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Abstract. We study the online ad-auctions problem introduced by Mehta et. al.
[15]. We design a(1 − 1/e)-competitive (optimal) algorithm for the problem,
which is based on a clean primal-dual approach, matching the competitive factor
obtained in [15]. Our basic algorithm along with its analysis are very simple. Our
results are based on a unified approach developed earlier for the design of online
algorithms [7, 8]. In particular, the analysis uses weak duality rather than a tailor
made (i.e., problem specific) potential function. We show that this approach is
useful for analyzing other classical online algorithms such as ski rental and the
TCP-acknowledgement problem. We are confident that the primal-dual method
will prove useful in other online scenarios as well.
The primal-dual approach enables us to extend our basic ad-auctions algorithm in
a straight forward manner to scenarios in which additional information is avail-
able, yielding improved worst case competitive factors. In particular, a scenario in
which additional stochastic information is available to the algorithm, a scenario
in which the number of interested buyers in each product is bounded by some
small numberd, and a general risk management framework.

1 Introduction

Maximizing the revenue of a seller in an auction has received much attention recently,
and studied in many models and settings. In particular, the way search engine companies
such as MSN, Google and Yahoo! maximize their revenue out of selling ad-auctions
was recently studied by Mehtaet al. [15]. In the search engine environment, advertisers
link their ads to (search) keywords and provide a bid on the amount paid each time
a user clicks on their ad. When users send queries to search engines, along with the
(algorithmic) search results returned for each query, the search engine displays funded
ads corresponding toad-auctions. The ads are instantly sold, or allocated, to interested
advertisers (buyers). The total revenue out of this fast growing market is currently bil-
lions of dollars. Thus, algorithmic ideas that can improve the allocation of the ads, even
by a small percentage, are crucial. The interested reader is refered to [16] for a popular
exposition of the ad-auctions problem and the work of [15].

Mehtaet al. [15] modeled the optimal allocation of ad-auctions as a generalization
of online bipartite matching [13]. There aren bidders, where each bidderi (1 ≤ i ≤ n)
has a known daily budgetB(i). Ad-auctions, orproducts, arrive one-by-one in an online
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fashion. Upon arrival of a product, each buyer provides a bidb(i, j) for buying it. The
algorithm (i.e., theseller) then allocates the product to one of the interested buyers
and this decision is irrevocable. The goal of the seller is to maximize the total revenue
accrued. Mehtaet al.[15] proposed a deterministic(1−1/e)-competitive algorithm for
the case where the budget of each bidder is relatively large compared to the bids. This
assumption is indeed realistic in the ad-auctions scenario.

1.1 Results and Techniques

We propose a simple algorithm and analysis for the online ad-auctions problem which
is based on a clean primal-dual framework. The competitive ratio of our algorithm is
(1 − 1/e), thus matching the bounds of [15]. The primal-dual method is one of the
fundamental design methodologies in the areas of approximation algorithms and com-
binatorial optimization. Recently, Buchbinder and Naor [7, 8] have further extended the
primal-dual method and have shown its applicability to the design and analysis of on-
line algorithms. We use the primal-dual method here for both making online decisions
as well as for the analysis of the competitive factors. Moreover, we observe that sev-
eral other classic online problems, e.g. ski rental and TCP acknowledgement [9, 12],
for which (optimal)e/(e− 1) competitive (randomized) algorithms are known, can be
viewed and analyzed within the primal-dual framework, thus leading to both simpler
and more general analysis. We defer the details to the full version and just sketch how
to obtain the bounds. First, ane/(e−1) competitive fractional solution is computed and
then the solution is rounded online with no further cost, yielding an optimal randomized
algorithm. This generalizes and simplifies the online framework developed in [12]. It
is no coincidence that the techniques developed for the ad-auctions problem are also
applicable to the ski rental and TCP acknowledgement problems; in fact, these prob-
lems are in some sense dual problems of the ad-auctions problem. Another interesting
outcome of our work is a deterministic(1− 1/e)-competitivefractionalalgorithm3 for
the online matching problem in bipartite graphs [13]. However, rounding with no loss
the fractional solution to an integral solution, thus matching the bounds of [13], remains
a challenging open problem.

