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We consider a ’ Josephson junction, which has a bistable zero-voltage state with the stationary phases

c ¼ �’. In the nonzero voltage state the phase ‘‘moves’’ viscously along a tilted periodic double-well

potential. When the tilting is reduced quasistatically, the phase is retrapped in one of the potential wells.

We study the viscous phase dynamics to determine in which well (�’ orþ’) the phase is retrapped for a

given damping, when the junction returns from the finite-voltage state back to the zero-voltage state. In the

limit of low damping, the ’ Josephson junction exhibits a butterfly effect—extreme sensitivity of

the destination well on damping. This leads to an impossibility to predict the destination well.
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The term butterfly effect is widely used to denote the
extreme sensitivity of complex dynamical systems to ini-
tial conditions [1,2]. The effect puts a clear distinction
between determinism and predictability. For example,
due to the butterfly effect it is not possible to predict the
weather reliably for more than 3–5 days in advance.
Although the original work [3] was related to simulation
of atmospheric processes, it was discovered later on that
in quite a few problems of nonlinear physics, a tiny per-
turbations of initial conditions might lead to completely
different final states. In particular, the butterfly effect was
observed in simulations of a long Josephson junction
subjected to an oscillating magnetic field [4].

Consider now a pointlike ’ Josephson junction (’ JJ)
proposed theoretically [5–7] and recently demonstrated
experimentally [8]. This ’ JJ has a doubly degenerate
ground state phase c ¼ �’, which is a result of the
unusual Josephson energy profile:

UJðc Þ ¼ 1� cosðc Þ þ �0

4
½1� cosð2c Þ�: (1)

The energyUJðc Þ has a form of a 2�-periodic double-well
potential with wells at c ¼ �’; see Fig. 1. The ground
state phase ’ ¼ arccosð�1=�0Þ. The parameter �0 < 0
defines the depth of the wells [7,9]. The potential has two
wells per period for �0 <�1. Application of a bias current
� tilts the potential as shown in Fig. 1.

Since in the zero-voltage state the ’ JJ is bistable, it is
interesting to understand in which of these two states the
phase is retrapped when the ’ JJ returns from the finite-
voltage state to the zero-voltage state upon the quasistatic
decrease of the tilt (bias current density) �. Note that for
conventional 0 or for � JJs with only a single energy
minimum per period of Josephson energy, such a question
does not arise. Earlier [10] we have naively suggested that

upon returning from the positive-voltage state to the
zero-voltage state, the phase is retrapped in the þ’ state.
This is indeed true for rather large damping [8]. However,
at lower damping the behavior is nontrivial and often
experimentally seems to be nondeterministic [8].
Here we study the retrapping process of the Josephson

phase in a pointlike ’ JJ and demonstrate that at low
damping the system exhibits the butterfly effect.
The dynamics of a ’ JJ can be described by the equation

of motion for the phase c ðtÞ (see the Supplemental
Material [11])

€c þ @UJ

@c
¼ �� � _c ; (2)

FIG. 1 (color online). Tilted periodic double-well (Josephson)
potential Uðc Þ given by Eq. (3) for �0 ¼ �4 and different
values of bias current (tilt) �.
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where �0 <�1 is a parameter of the potential defining its
depth, � is the bias current density normalized to the
average critical current density hjcðxÞi, and � is the dimen-
sionless damping coefficient [also normalized using
hjcðxÞi]. This model describes well a ’ JJ made out of a
0-� JJ with facet lengths L0 & �J;0 and L� & �J;� [5–7,9],

where �J;0 and �J;� are the Josephson lengths in the 0 and

� parts, accordingly. For 0-� JJs with somewhat longer
facets, like in experiment [8], it holds qualitatively. For
experimental parameters the double-well potential Uðc Þ
calculated numerically is not so deep as in the model,
Eq. (1), as can be seen in Fig. 1 of Ref. [8]. This leads
only to a quantitative rather than qualitative difference in
the results obtained.

