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This review treats magnetic instabilities in hard and combined Type II superconductors. We give and
discuss in detail the criteria for stability of the critical state with respect to magnetic-flux jumps. We
study the effect of magnetic and thermal diffusion, as well as that of the structure of a combined
superconductor, on the magnetic-field value for a flux jump. The theoretical results are compared with the
existing experimental data.
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I. INTRODUCTION

Unusual physical properties and possible technical
applications have aroused great interest in experimental
and theoretical study of hard superconductors. The
theme is that of superconducting materials in which the
current density j can attain values of 105-10e A/cm2

with insignificant losses, while superconductivity per-
sists in magnetic fields up to H= 10s- 10e gauss. At-
taining such extremal parameters and operating of vari-
ous devices under these conditions are limited in many
ways by magnetic instabilities that exist in hard super-
conductors. This review is concerned with presenting
the theory of the onset of these instabilities and with
comparing it with experiment.

A. Hard superconductors

In Type II superconductors, the magnetic field pene-
trates in the form of quanta of magnetic flux (the value
of which is Φο = irHc/e = 2 χ 10"7 gauss · cm2) even in an ex-
ternal field He = HCi» 100-1000 gauss, which is called the
first critical field. One can imagine the flux quantum
itself (an Abrikosov vortex filament)"1 as consisting of
two regions—the core of the vortex and its periphery.
The core of the vortex consists of a practically normal
metal, its size being ξ = 100-500 A. Persistent super-
conducting currents circulate in the peripheral part,
which has a dimension δ£= 100-5000 A. Figure 1 shows
the current and magnetic-field distributions in the vor-
tex for materials having 6L /ξ » 1 (for a more detailed
acquaintance with the properties of Type Π supercon-
ductors, see, e.g. t 2 ] ) .

In the equilibrium state the vortex filaments form a
net (triangular or square) having a mean density n=B/
Φο, where Β is the magnetic induction inside the speci-
men. u ' 2 : l Yet if the superconductor contains structural
defects, the vortices can become attached to them (this
phenomenon is called pinning) and form a metastable

configuration of the magnetic flux (for more details on
the pinning phenomenon, see, e.g., £ 3 ' 4 ] ) .

Superconductors in which the vortex filaments are
strongly bound to the metal lattice are called hard su-
perconductors. Since the configuration and the energy
of a vortex filament depend substantially on the tem-
perature, the pinning force Fp also depends on the tem-
perature. The mutual repulsion of the vortices [ 1 · ε :

causes the pinning forces to depend on the density of
vortex filaments, i .e . , on B. If we pass a transport
current through a Type II superconductor, then the in-
teraction with it gives rise to a so-called Lorentz force
that acts on each of the vortices1·415·1:

FL-ΙυΧΦοΙ ·

When acted on by this force, the magnetic flux goes in-
to motion, energy dissipation arises, and the super-
conductor transforms into the resistive state, k- 8 · 2 2 3

Yet if the superconductor is hard, then this regime can
set in only when FL > Fp{T, B). We can conveniently
write the force Fp in the form

ο ς

FIG. 1. Distribution of the current j(r) (a) and of the magnetic
field H(r) (b) near the core of the vortex.
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Here je(T, Β) is called the critical current density. Thus
persistent currents can exist in a hard superconductor
as long as j <jc. Figure 2 shows relationships of je to
Β and Τ that are characteristic of hard superconduc-
tors.

As we have seen, the entire magnetic flux goes into
motion when j>jc(T, B). A viscous-flow regime of the
vortex filaments is established in the superconductor
(see, e.g.1 8·1 1"1 3 3). Here,

FL=FP+i\v, (1.1)

where ην is the viscous frictional force, η is the vis-
cosity, and ν is the velocity of motion of the vortex
structure. Equation (1.1) implies that

We can easily derive the relation between ν and the elec-
tric field Ε that arises upon motion of the flux by using
the equation of continuity for the flux of the vortex fila-
ments

and the Maxwell equation

«tE — ± » . (1.2)

The last two equations imply that

Thus:

= j c
a,E, (1.3)

where af = r\cz/B$0»anHcjB. Here ση is the conductivity
of the specimen in the normal state.

The relationship σ,-Β"1 is well confirmed by experi-
ment (see, e.g.c l 2 ]), and it stems from the microscopic
theory.c l 3 ] For hard superconductors, σ,~ (101β HCz/B)
sec'1. This value is substantially smaller than the con-
ductivity of pure metals, even in fields Β ~Hei. Figure

FIG. 3. Typical volt—ampere characteristic
of a hard superconductor.

ο ε.

3 J ) shows a typical form of the volt-ampere charac-
teristic of a hard superconductor. As we vary the elec-
tric field, the volt-ampere characteristic quickly climbs
onto the linear region (for E<E0;dj/dE»af), whereas
the condition afE«jc holds for all actual values of the
electric field Ε in hard superconductors. Thus we can
assume that a current density close to the critical value
(more exactly, exceeding it somewhat) is established in
a hard superconductor in response to any applied poten-
tial difference. This concept of the critical state has
been proposed i n " · 1 4 " 1 " . It has repeatedly been tested
experimentally and it describes well the effects in hard
superconductors (see, e.g., Ε4·17~1β:ι).

B. Qualitative theory of flux jumps

The critical state in hard superconductors can become
unstable under certain conditions. For example, as-
sume that a fluctuation or an external agent in some
volume of the superconductor has caused the tempera-
ture to rise. This diminishes the pinning forces and
hence decreases the critical current. The equilibrium
of the vortex net breaks down, motion of the magnetic
flux sets in, and it is accompanied by generation of heat
owing to the decreased energy of the superconducting
currents. The temperature rise of the specimen can
convert into an avalanche-like processes, i .e., it can
lead to loss of stability. Such a penetration of magnetic
flux into the specimen amounts to perturbations of the
temperature and the electromagnetic field that arise in a
correlated way, and it is called a flux jump. Hence,
in a rigorous formulation of the problem, we must study
the heat-conduction equation and the Maxwell equation
jointly for stability.

As we know, propagation of magnetic flux and of heat
flux is characterized by the corresponding diffusion co-
efficients: the magnetic diffusion coefficient J9m=c2/
47K7,, which involves the normal currents in the resis-
tive state of the superconductor, and the thermal dif-
fusion coefficient Dt = κ /ν (where ν is the heat capacity
and κ is the heat conductivity of the material). Let us
introduce the parameter r that defines the relationship
between Dt and Dm: r = Dt/Dm. As we have mentioned,
Of is relatively small In a hard superconductor. Cor-
respondingly we have Dt« Dm, and τ « 1 (usually even in
fields B-ffej). This means that diffusion of magnetic

FIG. 2. Characteristic relationships of the critical current
density j e to the magnetic field (a) and the temperature (b).

"The nonlinear region (E<£0) stems from an entire set of
causes: inhomogeneity of pinning, structural defects of the
vortex net, thermal activation,... , t 9 · 1 0 1 yet its size is small
(in terms of electric-field value).
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flux is considerably faster than the redistribution of
heat. Thus, in the fundamental approximation for τ « 1,
the heating of hard superconductors during a flux jump
is adiabatic. This assertion has been very convincingly
confirmed experimentally (see, e.g., Β Ο · 2 1 · 8 " ) .

The converse limiting case of τ » 1 can be realized in
the so-called combined superconductors (see Sec. 3);
and also in hard superconductors at very low tempera-
tures (T<0.1 °K). When τ-°° ( i .e., when Dm«Dt) the
superconductor is heated while the magnetic flux is
frozen. For large τ, the magnetic flux slowly (within
limits as τ » 1) penetrates the specimen. Physically
this involves the fact that the induced normal current
compensates the decline in the superconducting current
caused by the temperature rise, and evidently hinders
entrance of the magnetic flux into the specimen.

