parent of node aj then we claim that the value never
switches with the value v at node aj (i.e does not change its route). This is
true because the value that was previously at location of the parent of aj in
H is strictly larger than v. This value is either the value that float down from
the root (if xah is the location of the parent of aj), or it was shifted one step
down to the direction of xah and is now the sibling of node aj and larger than
v. From this reason the last float does not change the sub-heaps of node aj on
both heaps and thus these sub-heaps remain identical.

Case 2: The location xah is inside the sub-heap of node aj (in both H1 and

51

H2). This means that in the operation of heapify−1 the value at the node of
the parent of node aj is shifted down to the location of aj. Thus, it is possible
that H1L and H2L are not equal in the sub-heap of node aj. Still, it is true
that after this operation the two sub-heaps of the children nodes of node aj
are the same in H1L and H2L. The value that is shifted down to the node aj is
larger than v, therefore the maximal value that is still smaller than v in H1L

and H2L is now at node aj−1.

Consider now the two heaps H1L and H2L after inserting the value v (by
recursive call of recursive-insert-try-2). By the induction hypothesis the two
sub-heaps of node aj−1 are identical. By claim 36 the other parts of H1L and
H2L not in the sub-heap of node aj−1 have not changed. In particular, notice
that the sub-heap of the sibling of node aj−1 is the same in both modified
heaps.

When applying heapify−1 in step 2 on both heaps H1 and H2 the value at node
xah got to the root and shifted all the values on the path from the root to node
xah one step down. We claim now that when we apply heapify in step 6 on the
root location in the modified heaps letting the value at the root ’float’ down,
the value ’floats’ exactly along this previously shifted path at least until it
reaches the location of the parent of node aj−1. This returns all the values on
this sub-path to their original positions. This is true since the modified heaps
are only different in the sub-heap of node aj−1.

This means that the value at the root will get to node aj. This value is the
same in both sub-heaps because it is the value that was at node xah in both
heaps and got to the root by the heapify−1 at step 2. Since xah is a node in
the equal sub-heap this value is the same in both heaps.

From this point (where the value float and reached node aj) both sub-heaps
of the children of node aj are the same in both heaps, therefore from this
location the value continues to ’float’ down the same in H ′

1 and H ′
2 resulting

in the same sub-heap under node aj. Thus, in the end the sub-heap of node
aj is the same in both H ′

1 and H ′
2. 2

We now ready to prove our main lemma regarding recursive-insert:

Lemma 38 Let H be a heap of size n. Let ah, ah−1, . . . , a1 be the path from
the root to the first vacant place. Let (xa1 , xa2 , . . . , xah) be a proper random
choice for the nodes (a1, a2, . . . , ah). Let v be a new distinct value and let j be
the maximal index for which vaj < v in H. Then:
recursive-insert-try-2(H, v, (xa1 , . . . , xah))= recursive-insert(H, v, (xa1 , . . . , xah), j)

Proof: The proof is by induction on the height of the heap.

Induction Base: When the heap is of height 0, recursive-insert-try-2 and

52

recursive-insert operate the same, therefore the lemma holds.

Induction Step: Consider a heap of height h and assume the claim holds for
all heaps of height less than h. Assume without loss of generality that the first
step on the path from the root to the first vacant place goes left. We partition
the analysis into two cases according to whether recursive-insert changed xah

to ah in step 2 or not. Notice that if xah is changed to ah then heapify in step
3 does not modify the heap.

Case 1: xah remains unchanged in step 2 of recursive-insert. If this is the case
then the lemma follows directly from the induction hypothesis. This is true be-
cause the recursive-insert and recursive-insert-try-2 are now applied recursively
on the identical sub-heap HL (in step 5). This sub-heap is of height less than h.
Thus, H ′

L returned is the same in both recursive-insert and recursive-insert-try-2
and we are done.

Case 2: xah is changed to ah in step 2 of recursive-insert. By the operation of
recursive-insert this means that xah is not in the sub-heap of node aj.

Let (H ′
L, H

′
R, vxah

) =heapify−1(H, xah) and let HL, HR be the original sub-
heaps of the root of heap H. In this case recursive-insert is applied recur-
sively HL while recursive-insert-try-2 is applied on the heap H ′

L. Let HL(end)
= recursive-insert-try-2(HL, v, (xa1 , . . . , xah−1

)), H ′
L(end) = recursive-insert-try-

2(H ′
L, v, (xa1 , . . . , xah−1

)).
Notice we operate recursive-insert-try-2 and not recursive-insert in both cases.
In this case the following equalities hold:

recursive-insert-try-2(H, v, (xa1 , xa2 , . . . , xah))

= heapify(recursive-insert-try-2(H ′
L, v, (xa1 , xa2 , . . . , xah−1

)), H ′
R, vxah

)

