
Dynamic Power Allocation Under Arbitrary Varying
Channels – An Online Approach

Niv Buchbinder
Microsoft Research, New England
Email: nivbuchb@microsoft.com

Liane Lewin-Eytan
Department of Electrical Engineering

Technion, Israel Institute of Technology
Email: liane@tx.technion.ac.il

Ishai Menache
Laboratory for Information and Decision Systems

Massachusetts Institute of Technology
Email: ishai@mit.edu

Joseph (Seffi) Naor
Computer Science Department

Technion, Israel Institute of Technology
Email: naor@cs.technion.ac.il

Ariel Orda
Department of Electrical Engineering

Technion, Israel Institute of Technology
Email: ariel@ee.technion.ac.il

Abstract—A major problem in wireless networks is coping with
limited resources, such as bandwidth and energy. These issues
become a major algorithmic challenge in view of the dynamic
nature of the wireless domain. We consider in this paper the
single-transmitter power assignment problem under time-varying
channels, with the objective of maximizing the data throughput.
It is assumed that the transmitter has a limited power budget,
to be sequentially divided during the lifetime of the battery.
We deviate from the classic work in this area, which leads
to explicit “water-filling” solutions, by considering a realistic
scenario where the channel state quality changes arbitrarily from
one transmission to the other. The problem is accordingly tackled
within the framework of competitive analysis, which allows for
worst case performance guarantees in setups with arbitrarily
varying channel conditions.

We address both a “discrete” case, where the transmitter
can transmit only at a fixed power level, and a “continuous”
case, where the transmitter can choose any power level out
of a bounded interval. For both cases, we propose online
power-allocation algorithms with proven worst-case performance
bounds. In addition, we establish lower bounds on the worst-case
performance of any online algorithm, and show that our proposed
algorithms are optimal.

I. INTRODUCTION

A. Background and Motivation

Wireless technologies are broadly used nowadays for both
data and voice communications. The transmission protocols
of wireless devices need to cope with limited resources,
such as bandwidth and energy. Additional difficulties relate
to the dynamic nature of wireless networks. For example,
the mobility of terminals and the frequent change in their
population introduces new challenges for routing and resource
allocation protocols. Another central dynamic feature of wire-
less communications, which is the focus of this work, is the
possibly frequent time variation in the channel quality between
sender and receiver, an effect known as channel fading [5].

Much research has been devoted to study optimal power
allocation in face of varying channel conditions, assuming
that a (typically mobile) transmitter, wishing to maximize its
throughout, has an average power constraint to sustain over

time. If the channel state is known prior to transmission,
the transmitter may obtain the optimal mapping from channel
states to power levels via the solution to a convex optimization
problem [8]. It turns out that the single-user closed-form solu-
tion to this problem is a “water-filling” algorithm. Intuitively,
this algorithm makes sure that higher power levels are kept
for better channel states.

The “water-filling” solution relies on an a-priori knowledge
of the channel-state distribution. However, such information
may not be available, and therefore requires adaptive schemes
to estimate it. Even worse, the probability rule governing the
underlying channel state process might change over time, due
to non-stationary network elements that affect the quality of
transmissions (e.g., mobility, line of sight, etc.). The goal of
this study is to investigate how well can a transmitter do under
arbitrarily varying channel conditions.

An additional distinctive assumption of our model is that
the transmitter has a limited battery that can be recharged only
occasionally. Hence, instead of considering a long-term power
average constraint, the transmitter has to be aware of its actual
remaining energy. Consequently, the underlying optimization
task becomes a dynamic power control problem (rather than a
static mapping from channel states to power levels). Due to the
arbitrarily changing channel conditions, we study the problem
within the framework of online computation [3], with the
objective of devising online power-allocation algorithms with
proven worst-case performance bounds. A second objective is
to establish lower bounds on the worst-case performance of
any online algorithm that operates under arbitrarily varying
channel conditions, hence providing a benchmark for the
quality of our proposed solutions.

The technological relevance of our work lies, for example,
in sensor networks, where the battery of the mobile is limited
and can be charged only occasionally (e.g., by solar energy).
Sensors that are required to send informative data, may do so
in a relatively slow pace, with the objective of maximizing
their overall throughput. Due to the low rate of transmission,
the assumption of arbitrary channel conditions is commensu-
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rate with the unknown changes (e.g., environmental) that take
place between subsequent transmissions.

B. Related Literature

The information theory community has considered the case
where the transmitter and the receiver operate with incom-
plete knowledge of the probability law governing the channel
over which transmission takes place. This situation is usually
modeled as having an adversarial jammer, whose goal is to
diminish system capacity. Various models for such channels
and their corresponding capacities have been quite broadly
analyzed (see [10] for a survey). The problem that we consider
here is fundamentally different: while we assume that the
transmitter observes the current channel state, and encodes
accordingly, it cannot predict future channel states, and there-
fore should carefully choose its current power allocations,
considering its limited power budget.