Let us examine qualitatively the development of a per-
turbation in a hard superconductor having τ « 1. As-
sume that a fluctuation (in the temperature, field, cur-
rent, etc.) or an external agent has raised the tem-
perature in some region of the superconductor by the
amount θ0. Thus a priming amount of heat Q0 = v90 has
been supplied to this site. An additional amount (?j of
heat is released during the redistribution of the currents
and the field, which is equal to

(here we have accounted for the fact that jc»afE). If a
flux jump does not occur, while a new equilibrium situa-
tion is established in the superconductor with a tempera-
ture elevated by the amount θ over the initial state, then
we can use the law of conservation of energy for deter-
mining Θ:

<?„ + <?, = νθ0 + <?,. (1.4)

In (1.4) we have accounted for adiabatic heating (τ« 1).

In order to estimate Qx, we shall use the Maxwell
equation.2':

AE = i5L|L. (1.5)

For the sake of simplicity, we shall treat the case in
which djc/dB = 0 (Bean's model of the critical statec l 5 ]).
Then Bjc/Bt= (djc/ST)e. The quantity ΙΔΕΙ is ~E/bz,
where b is the characteristic dimension of the specimen.
Thus,

while

Here y2 is a number of the order of unity that depends on

2)Heneeforth we shall be Interested only in the case B»HC ,
which permits us to assume that Β -Η. " · 2 1

the concrete distribution of currents and of the electric
field Ε in the specimen. Upon substituting the expres-
sion for Qt into (1.4), we find that

(1.6)

where

A i f

We see from the relationship (1.6) that the temperature
increases without limit as (3/V2— 1 for any value of the
initial fluctuation. Hence the critical state is stable if

l<T a · (1.7)

A criterion of stability of the form of (1. 7) for a plane,
semi-infinite specimen of a hard superconductor was
first derived on the basis of similar qualitative argu-
ments inc 2 3 : . Here the role of the characteristic dimen-
sion was played by the screening depth l0 of the external
magnetic field,3' which is determined from the condi-
tion H(l0) = He = iirjclo/c = O. Upon substituting l0 = cHe/
4vjc into (1.7), we get

4nv/c I dT
(1.7')

Upon substituting the parameters characteristic of
hard superconductors into the criteria (1.7) and (1.7'),
we can easily get an estimate for the flux-jump field H}

and the maximum admissible thickness bc of the speci-
men. Hj turns out to be of the order of several kilogauss
(1-3 kilogauss), while bc is of the order of several hun-
dred microns.

Let us derive an analogous criterion for the case τ
» 1. As we have seen, heating occurs here while the
magnetic flux is frozen. This is equivalent to the con-
dition dj/dt = O, whence (cf. Eq. (1.3))

and hence,

Thus the following power per unit volume is released:

λ _ ίβ I Sic I

Evidently the critical state will be stable if the quantity
Q does not exceed the power q that is transported away
by thermal conduction:

3)We shall assume for the sake of simplicity in this chapter
that there is no magnetic field frozen in the bulk of the super-
conductor (see below).
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FIG. 4. Fundamental experimental
scheme for studying flux jumps.
He—external field, 1—specimen,
2—transducers, R—recording de-
vices.

FIG. 6. Qualitative relationship of
the loss power in a hard supercon-
ductor to the amplitude Hm of the ex-
ternal field.l 2 4 ) H, is the field for a
flux jump, and Hp is the field for
complete penetration of the external
field into the specimen.

Since V2r~ 0/6*, then

yl ™ \9T | < α · (1.8)

Here yt is a number of the order of unity that is deter-
mined by the details of the temperature distribution
through the specimen. We can conveniently rewrite
the criterion (1.8) in the form

T<yl- d.e')

Equation (1.8) has been derived under the assumption of
iosthermal boundary conditions.

Hart"8 ' 4 7 3 first derived the criterion (1.8) from simi-
lar qualitative arguments.

In the case τ » 1, the quantities H, and'6c substantial-
ly depend on the concrete properties of the studies ma-
terials. In particular, for combined superconductors
(see Sec. 3), Hs and bc are severalfold times larger
than for a hard superconductor (Hs~ 10 kilogauss, bc

~0.1 cm).

The form of (1.8) implies that an increase in the
fluctuations is damped by the normal current. Evidently,
the role of the normal current consists in hindering the
magnetic flux (an analog of viscous friction), and cor-
respondingly, in diminshing the release of heat. Stabili-
ty depends strongly on the dimensions of the specimen
as well—thin superconductors prove to be more stable.

Uit)

FIG. 5. (a) Time-dependence of the potential Uit) recorded
during a flux jump (ϋ0 is the potential that arises in the speci-
men owing to change In the external magnetic field, i0 Is the
time of onset of the jump, tj is the time for development of
instability, and Δί is the relaxation time of the potential); (b)
time-dependence of the temperature of the surface of the
specimen (To is the temperature of the refrigerant (helium), Τ
is the initial temperature of the specimen, and Δί ' is the re-

.taxation time of the temperature).

We note also that the geometry of the current and mag-
netic-field distributions can play a certain role for
stable operation of various devices. This is because
they evidently determine the size of the coefficient y
in each concrete case.

C. Experimental study of stability of the critical state

Schematically, experiments to study magnetic insta-
bilities and concomitant phenomena are performed as
follows. One puts the studied specimen in an external
magnetic field that either increases or oscillates at a
certain frequency and amplitude about a fixed value.
Starting at a certain magnetic field, the stationary cur-
rent and field distribution becomes unstable, and a
fluctuation or external agent (which can be the change in
the magnetic field itself) leads to development of a flux
jump. The electric field and the temperature increase
in avalanche fashion in the superconductor. In order
to measure these quantities from the corresponding
transducers, one takes the potential differences U(t)
that are induced by the motion of the vortices and the
temperature T(t) (see Fig. 4). Figure 5 shows a typical
form of the U(t) and T(t) relationships. In these graphs,
the flux jump process corresponds to the region of rapid
rise (with a characteristic time t}~ ΙΟ^-ΙΟ'5 sec) in the
temperature and the field strength. The further devel-
opment of the signal depends on the relaxational prop-
erties of the system, and it has no direct relation to
magnetic instability. Thus one measures in the experi-
ment not only the magnetic field at which stability is
lost in hard superconductors, but also the time of the
flux jump, as well as the energy that is released in the
form of heat (losses) (Fig. 6). [2«.'β.β3.»7]

A series of studies'25"303 has investigated flux jumps
by "visual" observation of the Faraday effect with high-
speed cinematography. This method has not only con-
firmed the known data, but has also permitted obtaining
a set of new results. For example, the velocity and
shape of a magnetic-flux front moving through a speci-
men have been determined.

A number of experimental and theoretical
studies t3i. >«. 7β,βι.κ.88] h a y e b e e n c o n c e r n e d with the fur-
ther development of magnetic instability in a hard super-
conductor. We shall not treat this problem in this re-
view.
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flux is considerably faster than the redistribution of
heat. Thus, in the fundamental approximation for τ «I,
the heating of hard superconductors during a flux jump
is adiabatic. This assertion has been very convincingly
confirmed experimentally (see, e.g., [20·21·28])#

The converse limiting case of τ » 1 can be realized in
the so-called combined superconductors (see Sec. 3);
and also in hard superconductors at very low tempera-
tures (T<0.1 °K). When τ-°° (i.e., when Dm«Dt) the
superconductor is heated while the magnetic flux is
frozen. For large τ, the magnetic flux slowly (within
limits as τ» 1) penetrates the specimen. Physically
this involves the fact that the induced normal current
compensates the decline in the superconducting current
caused by the temperature rise, and evidently hinders
entrance of the magnetic flux into the specimen.

