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We study the field dependence of the maximum current Im�H� in narrow edge-type thin-film Josephson
junctions. We calculate Im�H� within nonlocal Josephson electrodynamics taking into account the stray fields.
These fields affect the difference of phases of the order parameter across the junction and therefore the
tunneling currents. We find that the phase difference along the junction is proportional to the applied field,
depends on the junction geometry, but is independent of the Josephson critical current density, i.e., it is
universal. An explicit formula for this universal function is derived and used to calculate Im�H�. It is shown that
the maxima of Im�H��1 /�H and the zeros of Im�H� are equidistant only in high fields. We find that the spacing
between the zeros is proportional to 1 /w2, where w is the width of the junction. The general approach is
applied to calculate Im�H� for a superconducting quantum interference device �SQUID� with two narrow
edge-type junctions.
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Physics of the edge-type thin-film Josephson junctions
�two films in the �x ,y� plane touching only along the edges at
x=0 with no overlap as shown in Fig. 1� differs significantly
from that of the junctions with bulk banks. The main reason
for this difference is the effect of the stray fields on the
tunneling currents in the junction and on the screening cur-
rents in its banks. As a result, the phase difference across the
junction, ��y�, is described by an integral equation, i.e., the
Josephson electrodynamics of edge-type thin-film junctions
is nonlocal.1–5

Development of the nonlocal electrodynamics of these
junctions is still in progress and is a subject of growing the-
oretical and experimental interest.6–9 In particular, it was
shown that the nonlocality caused by the stray fields slows
down the electromagnetic waves propagating along the
junction.3 This effect leads to an interesting and important
result—Cherenkov radiation by fast moving Josephson
vortices.3,9 The features of the edge-type junctions such as
large IcR products and low noise are attractive for
applications.10

Nonlocality caused by the long-range stray fields is
especially important for physics of series of interchanging
0- and �-shifted junctions.6–8 If the length scale of the 0-
and �-shifted fragments is much less than the Josephson
length, these systems behave as anomalous Josephson junc-
tions with critical current density alternating along the junc-
tion. This anomaly results in appearance of spontaneous
flux, splinter vortices carrying nonquantized flux, and pecu-
liar dependencies of the maximum current Im�H� on the
applied field. These effects have been studied in asymmetric
grain boundaries in thin YBCO films, superconduc-
tor-ferromagnet-superconductor, superconductor-insulator-
ferromagnet-superconductor heterostructures, and YBCO/Nb
zigzag junctions.6–8,11–16

The phase distribution ��y� along edge-type thin-film
junctions ���d� has an intrinsic length scale,

� = c�0/8�2�gc, �1�

where gc is the critical sheet current density of the junction,
�=2�2 /d is the Pearl length, � is the London penetration

depth, and d is the film thickness �we call � the thin-film
Josephson length, although in long junctions the vortex size
is �����. We show that if the width w of the strip is shorter
than � and �, then ��y� is � independent, i.e., the same for
junctions with different Josephson critical currents.17 Thus,
for narrow junctions �w	� and w	��, ��y� is a material
independent universal function; it depends only on the ap-
plied field and the junction length.18

In this Rapid Communication we evaluate the field depen-
dence of the maximum supercurrent Im�H� through the junc-
tion that turns out to be quite different from the standard
Fraunhofer pattern of bulk junctions. Zeros of Im�H� become
equidistant only in large fields, and are separated by 
H
��0 /w2, which typically is much smaller than �0 /w� of
bulk junctions of the same length. The maxima of Im�H�
decrease as 1 /�H, which is slower than 1 /H for the bulk.
The approach developed is applied to calculate Im�H� for a
superconducting quantum interference device �SQUID�
made of narrow thin-film strips with edge-type junctions and
to show that Im�H� differs remarkably from the canonic
Fraunhofer pattern.

The sheet current density g= �gx ,gy� in thin films can al-
ways be written as g=curl Sẑ= ��yS ,−�xS�, where S�x ,y� is
the stream function. The sheet current normal to the strip
edges �y= �w /2� is zero, i.e., S�x , �w /2� are constants.
The total current I through the strip is

I = �
−w/2

w/2

gxdy = S�w/2� − S�− w/2� . �2�

x

y
z

w0

d

FIG. 1. Sketch of an edge-type thin-film Josephson junction.
The junction plane is shown by the dotted cross section.
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Integrating London equations over the film thickness we
obtain

hz +
2��

c
curlzg =

�0

2�
��x����y� , �3�

where hz consists of the applied field H and the part related
to g by the Biot-Savart integral. The right-hand side here is a
manifestation of a general rule: The field of a Josephson
junction is formally equivalent to the field of a set of vortex-
like singularities distributed along the junction with the line
density ���y� /2�.2,5