Recently, there has been growing interest in jamming games
(e.g., [1]), in which a malicious adversary, equipped with its
own power budget, aims at deteriorating system performance
by allocating its own power (which affects the throughput
of other users) in a harmful way. Our work differs from the
jamming game model by considering arbitrary gain (instead
of power), which is not subject to a “budget” constraint.
In addition, we focus on competitive (worst-case) analysis,
rather than on the notion of an equilibrium between “equal”
players. For such settings, where piece-by-piece decisions need
to be made on an arbitrary input pattern, the methodology
of competitive analysis [3] provides a framework for the
systematic design of algorithmic solutions as well as for
the establishment of worst-case performance bounds. These
bounds are specified in terms of the competitive ratio of the
online algorithm, which is the worst-case ratio (considering
any possible input pattern) between its performance and that
of an optimal off-line algorithm, which can observe the entire
input sequence. Online methods have gained prominence in
solving algorithmic problems in a variety of networking do-
mains, ranging from network switches to e-bay and sponsored
search auctions.

C. Contribution and Paper Organization

To the best of our knowledge, this is the first study that
proposes to attack the problem of power allocation under
dynamic channel quality through the methodology of online
(competitive) analysis. Within this framework, we address
two scenarios, which correspond to different technological
capabilities of the transmitter. In the first,“discrete” scenario,
the transmitter can transmit only at a fixed power level,
hence its sole decision at each stage is whether to transmit
or not. In the second, “continuous” case, the transmitter can
choose the power level out of a continuous interval. For each
of the two scenarios, we propose an algorithmic solution
(an online algorithm), for which we establish a worst-case
performance bound. In addition, we establish lower bounds on
the performance of any online algorithm, hence benchmarking

our solutions. More specifically, our contributions can be
summarized as follows:
• Discrete case:

– We provide a simple (“thresholds”) online algorithm,
for which we establish a worst-case performance
bound.

– We establish a bound on the performance of any on-
line algorithm, and show that our proposed algorithm
is within a small “gap” away from that bound.

– We show that the above results, in both directions,
are maintained also if some limits are imposed on
the arbitrariness of the input pattern.

• Continuous case:
– We provide a simple (“bins”) online algorithm, for

which we establish a worst-case performance bound.
– We establish a bound on the performance of any on-

line algorithm, and show that our proposed algorithm
is optimal, in the sense that it matches that bound.

– We also consider the case where the channel con-
ditions can vary only within a bounded range, and
obtain for this case a simple (“guessing”) online al-
gorithm, whose performance depends (quadratically)
on the size of the bounded range.

We complement our work with a simulation study, where
we validate our suggested online algorithm for the continuous
case, and examine the effect of certain parameters on its
performance. We further improve the algorithm for which we
gave a complete theoretical analysis, and add several heuristic
enhancements. Following our experiments, we observe that
our online algorithm performs significantly better than the
theoretical bound, resulting in a ratio of approximately 2.5
between the performance of the optimal off-line algorithm and
the performance of our online algorithm.

The paper is organized as follows. The channel and trans-
mitter are modeled in Section II. Section III addresses the
discrete case, whereas the continuous case is treated in Section
IV. Section V presents the simulation study and discusses its
results. Finally, conclusions appear in Section VI. Due to space
limits, several proofs as well as some technical details are
omitted from this version, and can be found in [7].

II. THE MODEL

A. The Channel Model

We consider a transmitter who transmits to a single receiver
(base station) over a bandwidth of W hertz. The channel
between the user and the receiver is modeled as a frequently-
flat fading channel with additive white Gaussian noise. Specif-
ically, at each time t, the received signal y(t) is given by

y(t) =
√

h̃(t)x(t) + z(t), (1)

where x(t) and h̃(t) ≥ 0 are the transmitted signal and channel
gain (state), and z(t) is an additive white Gaussian noise with
power spectral density N0/2. The sequence of channel gains is
modeled as a block-fading process [5], so that for i = 1, 2, . . .
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h̃(t) = h̃i, for all t ∈ [iL, (i + 1)L),

where L is the length of each time slot.
A distinctive feature of our model is that the process {h̃i}

evolves arbitrarily, i.e., without an underlying probability rule.
At the beginning of each time slot i, the transmitter obtains
some information hi regarding the current channel gain h̃i.
This information is passed through a finite lossless feedback
link with capacity of C bits per second1. The information
hi ∈ {q0 = 0, q1, . . . , qM} ⊂ R+ is a quantized version
of the actual gain h̃i, so that if h̃i ∈ [qm, qm+1) (where
qM+1 ≡ ∞), then hi = qm. Throughout the paper, we use
the notation hmin = q1 for the smallest (nonzero) quantized
gain, and hmax = qM for the maximum one. To simplify the
exposition, we shall henceforth refer to hi as the channel gain
at time-slot i.

The transmitter observes hi and can adapt its transmission
decision (which may include power adaptation) accordingly.
We assume that there is no retransmission mechanism, so
that each transmission arrives to the base station with a
very high probability. The basic measure that determines the
instantaneous throughput is the received Signal to Noise Ratio
(SNR), given by SNRi = hipi

N0W , where pi is the transmission
power of the transmitter at time i. To simplify notation, we
normalize N0W to one, so that SNRi = hipi.

Let U(SNRi) be the instantaneous rate which the user can
reliably transmit at time slot i. In the bulk of the paper, we
shall consider the function

U(SNRi) = log(1 + SNRi), (2)

which models the case where the transmitter can adjust its cod-
ing scheme to obtain rates approaching the Shannon capacity
of (1) at each time slot.

B. User Model

We assume that a transmitter has an initial power budget of
P that can be divided between different time slots. We further
assume that a transmitter can recharge its battery (to the initial
power P ); however, due to practical limitations, a period of T
time slots elapses between consecutive battery charges.