Let us examine qualitatively the development of a per-
turbation in a hard superconductor having τ « 1 . As-
sume that a fluctuation (in the temperature, field, cur-
rent, etc.) or an external agent has raised the tem-
perature in some region of the superconductor by the
amount θ0. Thus a priming amount of heat Q0 = i>90 has
been supplied to this site. An additional amount Qt of
heat is released during the redistribution of the currents
and the field, which is equal to

<?, =

(here we have accounted for the fact tha.tjc»afE). If a
flux jump does not occur, while a new equilibrium situa-
tion is established in the superconductor with a tempera-
ture elevated by the amount θ over the initial state, then
we can use the law of conservation of energy for deter-
mining Θ:

νθ = Qo + Ql = νθ0 + <?,. (1.4)

In (1.4) we have accounted for adiabatic heating (τ « 1).

In order to estimate Qt, we shall use the Maxwell
equation. 2 ) .

the concrete distribution of currents and of the electric
field Ε in the specimen. Upon substituting the expres-
sion for Qi into (1.4), we find that

(1.6)

where

ι a/c

dT

We see from the relationship (1.6) that the temperature
increases without limit as 0/y2— 1 for any value of the
initial fluctuation. Hence the critical state is stable if

β<ν ι . (1.7)

A criterion of stability of the form of (1. 7) for a plane,
semi-infinite specimen of a hard superconductor was
first derived on the basis of similar qualitative argu-
ments inC23]. Here the role of the characteristic dimen-
sion was played by the screening depth l0 of the external
magnetic field,3' which is determined from the condi-
tion H(l0) = He = 4vje lo/c = O. Upon substituting l0 = cHe /
Anjc into (1.7), we get

/ C | BT
(1.7')

(1.5)

Upon substituting the parameters characteristic of
hard superconductors into the criteria (1.7) and (1.7'),
we can easily get an estimate for the flux-jump field H,
and the maximum admissible thickness bc of the speci-
men. Hj turns out to be of the order of several kilogauss
(1-3 kilogauss), while bc is of the order of several hun-
dred microns.

Let us derive an analogous criterion for the case τ
» 1. As we have seen, heating occurs here while the
magnetic flux is frozen. This is equivalent to the con-
dition 8j/at = O, whence (cf. Eq. (1.3))

and hence,

For the sake of simplicity, we shall treat the case in
which 8jc/8B = 0 (Bean's model of the critical statecl5]).
Then djc/at=(Sjc/dT)0. The quantity ΙΔΕΙ is ~E/bz,
where b is the characteristic dimension of the specimen.
Thus,

or

while

Here y2 is a number of the order of unity that depends on

2>Henceforth we shall be interested only in the case B»HC ,
which permits us to assume that Β -Η.tl>21

Thus the following power per unit volume is released:

dT

Evidently the critical state will be stable if the quantity
Q does not exceed the power q that is transported away
by thermal conduction:

!lWe shall assume for the sake of simplicity in this chapter
that there is no magnetic field frozen in the bulk of the super-
conductor (see below).
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FIG. 4. Fundamental experimental
scheme for studying flux jumps.
He—external field, 1—specimen,
2—transducers, R—recording de-
vices.

FIG. 6. Qualitative relationship of
the loss power in a hard supercon-
ductor to the amplitude Hm of the ex-
ternal field.t 2 4 1 Hf is the field for a
flux jump, and Hp is the field for
complete penetration of the external
field into the specimen.

Since V2T~ θ/δ2, then

xa I dT (1.8)

Here yx is a number of the order of unity that is deter-
mined by the details of the temperature distribution
through the specimen. We can conveniently rewrite
the criterion (1.8) in the form

7<V.· (1.8')

Equation (1.8) has been derived under the assumption of
iosthermal boundary conditions.

Hart" 6 · 4 7 3 first derived the criterion (1.8) from simi-
lar qualitative arguments.

In the case τ » 1, the quantities Hs and'6c substantial-
ly depend on the concrete properties of the studies ma-
terials. In particular, for combined superconductors
(see Sec. 3), H} and bc are severalfold times larger
than for a hard superconductor (H,~ 10 kilogauss, bc

~0.1 cm).

The form of (1. 8) implies that an increase in the
fluctuations is damped by the normal current. Evidently,
the role of the normal current consists in hindering the
magnetic flux (an analog of viscous friction), and cor-
respondingly, in diminshing the release of heat. Stabili-
ty depends strongly on the dimensions of the specimen
as well—thin superconductors prove to be more stable.

U(t)

to+At"

FIG. 5. (a) Time-dependence of the potential U<t) recorded
during a flux jump (Uo Is the potential that arises in the speci-
men owing to change in the external magnetic field, f0 is the
time of onset of the jump, tj is the time for development of
instability, and Δί is the relaxation time of the potential); (b)
time-dependence of the temperature of the surface of the
specimen (To is the temperature of the refrigerant (helium), Τ
is the initial temperature of the specimen, and Δί ' is the re-

laxation time of the temperature).

We note also that the geometry of the current and mag-
netic-field distributions can play a certain role for
stable operation of various devices. This is because
they evidently determine the size of the coefficient y
in each concrete case.

C. Experimental study of stability of the critical state

Schematically, experiments to study magnetic insta-
bilities and concomitant phenomena are performed as
follows. One puts the studied specimen in an external
magnetic field that either increases or oscillates at a
certain frequency and amplitude about a fixed value.
Starting at a certain magnetic field, the stationary cur-
rent and field distribution becomes unstable, and a
fluctuation or external agent (which can be the change in
the magnetic field itself) leads to development of a flux
jump. The electric field and the temperature increase
in avalanche fashion in the superconductor. In order
to measure these quantities from the corresponding
transducers, one takes the potential differences U(t)
that are induced by the motion of the vortices and the
temperature T(t) (see Fig. 4). Figure 5 shows a typical
form of the U{t) and T{t) relationships. In these graphs,
the flux jump process corresponds to the region of rapid
rise (with a characteristic time ί,-ΙΟ^-ΙΟ*5 sec) in the
temperature and the field strength. The further devel-
opment of the signal depends on the relaxational prop-
erties of the system, and it has no direct relation to
magnetic instability. Thus one measures in the experi-
ment not only the magnetic field at which stability is
lost in hard superconductors, but also the time of the
flux jump, as well as the energy that is released in the
form of heat (losses) (Fig. 6). [2«.'β,β3^7]

A series of studies t 2 S~3 0 J has investigated flux jumps
by "visual" observation of the Faraday effect with high-
speed cinematography. This method has not only con-
firmed the known data, but has also permitted obtaining
a set of new results. For example, the velocity and
shape of a magnetic-flux front moving through a speci-
men have been determined.

A number of experimental and theoretical
studies t31·»», 7β, ex, w, ββι h a y e b e e n c o n c e r n e d w u h the fur-
ther development of magnetic instability in a hard super-
conductor. We shall not treat this problem in this re-
view.
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2. THEORY OF FLUX JUMPS IN HARD
SUPERCONDUCTORS

In this section we shall derive the equations that de-
scribe the development of small perturbations of the
temperature and magnetic field in hard superconductors.
One can solve these equations for a given magnetic-field
and current distribution in a specimen and also for as-
signed thermal and electrodynamic boundary conditions.
Evidently a system is stable if the initial perturbations
decay with time. We shall determine the criteria for
stability by starting with this condition.

A. Stability of the critical state (Bean's equation of state)

Let us study a specimen having a plane geometry (Fig.
7); the initial specimen temperature is T, while a
small deviation in the latter is θ(θ « Tc-T). In an ap-
proximation linear in Θ, the heat-conduction equation has
the form

β

FIG. 8. Qualitative λ{β) relationship for various values of T.
(a) Adiabatic boundary conditions (W = 0), (b) finite heat re-
moval (0<W<«>).