In strips with w	�, the self-field of the current g is of the
order g /c, whereas the second term on the left-hand side of
Eq. �3� is of the order g� /cw�g /c. Hence, the self-field can
be disregarded, unlike the applied field H. Substituting
curlzg=−�2S in Eq. �3�, one obtains

2��

c
�2S = −

�0

2�
��x����y� + H . �4�

This linear equation has solutions S=S1+S2 such that

2��

c
�2S1 = −

�0

2�
��x����y�,

2��

c
�2S2 = H . �5�

The boundary condition �2� is satisfied if we assume that
S1��w /2�=0, S2�w /2�−S2�−w /2�= I and

S1�r� =� d���u�
���v�

2�
G�r,�� , �6�

S2�r� =
cH

4��
�y2 −

w2

4
� +

I

w
�y +

w

2
� , �7�

where r= �x ,y� and �= �u ,v�. The Green’s function G�r ,��
satisfying �2�� /c�0��2G=−��r−�� with zero boundary
conditions is given by

G =
c�0

4�2�
tanh−1 cos 
 cos �

cosh�� − �� − sin 
 sin �
, �8�

where �� ,��= ��x /w ,�u /w�, �� ,
�= ��y /w ,�v /w� are di-
mensionless coordinates. G�r ,�� gives the current distribu-
tion of a single vortex at r=� of an infinite strip.

Clearly, S1 describes the current perturbation due to the
junction. The first term in S2 represents the screening cur-
rents due to the applied field, whereas the second is due to
the field of a uniform transport current.

Next, we introduce the reduced field h and current i,

h = 4w2H/�0, i = 8�2�I/c�0, �9�

and use the Josephson relation gx�0,y�=gc sin ��y�
=�yS�0,y� to obtain

w

�
sin ��
� = �

−�/2

�/2

d������
cos �

sin � − sin 

+ h
 + i .

�10�

The boundary conditions for ��
� follow from the London
equation for the sheet current gy��0,
�. A standard calcula-

tion results in ���
��gy�0,
�. At the edges �
= �� /2� the
current component gy must vanish, i.e.,

�����/2� = 0. �11�

In narrow junctions �w	� and w	��, the left-hand side
of Eq. �10� can be disregarded. While neglecting the term
�w /� we have to disregard also the transport current i; oth-
erwise, integrating both sides of Eq. �10� over the strip does
not produce identity.

The truncated Eq. �10� reveals a remarkable feature of
junctions in narrow strips: The phase derivative ���
� is pro-
portional to the applied field, i.e., ���
�=h�0��
�. The func-
tion �0��
� is governed by the equation

�
−�/2

�/2

d��0����
cos �

sin 
 − sin �
+ 
 = 0, �12�

which does not contain any physical parameter of the junc-
tion and therefore �0��
� is a universal function.

To determine �0��
� we introduce variables s=sin � and
t=sin 
 and write Eq. �12� in the form

B��t� =
1

2�
�

−1

1 J�s�ds

t − s
, �13�

where B��t�=−sin−1 t, J�s�=2��1−s2�d�0 /ds�. Clearly, Eq.
�13� is the Biot-Savart integral for the normal component of
the “field” B��t� at the surface of a strip −1�s�1 carrying
the “sheet current” J�s�. We, therefore, have to find J�s� for a
given B��t�. However, J�s� is not determined uniquely by
one field component. Currents of the form C /�1−s2 with an
arbitrary constant C correspond to B�=0. This flexibility al-
lows us to obtain �0� that satisfies condition �11�:

�0��
� =
1

�2 cos 
�2 − �
−�/2

�/2 � cos2 �d�

sin 
 − sin �� . �14�

The integral in Eq. �14� is understood as Cauchy principal
value and can be done numerically. The universal function
�0��
� so calculated is shown in Fig. 2�a�. The function �0�
�
obtained requiring it to be odd in 
 is shown in Fig. 2�b�. In
particular, this calculation gives �0�� /2�−�0�−� /2��0.86.

We thus obtain for any applied field in narrow thin-film
junctions: ��
�=h�0�
�+� with an arbitrary �. The total
current through the junction is

I =
gcw

�
�

−�/2

�/2

d
 sin	h�0�
� + �
 . �15�

Maximizing the value of I with respect to � provides �
=� /2 and the maximum current Im:

Im

gcw
=

1

�
��

−�/2

�/2

d
 cos	h�0�
�
� . �16�

Hence, Im�H� can be evaluated numerically; a good approxi-
mation for Im�H� can be obtained as follows.

The odd function �0�
� can be written as the Fourier
series �an sin�2n+1�
 to satisfy the boundary condition
�11�. We take the lowest approximant �0=a0 sin 
 with a0
=0.43 to fit the difference �0�w�−�0�0�=0.86 that is found
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integrating numerically the exact derivative in Eq. �14�. The
comparison of the phase found numerically with a0 sin 
 is
shown in Fig. 2�b�.

