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I. INTRODUCTION

Studies of periodic or almost periodic Josephson tunnel
structures arranged in sequences of interchanging 0- and
�-biased Josephson junctions �as shown in Fig. 1� recently
became a subject of growing interest. These complex Joseph-
son systems are intensively treated experimentally, theoreti-
cally, and numerically in �a� superconductor-ferromagnet-
superconductor �SFS� junctions in thin films1–5 and �b�
Josephson grain boundaries in thin films of high-temperature
cooper oxide superconductor YBa2Cu3O7−x.

6–15

Equilibrium states of SFS Josephson junctions with a �
shift in the phase difference between the superconducting
banks have been predicted almost three decades ago.1,2 How-
ever, only recently SFS �-shifted junctions and SFS hetero-
structures of interchanging 0- and �-shifted fragments were
studied experimentally for the first time.3–5

The studies of Josephson properties of the asymmetric
grain boundaries in YBa2Cu3O7−x thin films reveal an inter-
esting and important example of a Josephson system being
an interchanging sequence of 0-� biased junctions.6–10 The
structure of these boundaries is created by facets with a va-
riety of orientations and lengths l�10–100 nm.10 This grain
boundary structure in conjunction with the dx2−y2-wave order
parameter symmetry8,9 can be considered as a Josephson tun-
nel junction with spatially alternating critical current density
jc�x�, where the x axis is along the grain boundary.8–10 These
rapid alternations with a typical length scale of l significantly
suppress the maximum supercurrent Im across the grain
boundaries. This suppression is most effective for the asym-
metric 45° �001�-tilt grain boundaries in YBa2Cu3O7−x
films.7,10

The asymmetric 45° �001�-tilt grain boundaries in thin
YBa2Cu3O7−x films exhibit several remarkable and important
anomalies. First, the dependence of the maximum
supercurrent Im on the applied magnetic field Ha is
non-Fraunhofer.6,7,12,15 Contrary to the classical Fraunhofer
pattern with the central major peak, two symmetric major
side peaks appear at the two fields ±Hsp�0. Second, a spon-
taneous rapidly alternating magnetic flux is generated at the
grain boundaries.11 Third, unquantized spontaneous flux
structures include fragments formed by pairs of single
Josephson-type vortices carrying fluxes �1��0 /2 and �2
��0 /2.13,14 These fluxes are complimentary and sum to �0,
i.e., �1+�2=�0, and therefore introduce splintered Joseph-
son vortices. It is worth noting here that the anomalous pat-
terns Im�Ha� and the unquantized splinter vortices appear un-
der conditions of existence of equilibrium spontaneous flux.

In many cases, the length scale l of the spatial alternations
of the critical current density jc�x� is bigger or much bigger
than the London penetration depth � and is smaller or much
smaller than the local Josephson penetration depth �J defined
by the average of the absolute value of the critical current
density. In the limit of l��J, the phase difference between
the banks of the tunnel junction, ��x�, can be written as a
sum of smooth, 	�x�, and rapidly varying, 
�x�, terms.13

Coarse graining the phase ��x� over a distance L� l allows
us to consider the two terms 	�x� and 
�x� separately from
each other in the inner part of the junction. In this approxi-
mation, the coupling of 	�x� and 
�x� happens because of the
boundary conditions at the edges of the junction.

In this paper, we calculate both theoretically and numeri-
cally the anomalous magnetic field dependence of the maxi-
mum supercurrent Im in Josephson tunnel junctions with spa-
tially alternating critical current density. The applied
magnetic field Ha is supposed to be lower than the side-peak
field, i.e., �Ha��Hsp��0 /2��l.

The paper is organized as follows. In Sec. II, we discuss
the coarse-grained equations for the phase difference across
the banks of Josephson junctions with alternating critical cur-
rent density and derive the boundary conditions to these
equations. In Sec. III, we consider the maximum supercur-
rent across Josephson junctions theoretically in two limiting
cases of short and long junctions in low and high magnetic
fields. In Sec. IV, we report on the results of numerical simu-
lations of the maximum supercurrent dependence on the ap-
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FIG. 1. Schematic drawings of �a� sequence of 0- and �-biased
Josephson junctions; �b� critical current density jc�x�.
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plied magnetic field. Section VII summarizes the overall
conclusions.