The transmitter wishes to maximize its total throughput
subject to the constraints described above. We often refer to the
total throughput achieved as profit. The general optimization
problem is thus the following

maximize
T∑

i=1

U(SNRi)

s.t
T∑

i=1

pi ≤ P, (3)

where SNRi = hipi.

1E.g., the feedback link may employ a different frequency band in a
Frequency Division Duplex (FDD) system, which does not suffer from fading.

In Section III we consider the discrete power allocation
case, in which the transmitter has a fixed power level P ∗

for each transmission. This case corresponds to imposing an
additional constraint pi ∈ {0, P ∗}, ∀i = 1, . . . , T , to the above
optimization problem. In Section IV we address the continuous
case in which any power level between zero and P can be
used, which corresponds exactly to (3).

We emphasize that since the channel gain sequence {hi} is
not known a-priori, and neither is its distribution, (3) cannot
be solved off-line. Accordingly, we pose (3) as an online
optimization problem, where at each time slot i, a new channel
gain hi is revealed to the transmitter.

III. THE DISCRETE CASE

We consider here the discrete version of the problem, where
at each time slot the transmitter can decide whether to transmit
at a fixed power P ∗, or not to transmit at all. The total
number of transmissions that can be performed is thus equal
to P/P∗ = k. We refer to this problem as the k-transmissions
problem. The k-transmissions problem can thus be formulated
as an integer linear program:

maximize
T∑

i=1

xi · log(1 + hiP
∗)

s.t.
T∑

i=1

xi ≤ k (4)

∀ time slot i: xi ∈ {0, 1}. (5)

We refer to the above problem as the integral k-
transmissions case. The fractional k-transmissions problem is
obtained by relaxing constraint (5) to 0 ≤ xi ≤ 1 (for each
slot i). In practice, the fractional problem captures situations
where a single transmission can be split to fractions (adding
up to 1) over several slots. Thus, xi denotes the fraction of
the time slot in which the transmission is performed.

As specified in Section II-B, we assume that the channel
gains obtain values between zero and hmax. Since a gain of
zero will result in no transmission, we may ignore the zero-
gain instances, and assume that the channel gain obtains values
in the range [hmin, hmax]. For ease of notation, we denote the
maximum gain from an integral transmission by M = log(1+
hmax ·P ∗) and the minimum gain by m = log(1+hmin ·P ∗).

Thus, our online problem can be described as follows. At
each time slot i a new gain value vi ∈ [m, M ] is given, and
the online algorithm has to decide on the value of xi, so as
to maximize the total gain, subject to the above constraints.
The value of xi cannot be changed in the future. Our goal is
to find an online algorithm with the best possible competitive
ratio. We note that the fractional k-transmissions case can be
solved using the online primal-dual approach of [6], leading
to an O(log M

m )-competitive algorithm.

A. The Integral Case: A Randomized Algorithm

We now describe a simple randomized algorithm achiev-
ing a competitive ratio of O(log M

m ) for the integral k-
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transmissions problem. We first run the online algorithm for
the fractional k-transmissions problem using the techniques
of [6], and then apply randomized rounding online to the
fractional solution. The output of the fractional online solution
is a partitioning of the time frame into k time intervals, where
in each time interval the fractional values add up to 1. Note that
this partitioning is generated online by the fractional algorithm.
For each interval j, we denote the fractions assigned to the
time slots of the interval by xj

1, x
j
2, . . . , x

j
nj

, and the respective
gain values of these time slots by vj

1, v
j
2, . . . , v

j
nj

. We derive
an integral solution with expected profit equal to the fractional
solution. To this end, in the beginning of each interval j, we
choose uniformly in random a value θj from [0, 1]. Define
index αj as the index satisfying

∑αj−1
i=1 xj

i < θj while∑αj

i=1 xj
i ≥ θj . Clearly, for each j, the probability that index

αj is chosen is equal to xj
αj

. Thus, E[vj
αj

] =
∑nj

i=1 xj
i · vj

i ,
i.e., the expected profit of our solution is equal to the profit
of the fractional solution. Note that we need to choose the
values θj independently for each interval. As the profit of the
optimal (off-line) fractional solution is at least the profit of the
optimal (off-line) integral solution, and since the competitive
ratio achieved by the fractional online algorithm is O(log M

m ),
our randomized online algorithm for the integral case achieves
a competitive ratio of O(log M

m ) as well.

B. The Integral Case: A Deterministic Solution
We turn to analyze the deterministic integral k-transmissions

case. The online integral k-transmissions problem can be
directly reduced to an instance of the online knapsack problem,
where the input consists of a knapsack of capacity k, and a
stream of items of weight 1 and values vi. An online algorithm
with competitive ratio equal to ln M

m + 1 is known for this
problem [12]. However, the analysis of this algorithm is valid
only for the case where k >> 1. We complete the picture and
present an algorithm for the case where k is small.

1) The k-Thresholds Online Algorithm: We first compute
k threshold values denoted by w1, . . . , wk. The k-thresholds
online algorithm for the integral k-transmissions problem
proceeds as follows. For each transmission j (where j goes
from 1 to k): if there are more than k−j additional time slots
until the end of the time frame, we transmit transmission j
only if the gain value of the current time slot is not less than
threshold wj ; otherwise, transmission j is done at the current
time slot, independently of the gain value.