(2.2). We shall assume the external field to be con-
stant during the flux jump*':

dll ( ± b)
= 0 or λχ'(±1)-χ-(±1) = 0. (2.3)

«26
(2.1)

Here v, = v,(T), κ, = κ9(Γ), and je=je(T) are the heat ca-
pacity, the heat conductivity, and the critical current
of the superconductor, respectively.

We shall use the Maxwell equation (1.5) in order to
determine the electric field E. Since je=je(T), we get
the following expression for dj/dt in the approximation
linear in Θ:

We shall seek B(t) in the form

Two more boundary conditions are fixed by the nature
of the cooling at the surface:

or

W% (±1) ± χ' (±1) = 0, W = Wob!x,, (2.4)

where Wo is the heat-transfer coefficient from the super-
conductor to the refrigerant.s>

When χ = 66 (the definition of δ is evident from Fig.
7), or x= b- I for He<Hp, j(x) vanishes. (Hp=Avb(l
+ Ι δ I )jc/c is the field for total penetration of the exter-
nal field into the specimen.) Hence we can naturally
require that

where λ is an eigenvalue to be determined. Eliminating
Ε from (2.1) and (1.5), we can easily find the equation
for χ " 2 · 3 3 ] :

Ε (6b) = 0 or λχ (δ) - χ* (δ) = 0. (2.5)

_ λ (1 + τ) χ" - λ (β - λτ) χ = 0. (2.2)

We stress that we have accounted in (2.2) for both ther-
mal and magnetic diffusion.

We should impose four boundary conditions on Eq.

gb Ο

— -/Mi

b
FIG. 7. Plane specimen (geometry of the problem), a) Mag-
netic-flux distribution; Ht is the field created by the magnetic
flux frozen inside the superconductor; b) distribution of the cur-
rent jOt) through the cross section of the specimen.

Moreover, at x = δδ, the temperature and the heat flux
a r e continuous:

Χ (δ + 0) = χ (δ - 0),
χ' (6 + 0) = χ' (δ - 0).

(2.6)

A nontrivial solution of Eq. (2.2) with the boundary
conditions (2.3)-(2.6) exists only for certain values
X=X(|3, τ). Evidently, the region of instability is de-
fined by the condition λ>0. Figure 8 shows the qualita-
tive λ - β relationship for the first positive value of λ
for various values of τ and W. We see that instability
first arises at β = γζ, while the criterion for stability
has the form

β < Vs (τ, W, δ, . . .).

4>The requirement actually means that (bHe/bt)tj«He. Since
<y~10"4-10"5 sec, this assumption corresponds to ordinary
experimental conditions.

• 5>If the refrigerant is liquid helium, then in a nucleate-boiling
regime at Τ «4.2°K, we can assume that W<»107 erg/sec
•cm2°K.
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As we saw in the Introduction, the parameter β char-
acterizes the release of heat per unit volume of the super-
conductor, while τ is the ratio between the thermal and
magnetic diffusion coefficients. Equation (2.2) contains
the combination β- λτ. This is natural, since the nor-
mal currents damp the motion of the magnetic flux and
diminish the heat release. Since τ « 1 in hard super-
conductors even in weak magnetic fields (H^H^), we
shall first treat the case τ = 0. In the absence of damp-
ing processes, the most "dangerous" perturbations be-
come the "fast" ones (perturbations with λ—00), since
one of the stabilizing mechanisms (heat conduction) can-
not operate. Actually, when τ = 0 one can show that \c

= <*> under all thermal boundary conditions (0« W<<*>),
while γ does not depend on W. [ 3 2·3 4ι

For example, in the case of a plane superconductor
(see Fig. 7) for He =s Hp and with arbitrary cooling, the
condition for stability has the form:

(2.7)

Here /= 21 δ I bjc is the transport current flowing through
the specimen, and/c = 26/c. The parameter y is maximal
when /= 0, and it falls by a factor of two when 7= Ic.

When He<Hp, the role of the thickness of the current
layer 6(1 + Ι δ I) is played by the screening depth l0 of the
external magnetic field (H(lo) = O). Under our conditions,
lo = cHe/4irje. Upon substituting Zo into (2.7), we find the
well-known stability criterion1 2 3 · 3 5 · 3 6 3 :

>W »T |
(2.8)

If a magnetic flux that creates a constant magnetic
field Ht in the volume is frozen in the superconductor,
then we must evidently replace the criterion (2. 8) with

H,. (2.9)

Upon comparing the criteria (2.7) and (2.8), we can
easily understand that if a flux jump has not occurred at
He = Hf, then it will not happen even when He> Hp, since
the left-hand side of the inequality (2.7) does not depend
on He . Hence the inequality (2. 7) determines the critical
thickness bc of the specimen. When b<bc, flux jumps
do not arise in the specimen. We can conveniently re-
write the inequality (2.7) in the form

nc'v,

We can study the effect of having τ « 1 on the stability
by a method that was proposed in" 3 · 3 * 3 . The pertinent
calculation leads to the following formulas (for simplicity,
we shall take /=0):

Κ --- - £ I"1-; Ϊ 2 W = •£ (1 + 2τ'/2) where W = 0, (2 .10)

^ = ^ 5 ^ " 3 ; 7 2 W = - ^ ( 1 + 2,2T"3) where W=oo. ( 2 n )

Upon comparing the criteria (2.10) and (2.11) with
each other, we see that the effect of thermal diffusion on

stability for hard superconductors is extremely small,8'
and the role of surface cooling of the specimen is cor-
respondingly small. κ ο · 2 3 ^ As we should expect, losses
of stability for small τ involve the onset of rapidly rising
(adiabatic) perturbations (Xc>> 1). Although the flux
jump happens adiabatically, the coupled character of the
propagation of temperature and electromagnetic-field
perturbations leads to the following conditions7':

«x.

where tx = bz/Dt and tm= bz/Dm are respectively the ther-
mal and magnetic diffusion times.

Thus, while thermal diffusion fundamentally does not
affect the approximation to the stability criterion, it
hinders the motion of the magnetic flux, and thus governs
the characteristic time ts for development of the per-
turbation.

The fact that adiabatic perturbations can give rise to
a flux jump permits us substantially to simplify the
problem of determining the stability criterion. t 3*-3 e : in
deriving the fundamental equation, we can directly omit
the heat conductivity in the corresponding equation:

ν,θ = jJE. (2.12)

Upon adding the Maxwell equation (1.5) to (2.12) and
eliminating the temperature θ from this system, we get
the following expression for the electric field E:

Ε" + = 0. (2.13)

Here we differentiate with respect to the dimensionless
variable x/b, while T = 0. We should impose on Eq.
(2.13) only the electrodynamic boundary conditions:

£' (±6) = Ε {6b) = 0.

Evidently stability is lost (0>O) if (see (2.12)) there is
a nontrivial solution of (2.13) with the boundary condi-
tions that are imposed on it.

We note further that we can derive (2.13) also from
(2.2) by taking the limit as λ - °°, τ = 0, λτ - 0. The given
derivation explains the nature of the course of the pro-
cesses, and it permits us to select the correct boundary
conditions without taking a corresponding limit.

Since E(6b) = 0, instability develops independently in
the two regions x< δδ and x> δ&. The stability of the en-
tire system is determined by the least stable region.

The heat capacity v$ of the superconductor and the
critical current density 7e are functions of the tempera-
ture. Therefore the flux-jump field Ht also depends on
the temperature. t 3 8 ] Figure 9 shows a characteristic

6)One can detect the effect of thermal diffusion experimentally
from the variation in Ht for different conditions of heat
transport from the surface. The expected value ΔΗί ~ 5—10%.