II. COARSE-GRAINED EQUATIONS

We treat a one-dimensional Josephson junction parallel to
the x axis with the tunneling current density j � ŷ, jy�x�
= j�x�, and the magnetic field H � ẑ, Hz�x�=H�x�. Assume also
that the critical current density jc�x� is an alternating periodic
or almost periodic function taking positive and negative val-
ues with a typical length scale l. The geometry of the prob-
lem is shown schematically in Fig. 1.

First, we introduce the average value of the critical cur-
rent density �jc	, the effective Josephson penetration depth
�, defined by �jc	, and the local Josephson penetration depth
�J, defined by the average value of �jc�,

�f	 =
1

L



0

L

f�x�dx , �1�

� =� c�0

16�2��jc	
, �2�

�J =� c�0

16�2���jc�	
, �3�

where Eq. �1� is the definition of averaging, L is the length of
the junction �L� l�, �0 is the flux quantum, and � is the
London penetration depth.

Next, we assume that �� l��J��. In this case, the
phase difference ��x� satisfies the equation

�2�� −
jc�x�
�jc	

sin � = 0. �4�

It is convenient for the following analyses to write the criti-
cal current density jc�x� in the form

jc�x� = �jc	�1 + g�x�� , �5�

introducing a rapidly alternating function g�x� with a zero
average value, �g�x�	=0, and a typical length scale of order l.
It is worth noting that g�x� is a unique internal characteristic
of a junction. Using the function g�x�, we rewrite Eq. �4� as

�2�� − �1 + g�x��sin � = 0. �6�

The idea of the following calculation is based on a me-
chanical analogy �Kapitza’s pendulum�.16,17 Two types of
terms appear in Eq. �6�: fast terms alternating over a length l
and smooth terms varying over a length �� l. The fast alter-
nating terms cancel each other out, independently of the
smooth terms, which also cancel each other out.

Thus, to find solutions of Eq. �6�, we use the ansatz

��x� = 	�x� + 
�x� , �7�

where 	�x� is a smooth function with the length scale of
order �, 
�x� is a rapidly alternating function with the length
scale of order l, and the variations of 
�x� are small, i.e.,

��
�x��	�1.13 We assume also that the average value of 
�x�
is zero, �
�x�	=0. It is worth mentioning that the ansatz
given by Eq. �7� is similar to the one used to solve the Kapit-
za’s pendulum.16,17

Substituting Eq. �7� into Eq. �6� and keeping terms up to
first order in 
�x�, we find13

�2	� −
j	�x�
�jc	

= 0, �8�

�2
� −
j
�x�
�jc	

= 0, �9�

where the smooth j	�x� and alternating j
�x� components of
the tunneling current density j= j	+ j
 are

j	 = �jc	�sin 	 − 
 sin 	 cos 	� , �10�

j
 = �jc	g�x�sin 	 , �11�

the dimensionless constant 
 is equal to


 = �g�x�
g�x�	 , �12�

and the rapidly alternating phase 
g�x� is defined by


�x� = − 
g�x�sin 	 . �13�

It follows from Eqs. �9�, �11�, and �13� that

�2
g� + g�x� = 0, �14�

i.e., the rapidly alternating phase shift 
g depends only on the
effective penetration depth � and the function g�x�. There-
fore, the phase 
g�x� is an internal characteristics of a junc-
tion.