= heapify(recursive-insert-try-2(HL, v, (xa1 , xa2 , . . . , xah−1
)), HR, vah) (12)

= heapify(recursive-insert(HL, v, (xa1 , xa2 , . . . , xah−1
), j), HR, vah) (13)

= recursive-insert(H, v, (xa1 , xa2 , . . . , xah), j)

Equality 13 follows by the induction hypothesis (note that the same heap
HL is used when applying the induction hypothesis). The main point here is
equality 12. For this, we need to show that the result of recursive-insert-try-2
is not changed by setting xah = ah. First observe that the maximal index for
which vaj < v is the same in HL and H ′

L and that the sub-heap of node aj is
the same in H ′

L and HL, because the xah is a location not in the sub-heap of
aj. Thus, by claim 37 H ′

L(end) and HL(end) remain equal in the sub-heap of
node aj. The value v appears in aj by the end this routine. By claim 36 other
parts of the heaps HL and H ′

L are not modified by recursive-insert-try-2.

When we applied heapify−1 in step 2 in the procedure recursive-insert-try-2

53

procedure insert-oblivious(H: Heap, a: Value) : Heap
begin
1. Think of the input value a as being located in an additional node

numbered n+ 1. (This is the first vacant place as in figure 5.)
Choose uniformly at random a number i, 1 ≤ i ≤ n+ 1,
and denote the value of node i by vi.

2. If (i = n+ 1) then H’=H and skip to step 5. Otherwise:
3. H ′ ← increase-key-oblivious(H, i, a)
4. Choose uniformly at random a proper randomization vector (xa1 , . . . , xah)

for the procedure recursive-insert.
5. Find the maximal index j in H for which aj < vi.
6. Return (recursive-insert(H ′, vi, (xa1 , xa2 , . . . , xah), j))
end

Fig. 17. The procedure insert-oblivious

getting the heap H ′
L the value at node xah got to the root and shifted all the

values on the path from the root to node xah one step down. We claim that
when we apply heapify in step 6 of recursive-insert-try-2 on the root location of
the modified heap letting the value at the root ’float’ down, the value ’floats’
exactly along this previously shifted path returning all the values on this path
to their original positions. This path does not intersect the modified sub-heap
of node aj, thus if the path does not pass the parent of node aj there is no
problem. If the path passes through the parent of node aj then we claim that
the value never switches with the value v at node aj (i.e does not change its
route). This is true because the value previously at location of the parent of
aj in H is strictly larger than v. This value is either the value that floats down
from the root (if xah is the location of the parent of aj), or it was shifted one
step down to the direction of xah and is now the sibling of node aj and larger
than v. Thus, all the values on the shifted path return to their places. The
sub-heap of node aj remains the same. Thus, after applying heapify in step 6
the heaps HL(end) and H ′

L(end) are equal and we are done. 2

We provide the pseudo code of inset-oblivious in figure 17, and state our last
corollary proving its history independence.

Corollary 39 Let H be a heap of size n that is uniformly distributed among
all heaps with the values {v1, v2, . . . , vn}, and let a be new distinct value. Then
H ′ = inset-oblivious(H, a) is distributed uniformly among all heaps with the
values {v1, . . . , vn} ∪ {a}.

Proof: We only need to prove that for any heap H and new distinct value
a, the procedures insert-try-2 and insert-oblivious produce the same output
distribution. The only difference in the procedures is the use of recursive-
insertinstead of recursive-insert-try-2. Thus, the rest of the proof follows from
claim 38. 2

54

It remains to analyze the time complexity analysis of insert-oblivious.

Claim 40 The expected time complexity of insert-oblivious is O(log(n)), where
the expectation is over all random choices of the operation.

Proof: The complexity of increase-key-oblivious operation is no more than the
height of the heap, since the value can float at most from the root to one
of the leaves, or from one of the leaves to the root. Therefore the worst case
complexity of steps 1 to 3 is O(h) = O(log(n)). In step 4 we choose random
vector of size O(h) this takes O(h) time. In step 5 we pass over the path
from the root to the first vacant place finding the maximal index j for which
vaj < vi. This take O(h) time. Thus, the only problematic part is the expected
time complexity of recursive-insert. This complexity depend upon the random
vector (xa1 , xa2 , . . . , xah), the random choice of the value vi and the heap H.

Looking at the procedure recursive-insert we can see whenever xah is not a
location in the sub-heap under aj we get that the operation of heapify−1 in
step 3 does not change the heap. Therefore since the value vi must be less
than the value at the root (otherwise xah is always in The sub-heap of node
aj) the operation of heapify at step 7 does not modify the heap as well. In fact,
in a real implementation if this is the case, we probably skip both steps.