Lemma 1: The optimal competitive ratio of the k-thresholds
algorithm is achieved for an increasing sequence of thresholds,
that is, a sequence w1 < w2 < . . . wk.

Finding an optimal choice of thresholds w1, w2, . . . , wk

requires the consideration of several different inputs given to
the algorithm by an adversary. Due to space limits, we do
not describe here the different cases. A near-optimal choice of
a sequence of thresholds turns out to be a geometric series,
where w1 = (km)

k
k+1 M

1
k+1 , and the ratio between successive

thresholds is ρ =
(

M
km

) 1
k+1 . The competitive ratio of the k-

thresholds algorithm, given the latter sequence of thresholds,
is summarized by the following theorem.

Theorem 1: The integral k-transmissions online problem
can be solved by a deterministic k-thresholds algorithm with
competitive ratio O(k

k
k+1 · (M

m

) 1
k+1 ).

Note that for the case where k = 1, our problem reduces
to the online portfolio selection problem [4], where a certain
amount of money has to be changed from one currency to
another, and the exchange rates arrive online. For this problem,
we get a threshold of

√
(mM) and a ratio of

√(
M
m

)
which

match the optimal solution for this problem.
2) Lower Bound: We present a lower bound of Ω(

(
M
m

) 1
k+1 )

for the integral k-transmissions problem. The lower bound
consists of a sequence of gain values which depend on the
decisions of the online algorithm solving this problem. The
gain value of the first time slot is some value w′1, to be spec-
ified later on. Now, if the algorithm performs a transmission,
then the gain value of the next slot is changed to be w′2 (to be
specified later), otherwise, it stays w′1. Similarly, in case the
algorithm already performed j transmissions, the gain value
will be w′j+1 (to be specified later as well) and will stay
as is until the algorithm performs the next transmission. If
the algorithm does not make an additional transmission and
reaches the k − j last time slots, the gain values are changed
to be the minimum value m until the end of the sequence.
Otherwise, as soon as the algorithm performs k transmissions,
the gain values are changed to be the maximum value M until
the end of the sequence.

Optimizing the choice of w′1, w
′
2, . . . is similar to the anal-

ysis of the k-thresholds algorithm in Section III-B1. We get
a geometric series of thresholds, where w′1 = (m)

k
k+1 M

1
k+1 ,

and the ratio between successive thresholds is ρ′ =
(

M
m

) 1
k+1 .

The lower bound is summarized in the next theorem.
Theorem 2: The competitive ratio of any algorithm solv-

ing the integral k-transmissions online problem is at least
Ω(

(
M
m

) 1
k+1 ).

There is a gap of at most a factor of k between our lower
and upper bounds. However, for small values of k we get
nearly matching upper and lower bounds.

3) Progressive Change of Gain Values: Finally, we consider
the case where successive gain values (arriving online) in the
range [m,M ] cannot be arbitrary, but are rather limited to be
as far as ∆ from each other. That is, given that vi = x, then
vi+1 ∈ [x − ∆, x + ∆]. We show that the results presented
in Sections III-B1 and III-B2 for the case of arbitrary gain
values remain valid here as well. Our online algorithm stays
as described in Section III-B1 (the worst-case sequences can
be easily adapted to be progressive).

The lower bound in the case where the gain values can only
change progressively can be directly derived from the lower
bound described in Section III-B2, leading to a similar result.
Due to space limits, we do not further elaborate on this case.

IV. THE CONTINUOUS CASE

We consider the general case of the continuous online
power allocation problem defined in Section (II-B), where
a transmitter maximizes its total throughput given an initial
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power of P , and can use any power level at each time slot
(subject to the remaining power constraint). The optimization
problem of the transmitter for the continuous case is:

maximize
T∑

i=1

log(1 + hipi)

s.t
T∑

i=1

pi ≤ P.

A. Lower Bound

As explained in Section II-B, we assume that channel gains
are within the range [hmin, hmax]. For ease of notation, we
denote h = hmin and H = hmax. We present a lower bound of
Ω(log H

h ) for the general continuous case. We set P = H
h ; this

will guarantee that the throughput achieved by the algorithm
over time slots with channel gains equal to h is negligible, as
is explained later.

The lower bound consists of a sequence of channel gain
values that change every ` slots. We refer to such as a set of
consecutive ` slots as a sub-sequence. The number of slots `
in each such sub-sequence is large enough, so that even if we
divide the total power P evenly between all slots in a sub-
sequence with gain value x, the throughput achieved can be
nearly approximated using the following equation:

∑̀
t=1

log
(

1 +
P · x

`

)
= ` · log

(
1 +

P · x
`

)
∼= P · x.

The idea is as follows. Suppose the goal of the adversary
is to reach a competitive ratio of r. Then, as soon as the
ratio achieved is at least r, the adversary ”stops” giving sub-
sequences, and turns to give a minimum gain of h till the end.
Otherwise, as long as the competitive ratio achieved along the
sub-sequences is less than r, the adversary gives consecutive
sub-sequences with gain values that are doubled each time,
until the budget of the algorithm is exhausted. At this point,
the adversary gives a maximum gain value of H till the end.
The adversary will then reach its desired ratio by investing its
power over the slots with gain H .

We set the channel gain values of the time slots of the
first sub-sequence to be H√

P
. This value is chosen so that the

algorithm cannot achieve a valuable throughput with respect
to the adversary by transmitting over slots with minimum gain
h, as shown by the following lemma.