We remark that in [7, 8] a primal-dual framework for online packing and covering
problems is presented. This framework includes, for example, a large number of rout-
ing and load balancing problems [4, 3, 10, 8], the online set cover problem [1], as well
as other problems. However, in these works only logarithmic competitive factors are
achieved (which are optimal in the considered settings), while the ad-auctions problem
requires much more delicate algorithms and analysis. Our analysis of the algorithms we
design in this paper is very simple and uses weak duality rather than a tailor made (i.e.,
problem specific) potential function. We believe our results further our understanding
of the primal-dual method for online algorithms and we are confident that the method
will prove useful in other online scenarios as well.

Extensions.The(1−1/e) competitive factor is tight for the general ad-auctions model
considered by [15]. Therefore, obtaining improved competitive factors requires extend-
ing the model by relaxing certain aspects of it. The relaxations we study reveal the

3 In fact, we show that the bound is slightly better as a function of the maximum degree.



flexibility of the primal-dual approach, thus allowing us to derive improved bounds.
The algorithms developed for the different extensions (except for the bounded degree
case) build very nicely on the basic ad-auctions algorithm, thus allowing us to gain more
insight into the primal-dual method. We also believe that the extensions we consider re-
sult in more realistic ad-auctions models. We consider four relaxations and extensions
of the basic model.

Multiple Slots. Typically, in search engines, keywords can be allocated to several ad-
vertisement slots. A slot can have several desired properties for a specific buyer, such
as rank in the list of ads, size, shape, etc. We extend the basic ad-auctions algorithm
to a scenario in which there are` slots to which ad-auctions can be allocated. Buyers
are allowed to provideslot dependentbids on keywords and we assume that each buyer
would like to buy only asingleslot in each round. Our basic algorithm generalizes very
easily to handle this extension, yielding a competitive factor of1 − 1/e. Specifically,
the algorithm computes in each round a maximum weight matching in a bipartite graph
of slots and buyers. The proof then uses the fact that there exists an optimal primal-
dual solution to the (integral) matching problem. In retrospective, our basic ad-auctions
algorithm can be viewed as computing a maximum weight matching in a (degenerate)
bipartite graph in which one side contains a single vertex/slot. We note that Mehta et.
al. [15] also considered a multiple slots setting, but with the restriction that each bidder
has the same bid for all the slots.

Incorporating Stochastic information. Suppose that it is known that a bidder is likely
to spend a good fraction of its daily budget. This assumption is justified either stochas-
tically or by experience. We want to tweak the basic allocation algorithm so that the
worst case performance improves. As we tweak the algorithm it is likely that the bidder
spends either a smaller or a larger fraction of its budget. Thus, we propose to tweak the
algorithm gradually until a steady state is reached, i.e., no more tweaking is required.
Suppose that at the steady state bidderi is likely to spentgi fraction of its budget. In
a realistic modeling of a search engine it is likely to assume that the number of times
each query appears each day is more or less the same. Thus, no matter what is the exact
keyword pattern, each of the advertisers spends a good fraction of its budget, say 20%.
This allows us to improve the worst case competitive ratio of our basic ad-auctions
algorithm. In particular, when the ratio between the bid and the budgets is small, the
competitive ratio improves from1 − 1/e to 1 − 1−g

e1−g , whereg = mini∈I{gi} is the
minimum fraction of budget extracted from a buyer. As expected, the worst case com-
petitive ratio is(1− 1/e) wheng = 0, and it is1 wheng = 1.

Bounded Degree Setting.The proof of the(1 − 1/e) lower bound on the competi-
tiveness in [15] uses the fact that the number of bidders interested in a product can be
unbounded and, in fact, can be as large as the total number of bidders. This assumption
may not be realistic in many settings. In particular, the number of bidders interested
in buying an ad for a specific query result is typically small (for most ad-auctions).
Therefore, it is interesting to consider an online setting in which, for each product, the
number of bidders interested in it is at mostd ¿ n. The question is whether one can
take advantage of this assumption and design online algorithms with better competitive
factor (better than1− 1/e) in this case.