Next we observe that whenever xah is a location inside the sub-heap of node
aj then j ← j− 1 (in step 2). When this happens the two operation heapify−1

in step 3 and heapify in step 7 are not redundant. Both operation work in
worst time complexity of O(h) = O(log(n)). This means that the complexity
of recursive-insert is O(j ∗ h) where j is the starting value in the first call to
recursive-insert. The rest of the proof analyzes the index j proving that its
expected value is O(1).

The value of j depends upon the heap H and the value of vi inserted to the
heap. The main key for the complexity proof are two observations: From the
second part of claim 36 we know that j is the height of the value vi at the
end of the operation recursive-insert. From claim 38 and claim 34 we get that:

recursive-insert(H, vi, (xa1 , xa2 , . . . , xah), j)

= recursive-insert-try-2(H, vi, (xa1 , . . . , xah))

= recursive-insert-try-1(H, vi, (x1, x2, . . . , xn))

Notice that again we treat recursive-insert and recursive-insert-try-2 as if they
get full vector of size n, but uses only the random choices that they need for
their operation.

Recall that the operation recursive-insert-try-1 consist of using build-heap−1

on H, putting vi in the next vacant place in the tree and using build-heap to

55

build back the tree. The value vi is chosen uniformly from {v1, v2, . . . , vn}∪{a}
where a is the new value that is inserted. Last, from the second part of claim
32 after applying build-heap−1 we get uniform permutation over the values
{v1, v2, . . . , vn} ∪ {a} \ {vi} . Combining these facts together we get that the
expected value of j is:

E
[
π ∈R Π(n+ 1); build-heap(vπ(1), vπ(2), . . . , vπ(n+1)) = H;h(H, vπ(n))

]
Where h(H, vπ(n)) is the height of vπ(n) in the heap H. From claim 30 this
value is less or equal 4= O(1), and we are done. 2

7 Conclusion

In this work we showed a separation between the notion of weak and strong
history independence in the comparison-based model. In this model we showed
that implementing strong history independence requires a very high complex-
ity penalty. A major open question is whether the two notions are different in
the standard non-comparison-based model. We believe that achieving strong
history independence is difficult even in the standard model.

A second interesting question is whether weak history independence imposes
a complexity cost. That is, can one transform any data structure into being
weakly history independent without paying any complexity penalty? Or by
paying a small complexity penalty? Up to now, transformations with constant
additional costs have been shown to several data structures: 2-3 trees, Hash-
tables and Heaps. We believe that the general result is not possible. To show
this, one must find a specific data structure and show that making it weakly
history independent imposes a complexity cost. As a candidate for proving
such a lower bound, we propose the Fibonacci heaps data structure.

References

[1] A. Andersson, T. Ottmann. Faster Uniquely Represented Dictionaries. Proc.
32nd IEEE Sympos. Foundations of Computer Science, pages 642–649, 1991

[2] M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptography and
Application to Virus Protection. Proc. of the 27th annual ACM Symp. on the
theory of Computing. pp. 45-56, 1995.

[3] Niv Buchbinder, Erez Petrank. Lower and Upper Bounds on Obtaining History
Independence. Proc. of the 23rd Annual Int. Cryptography Conference (CRYPTO
2003). pp. 445-462, 2003.

56

[4] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. MIT Press and McGraw-Hill Book Company, 6th edition, 1992.

[5] E.W.Dijkstra A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269-271, 1959

[6] Jason D. Hartline, Edwin S. Hong, Alexander E. Mohr, William R. Pentney, and
Emiliy C. Rocke. Characterizing History independent Data Structures. ISAAC
2002 pp. 229-240, 2002.

[7] J.R.Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures
persistent. Journal of Computer and System Sciences, 38(1):86-124, 1989.

[8] Robert W. Floyd. Algorithm 245 (TREESORT). Communications of the ACM,
7:701, 1964.

[9] D. Micciancio. Oblivious data structures: Applications to cryptography. In Proc.
29th ACM Symp. on Theory of computing, pages 456-464, 1997.

[10] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious
rams. Journal of the ACM, 43(3):431-473, 1996.

[11] M.Naor and V.Teague. Anti-persistence: History Independent Data Structures.
Proc. 33rd ACM Symp. on Theory of Computing, 2001.

[12] R.C.Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36:1389-1401, 1957

[13] J.W.J Williams Algorithm 232 (HEAPSORT). Communication of the ACM,
7:347-348, 1964

A Proof that Strong history independence implies canonical rep-
resentation

In this section we provide the proof of Lemma 3. As stated in the introduction,
this lemma was proven in [6] and independently by us. The proof here slightly
differs from the one in [6].

We say that a memory representation of a data-structure D is reachable, if
there exists a sequence of operations (and a sequence of random choices for
each of these operations) that yields D with the given implementation. Each
content of the data structure may have several possible memory representa-
tions. An implementation of an abstract data structure can be viewed as a
function mapping possible contents to memory representations and some al-
gorithmic way of passing between these memory representations according to
the content graph.