1)ti~vab
i/x^ = tx/\e~tHt*~tmT-', p>0,
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Ε" + β £ =·•= Ο,

FIG. 9. Hs is a function of T. where

(2.16)

as ι r/ru

ϊ = _ > £ _

The boundary conditions for E(y) are now written as:

H^HjiT) curve for a hard superconductor. In particu-
lar, if we assume that

v, = v0 (TITe)\ U = h [1 - (T/Tu)},

where Tu~Te (see Fig. 2b), then we can easily find
from (2.8) the following expression for HS(T):

(2.14)

Here H} has a maximum (see Fig. 9) at Γ=0.75 Tu.
We recall that the temperature region that is too close
to Tc is not treated here. On the other hand, the ap-
proximation τ « 1 usually does not hold (r~T ~3) at low
enough temperatures {T< 1 °K). Yet one can show even
in this case that Hf falls with decreasing T, and vanishes
at T = 0.

B. Stability of the critical state (equation of state of
general form)

As we have seen, rapidly growing (adiabatic) per-
turbations are weakly damped (within limits as τ « 1)
for hard superconductors, and they lead to the maxi-
mum possible heating of the specimen. Evidently this
assertion depends neither on the model of the critical
state nor on the geometry of the problem. Thus one
can find the stability criterion in the fundamental ap-
proximation by assuming that τ = 0.β )

Upon neglecting the density of the normal currents and
the heat conductivity, we can easily derive an equation
for the electric field Ε"11:

Ε" + α (χ) Ε' + β (*) Ε = 0, (2.15)

where

We should impose the following electrodynamic boundary
conditions on Eq. (2.15): Ε '(±b) = £(δ&) = 0, which coin-
cides with (2.3) and (2.5).

Before we proceed to solve (2.15), let us make a
change of variable:

y = •

whereupon (2.15) acquires the standard form

Ε (±1) = 0, Ε" (0) = 0. (2.17)

We note that if je(H, T)=jo(T)<t>(H), then Tt does not de-
pend on H, and hence not on y. Equation (2.16) can be
solved exactly, and the stability criterion has the form

where / / / = (2.18)

In the general case, one can solve (2.16) if the condi-
tion (d/dy)(l/f]l)<l is satisfied. This is equivalent to:

, (g)
< 1 (2.19)

and it allows us to apply the WKBJ method to (2.16).
Upon using the standard WKBJ solution from the bound-
ary conditions (2.17), we can easily get the stability
criterion in the form"8· 3 9 1 :

( 2 · 2 0 )

The relative accuracy with which the criterion (2.20)
holds is

<g'-g«>·? J - j g M V l . (2.21)

In a weak magnetic field (He«Hez),
~ l/HCz, and the conditions (2.19) and (2.21) are satis-
fied with much room to spare. Yet if He~Hei, then good
accuracy in applying (2.20) is ensured by a small nu-
merical coefficient in (2.21). Thus, the criterion (2.20)
can be successfully applied throughout the range of ex-
ternal fields.

We have assumed thus far that the critical current
density is a rather smooth function of the magnetic field.
Yet a number of materials show a sharp break in the
jc(H) relationship in the strong-field region (see Fig. 2,
with a break at H=H,), This situation has been treated

in
[37]

It turns out that a case can happen here in which
flux jumps arise in two isolated external-field regions:
He~Hll and He~Hk. Under certain conditions, the criti-
cal state is least stable precisely at He~Hk.

8)A rigorous proof of these statements is given in'3 8 1.

C. Critical current of a superconducting wire

Let us treat now the stability of the critical state in
cylindrical specimens. ί34·4°ι Since we are interested in
the effect of the geometry of the current and field dis-
tribution, we shall restrict ourselves to Bean's model
and the case τ = 0.

We shall determine in this section the maximum trans-
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Η

FIG. 10. Superconducting wire (geom-
etry of the problem).

port current Im that a superconducting wire of radius R
can transmit without losses (Fig. 10).

Since τ = 0, the onset of instability involves fast per-
turbations (Xc>> 1), and heat conduction is not essential.
By analogy to the case of plane geometry, we can show
that the stability criterion has the form β<γί, where:

(2.22)

lc=vR' jc, and 7 is the transport current flowing in the
wire. The parameter γ is determined from the equa-
tion

Λ', (•;) ·/„ ( δ ϊ ) - · ν 0 (δγ) / , (ν) - 0 . (2.23)

Here J o , Jlt No, and Nt are the Bessel and Neumann
functions of zero and first order, respectively. The
critical value of the transport current Im is determined
from the condition $=(R/Rof = YL(IJ. Figure 11 shows
the ratio Im/Ie found by using (2.23) (curve 1) as a func-
tion of the dimensionless radius R/Ro of the wire. When
/«/c, the stability criterion for the wire naturally
agrees with the results obtained for a plane specimen
(He<Hp, where He is the intrinsic field of the current).

We see that Im is always smaller than lc. That is, a
flux jump necessarily occurs with increasing current in
a wire of any radius. It is not hard to understand what
this involves. If a flux jump has not been elicited by
fluctuations or an external agent, then the temperature
of the specimen will increase by Θ, and an equilibrium
distribution of the currents and the field will be estab-
lished in the specimen at the new temperature (see the
Introduction). However, under certain conditions such
an equilibrium situation may not exist. Thus, if δ = 0
(i.e., /=/„), a state having the given transport current
cannot be realized with changing (rising) temperature.
Hence, as we know, the critical state is unstable for
δ = 0—the degree of freedom needed for stability disap-

FIG. 11. Plot of lm/lc vs fl/«0for
a wire. Curve 1—wire without a
coating, 2—wire covered with a
layer of normal metal (d> d£).

&_.
Hs<Hf,

FIG. 12. Cylindrical specimen in an external magnetic field,
(a) Geometry of the problem; (b) magnetic-field distribution,
H2—external field, Ht—field in the cavity of the specimen;
when Hc=Ha, the external flux begins to enter the cavity of the
tube.

pears near these δ values. To illustrate, let us esti-
mate the value of Ro for the alloy Nb-25% Zr at T~A "Κ.
The parameters of interest to us are: _7e = 3xl0 5 A/cm2,
ys = 1.5X10* erg/cm3 °K, Bje/BT~-jc/(Te-T), where
Te= 10 °K, whence Ro« 3x 10"3 cm.

D. Cylindrical specimen in an external magnetic field

In this section we shall determine the stability criteri-
on with respect to flux jumps for a tube placed in an ex-
ternal magnetic field lying parallel to its axis (Fig.
12).: 3 4 ] The equation for the electric field Ε analogous
to (2.13) has the form

E- + ±E'+U*)E = 0, (2.24)

where

while the coordinate r is normalized to the half-thickness
b of the wall of the tube. The radius of the inner cavity
of the tube is R, the field in the cavity is Hu and the ex-
ternal field is Hz (see Fig. 12). For example, when
H> Hp, the boundary conditions have the form

E' + E/r = 0 for r = -£-, 2 + 4-,
• DO

Ε = 0 for / (r) = 0.

We can easily find the equation for determining the
parameter γ in the stability criterion (1. 7) by substituting
the solution of (2.24) into the boundary conditions.

Figure 13 shows the relationship of the parameter γ
to the magnetic field. We see from this diagram that
the field gradients before the jump with entering (Hz

- Ht for Hz<Hp; Hz- Ht for Hz s Hp) and exiting (Ηλ - Η{

and Hi - Hz, respectively) magnetic flux differ. This
difference vanishes with increasing inner radius R of the
tube (R » b, planar limit). We note also that, in con-
trast to the case of the plane geometry, the size of the
critical magnetic-field gradient H} depends on the crit-
ical current density

Let us take up another special case. Let the external
field H2 have a value such that δ vanishes: Hz = Ha—the
screening currents flow throughout the wall of the cyl-
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FIG. 13. Relationship of the parameter γ to the magnetic-
field gradient for different values of R (tube in an external
field), (a) Ht<Hp, flux entering; b) H4<Hp, flux exiting; c)
Ht>Hp.

inder in a single direction. We can easily see that
stability declines sharply here. The reasons for this
decline are the same as for a wire as /— Ic. The current
Ic = 2bjcL (where L is the length of the tube) flowing in
the wall of the tube is determined by the field difference
Hz- H1. With increasing temperature, j c declines. If
here the quantity H2-Ht varies little, then the current
density in the specimen exceeds j c . This leads to even
greater heating, and hence to loss of stability. If the
inner cavity of the tube is small (R^b), the field H1 also
increases appreciably as the perturbation develops.
Hence the stability of the system remains finite even
when Hz = Ha. Yet if the tube has a large inner cavity
(R » b), the system completely loses one degree of free-
dom, and its stability falls to zero.