Lower BoundUpper Bound Lower BoundUpper Bound
d = 2 0.75 0.75 d = 10 0.662 0.651
d = 3 0.704 0.704 d = 20 0.648 0.641
d = 5 0.686 0.672 d →∞ 0.6321. . . 0.6321 . . .

Fig. 1. Summary of upper and lower bounds on the competitive ratio for certain values ofd.

As a first step, we resolve this question positively in a slightly simpler setting, which
we call theallocation problem. In the allocation problem, the seller introduces the prod-
ucts one-by-one and sets a fixed priceb(j) for each productj. Upon arrival of a product,
each buyer announces whether it is interested in buying it for the set price and the seller
decides (instantly) to which of the interested buyers to sell the product. We have indica-
tions that solving the more general ad-auctions problem requires overcoming a few ad-
ditional obstacles. Nevertheless, achieving better competitive factors for the allocation
problem is a necessary non-trivial step. We design an online algorithm with competitive
ratioC(d) = 1− d−1

d(1+ 1
d−1 )

d−1 . This factor is strictly better than1− 1/e for any value

of d, and approaches(1 − 1/e) from above asd goes to infinity. We also prove lower
bounds for the problem that indicate that the competitive factor of our online algorithm
is quite tight. Our improved bounds for certain values ofd are shown in Figure 1.

Our improved competitive factors are obtained via a new approach. Our algorithm is
composed of two conceptually separate phases that run simultaneously. The first phase
generates online a fractional solution for the problem. A fractional solution for the prob-
lem allows the algorithm to sell each product in fractions to several buyers. This prob-
lem has a motivation of its own in case products can be divided between buyers. An
example of a divisible product is the allocation of bandwidth in a communication net-
work. This part of our algorithm that generates a fractional solution in an online fashion
is somewhat counter-intuitive. In particular, a newly arrived product is not split equally
between buyers who have spent the least fraction of their budget. Such an algorithm
is referred to as a “water level” algorithm and it is not hard to verify that it does not
improve upon the(1−1/e) worst case ratio, even for small values ofd. Rather, the idea
is to split the product between several buyers that haveapproximately spent the same
fraction of their total budget. The analysis is performed through (online) linear program-
mingdual fitting: we maintain during each step of the online algorithm a dual fractional
solution that bounds the optimum solution from above. We also remark that this part
of the algorithm yields a competitive solution even when the prices of the products are
large compared with the budgets of the buyers. As a special case, the first phase implies
a C(d)-competitive algorithm for the online maximum fractional matching problem in
bounded degree bipartite graphs [13].

The second phase consists of rounding the fractional solution (obtained in the first
phase) in an online fashion. We note again that this is only a conceptual phase which is
simultaneously implemented with the previous phase. This step can be easily done by
using randomized rounding. However, we show how to perform the rounding determin-
istically by constructing a suitable potential function. The potential function is inspired
by the pessimistic estimator used to derandomize the offline problem. We show that if



the price of each product is small compared with the total budget of the buyer, then
this rounding phase only reduces the revenue by a factor of1 − o(1) compared to the
revenue of the fractional solution.

Risk Management.Some researchers working in the area of ad-auctions argue that
typically budgets are not strict. The reason they give is that if clicks are profitable, i.e.,
the bidder is expected to make more money on a click than the bid on the click, then
why would a bidder want to limit its profit. Indeed, Google’s Adwords program al-
lows budget flexibility, e.g., it can overspend the budget by 20%. In fact, the arguments
against daily budgets are valid for any investment choice. For example, if you consider
investing ten thousand dollars in stock A and ten thousand dollars in stock B, then the
expected gain for investing twenty thousand dollars in either stocks is not going to be
less profitable in expectation (estimated with whatever means). Still, the common wis-
dom is to diversify and the reason isrisk management. For example, a risk management
tools may suggest that if a stock reaches a certain level, then execute buy/sell of this
stock and/or buy/sell the corresponding call/put options.