Lemma 2: Suppose that after x ≥ 1 sub-sequences, the
competitive ratio achieved by the algorithm is r′ ≥ r =
Θ(log H

h ), and the adversary then gives a minimum gain of h
till the end. Then, the competitive ratio achieved at the end of
the sequence cannot be lower than r.

We denote by r1, r2, . . . , rj the competitive ratios achieved
after the first, second, and jth sub-sequence, respectively. Note
that ri (1 ≤ i ≤ j) is the ratio between the optimal solution
and the total throughput achieved by the algorithm after sub-
sequences 1, . . . , i. Clearly, for each i, ri < r, as otherwise

the lower bound is reached, and the adversary stops the sub-
sequences. We first prove the following lemma.

Lemma 3: The total budget invested by the algorithm over
these j sub-sequences is at least the total budget invested by
the algorithm in case the ratio after each subsequence is equal
to r (more precisely to r − ε for ε arbitrarily small).

Proof: We compute the total budget spent by the algo-
rithm. We denote by yi the budget fraction spent over sub-
sequence i, and by xi the gain value given in slots of sub-
sequence i. The maximum profit made by the algorithm over
the first sub-sequence is maximized if the budget spent, Py1, is
evenly split between the ` slots of the sub-sequence. The profit
of the algorithm is then equal to ` · log(1+ Py1

` ·x1) = Py1x1.
Similarly, the adversary makes a maximum profit by equally
dividing all its power over these ` slots. The profit of the
adversary is then equal to `·log(1+ P

` ·x1) = Px1. As the ratio
after the first sub-sequence is r1, we get that Py1 = P/r1.

We repeat this calculation for the second sub-sequence.
Again, the throughput of the adversary is Px2. The maximum
throughput achieved by the algorithm over sub-sequences 1
and 2 is Py1x1 + Py2x2. As the competitive ratio achieved
after sub-sequence 2 is r2, we get that Py1x1+Py2x2 = Px2

r2
.

Substituting y1 by 1/r1, and as x2 = 2x1 (the gain has
doubled), we get that Py2 = P

r2
− P

2r1
.

More generally, the maximum throughput of the algorithm
over sub-sequences 1, . . . , i is

∑i
z=1 Pyzxz , whereas the max-

imum profit of the adversary is P · xi. Thus,
∑i

z=1 Pyzxz =
Pxi

ri
. We can write each term yz as a function of rz and rz−1

(as specified above for y2). Doing so, and as xz = 2xz−1, we
get that the budget spent by the algorithm over sub-sequence
i is Pyi = P

ri
− P

2ri−1
. Thus, the total budget spent by the

algorithm over sub-sequences 1, . . . , j is

j∑
z=1

Pyz =
1
2

j−1∑
z=1

P

rz
+

P

rj
. (6)

Note that the adversary always makes a maximum profit by
equally dividing all its power over the slots of the last sub-
sequence. Now, in case for each i, ri = r (more precisely,
r−ε), the algorithm spends a budget of P/r over the first sub-
sequence, and a budget of P/2r over each other sub-sequence.
In that case, the total budget spent by the algorithm over sub-
sequences 1, . . . , j is

(j − 1) · P

2r
+

P

r
. (7)

For each i, ri < r, (6) dominates (7), proving the lemma.
Note that in case 1/ri ≤ 1/2ri−1, the algorithm doesn’t

transmit over sub-sequence i. In that case, terms of the form
( P
ri
− P

2ri−1
) might be subtracted from (6). However, in that

case, 2ri−1 ≤ ri < r. Thus, P/ri−1 > 2P/r, and the lemma
remains valid.

¿From the above lemma it follows that the case where the
algorithm spends its whole budget after a maximum number
of sub-sequences happens when the ratio achieved at the end
of each sub-sequence is (r − ε). We compute the maximum
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number of such sub-sequences, that is, the maximum number
of sub-sequences needed in order to make the algorithm spend
all of its budget.

As explained before, we set the gain of the first sub-
sequence slots to be H√

P
. The gain values of the last possible

sub-sequence are set to be H
log P . The value of H

log P is chosen
to guarantee that by dividing its power equally over slots with
maximum gain H , the adversary can guarantee a competitive
ratio of Ω(log P ), as shown by the following lemma.

Lemma 4: Consider the case where the last sub-sequence is
reached, and thus, the algorithm finishes its budget. Then, the
competitive ratio achieved at the end of the whole sequence
is Ω(log P ).

Proof: The adversary achieves a maximum throughput of
P ·H by dividing its power equally over slots with maximum
gain H . The profit of the algorithm is upper bounded by P ·H

log P ,
which is the throughput achieved in case the budget P is split
equally over the slots of the last sub-sequence. (Note that this
is an upper bound on the throughput, as the algorithm invests
part of its power in earlier sub-sequences, with lower gain
values). Thus, the competitive ratio obtained at the end of the
whole sequence is Ω(log P ).

We denote the maximum number of sub-sequences by β+1.
As in each sub-sequence the gain is doubled, H√

P
· 2β = H

log P

holds, and thus

β =
log P

2
− log log P. (8)

Furthermore, the budget of the algorithm must be totally spent
after at most β + 1 sub-sequences. Thus,

P

r
+ β · P

2r
= P

β = 2(r − 1). (9)

It now follows from (8) and (9) that r = Θ(log P ). (Note
that log log P is a lower order term.) As P = H

h , we get the
following theorem.