Equation (2) describes a phase (a pointlike particle of
a unit mass with the coordinate c ) moving viscously
(term �� _c ) in a tilted 2�-periodic double-well potential:

Uðc Þ ¼ UJðc Þ � �c ; (3)

see Fig. 1. � sets the tilt.
The main process that we are interested in here is the

dynamics of switching from the finite-voltage state to the
zero-voltage state. At � ¼ 0 the phase is trapped in one of
the wells of the potential Uðc Þ, i.e., at c ¼ �’ or at
c ¼ þ’. Upon an increase of the bias current �, the
potential Uðc Þ tilts and, at some value of the bias current
�, the phase escapes because the corresponding well dis-
appears. For � > 0 the phase escapes from the �’ well at
� ¼ �c� and from the þ’ well at � ¼ �cþ > �c� as
found earlier [7,8]; see Fig. 1. After escape, the phase
slides viscously along the periodic potential. The voltage
across the junction is proportional to the velocity of the
phase motion _c ðtÞ. Further, we start decreasing the bias
current density (tilt) � quasistatically. At some � ¼ �R,
which depends of the damping �, the phase is retrapped in
one of the wells. It is this retrapping process that is the
main subject of this study.

Note that, in general, the damping � is a function of
temperature T. However, the temperature is also respon-
sible for thermal fluctuations that can be added as an
additional stochastic current to the rhs of Eq. (2). In the
following we assume that such fluctuations are negligible
(zero) and the only effect of temperature is the change
in �. At the end we discuss shortly the effect of these
fluctuations on our results.

To analyze the retrapping process, first, we search
the value of the tilt �R (retrapping current) at a given
damping �. The retrapping situation corresponds to the
trajectory, on which the phase starts with zero velocity at
the main maximum of the potential Uðc Þ situated at
c ¼ c L (see Fig. 1) slides down viscously, passes two
minima and one maximum, and arrives to c R ¼ c L þ 2�
with zero velocity. The value of c L is one of the roots of
the equation @U=@c ¼ 0, i.e., from Eq. (3),

@UJ

@c

��������c¼c L

¼ �; (4)

corresponding to the maximum of Uðc Þ.
Since c L depends on �, it is more convenient to fix the

tilt � and look for the critical value of �Rð�Þ at which
retrapping occurs, rather than looking for �Rð�Þ. To find
c ðtÞ, Eq. (2) was solved for fixed � and � with initial
conditions c ð0Þ ¼ c L þ � and _c ð0Þ ¼ 0 (typically we
use �� 10�6). The solution was calculated up to the point
where either c ðtÞ> c L þ 2� or where _c < 0. In the first
case the particle is not trapped for given � and� and moves
to the next period of the potential. In the second case the
particle is trapped. By varying � we repeat the simulation
to find the boundary values �Rð�Þ between the above two
cases with a given accuracy of 10�6. The resulting plots of
already inverted �Rð�Þ dependences for different values of
�0 are shown in Fig. 2. One can see that the dependences
�Rð�Þ are almost linear.
In the limit of � ! 0 and � ! 0 one can use a simple

perturbation theory (PT) to obtain the slope of this linear
dependence. We assume that � and � are perturbations.
Without perturbations (� ¼ � ¼ 0) the phase dynamics is
governed by the equation

€c þ
�
sinðc Þ þ �0

2
sinð2c Þ

�
¼ 0; (5)

which has the first integral

FIG. 2 (color online). The dependence �Rð�Þ for different
values of �0. Symbols represent the results of direct numerical
simulation. Lines show PT results given by Eq. (10) for � ! 0.
The horizontal dashed lines show the values of the depinning
current �c� for given �0, i.e., the current, at which the �’ well
disappears. For � > �c� the potential has only one þ’ well and
the phase is retrapped there. The vertical dashed line shows the
corresponding value of �Rð�c�Þ. For JJ with �> �Rð�c�Þ the
retrapping current �Rð�Þ> �c� and potential has only one þ’
well where the phase is retrapped.
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_c 2 ¼ Cþ
�
2 cosðc Þ þ �0