Industry leaders are proposing risk management for ad-auctions too. The simplest
form of risk management is to limit the investment. This gives us the notion of abud-
get. We consider a more complex form of real time risk management. Instead of strict
budgets, we allow a bidder to specify how aggressive it wants to bid. For example, a
bidder may specify that it wants to bid aggressively for the first hundred dollars of its
budget. After having spent one hundred dollars, it still wants to buy ad-auctions if it gets
them at, say, half of its bid. In general, a bidder has a monotonically decreasing function
f of the budget spent so far specifying how aggressive it wants to bid. We normalize
f(0) = 1, i.e., at the zero spending level the bidder is fully aggressive. If it has spent
x dollars, then its next bid is scaled by a factor off(x). In Section 6 we show how to
extend the primal-dual algorithm to deal with a more general scenario of real time risk
management. For certain settings we also obtain better competitive factors.

1.2 Comparison to Previous Results

Maximizing the revenue of a seller in both offline and online settings has been studied
extensively in many different models, e.g., [15, 2, 14, 6, 5]. The work of [15] builds
on online bipartite matching [13] and onlineb-matching [11]. The online b-matching
problem is a special case of the online ad-auctions problem in which all buyers have a
budget ofb, and the bids are either0 or 1. In [11] a deterministic algorithm is given for
b-matching with competitive ratio tending to(1− 1/e) (from below) asb grows.

The idea of designing online algorithms that first generate a fractional solution and
then round it in an online fashion appeared implicitly in [1]. An explicit use of this idea,
along with a general scheme for generating competitive online fractional solutions for
packing and covering problems, appeared in [7]. Further work on primal-dual online
algorithms appears in [8].

2 Preliminaries

In the online ad-auctions problem there is a setI of n buyers, each buyeri (1 ≤ i ≤ n)
has a known daily budget ofB(i). We consider an online setting in whichm products



Dual (Packing) Primal (Covering)

Maximize:
∑m

j=1

∑n
i=1 b(i, j)y(i, j) Minimize :

∑n
i=1 B(i)x(i) +

∑m
j=1 z(j)

Subject to: Subject to:
For each1 ≤ j ≤ m:

∑n
i=1 y(i, j) ≤ 1 For each(i, j): b(i, j)x(i) + z(j) ≥ b(i, j)

For each1 ≤ i ≤ n:
∑m

j=1 b(i, j)y(i, j) ≤ B(i) For eachi, j: x(i), z(j) ≥ 0

For eachi, j: y(i, j) ≥ 0

Fig. 2. The fractional ad-auctions problem (the dual) and the corresponding primal problem

arrive one-by-one in an online fashion. LetM denote the set of all the products. The
bid of buyeri on productj (which states the amount of money it is willing to pay for
the item) isb(i, j). The online algorithm canallocate (or sell) the product to any one
of the buyers. We distinguish betweenintegralandfractionalallocations. In an integral
allocation, a product can only be allocated to a single buyer. In a fractional allocation,
products can be fractionally allocated to several buyers, however, for each product, the
sum of the fractions allocated to buyers cannot exceed1. The revenue received from
each buyer is defined to be the minimum between the sum of the costs of the products
allocated to a buyer (times the fraction allocated) and the total budget of the buyer.
That is, buyers can never be charged by more than their total budget. The objective is
to maximize the total revenue of the seller. LetRmax = maxi∈I,j∈M{ b(i,j)

B(i) } be the
maximum ratio between a bid of any buyer and its total budget.

A linear programming formulation of the fractional (offline) ad-auctions problem
appears in Figure 2. Lety(i, j) denote the fraction of productj allocated to buyeri.
The objective function is maximizing the total revenue. The first set of constraints guar-
antees that the sum of the fractions of each product is at most1. The second set of
constraints guarantees that each buyer does not spend more than its budget. In the pri-
mal problem there is a variablex(i) for each buyeri and a variablez(j) for each product
j. For all pairs(i, j) the constraintb(i, j)x(i) + z(j) ≥ b(i, j) needs to be satisfied.

3 The Basic Primal-Dual Online Algorithm

The basic algorithm for the online ad-auctions produces primal and dual solutions to
the linear programs in Figure 2.