Theorem 3: The competitive ratio of any algorithm for the
continuous online power allocation problem is Ω(log(H

h )).

B. The Online Power Allocation Algorithm

In this section we design an online algorithm for the
continuous power allocation problem. We follow a two step
approach. First, in Section IV-B1 we analyze a special case
in which the gain value range is bounded, and the ratio
between the maximum gain value, H , and the minimum
gain value, h, is at most λ. We present an online algorithm
with competitive ratio O(λ2) for this case. Furthermore, we
consider an extension of the bounded range case, where the
budget given to the optimal off-line algorithm is different from
the budget given to the online algorithm. Denoting the ratio
between the two budgets by ρ ≥ 1, we present an algorithm
with competitive ratio O(ρ · λ2) for this case. Based on this
special case we design in Section IV-B2 an algorithm for the
general case.

1) Bounded Range of Gain Values: In this section we study
the case where the ratio between the maximum and minimum
possible gain values is at most λ. Given a sequence of gain
values in the range [h, λh], we describe an online algorithm
with competitive ratio O(λ2).

We denote by OPT λ the optimal off-line algorithm, and
by ALGλ our online algorithm, for sequences with bounded
range of gain values [h, λh]. We denote by OPTλ(P ) and
ALGλ(P ) the profits of the optimal off-line algorithm and
our online algorithm for such a sequence (that is, their total
respective throughput), given a budget of P , and refer to them
simply as OPTλ and ALGλ for ease of notation.

Let T be the number of time slots, and P be the total budget.
Given the concavity of the objective function, and that the
gain value in each time slot is bounded by λh, we derive the
following upper bound on the value of the optimal value:

Observation 1:

OPTλ ≤ T · log
(

1 +
P

T
· λh

)
.

The algorithm works as follows. It guesses the length T of
the sequence, starting from 1, and doubling it each time the
current length of the online sequence turns out to be longer
than the guess. For a sequence length T , the algorithm invests
in each time slot a power equal to ( P

h·T ·c )1/2, where c is a
constant to be determined later on. That is, when at time T
the algorithm realizes that its current guess is wrong, it updates
its guess to be 2T , and works with this value until time 2T .
At time 2T the algorithm will again update its guess to 4T ,
etc. The algorithm continues to invest some power until the
sequence length becomes longer than P ·λh. After that point,
the algorithm no longer invests any power, and thus does not
make any additional profit.

Lemma 5: For a sequence of gain values in [h, λh]:
1) The competitive ratio achieved by the algorithm is 4c·λ.
2) The power spent over all the time slots of the sequence

is at most P .
Proof: We start with the proof of (1). For a sequence of

length T ≤ Pλh, power of ( P
h·T ·c )1/2 is spent over each of

the T/2 last slots (as the length T is guessed after slot number
T/2). In each of these slots, the gain value is at least h, and
thus the profit made by the online algorithm is at least

ALGλ ≥ T

2
log

(
1 + h ·

(
P

h · T · c
)1/2)

≥ T

4
log

(
1 +

P · h
T · c

)
(10)

≥ T

4c · λ log
(

1 +
P

T
· λh

)
(11)

≥ OPTλ

4c · λ . (12)

Inequality (10) follows since 1 + x1/2 ≥ (1 + x)1/2, and
Inequality (11) follows since 1+x/α ≥ (1+x)1/α. Inequality
(12) follows from observation (1).
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If T > Pλh then we bound the profit made by the algorithm
by setting T = Pλh in Inequality (11). We get that the profit
made by the algorithm until that time is at least:

T

4c · λ log

(
1 +

P

T
· λh

)
=

Pλh

4c · λ log

(
1 +

Pλh

Pλh

)
=

Ph

4c
log(2).

Since OPTλ ≤ Pλh we are done.

Proof of (2): We prove that the power spent over all the time
slots of the sequence does not exceed P . As the algorithm
stops investing power after the sequence reaches the length
of Pλh, we sum the power spent over length guesses γj =
1, 2, 4, . . . , Pλh. For each guess γj , the power spent is at most
γj · ( P

h·γj ·c )1/2. (As for each length guess γj ≥ 2, a power of
( P

h·γj ·c )1/2 is spent only in each of the slots coming after slot
number γj/2, and a lower power is spent in earlier slots).
Thus, the power spent over all length guesses is at most

Pλh∑

j=1

γj ·
(

P

h · γj · c
)1/2

=
(

P

h · c
)1/2 Pλh∑

j=1

√
γj

=
(

P

h · c
)1/2

·
√

2((Pλh)1/2 − 1)√
2− 1

(13)

≤
√

2λ · P√
c(
√

2− 1)
.

Equality (13) is obtained by summing up over the terms of
the geometric series. Now, in order to spend at most the
constrained power budget P , we require that

√
2λ·P√

c(
√

2−1)
≤ P ,

and we thus set c = 2λ
(
√

2−1)2
.

Combining the value of c with the proof of the first part of
Lemma 5, we get the following theorem.

Theorem 4: ALGλ is O(λ2)-competitive for the online
power allocation problem with bounded gain values in [h, λh].