2
cosð2c Þ

�
; (6)

where C ¼ 2� ð�0=2Þ is determined from the initial
condition for the retrapping trajectory: _c ð�1Þ ¼ 0,
c ð�1Þ ¼ c L. Now, if we turn on the small damping �
and the bias �, they will lead to dissipation and driving,
correspondingly. The dissipated energy Q along the
‘‘critical’’ path from c L ¼ �� to c L þ 2� ¼ þ�
(for � ¼ 0) is

Q ¼ �
Z þ�

��

_c dc ¼ �Ið�0Þ; (7)

where, using Eq. (6), we define

Ið�0Þ ¼
Z þ�

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1þ cosðc Þ� ��0sin

2ð2c Þ
q

dc ; (8)

which can be calculated numerically for any �0.
The energy input due to the tilt � is

E� ¼ �½c L þ 2�� c L� ¼ 2��: (9)

In the case of retrapping trajectory, E� compensates Q and

brings the particle exactly to the position c L þ 2� with
zero velocity. Thus, from E� ¼ Q we get

�Rð�Þ ¼ Ið�0Þ
2�

�: (10)

We note that in the limit �0 ! 0 we have Ið�0Þ ! 8 and
obtain a well-known result [12] valid for conventional JJ
with sinusoidal CPR, namely �R ¼ ð4=�Þ�. The lines
corresponding to �Rð�Þ dependences, Eq. (10), are shown
in Fig. 2 and agree well with numerical data for � ! 0.

Knowing the dependence �Rð�Þ we now take various
values of �, take the corresponding �Rð�Þ, put the phase at
the turning point c ¼ c Rð�Þ � � (see Fig. 1), and follow
its time evolution. The ultimate goal is to see in which well
(�’ or þ’) the phase is trapped. The decision about
trapping is taken when the velocity _c changes the sign
two times in a row on the same side relative to the energy
barrier separating the two wells. Examples of the trajecto-
ries on the phase plane ( _c , c ) are shown in Fig. 3. Thus we
get the destination well vs �Rð�Þ dependence.

Figure 4 shows the destination well (�’ or þ’) as a
function of �. One can see that, indeed, for large � the
phase is trapped in the þ’ well, as predicted [7] and
demonstrated experimentally [8]. However, as� decreases,
the destination well changes from þ’ to �’ then back
to þ’ and so on. The intervals of �, corresponding to the
retrapping in a particular well, become smaller and smaller
even on a logarithmic scale; see Fig. 4. Thus, in the limit of
small � the destination well is extremely sensitive to the
initial conditions—a tiny variation (or fluctuation) of� or�
(thermal or electronic noise) results in a global effect—
retrapping in a different well. Thus, our ’ JJ exhibits the
butterfly effect.

In our case, the butterfly effect prevents one from
forecasting, in which well the phase will be retrapped in
an experiment in the limit of small �. In fact, already in the
first experimental work [8] on ’ JJs it was seen that the
retrapping is not deterministic at low damping (tempera-
tures �300 mK). In the experiment, due to the inevitable
presence of noise, the destination well vs the � curve will
be smeared. If we assume a low frequency Gaussian elec-
tronic noise of the amplitude �� in the bias circuitry, one

can calculate the probability P� to find the system in the
�’ state by making a convolution of the �’ð�Þ curve
with the Gaussian distribution of width ��. The resulting

P�ð�Þ is also shown in Fig. 4. One can see that the noise
smears the fast switchings and P� ! 1=2 at � ! 0.
However, the presented model is oversimplified. If one

includes a stochastic (instrumental noise or thermal fluc-
tuations) current term in the rhs of Eq. (2), it will also affect

FIG. 3 (color online). The retrapping trajectories in the phase
plane ( _c , c ) for �0 ¼ �3 and different tilt �. The phase starts at
c L, where Uðc Þ has a maximum, with _c ¼ 0 and arrives to
c R ¼ c L þ 2� [the next Uðc Þ maximum] with _c ¼ 0.
Then the phase falls back and is trapped in one of the minima
of the Uðc Þ.
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the value of the retrapping current �Rð�Þmaking it not well
defined (smeared) with the ensemble average h�Rð�Þi
larger than �Rð�Þ calculated above [13,14]. A rigorous
treatment of noise will be presented elsewhere.