Allocation Algorithm: Initially ∀i x(i) ← 0.
Upon arrival of a new productj allocate the product to the buyeri that maximizes
b(i, j)(1− x(i)). If x(i) ≥ 1 then do nothing. Otherwise:

1. Charge the buyer the minimum betweenb(i, j) and its remaining budget and
sety(i, j) ← 1

2. z(j) ← b(i, j)(1− x(i))

3. x(i) ← x(i)
(
1 + b(i,j)

B(i)

)
+ b(i,j)

(c−1)·B(i) (c is determined later).

The intuition behind the algorithm is the following. If the competitive ratio we are
aiming for is1− 1/c, then we need to guarantee that in each iteration the change in the



primal cost is at most1 + 1/(c− 1) the change in the dual profit. The value ofc is then
maximized such that both the primal and the dual solutions remain feasible.

Theorem 1. The allocation algorithm is(1− 1/c) (1−Rmax)-competitive, wherec =
(1 + Rmax)

1
Rmax . WhenRmax → 0 the competitive ratio tends to(1− 1/e).

Proof. We prove three simple claims:

1. The algorithm produces a primal feasible solution.
2. In each iteration: (change in primal objective function)/ (change in dual objective

function) ≤ 1 + 1
c−1 .

3. The algorithm produces an almost feasible dual solution.

Proof of (1): Consider a primal constraint corresponding to buyeri and productj.
If x(i) ≥ 1 then the primal constraint is satisfied. Otherwise, the algorithm allocates
the product to the buyeri′ for which b(i′, j)(1 − x(i′)) is maximized. Settingz(j) =
b(i′, j)(1 − x(i′)) guarantees that the constraint is satisfied for all(i, j). Subsequent
increases of the variablesx(i)’s cannot make the solution infeasible.
Proof of (2): Whenever the algorithm updates the primal and dual solutions, the change
in the dual profit isb(i, j). (Note that even if the remaining budget of buyeri to which
productj is allocated is less than its bidb(i, j), variabley(i, j) is still set to1.) The
change in the primal cost is:

B(i)∆x(i) + z(j) =

(
b(i, j)x(i) +

b(i, j)

c− 1

)
+ b(i, j)(1− x(i)) = b(i, j)

(
1 +

1

c− 1

)
.

Proof of (3): The algorithm never updates the dual solution for buyers satisfyingx(i) ≥
1. We prove that for any buyeri, when

∑
j∈M b(i, j)y(i, j) ≥ B(i), thenx(i) ≥ 1. This

is done by proving that:

x(i) ≥ 1
c− 1

(
c

∑
j∈M b(i,j)y(i,j)

B(i) − 1
)

. (1)

Thus, whenever
∑

j∈M b(i, j)y(i, j) ≥ B(i), we get thatx(i) ≥ 1. We prove (1)
by induction on the (relevant) iterations of the algorithm. Initially, this assumption is
trivially true. We are only concerned with iterations in which a product, sayk, is sold
to buyeri. In such an iteration we get that:

x(i)end= x(i)start·
(

1 +
b(i, k)

B(i)

)
+

b(i, k)

(c− 1) ·B(i)

≥ 1

c− 1

[
c

∑
j∈M\{k} b(i,j)y(i,j)

B(i) − 1

]
·
(

1 +
b(i, k)

B(i)

)
+

b(i, k)

(c− 1) ·B(i)
(2)

=
1

c− 1

[
c

∑
j∈M\{k} b(i,j)y(i,j)

B(i) ·
(

1 +
b(i, k)

B(i)

)
− 1

]

≥ 1

c− 1

[
c

∑
j∈M\{k} b(i,j)y(i,j)

B(i) · c
(

b(i,k)
B(i)

)
− 1

]
=

1

c− 1

[
c

∑
j∈M b(i,j)y(i,j)

B(i) − 1

]
(3)

where Inequality (2) follows from the induction hypothesis, and Inequality (3) follows
since, for any0 ≤ x ≤ y ≤ 1, ln(1+x)

x ≥ ln(1+y)
y . Note that whenb(i,k)

B(i) = Rmax



then Inequality 3 holds with equality. This is the reason why we chose the valuec

to be(1 + Rmax)
1

Rmax . Thus, it follows that whenever the sum of charges to a buyer
exceeds the budget, we stop charging this buyer. Hence, there can be at most one it-
eration in which a buyer is charged by less thanb(i, j). Therefore, for each buyeri:∑

j∈M b(i, j)y(i, j) ≤ B(i) + maxj∈M{b(i, j)}, and thus the profit extracted from
buyeri is at least:

[∑
j∈M

b(i, j)y(i, j)

]
B(i)

B(i) + maxj∈M{b(i, j)} ≥
[∑

j∈M

b(i, j)y(i, j)

]
(1−Rmax).