In this approximation we have

Im

gcw
=

1

�
��

−�/2

�/2

d
 cos�ha0 sin 
�� = 
J0�a0h�
 . �17�

Figure 3 shows that this approximation is quite accurate as
compared to Im�H� calculated numerically with the help of
Eq. �16�. Zeros of the Bessel function J0�x� are equidistant
for large arguments, but they are spaced roughly by � every-
where. Hence zeros of Im�h� are separated by a0
h��, or in
common units by


H � 1.8�0/w2. �18�

It is worth recalling that in bulk junctions of the length w the
zeros are separated by 
H�2�0 /w� that exceeds by much
the thin-film spacing. A similar estimate is given in Ref. 10.

In the high-field region one can use the large argument
asymptotics of J0�x� to obtain

Im � 0.61gc��0

H
�cos�1.72

Hw2

�0
−

�

4
�� . �19�

Thus, the maxima of Im�H� decrease as 1 /�H, i.e., slower
than in the bulk case where Im�1 /H.

It is worth noting that in high fields the maxima Im�H� do
not depend on the junction length w. Qualitatively, this
comes about because the tunneling current gx=gc sin�h�0
+�� oscillates fast for h�1 so that most of the junction
length does not contribute to the total current, unlike the
narrow belts of the width ����0 /H near the strip edges.

In practice the pattern shown in Fig. 3 might be distorted
by Pearl vortices trapped in the junction banks. The energy
of these vortices acquires a minimum in the strip middle
starting from fields of the order �0 /w2.19–22 However, esti-
mates of the energy �J of Josephson vortices as compared to
Pearl ones, �P, yield �J /�P�0.1 / ln�2w /��, where � is the
coherence length and ln�2w /�� is large. Physically, this
makes the Josephson contact a “weak spot” where vortices
penetrate the sample first. Hence the chances are good for
recording quite a few maxima of Im�H� provided the strip is
homogeneous and the pinning is weak.

Let us consider now current flowing through rectangular
SQUID made of narrow thin-film strips with two identical
junctions sketched in Fig. 4. In zero field the current distri-
bution is symmetric with respect to the SQUID center and
the line integral of g along any symmetric contour is zero.
When the field is applied, this symmetry is violated by the
screening currents. However, at the contour in the strip
middle �shown in the figure� the screening currents vanish so
that the contour integral of g remains zero. This contour
crosses the junctions at their middle. The flux � enclosed by
this contour does not change if the contour is shifted as a
whole by 
. Integrating the London equation for g over such
a contour we obtain

�2�
� − �1�
� = 2��/�0. �20�

The total current through the system is given by

�I

gcw
= �

−�/2

�/2

d
�sin �1 + sin �2�

= 2�
−�/2

�/2

d
 sin�ha0 sin 
 + � +
��

�0
�cos���

�0
� ,

�21�

where � is a constant. The maximum current corresponds to
�=� /2−�� /�0:

Im = 2gcw�J0�4a0
w2

A0

�

�0
�cos��

�

�0
�� , �22�

where A0 is the area of the “central” contour. Note that Eq.
�22� is valid if L�w �see Fig. 4�.
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FIG. 2. �a� The function �0��
� calculated according to Eq. �14�.
�b� The solid line is �0�
� obtained by numerical integration of
�0��
� shown in the panel �a�. The dashed line is the approximation
�0�
�=0.43 sin 
.
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FIG. 3. The maximum supercurrent im= Im /gcw versus the nor-
malized applied field hn=4a0w2H /��0. The dashed line is the ap-
proximation �17�.
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FIG. 4. Sketch of a rectangular SQUID made of two narrow
thin-film strips with identical edge-type junctions 1 and 2.
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An example of Im�� /�0� is shown in Fig. 5 for a SQUID
with A0 /w2=5. The standard SQUID pattern 
cos��� /�0�
 is
modulated in our case by a slow varying Bessel function. We
stress again that the pattern shown is obtained for large area
SQUIDs with two narrow thin-film junctions; for reduced
areas the interference patterns become more complex, a sub-
ject for further study.

To summarize, we have evaluated the field dependence of
the maximum supercurrent in narrow edge-type Josephson
junctions in thin-film strips; the strip width w is supposed to
be less than the Pearl length � and the thin-film Josephson
length � of Eq. �1�. Calculations are done in the framework
of nonlocal Josephson electrodynamics. We demonstrate that
the stray fields cause a pattern Im�H� with much reduced
distance between zeros, 
H��0 /w2, and with a slow de-
creasing maxima in high fields, Im�H��1 /�H. The flux de-
pendence of the maximum supercurrent through a SQUID
made of narrow thin-film strips with edge-type junctions dif-
fers by much from the standard periodicity.
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