At the end we would like to mention an interesting
detail. When simulating a retrapping dynamics, we also
have counted how many times N the phase crossed the
barrier separating the wells before being trapped in one of
the wells. In fact, the well (þ’ or �’) plotted in Fig. 4 is
just ’½1� 2ðNmod 2Þ�. Figure 5 shows Nð�Þ plots for
different values of �0. Note that N is an integer so it
changes stepwise, as it is well visible for large �. For small
� (large N) the dependence looks almost continuous and
can be well approximated by N � C�=�. The coefficient
C� depends on �0. In the Supplemental Material [11]
it is proven analytically that N ¼ C�=� for any potential
Uðc Þ in the PT limit � � 1. In our case, using c dec ¼
arccos½�ð2þ �0Þ=�0� (see Fig. 1) and c ðEmaxÞ ¼ �
we get

CPT
� ¼

Z �

c dec

@Uðc stÞ
@c st

dc st

Wðc stÞ ; (11)

where

Wðc stÞ ¼
Z þc st

�c st

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½Uðc stÞ �Uðc Þ�

q
dc : (12)

The values of C� obtained from direct simulations as well
as CPT

� calculated using Eq. (11) are summarized in Table I
together with other key numbers.
In conclusion, we have studied the retrapping of the

phase in a pointlike ’ JJ upon transition to zero-voltage
state. For given damping �, we have calculated the retrap-
ping current �R and the destination well, where the phase is
trapped. For large � it is always a deeper well (þ’ for
� > 0). However, as � decreases, the dependence of the
destination well on � is an oscillating function, with oscil-
lations (switching of the destination well) happening faster
and faster even on the logarithmic scale; see Fig. 4. Thus, at
� ! 0 a tiny variation of � or � (noise) leads to a different
destination well, i.e., to a butterfly effect. Detailed
treatment of the noise will be presented elsewhere.
The butterfly effect at small damping does not allow us

to manipulate the ’ JJ by means of the bias current as
described earlier [8,10]. Simultaneously, in this regime one
can use a ’ JJ as a random number generator (coin or dice)
giving the output of �’ or þ’ randomly. The extreme
sensitivity may also be exploited in amplifiers or detectors
as well as for the investigation of the fine details of the JJ

FIG. 4 (color online). The well in which the particle is trapped
at �Rð�Þ as a function of � (symbols). Vertical dashed line show
the value �Rð�c�Þ. For �> �Rð�c�Þ the potential has only a
single þ’ well. In (a) �Rð�c�Þ � 1:327 and is not visible. The
lines show the effect of the low frequency Gaussian noise with
�� ¼ 0:02 in the bias current circuitry. In this case the right

vertical axis represents the probability P� to find the system in
the �’ state.

FIG. 5 (color online). The dependence Nð�Þ for different
values of �0. At low N one sees that N is an integer. At high
N it is a straight line on this double log scale, i.e., it corresponds
to N / 1=�.

TABLE I. The values of key quantities.

�0 �c� �Rð�c�Þ C�ð�0Þ CPT
� ð�0Þ

�1:5 0.153 0.100 0.521 0.522

�2:0 0.369 0.229 0.412 0.412

�3:0 0.840 0.492 0.313 0.314

�4:0 1.327 1.327 0.263 0.264
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dynamics itself. In the quantum regime the dynamics
described here may lead to extremely strong mixing or
entanglement of the states j�’i and jþ’i.
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