By the second claim the dual it at least1− 1/c times the primal, and thus (by weak
duality) we conclude that the competitive ratio of the algorithm is(1−1/c) (1−Rmax).

3.1 Multiple Slots

In this section we show how to extend the algorithm in a very elegant way to sell dif-
ferent advertisement slots in each round. Suppose there are` slots to which ad-auctions
can be allocated and suppose that buyers are allowed to provide bids on keywords which
are slot dependent. Denote the bid of buyeri on keywordj and slotk by b(i, j, k). The
restriction is that an (integral) allocation of a keyword to two different slots cannot be
sold to the same buyer. The linear programming formulation of the problem is in Figure
3. Note that the algorithm does not update the variablesz(·) ands(·) explicitly. These
variables are only used for the purpose of analysis, and are updated conceptually in
the proof using the strong duality theorem. The algorithm for the online ad-auctions
problem is as follows.

Allocation Algorithm: Initially, ∀i, x(i) ← 0. Upon arrival of a new productj:

1. Generate a bipartite graphH: n buyers on one side and̀slots on the other
side. Edge(i, k) ∈ H has weightb(i, j, k)(1− x(i)).

2. Find a maximum weight (integral) matching inH, i.e., an assignment to the
variablesy(i, j, k).

3. Charge buyeri the minimum between
∑`

k=1 b(i, j, k)y(i, j, k) and its remain-
ing budget.

4. For each buyeri, if there exists slotk for whichy(i, j, k) > 0:

x(i) ← x(i)
(

1 +
b(i, j, k)y(i, j, k)

B(i)

)
+

b(i, j, k)y(i, j, k)
(c− 1) ·B(i)

Theorem 2. The algorithm is(1− 1/c) (1 − Rmax)-competitive, wherec tends toe
whenRmax → 0.

4 Incorporating Stochastic information

In this Section we improve the worst case competitive ratio when additional stochastic
information is available. We assume that stochastically or with historical experience we



Dual (Packing)
Maximize:

∑m
j=1

∑n
i=1

∑k
`=1 b(i, j, `)y(i, j, `)

Subject to:
∀1 ≤ j ≤ m, 1 ≤ k ≤ `:

∑n
i=1 y(i, j, k) ≤ 1

∀1 ≤ i ≤ n:
∑m

j=1

∑`
k=1 b(i, j, k)y(i, j, k) ≤ B(i)

∀1 ≤ j ≤ m, 1 ≤ i ≤ n:
∑`

k=1 y(i, j, k) ≤ 1

Primal (Covering)
Minimize :

∑n
i=1 B(i)x(i) +

∑m
j=1

∑`
k=1 z(j, k) +

∑n
i=1

∑m
j=1 s(i, j)

Subject to:
∀i, j, k: b(i, j, k)x(i) + z(j, k) + s(i, j) ≥ b(i, j, k)

Fig. 3. The fractional multi-slot problem (the dual) and the corresponding primal problem

know that, a bidderi is likely to spent a good fraction of her budget. We want to tweak
the algorithm so that the algorithm’s worst case performance improves. As we tweak the
algorithm it is likely that the bidder may spent more or less fraction of her budget. So
we propose to tweak the algorithm gradually until some steady state is reached, i.e., no
more tweaking is required. Suppose at the steady state, buyeri is likely to spent a good
fraction of his budget. Let0 ≤ gi ≤ 1 be a lower bound on the fraction of the budget
buyeri is going to spend. We show that having this additional information allows us
to improve the worst case competitive ratio to1 − 1−g

e1−g , whereg = mini∈I{gi} is the
minimal fraction of budget extracted from a buyer.