It follows from Eq. �10� that the smooth current density j	

includes the initial first harmonic term � sin 	 and an addi-
tional second harmonic term � sin 2	, which results from
constructive interference of the rapidly alternating critical
current density �g�x� and phase 
�x�.13

To summarize the derivation of the system of coarse-
grained equations �8�–�11�, it is worth noting that the typical
value of 
g�x� is small but, at the same time, the typical value
of g�x� is big, i.e., ��
g�x��	�1 and ��g�x��	�1. As a result,
the dimensionless parameter 
, which is proportional to the
average of the product of the two rapidly alternating func-
tions 
g�x� and g�x�, might be of the order of unity.13,14

The energy E of a junction with alternating critical current
density jc�x� yields

E =
��jc	
2e



0

L ��2

2
	�2 + 1 − cos 	 −




2
sin2 	
dx . �15�

The last term in the integral in Eq. �15� is for the contribution
of both the fast alternating current j
�x� and phase 
�x�. It is
worth noting that minimization of the functional E�	� results
in Eq. �8� for the phase 	�x�.

It follows from Eqs. �8� and �15� that if the parameter 

�1, then there are two series of stable uniform equilibrium
states with 	e=2�n±	
 and current density j	�	e�=0, where
n=0, ±1, ±2, . . ., is an integer and the phase 	
 is defined
by13
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 cos 	
 = 1. �16�

All equilibrium states with 	=	e have the same energy

E
 = −
��jc	
2e

�
 − 1�2

2

L , �17�

which is less than the energy E0=0 of the series of unstable
states with the phase 	=2�n.13 If the parameter 
�1, then
there is only one series of stable uniform equilibrium states
with 	0=2�n and E0=0.

The two series of stable equilibrium states result in the
existence of two different single Josephson vortices �two
splinters�.13,14 The phase 	�x� for the first �“small”� splinter
vortex varies from −	
 at x=−� to 	
 at x= +�. This vortex
carries flux �1=�0	
 /���0 /2. The phase for the second
�“big”� splinter vortex varies from 	
 at x=−� to 2�−	
 at
x=�. This vortex caries flux �2=�0��−	
� /���0 /2. As a
result, any flux structure inside a junction with an alternating
critical current density and with 
�1 consists of series of
interchanging small and big splinter vortices.13,14 It is also
important mentioning that �1+�2=�0.

Consider now the boundary conditions to Eq. �8�, i.e., for
the smooth phase shift 	�x�. Using equations

H =
�0

4��

d�

dx
, �18�

��x� = 	�x� − 
g�x�sin 	�x� , �19�

we find the boundary conditions for 	�x� in the form

���0� = 	0� − 
g0� sin 	0 =
4��

�0
H0, �20�

���L� = 	L� − 
gL� sin 	L =
4��

�0
HL, �21�

where 	0=	�0�, 	L=	�L�, 	0�=	��0�, 	L�=	��L�, H0=H�0�,
HL=H�L�, 
g0� =
g��0�, and 
gL� =
g��L�. Next, we use the fact
that the average value of g�x� is zero and integrate Eq. �14�
from 0 to L. This leads to


g0� = 
gL� = 
gb� , �22�

where 
gb� is an internal parameter characterizing the edges of
the junction. Now the boundary conditions given by Eqs.
�20� and �21� take the form

	0� − 
gb� sin 	0 =
4��

�0
H0, �23�

	L� − 
gb� sin 	L =
4��

�0
HL. �24�

Compare now the values of the derivatives 	0�, 	L�, and

gb� . Using Eqs. �9�, �12�, and �14�, we obtain


 = �g�x�
g	 = − ��2
g��x�
g�x�	 = ���
g��x��2	 �25�

and arrive to the relation

��
g��x�� � �
 � 1. �26�

A similar estimate ��	��x���1 follows from Eqs. �8� and
�10�. These estimates demonstrate that both derivatives 	��x�
and 
g��x� are of the same order although ��
g�x��	� ��	�x��	.
Indeed, for a typical junction exhibiting spontaneous equilib-
rium flux, we have 
�1.14

The fact that �
gb� �1 makes it convenient for the follow-
ing analysis to write the derivative 
gb� in the form


gb� =
�

�
, �27�

where ��1 is an internal parameter characterizing the edges
of the junction.

Thus, in the framework of the coarse-grained approach, a
junction with an alternating critical current density is char-
acterized by two dimensionless parameters � and 
.