We now consider the case where the power budget given
to the optimal off-line algorithm is different from the power
budget given to the online algorithm. Given a sequence of
gain values in the range [h, λh], we denote by OPTλ(x) and
ALGλ(x) the profit made by each of the algorithms in case the
given budget is x. Assume that the budget given to OPT λ is
P , whereas the budget given to ALGλ is Q, where P

Q = ρ ≥ 1.
We turn to analyze the competitive ratio for this case (that is,
the ratio OPT λ(P )

ALGλ(Q)
).

We denote by p
OPT λ(x)
i the power invested in time slot i

by OPT λ, given a total budget of x.

OPTλ(P ) =
T∑

i=1

log
(
1 + hi · pOPT

λ(P )
i

)

≤
T∑

i=1

ρ · log
(

1 + hi · p
OPT λ(P )
i

ρ

)
(14)

≤
T∑

i=1

ρ · log
(
1 + hi · pOPT

λ(P/ρ)
i

)
(15)

= ρ ·OPTλ(P/ρ) = ρ ·OPTλ(Q).

Inequality (14) follows since log(1+ x
α ) ≥ 1

α log(1+x). In-
equality (15) follows since the profit of OPT λ given a budget
of P

ρ is at least the profit made by any other algorithm for the
same sequence of slots, given the same budget. Specifically,
it is at least the profit made by the algorithm that invests in
each slot i a value of p

OPT λ(P )
i /ρ.

Thus, together with the competitive ratio of 4cλ achieved
by ALGλ (first part of Lemma 5), we get

OPTλ(P ) ≤ ρ ·OPTλ(Q) ≤ ρ · 4cλ ·ALGλ(Q). (16)

Setting the value of c, we get the following corollary.
Corollary 1: Given a sequence of gain values in the

range [h, λh], the ratio between the profits OPTλ(P ) and
ALGλ(Q), where P

Q = ρ ≥ 1, is O(ρ · λ2).
2) General Case: Based on the previous section we design

in this section an algorithm with competitive ratio O(log H
h )

for the general online power allocation problem. Thus, our
upper bound for the general case nearly matches the lower
bound described in Section IV-A.

We denote by OPT the optimal off-line algorithm, and by
ALG our online algorithm, for general gain sequences. The
idea is the following. We partition the range of gain values
[h,H] into log H

h levels, where the jth level contains gain val-
ues in the range [2j−1h, 2jh), and j ∈ {1, 2, 3, . . . , dlog H

h e}.
We give each level a budget of P/(log H

h ). Given an online
sequence of gain values, note that the time slots with values
belonging to the same level need not be consecutive slots. We
refer to these slots as belonging to the same bin. Note that for
each bin bj , λ = 2. Our general online algorithm ALG works
as follows. It simply runs our online algorithm for bounded
range of gain values ALGλ=2 on each such bin independently,
with budget equal to P/(log H

h ).
Given a sequence of gain values belonging to level j, we

denote by OPTj(x) and ALGj(x) the profits of OPT λ=2 and
ALGλ=2, respectively, for this sequence, given a budget of x.
Given an arbitrary gain sequence, we denote by OPT (P ) and
by ALG(P ) the profits of OPT and ALG, respectively, for
this sequence, given a budget of P . Now, it holds that

OPT (P ) ≤
dlog H

h e∑

j=1

OPTj(P )

≤
dlog H

h e∑

j=1

4cλ log
H

h
·ALGj

(
P

log H
h

)
(17)

= 8c log
H

h
·ALG(P ). (18)

where c = 4
(
√

2−1)2
.

Inequality (17) follows directly from inequality (16) by
setting ρ = log H

h . Equality (18) is obtained by setting λ = 2,
as the ratio between the maximum and minimum gain value
in each bin is at most 2. We thus get the following theorem.

Theorem 5: For a gain sequence in the range [h,H], the
general online power allocation problem can be solved by
ALG with competitive ratio O(log H

h ).
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V. SIMULATIONS STUDY

The objective of this section is to validate our suggested
online algorithm for the continuous case, and to examine
the effect of certain parameters on its performance. We first
describe some heuristic enhancements added to the online
algorithm, and explicitly specify the algorithm used in the
performed experiments. Then, we turn to describe the experi-
ments and their respective results. We use Rayleigh and Rice
distributions [5] as benchmarks.

A. Heuristics Enhancements
We add several enhancements to the online algorithm for

the continuous general case described in Section IV-B2. The
first natural improvement is to continue investing power in the
sequence of each bin, until the budget of that bin is finished
(as opposed to the theoretical analysis, where the maximum
considered length of a sequence is P ·2h). In addition, we shift
budget from lower to higher bins according to the following
rule. Consider the case where we get a gain value belonging
to the jth level, and the budget of the jth level bin is finished.
Then, we try to “collect” the power that we wish to invest in
the current slot from lower bins (going from bin 1 to j − 1).
The collected power (at most the needed power) is reduced
from the lower bins and invested in the current slot of bin j.
The algorithm used for our numerical experiments is specified
below (Algorithm 1).

Algorithm 1 Online Algorithm for the General Continuous Case
1: Initialization: ∀ bins j = 1, . . . , dlog H

h e initial power Pj = P/(log H
h ),

current length guess Gj = 1 and current length Tj = 0.
2: set P ′ = P/(log H

h ), c = 4
(
√

2−1)2
.