The main idea behind the algorithm is that if a buyer is known to spend at leastgi

fraction of his budget, then it means that the corresponding primal variablex(i) will
be large at the end. Thus, in order to make the primal constraint feasible, the value of
z(j) can be made smaller. This, in turn, gives us additional “money” that can be used to
increasex(i) faster. The tradeoff we have is on the value thatx(i) is going to be once
the buyer spentgi fraction of his budget. This value is denoted byxs(i) and we choose
it so that after the buyer has spentgi fraction of its budget,x(i) = xs(i), and after
having extracting all its budget,x(i) = 1. In addition, we need the change in the primal
cost to be the same with respect to the dual profit in iterations where we sell the product
to a buyeri who has not yet spent the threshold ofgi of his budget. The optimal choice
of xs(i) turns out to be gi

c1−gi−(1−gi)
, and the growth function of the primal variable

x(i), as a function of the fraction of the budget spent, should be linear until the buyer
has spent agi fraction of his budget, and exponential from that point on. The modified
algorithm is the following:

Allocation Algorithm: Initially ∀i x(i) ← 0. Upon arrival of a new productj
Allocate the product to the buyeri that maximizesb(i, j)(1−max{x(i), xs(i)}),
wherexs(i) = gi

c1−gi−(1−gi)
. If x(i) ≥ 1 then do nothing. Otherwise:

1. Charge the buyer the minimum betweenb(i, j) and its remaining budget
2. z(j) ← b(i, j)(1−max{x(i), xs(i)})
3. x(i) ← x(i) + max{x(i), xs(i)} b(i,j)

B(i) + b(i,j)
B(i)

1−gi

c1−gi−(1−gi)
(c is determined

later).



Theorem 3. If each buyer spends at leastgi fraction of its budget, then the algorithm

is:
(
1− 1−g

c1−g

)
(1−Rmax)-competitive, wherec = (1 + Rmax)

1
Rmax .

5 Bounded Degree Setting

In this section we improve on the competitive ratio under the assumption that the num-
ber of buyers interested in each product is small compared with the total number of
buyers. To do so, we design a modified primal-dual based algorithm. The algorithm
only works in the case of a simpler setting (which is still of interest) called thealloca-
tion problem. Still, this construction turns out to be non-trivial and gives us additional
useful insight into the primal-dual approach. In the allocation problem, a seller is inter-
ested in selling products to a group of buyers, where buyeri has budgetB(i). The seller
introduces the products one-by-one and sets a fixed priceb(j) for each productj. Each
buyer then announces to the seller (upon arrival of a product) whether it is interested
in buying the current product for the set price. The seller then decides (instantly) to
which of the interested buyers to sell the product. For each productj let S(j) be the set
of interested buyers. We assume that there exists an upper boundd such that for each
productj, |S(j)| ≤ d.

The main idea is to divide the buyers intolevelsaccording to the fraction of the
budget that they have spent. For0 ≤ k ≤ d, letL(k) be the set of buyers that have spent
at least a fraction ofkd and less than a fraction ofk+1

d of their budget (buyers in leveld
exhausted their budget). We refer to eachL(k) as levelk and say that it isnonemptyif
it contains buyers. We design an algorithm for the online allocation problem using two
conceptual steps. First, we design an algorithm that is allowed to allocate each product
in fractions. We bound the competitive ratio of this algorithm with respect to the optimal
fractional solution for the problem. We then show how to deterministically produce an
integral solution that allocates each product to a single buyer. We prove that when the
prices of the products are small compared to the total budget, the loss of revenue in this
step is at most ano(1) with respect to the fractional solution.

Our fractional allocation algorithm is somewhat counter-intuitive. In particular, the
product is not split equally between buyers that spent the least fraction of their budget4,
but rather to several buyers that have approximately spent the same fraction of their
total budget. The formal description of the algorithm is the following:

Allocation Algorithm: Upon arrival of a new productj allocate the product to the
buyers according to the following rules:

– Allocate the product equally and continuously between interested buyers in
the lowest non empty level that contain buyers fromS(j). If during the allo-
cation some of the buyers moved to a higher level, then continue to allocate
the product equally only among the buyers in the lowest level.