For quantitative analysis, let us write the equation for
the electric field Ε in the inner cavity of the tube

The value of \e~ 103_10*, and the first term in the pa-
rentheses is small (~ 10"ls). We shall find from the re-
maining equation a solution for Ε that is nonsingular at
the origin in the form: Ε = Ar (A = const.). If we match
it at r = R/b in terms of continuity of Ε and E' with the
solution of (2.24) that satisfies the boundary condition
E'(R/b+2) = 0, we can easily find the relationship of the
parameter y to R/b (Fig. 14).

3. THEORY OF MAGNETIC INSTABILITIES IN
COMBINED SUPERCONDUCTORS

In this chapter we shall treat the stability of the crit-
ical state in hard superconductors that exist in contact
with a normal metal. The combination of normal and
superconducting conductors in a specimen can be highly
varied, starting with a superconductor covered with a
layer of normal metal and ending with a regular struc-
ture of superconducting inclusions (fibers) in a matrix
of normal metal (a combined superconductor).

The presence of a normal metal having good conductiv-
ity leads to strong damping of fast perturbations in the

specimen. Since they are precisely what leads to flux
jumps in hard superconductors, the stability of the crit-
ical state should increase. On the other hand, if a re-
gion of the superconducting circuit drops out of service
for any reason, the normal metal shunts the damage,
and it thus hinders a catastrophic transition of the whole
system to the normal state.c 4 1 3 Thus the study of stabili-
ty of the critical state in superconductors that exist in
contact with a normal metal seems highly interesting.

A. Contact of the superconductor with normal metal
and stability of the critical state

The method proposed in Chap. 2 permits us to treat
magnetic instabilities in hard superconductors covered
with a layer of normal metal of arbitrary thickness d.

We shall assume that the normal metal of the coating
has a heat conductivity9' xn that satisfies the relationship
κ η » κ , , while the heat capacity satisfies vn~v,. Since
ic~104-106 A/cm2, we have anE«jc, in any case in the
development of a small perturbation, and the heat re-
lease in the normal metal (σπ£2) is considerably less
than in the superconductor (jcE). From what we've
said, we can evidently assume when d« b that the ther-
mal conditions at the superconductor-coating boundary
and at the coating-outer medium boundary coincide.
However, if d» b, the coating sharply improves the heat
removal from the superconductor, and it actually leads to
isothermal conditions (Θ = 0) at the superconductor-coating
boundary. Consequently, both when d« b and when d
» b, we can restrict the treatment within the normal
metal to electrodynamic processes alone.

First let us study the stability of the critical state in
a specimen having a plane geometry (see Fig. 7). The
Maxwell equation (1.5) for the electric field Ε in the
coating has the form

E" + WE = 0. (3.1)

Here τ '=σ π τ/σ,»7. Just as in Chap. 2, we seek the
relationship of the field Ε to the time t in the form E(t)
~exp(Xfns/v, bz). Evidently the electric field Ε and its
derivative E' are continuous at the normal metal-super-
conductor boundary. Moreover, the thermal boundary
condition θ'± ΨΘ = 0 is satisfied. In addition, we shall
assume that the magnetic field does not vary at the
normal metal-outer medium boundary during the time of
the jump, i .e . , 9H/Bt = E' = 0.

FIG. 14. Graph of the function
y(R/b) (tube in an external field).
Upper curve—H2<ffa (H2=Ha=0),
lower curve—H2 >Ba.

4 ο β !O #/ύ

'Quantities that refer to the normal conductor are denoted with
the subscript n, and those that refer to the superconductor
with s.
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defining d'c as 3Ssk, we can easily get an estimate
(/=0)M 0 ::

FIG. 15. Curves of λ(β) for various values of d. a) Adiabatic
conditions at the boundary of the superconductor; b) isothermal
cooling.

As we know,t 4 2 ] in a normal metal an ac electromag-
netic field penetrates only to the depth of the skin layer
6sk. We see from (3.1) that in our notation 6st(\)
= δ(λτ')"1 / 2. Η λ = \{β)» 1, then we have 6 a k - 0, and the
electric field Ε vanishes at the superconductor-coating
boundary. With such a boundary condition, we can easily
find from (2.2) (with τ = 0) that the λ(β) curve asymptot-
ically approaches the straight line β=τ? (Fig. 15). Thus
the presence of the normal metal strongly deforms and
shifts the λ= λ(β) curve for λ » 1, independently of the
thickness of the coating and the thermal boundary con-
ditions.

In the region λ « 1, the effect of the coating on the
perturbation spectrum is less appreciable (if the coating
does not change the heat-removal regime from the super-
conductor). In particular, under adiabatic conditions
the position does not change of the point |3= β0 at which
*(&>) = 0.C 3 2 ] since screening currents are not induced in
the normal metal when λ = 0.

Thus, with d« b and with external thermal insulation,
the coating cannot raise the value of y2 beyond y* = 3.
Let us see how the transition occurs from y=ir/2(<2=0) to
y = V3. As we increase the thickness of the coating (in
the region d«b), the λ= \(β) curve is deformed and it
shifts to the right from the line 0=3, while asymptot-
ically approaching the line β=ττζ (see Fig. 15a). Start-
ing at some value d = dc = 2b/10f>T', the entire branch
λ(/3)>0 lies in the region /3>3. l m

Under isothermal boundary conditions, perturbations
having λ « 1 can appear only in the region β» 1 (see Fig.
15b). Thus we can increase y2 to the value y2 = π2 by us-
ing a coating. When A ' » 1 (which we know to be satis-
fied for characteristic values of τ'), Eq. (2.2) and the
boundary conditions imply that λ β » 1. The quantities
\e and y depend on the damping properties of the nor-
mal metal. The substantial increase in y with increas-
ing d occurs in a range of d below some critical value
d'e. Then λβ and y cease to depend on d, and they are de-
termined solely by the values of τ'Μ°3:

, d>d'c. (3.2)

This effect has been detected experimentally in"*3.
Evidently the critical thickness of the coating is of the
order of the depth of the skin layer 6Bt for λ = \e. Upon

3b (3.3)

Let us see how instability develops when there is good
heat removal from the volume of the superconductor.
Since here λ,,» 1, a perturbation of the magnetic field
and the temperature, grows sharply while the electric
field Ε vanishes simultaneously at the two boundaries
of >the specimen. Hence the total magnetic flux in the
superconductor is unchanged. This means that at the
onset the magnetic flux rapidly (within a time of the or-
der of ίχ/λ0) becomes redistributed within the super-
conductor, and then the final distribution of the magnetic
field and the currents is slowly established (within the
diffusion time of the magnetic field through the normal
metal). I32·90·»7} Onishic43] has observed this effect ex-
perimentally.

As we have seen, the stability of the critical state is
in many ways determined specifically by the perturba-
tions having Xe» 1. Instability with respect to them is
absolute in the sense that y cannot (within limits as Xc

» 1) become elevated by any external agents (improved
heat removal, increased thickness or conductivity of
the coating, etc.). Thus the maximum attainable values
of y are determined by the onset of growing perturba-
tions having λ » 1 .

The effect of the geometry of the current and field dis-
tribution, as well as the role of the je(H) relationship,
can also be treated for specimens coated with a normal
metal.