Assume that the current across a junction I�0, then we
have the relations

H0 = Ha +
2�

c
I , �28�

HL = Ha −
2�

c
I . �29�

In this case the boundary conditions given by Eqs. �23� and
�24�, take the final form

	0� =
4��

�0
Ha +

8�2�

c�0
I +

�

�
sin 	0, �30�

	L� =
4��

�0
Ha −

8�2�

c�0
I +

�

�
sin 	L. �31�

The fact that the rapidly alternating critical current density
jc�x� has low average value ��jc�x�	� ��jc�x��	� might signifi-
cantly affect the maximum supercurrent. Indeed, assume that
the Josephson current density includes both the first and the
second harmonics,18 i.e.,

j = jc1�x�sin � + jc2 sin 2� , �32�

where jc1�x� is rapidly alternating along the junction and jc2

is spatially independent.
In this case, the coarse-graining approach remains the

same as above. The effect of the second harmonics on the
maximum supercurrent Im increases with the increase of the
dimensionless parameter 
2= jc2 / �jc1	. The value of 
2 might
be of order of unity and higher even if jc2 is low compared to
��jc1�x� � 	.

III. MAXIMUM SUPERCURRENT

The Josephson tunneling current I across the Josephson
tunnel junction with an alternating critical current density
can be written as a sum of two terms I	 and I
,
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I = 

0

L

jdx = I	 + I
, �33�

where the currents I	 and I
 are given by

I	 = 

0

L

j	dx = Ic��	L� − 	0�� , �34�

I
 = 

0

L

j
dx = �Ic�sin 	0 − sin 	L� , �35�

and the current Ic is defined as

Ic = ��jc	 . �36�

It follows from Eqs. �34� and �35� that both I	 and I
 are
defined by the smooth phase 	 only.

Magnetic flux inside the junction,

� = 2�

0

L

Hdx =
�0

2�
�	L − 	0� , �37�

results in the phase difference

	L − 	0 = 2�
�

�0
. �38�

Using Eqs. �35� and �38�, we obtain the current I
 as a func-
tion of the flux inside the junction,

I
 = �Ic�sin 	0 − sin�	0 + 2�
�

�0

�

= − 2�Ic sin��
�

�0

cos�	0 + �

�

�0

 . �39�

In order to calculate the total current I	, one has to know
the spatial distribution of the phase 	�x� in detail.

In what follows, we calculate the maximum supercurrent
Im theoretically in the limiting cases of short �L��� and
long �L��� junctions treating the problem separately for the
Meissner and mixed states.

A. Maximum current across short junctions

We calculate now the maximum supercurrent Im�Ha� of a
short junction, L��. In this case, the spatial dependence of
the smooth phase 	�x� in the main approximation in L /�
�1 is linear,

	�x� = 	0 + 2�
�i

�0

x

L
, �40�

where

�i = 2�LHi �41�

is the “internal” flux and Hi is the magnetic field inside the
junction. Next, we use Eqs. �30�, �31�, �34�, �35�, and �40�
and obtain the following relations:

Hi = Ha, �42�

	L = 	0 + 2�
�a

�0
, �a = 2�LHa, �43�

I = �Ic�sin 	L − sin 	0� . �44�

Combining Eqs. �43� and �44�, we find that the maximum
value of the total current I��a� is given by

Im = 2�Ic�sin��
�a

�0

� . �45�

It follows from Eq. �45� that the maximum supercurrent
across short junctions with spatially alternating critical cur-
rent density is defined only by the surface current I
 �in the
main approximation in L /��1�. As a result, the dependence
Im��a� is obviously non-Fraunhofer. The value of Im is oscil-
lating periodically in �a with the period that is equal to the
flux quantum �0. Contrary to the case of a constant critical
current density, the amplitude of oscillations of Im is not
decreasing with the increase of the applied field Ha.19,20

B. Meissner and mixed states in long junctions

In this section, we consider the spatial distributions of the
phase difference and the flux in long junctions, L��. We
start with the low field limit, i.e., we assume that the applied
field Ha�Hs, where