57

Lemma 41 For any well-behaved data-structure, for any strongly history in-
dependent implementation of the data-structure, for any reachable memory
representation D, and for any operation Op applied on D with some parame-
ters v1, v2, . . . , vk. The operation yields only one memory representation.

Note that the above lemma must hold even though the procedures implement-
ing the data structure operations may be randomized.

Proof: Assume in a way of contradiction that there exists a reachable memory
representationD an operationOp and additional parameters toOp, v1, . . . vk so
that the operation may yield at least two memory representations D1 and D2

for D1 ̸= D2. Since D is reachable, there exists a sequence S and a sequence
of random coin-tosses that results in D. Let C be the content of the data
structure. Let C ′ be the content of the data structure after applying Op with
its parameters on C. Let S ′ be the sequence of operation on the path from
C ′ to C in the content graph. The graph is strongly connected therefore there
exist such path.

We define two sequences of operations starting from the empty data structure:
S1 = S and S2 = (S1, Op(·, v1, . . . , vk), S ′) (Op(·, v1, . . . , vk) means that we
apply Op on the structure output by the previous steps of the sequence). Note
that S2 generates a structure with the same content as D after running S1

and in the end. By strong history independence, we may choose stop-points in
S1 and S2 when they contain the same content and get an equal distribution
on memory representation tuples at those points. We choose two stop-points
for each sequence. In both stop-points, the sequences result in the content
of D. In S1 both points are defined at the same location: the end of S1.
In S2 one point is at the end of S1 and the other one is at the end of S2.
Since the content of the data-structure is the same on both points, then the
distribution of memory representation at the points must be identical. Since
it is identical, it remains identical also when we condition on the first point
being the memory representation D. We know that the conditioned event has
positive probability since D is reachable. For S1 the memory representation
in both points (actually, the same point) is equal and must be (D,D). Thus,
the memory representation in the points of S2 (conditioned on the first being
D) must also be (D,D). This means that for any Di = Op(D, v1, . . . , vk), it
must hold that S ′(Di) = D with probability 1, where S ′ means applying the
sequence of operations in S ′ on Di one by one.

Next we define two more sequences: S3 = (S1, Op(·, v1, . . . , vk)) and S4 =
(S3, S

′, Op(·, v1, . . . , vk). We choose two stop points for each of these sequences.
For S3 we choose both points at the end of S3. For S4 we choose the first point
after S3 and the second point at the end of S4. Note that the content of the data
structure in all these points the same, C ′. By strong history independence the
joint distribution on memory representations at the stop-points of S3 (which

58

is the same representation) must also be the joint distribution of the memory
representations at the stop-points of S4. Thus, the two points in S4 must
contain the same memory representation. Now, we already know that for any
Di = Op(D, v1, . . . , vk), it must hold that S ′(Di) = D. But here we get that
for any such possible Di, Op(S

′(Di), v1, . . . , vk) must be Di. Combining the
two, we get that for any Di, Op(D, v1, . . . , vk) must be Di for any i. This latter
requirement results in a contradiction if there is more than one possible such
Di. Thus, there can only be one memory representation for Op(D, v1, . . . , vk).
2

Using the previous lemma we may now prove the lemma 3. We prove that any
strongly history independent implementation of a well-behaved data-structure
is canonical, i.e., there is only one possible memory representation for each
possible content.

Proof: Let C be any content of the data structure and let S1 be any sequence
of operation that yields this content. From lemma 41 each operation in the
sequence yields only one possible memory representation, thus the content
has only one possible memory representation. This is true for any sequence
of operations that yield C. By the history independence of the data structure
implementation (even not using strong history independence) the memory
representation must be the same for each such sequence, and we are done.
2

It worth nothing to say that lemma 3 does not hold when the data structure
is not well behaved (i.e. when its content graph is not strongly connected).
Consider for example a data structure that stores a set of elements and has
only an insert operation and some other operations that do not change its
content. It is not hard to see that the content graph of this data structure is a
DAG and therefore not strongly connected. Indeed, an implementation that
stores the values in an array, keeping the filled array uniformly distributed
at any time regardless of the history led to this content is a strongly history
independent implementation of this data structure, which is of-course not
canonical.

In general, lemma 3 applies to any strongly connected part of the content graph
which is of size strictly more than 1 (i.e. to any content that lie on a circle).
In the opposite direction, each content that do not belong to such a strongly
connected part may have multiple possible memory representations. Such a
content may appear in any sequence S of operations only once. For this reason,
it may have few possible memory representations, as long as the probabilities
of these memory representations do not depend upon previous operations that
lead to this content, the data structure remains strongly history independent,
because the common distribution remains identical.

59