Given a new gain value hi:

3: bin level of current gain value is j = blog hi
h c +1;

4: power to be invested in current slot is pi =
(

P ′
h·Gj ·c

)1/2
;

5: if (Pj ≥ pi) then . there is enough power in bin j
6: remaining power of bin j is Pj = Pj − pi;
7: current sequence length of bin j is Tj = Tj + 1;
8: else . there is not enough power in bin j
9:

10: set collected power cpi = Pj ; . take the remaining power of bin j
11: for (k = 1; k = k + 1; k < j) do
12: . collect power from lower bins
13: if (Pk ≥ (pi − cpi)) then
14: . there is enough power in bin k
15: remaining power of bin k is Pk = Pk − (pi − cpi);
16: update collected power cpi = pi;
17: goto (23);
18: else
19: update collected power cpi = cpi + Pk;
20: remaining power of bin k is Pk = 0.
21: end if
22: end for
23: if (collected power cpi > 0) then
24: invest at current slot i a power of cpi;
25: current sequence length of bin j is Tj = Tj + 1;
26: end if
27: end if
28: if (length Tj is equal to length guess Gj ) then
29: double the length guess Gj = 2Gj .
30: end if

B. Experimental Results
Our first goal is to examine the effect of the power budget

on performance. To that end, we test our algorithm on the

two following distributions: (i) Rayleigh fading, for which the
gain is distributed according to an exponential distribution.
In the experiments we set the average gain to 2. (ii) Rice
fading with v = 1.2 and σ = 0.534, where v is the non-
centrality parameter, and σ is the scale (this distribution yields
an average gain of 2 as well). For both cases, we set hmin to
0.1, and the value hmax to 9.2. The probability of obtaining
a higher value than the selected hmax is less than one percent
under both distributions. Hence, hmax is an effective upper
bound for dividing the power budget to bins (accordingly,
gains higher than hmax use the power budget from the last
bin).

The results for Rayleigh fading and Rice fading are depicted
in Figures 1 and 2, respectively. For both cases, observe that
the performance ratio improves with the power budget. The
intuitive explanation for this phenomenon is that when the
budget is limited, every “mistake” of the online algorithm is
costly, as it leads to a significant reduction in the bin’s budget.
It is also worth noticing that the performance ratio with large
budgets is almost three times better than the worst case bound
of log(hmax/hmin) = 6.52.
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Fig. 1. Rayleigh fading. The ratio between the optimal (offline) power
allocation and the online allocation, as a function of the power budget. Results
are averaged over 10 runs.
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Fig. 2. Rice fading. The ratio between the optimal (offline) power allocation
and the online allocation, as a function of the power budget. Results are
averaged over 10 runs.

Our second experiment focuses on the effect of hmin on
performance. Specifically, we are interested in examining
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the influence of hmin on the throughput ratio between the
optimal (off-line) and online algorithms. Accordingly, we fix
the underlying channel distribution (Rayleigh, with parameters
as above) and the power budget (1000), and increase hmin by
ignoring a larger percentage of the channel gains. It is seen in
Figure 3 that the performance bound improves with hmin. This
result is consistent with the theoretical performance bound,
which is inversely proportional to hmin.
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Fig. 3. Rayleigh fading. The ratio between the optimal (offline) power
allocation and the online allocation, as a function of hmin. Results are
averaged over 10 runs. Note that the “glitches” in the graph are a consequence
of the change in the number of bins.

Summarizing our results, we have observed that the online
algorithm performs significantly better than the theoretical
guarantees. In addition, it seems that performance is directly
affected by the available power and the hmin constraint. We
have chosen to simulate channel processes that are generated
according to a stationary probability rule. This choice is made
mainly for its simplicity of implementation, and it is expected
that a similar characterization would be valid under other
distributions, as well as for arbitrary varying channels.

VI. CONCLUSIONS

We considered the problem of power allocation under
dynamic channel quality, within the framework of online
computation. We addressed both a “discrete” case, where the
transmitter can transmit only at a fixed power level, and a
“continuous” case, where the transmitter can choose the power
level out of a continuous interval. For both cases, we proposed
online power-allocation algorithms with proven worst-case
performance bounds. In addition, we established lower bounds
on the online power allocation problem in both cases, hence
benchmarking our solutions. To the best of our knowledge,
this is the first study that proposes to attack this problem
through the methodology of online (competitive) analysis. We
complemented our work with a simulation study, where we
validated our suggested online algorithm for the continuous
case, and observed that our online algorithm performs signif-
icantly better than the theoretical bound.

Our framework can be extended in several ways. Our online
approach provides an algorithmic solution to the case where
the channel gain process is arbitrarily varying. In general,
however, there could possibly be a probability rule that governs

certain characteristics of the process (e.g., the gain corresponds
to an arbitrary element times a random variable). An interest-
ing research direction is therefore to consider the case where
some probability rule partially governs the channel statistics.
Our suggested algorithms can obviously be enhanced by
incorporating (or estimating) the known characteristics. In this
context, one may consider additional approaches for dealing
with parameter uncertainty, such as robust optimization [2].

At a higher level, a challenging future direction would
be to consider the multiuser network case, where each user
observes a private (possibly correlated) channel gain and
adapts its current power level accordingly. The difficulty in
this case arises from the fact that the powers of neighboring
users affect the throughput of each user. Unlike the channel
state, the power allocation of other users is unknown prior
to the individual power adaptation. The algorithms for the
multiuser case, as well as the analysis thereof (possibly in the
framework of dynamic noncooperative games), may require
novel methods and solution concepts.
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