Figure 11 (curve 2) shows the Im(R/Re) relationship
for a wire (see Fig. 10) coated with a normal metal'4 0 3

(d>d'c). In contrast to the case of a wire lacking a nor-
mal coating, the parameter y does not vanish as δ-0
(/ —7C), since here one of the degrees of freedom of the
system does not disappear—the currents that compen-
sate the decline in j e arise in the coating. If the radius
R of the wire is less than Λ(.«2.4Λ0, flux jumps do not
arise up to /=/„. In the example that we treated earlier
of Nb-25% Zr (Sec. C of Chap. 2), the characteristic
value is x, = 4x I03 erg/cm · sec °K. If a wire made of
this material is covered with a pure metal (Cu or Al),
then T ' = 1, while we get the following estimates for Re

a.ndd'e: cm; dc{fie, /c)«5xl(T3 cm.

B. Flux jumps in combined superconductors

We shall treat in this section the problem of stability
of the critical state of a combined superconductor (a
matrix of a normal metal containing a regular structure
of superconducting regions embedded in it, or fibers in
the critical state). The number Ν of superconducting
fibers in the cross section of the specimen varies from
2-3 to several tens and even hundreds. One can use as
the matrix either metals of good conductivity (Cu, Al),
or various alloys of lesser conductivity. t*M*.™le"'.«*:i χη

such a combined superconductor, instability can be
associated not only with losses of stability of any of the
superconducting regions, but also withonset of collective
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effects—loss of stability of the entire distribution of cur-
rent and flux as a whole. Naturally, the case of greatest
interest here is that of materials having N» 1. We shall
derive the conditions below under which a flux jump de-
velops in a combined superconductor made of stabilized
fibers.

For a quantitative description of collective effects, we
must derive the equation for propagation of a small per-
turbation through a combined superconductor, as aver-
aged over regions whose dimensions include enough
structural elements of the combined superconductor,
yet are smaller than the dimensions of the specimen it-
self. Evidently such an equation is valid up to the point
where its solution varies over distances larger than the
characteristic dimension of the structure, while the
time for equalizing the perturbation over the scale of
the structure is much less than the corresponding time
of variation of the entire solution. After averaging, we
get the equations for β and E:

diffusion of magnetic flux (see the Introduction). Hence
Xe« 1, and the thermal boundary conditions play an es-
sential role.

For example, let us examine the problem of stability
of a plate made of a combined superconductor jiaving iso-
thermal conditions at its boundary. The λ=λ(/3, τ)
curves have a form analogous to that illustrated in Fig.
8b. The value of •y2 at which a root λ> 0 first appears
is ( f » l ) H 5 ] :

(3.7)

while the value of \e is:

(3.8)

Analogously, when τ"1« W« 1, we can easily get the
corresponding expression for Xe:

- κ ΔΘ + (3.4)

and the relationship of the current density j to the field
E:

i = j . + «Ε. (3.5)

The quantities v, j 0 , σ, and ν that enter into (3.4) and
(3.5) are the averages of the heat capacity, the critical
current density (here we assume that the superconducting
currents flow in the same direction inside the region of
averaging), and the electric and thermal conductivities,
respectively. Let us denote the relative concentration
of the superconducting metal as xs, and that of the nor-
mal metal as xjjca+xn = 1). Then

The averaged value of the thermal conductivity trans-
verse to the structure of the combined superconductor
is determined by the details of the structure. As we
can easily verify, a good estimate is κ = (1 -

For the following treatment we must choose a model
of the critical state. Here we shall restrict the choice
to Bean's model. We can generalize to the case of an
arbitrary je(H) relationship by the methods presented in
Sec. Β of Chap. 2.

Upon eliminating Ε from Eqs. (3.4) and (3.5), we can
easily derive the equation for 0[ 4 5 ] :

θ Ι ν - λ (1 + τ) θ" + λ (λτ - β) θ = 0. (3.6)

In (3.6) the spatial derivatives are taken with respect
to the variable τ/b, where b is the characteristic dimen-
sion of the specimen, while the 9(t) andE(t) relationships
are taken in the_form Θ, E-expiXfy/vb2}. In order to
determine λ = λ(/3, f), we must impose the usual thermal
and electrodynamic boundary conditions on (3.6).

As a rule, τ for combined superconductors is greater
than unity, and it can attain values up to 102-104. If
f » 1, then heat redistribution runs much faster than the

In the fundamental approximation with f » 1, the crite-
rion (3. 7) coincides with the known expressiont 4 e·4 7 1 that
has been found from qualitative arguments.

Let us now derive the criterion for applicability of
(3.6). The characteristic structural scale of the com-
bined superconductor is b/-JN, while the minimal scale
of variations in the solutions is the depth i r t of the skin
layer in the normal metal. In the frequency region λ
~XC that is of interest to us, we evidently have 5>k~ 6/
VXCT. Hence the following condition must be satisfied:

-V (3.9)

In temperature equalization, the thermal diffusion in
the superconducting fiber occurs slowest of all, and the
corresponding time ts proves to be of the order of

while the characteristic time ts of a flux jump is:

We get from the condition 11»ts the second condition for
applicability of (3.6):

&. (3.10)

In particular, when W « l , Eqs. (3.9) and (3.10) imply
that

κ,ν

The condition τ » 1 permits us in many cases to sim-
plify substantially the problem of studying stability.: 4 5 ]

In fact, if we substitute the explicit current-field re-
lationship (3.5) into the Maxwell equation (1.5), we get
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FIG. 16. Relationship of yVr to
the heat removal W for a combined
superconductor ( W » T ^ , T » 1 ) .

40 W

ized. Hence, in the fundamental approximation with
f » 1 , stability does not depend on the transport current,
and is determined solely by the dimension 26 of the re-
gion through which the current is flowing (i .e. , by the
amount of heat release). " 5 ]

By using (3.11) and the thermal boundary conditions,
we can easily obtain y (see (1.7)) for an arbitrary quality
of heat removal. We have the following relationship for
determining y{W) for a flat plate (see Fig. 7):

(3.13)

If the heat removal is not too small (W>> f 1 ) , then, as
we can easily show by using Eq. (3.6) with the appro-
priate boundary conditions, the characteristic time of
the flux jump is much smaller than the magnetic-dif-
fusion time in the specimen (see the Introduction). Hence
we find that XeT» 1 (in particular, with ideal refrigera-
tion, \ef ~ f 2 / 3 ) . Since ΔΕ is a finite quantity, we have
in the fundamental approximation:

This gives the relation between θ and E. Upon substitut-
ing the found relationship into the heat-conduction equa-
tion, we get an equation for θ in the stated approxima-
tion:

Λθ + ί-ϊ- — λ)θ = Ο. (3.11)

Hart" 6 · 4 7 3 has derived this equation from qualitative
arguments.

We should evidently impose on Eq. (3.11) the usual
thermal boundary conditions, whereupon we can easily
find the corresponding solution for specimens having
various geometries and current and magnetic-field dis-
tributions; existence of solutions having λ> Ο implies
loss of stability. Evidently a solution exists in all cases
if

γι-,.. (3.12)

Here yx is some eigenvalue of the problem to be solved.
Eq. (3.12) implies that λ = 0/τ - y? , and hence,

The condition dj/&t = O that we have used implies that
instability sets in at a frozen magnetic flux in the funda-
mental approximation with f » 1. One can also derive
(3.11) directly from (3.6) in the limit as f, λ ? - °°. The
given derivation merely explains the nature of the course
of the process.