– If all interested buyers in the lowest level moved to a higher level, then allocate
the remaining fraction of the product equally and continuously between the
buyers in the new lowest level. If all interested buyers have exhausted their
budget, then stop allocating the remaining fraction of the product.

4 Such an algorithm is usually called a “water level” algorithm.



The idea of the analysis is to find the best tradeoff function,fd, that relates the value
of each primal variable to the value of its corresponding dual constraint. It turns out that
the best function is a piecewise linear function that consists ofd linear segments. Asd
grows, the function approximates the exponential functionf(d=∞)(x) = ex−1

e−1 . Due to
lack of space we defer the full analysis to the full version of the paper and just state the
main theorem we proved.

Theorem 4. The allocation algorithm isC(d)-competitive with respect to the optimal
offline fractional solution, where:C(d) = 1− d−1

d(1+ 1
d−1 )

d−1 .

As stated we prove that when the prices of the products are small compared to the
total budget, we may transform the fractional allocation to an integral allocation with
only a small loss of revenue. We do so, by introducing another potential function that
is used to make the rounding decisions. We defer the description of this part to the full
version of the paper.

Lower Bounds. As we stated earlier, the standard lower bound example makes use
of products with large number of interested buyers. Though, the same example when
restricted to bounded degreed gives quite tight bounds. Inspecting this bound more
accurately we can prove the following lower bound for any valued. Figure 1 provides
the lower bounds for several sample values ofd.

Lemma 1. For any valued: C(d) ≤ 1 − k−kH(d)+
∑k

i=1 H(d−i)

d , whereH(·) is the
harmonic number, andk is the largest value for whichH(d)−H(d− k) ≤ 1

Our bound is only tight ford = 2. We can derive better tailor-made lower bounds
for specific values ofd. In particular it is not hard to show that our algorithm is optimal
for d = 3. We defer this result to the full version of the paper.

6 Risk Management

We extend our basic ad-auctions algorithm to handle a more general setting of real time
risk management. Here each buyer has a monotonically decreasing functionf of budget
spent, specifying how aggressive it wants to bid. We normalizef(0) = 1, i.e., at the zero
spending level it is fully aggressive. If it has spentx dollars then its next bid is scaled by
a factor off(x). Note that sincef is a monotonically decreasing function, the revenue
obtained by allocating buyeri a set of items is a concave function of

∑
j b(i, j)y(i, j).

Since we are interested in solving this problem integrally we assume the revenue
function is piecewise linear. LetRi be the revenue function of buyeri. Let ri be the
number of pieces of the functionRi. We define for each buyer(ri − 1) different bud-
getsB(i, r), defining the amount of money spent in each “aggression” level. When the
buyer spends money from budgetB(i, r), the aggression ratio isa(i, r) ≤ 1 (a(i, 1) = 1
for each buyeri). We then define a new linear program with variablesy(i, j, k) indi-
cating that itemj is sold to buyeri using thekth budget. Note that the ad-auctions
problem considered earlier is actually this generalized problem with two pieces. In
some scenarios it is likely to assume that each buyer has a lowest “aggression” level



that is strictly more than zero. For instance, a buyer is always willing to buy an item
if he only needs to pay 10% of its value (as estimated by the buyer’s bid). Our modi-
fied algorithm for this more general setting takes advantage of this fact to improve the
worst case competitive ratio. In particular, letamin = minn

i=1{a(i, ri)} be the min-
imum “aggression” level of the buyers, then the competitive factor of the algorithm
is e−1

e−amin
. If the minimum level is only10% (0.1), for example, the competitive ra-

tio is 0.656, compared with0.632 ≈ 1 − 1/e of the basic ad-auctions algorithm. Let
Rmax = maxi∈I,j∈M,1≤r≤ri−1{a(i,r)b(i,j)

B(i,r) } be the maximum ratio between a charge
to a budget and the total budget. The modified linear program for the more general risk
management setting along with our modified algorithm are deferred to the full version.

Theorem 5. The algorithm is
(

c−1
c−amin

)
(1 − Rmax)-competitive, wherec tends toe

whenRmax → 0.

Acknowledgements:We thank Allan Borodin for pointing to us the mutiple slot set-
ting.
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