For a hard superconductor, stability breaks down in-
dependently in different regions of the specimen that dif-
fer in direction of current. In the studied case where
τ » 1, instability sets in immediately throughout the
volume of the superconductor (He^Hj), since t}»tH,
and the temperature in the specimen can become equal-

Figure 16 shows a graph of y*/r as a function of W. In
particular, if W«l (we recall that W»f1), Eq. (3.13)
implies that

Vs = Wx. (3.14)

As W-*·*>, Eq. (3.13) yields the fundamental approxima-
tion of Eq. (3.7).1 0 )

Let us examine now the conditions under which col-
lective effects arise in a combined superconductor made
of stabilized elements (b'<b'c; see Chap. 2, A). In this
case, Eq. (3.14) implies that for

the system as a whole becomes unstable. The charac-
teristic value is W= 10"8, and when τ = 103, Ne proves to
be of the order of unity. Thus prevention of flux jumps
requires special measures: twisting or transposi-
tion. "1.«.80,ββ,90,β3]

4. EXPERIMENTS ON FLUX JUMPS, COMPARISON
OF THEORY WITH EXPERIMENT

A considerable number of studies has been devoted to
experimental study of flux jumps. However, the over-
whelming majority of them are hard to compare with
theory, and they show a substantial scatter of data from
study to study. This situation is not fortuitous, and it
mainly involves lag in the onset of instability. In fact,
onset of a flux jump requires a fluctuation or an ap-
propriate external agent. This priming perturbation
must be great enough to transform a considerable frac-
tion of the volume of the superconductor into a flux-flow
regime.

Therefore one must in the course of the experiment
initiate flux jumps (e.g., by mechanical shock"83) in or-
der to determine the true stability boundary H} of the
critical state. This fact has not been taken into account
in the vast majority of the studies, and instability has
often been initiated by random factors.

As we have noted in the Introduction, the external

10)We note that the usual conditions of cooling with liquid helium
a superconductor having a copper or aluminum matrix corre-
spond to W<1. One can realize the case of W » l , e.g., by
putting the specimen into a massive enough copper envelope.
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FIG. 17. Typical relationship of

magnetic field is varied according to a definite law in
experiments to study the stability of the critical state.
An entire set of studies"*·2 7·3 0·3 5·4 9"6 0·8 5·9 1 3 has dealt with
the effect of the rate of growth He of the magnetic field
on the magnetic-field value Hej at which one observes a
flux jump. Figure 17 shows a characteristic relation-
ship between He} and He. As we can easily estimate,
the relationship Het}«He is known to hold under experi-
mental conditions. Thus, as the theory implies, the true
stability boundary (the field H}) does not depend on He.
This assertion was first formulated in" 5 3 , and Harrison
et al.C3°3 arrived at the same conclusion from their ex-
periments. The role of an ac external field is reduced
only to initiating flux jumps. We can easily understand
that this initiation will be effective enough (Η,,^Η,) in
the absence of other "priming" agents if the electric
field Ε that is caused by the variation in He exceeds the
value EQ in a large enough part of the volume (see Fig.
3; E> Eo corresponds to transition to a flux-flow re-
gime). This explanation easily allows us to understand
also the climb of the Hej{He) relationship up to a constant
value that has been found in a number of experiments.u >

Now let us examine the fundamental results of the ex-
perimental studies of magnetic instabilities in hard su-
perconductors and compare them with the theoretical
results.

As we have seen, flux jumps arise only when 9jc/dT
<0. Hence, in the region of the peak effect (see,
e.g., C 3 ' 4 ] ) , where djc/BT>0, the critical state is ab-
solutely stable. [ β 1·6 2·7 9ι An entire series of studies has
firmly established"2"6 6 3 that stability increases with de-
creasing value of I Bje/dT\, and flux jumps are absent
when dje/BT>0.

The heat capacity of the specimen influences the sta-
bility very effectively. An entire set of experiments
has investigated the corresponding relationship in de-
tail. In particular, porous superconductors have been
studied.t 6 7 : Helium becomes superfluid and flows into
the pores below the λ-point. The heat capacity rises,
and Ht is correspondingly increased (see'2 3·6 7·6 8·8 9 3). It
has been shown in: 7 7 3 that Ht~^i/t.

The dependence of stability on the specimen tempera-
ture has been studied ιη«°.53-5'.ββ,β4,β5] F i g u r e χ% g i v e s

data obtained in C 5 4 · S 5 ] for synthetic specimens (porous

11'The increase vaHej that has been noted in certain studies in
the region of very high He is apparently to be explained by
heating of the specimen during entrance into it of the external
flux.t5».561

0.5 -

FIG. 18. Variation of Hs with temperature (comparison of
theory and experiment). The experimental points for four dif-
ferent specimens are plotted. The theoretical curves are plot-
ted as the solid lines, and the unknown parameters are chosen
by least squares.

glass with In pressed into the pores). At rates of intro-
duction of the external field He> 102 gauss/sec, the flux-
jump field ceases to depend on He, and we can naturally
assume here that Hei~Hs (seeC54>5S]). The Η,{Τ) curve
constructed by using (2.14) shows good agreement with
experiment.

It was shown in1·233 that stability does not depend on the
value of j c in the external-field region where He « Hp (see
the criteria (2.8) and (2.8')). As j c varies by a factor
of about three (which corresponded to increasing the
magnetic field He from 5 to 30 kilogauss), H, declined by
only 5% (which might, e. g., be explained by the relation-
ship of BjjBT to H: 9jc/dT~-jc/T(l-H/HC2). A num-
ber of subsequent experiments have observed periodic
flux jumps with increasing external field.C20·8».95] The
increase Δ#β in the external field between successive
jumps depended little on He. This evidently confirms
the conclusion that Hs is independent of j c .

The existing experimental data do not allow us to
elucidate the effect of the geometry of the current and
field distribution on stability (see Chap. 2). Existence
of a dependence of Hj on the prehistory involves the
finite nature of the specimen in two dimensions. Hence
the existence of the effect does not depend on the con-
crete shape of the conductor. This phenomenon has been
treated qualitatively in a number of cases (see,
e.g ./ 7 0 · 7 1 3 ) .

A dependence of the stability on the size of the trans-
port current / (He> Hp) has been found inC57]. Flux jumps
were lacking when /= 0, while they appeared when I> 0,
which agrees with the predictions of the theory.

SuttonC723 has studied the stability of a specimen con-
sisting of two superconducting plates having differing
critical current densities j e (Fig. 19), where jcfa<0)

FIG. 19. Geometry of the two-layer
specimen.

0 d a:
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FIG. 20. Relationship of the ratio
Ai = /fJ/fl} to d/dj for the two-layer
specimen. The theoretical curve,
is plotted as the solid line; the
parameter α = 2.7.

0.5

= ajc(x> 0). The stability boundary in this case is evi-
dently a function of the thickness d of the outer layer
(we can consider the inner superconductor to be semi-
infinite) and of the parameter a. The ratio (ht) of the
flux-jump field H* of the two-layer specimen to the flux-
jump field Hl

} of one of the specimens alone was mea-
sured experimentally as a function of the quantity d/d}

(Fig. 20, where d, = cH)/4Trjc). The corresponding prob-
lem can be easily solved by using (2.13). The solid
line in Fig. 20 shows the theoretical curve that we ob-
tained. The value a = 2.7 was chosen by least squares.
As we see, the theory satisfactorily describes the ex-
perimental relationship. We note further that the maxi-
mum value in Hz

l = 2Hl

l(d~dl, a» 1) for a two-layer
specimen.

The effect of the external thermal conditions on the
position of the stability boundary has been studied

in[24,28,92]_ I n l i n e w U h t h e t h e o r e t i c a l predictions, H,

depends weakly on the nature of the heat removal.

A large number of experiments have measured the time
of development of instability. 120.28-30,53,73-75] T o t h e a c _

curacy with which the experimental and theoretical re-
sults can be compared, the agreement between them is
satisfactory. We note also that they have observed
in 1 3 0 · 7 6 1 an increase in the characteristic time of a flux
jump with increasing conductivity of the normal coating.
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