Hs =
�0

2���
�46�

is the flux-penetration field for a long junction with a con-
stant critical current density, jc=const.19,20 In the following
analysis, we use an approach similar to the one which was
first developed by Owen and Scalapino.21

In the case of L�� and Ha�Hs, the total supercurrent
I= I	+ I
 is a surface current localized in a layer with a width
�l��. It follows from Eqs. �34� and �35� that in order to
calculate I	 and I
, we have to find the dependencies of 	L�
and 	0� on 	0 and 	L. These dependencies are given by the
first integral of Eq. �8�,

�2

2
	�2 + cos 	 −




4
cos 2	 = const. �47�

It is worth mentioning that Eq. �47� describes the density of
the energy E given by Eq. �15�.

The spatial distribution of 	�x� depends on the magnetic
prehistory of the sample. We begin here for brevity with the
case of a junction in the Meissner state. In this case, the flux
is localized at the edges of the junction. As a result, in a long
junction, the phase 	�x� in the inner part equals a certain
constant 	�. The first correction to this constant is propor-
tional to exp�−L /���1. In other words, we have

	�L/2� = 	�, 	��L/2� = 0, �48�

where the phase 	� is given by one of the stable equilibrium
values of 	, i.e., cos 	�=1 /
. Combining Eqs. �47�, �48�,
and �16�, we find that the constant in the right-hand side of
Eq. �47� is given by
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const = cos 	� −



4
cos 2	� =




4
+

1

2

. �49�

The above relation allows transforming Eq. �47� into

�2	�2 = 
�cos 	
 − cos 	�2. �50�

We calculate first the flux-penetration field into a junction
with an alternating critical current density and a zero total
current, I=0. The dependence 	�x� for this case is shown
schematically in Fig. 2�a�. It follows then from Eq. �50� that

�	0� = �
�cos 	0 − cos 	
� , �51�

�	L� = �
�cos 	
 − cos 	L� . �52�

Next, we combine Eqs. �30�, �51�, �31�, and �52� and obtain
two relations between the applied field Ha and the phases 	0
and 	L,

Ha =
Hs

2 ��
 + �2 cos�	0 + 	�� −
1
�

� , �53�

Ha =
Hs

2 � 1
�


− �
 + �2 cos�	L − 	��� , �54�

where we introduce the phase 	� as

tan 	� =
�

�

. �55�

In the following analysis, we assume, for definiteness,
that 	��	
. In this case, the dependence 	�x� looks as
shown schematically in Fig. 2.

As a function of 	0, the right-hand side of Eq. �53� is
bounded. The maximum field

Hs1 =
Hs

2 ��
 + �2 −
1
�

� �56�

is achieved at

	0 = − 	�. �57�

Therefore, if the applied field Ha reaches the value of Hs1,
then the Meissner state in a long junction becomes unstable
and the small splinter vortex13,14 carrying flux

�1 = �0
	


�
� �0/2 �58�

enters into the inner part of the junction as shown in Fig.
2�b�. This feature is a direct consequence of the existence of
the splinter vortices in junctions with 
�1.

It follows from Eq. �50� that in this one-vortex state,

�	0,L� = �
�cos 	
 − cos 	0,L� � 0. �59�

Using Eqs. �30�, �31�, and �59�, we obtain the relations be-
tween the applied field Ha and the phases 	0 and 	L:

Ha =
Hs

2 � 1
�


− �
 + �2 cos�	0 − 	��� , �60�

Ha =
Hs

2 � 1
�


− �
 + �2 cos�	L − 	��� . �61�

The right-hand sides of Eqs. �60� and �61� are bounded as
functions of 	0 and 	L, and the maximum field

Hs2 =
Hs

2 ��
 + �2 +
1
�

� �62�

is achieved at 	0=	�−�+2�n and 	L=	�+�+2�m, where
n ,m=0, ±1, ±2, . . ., are integers. If the applied field Ha
reaches the value of Hs2, the one-vortex state becomes un-
stable and magnetic flux penetrates into the bulk until a
mixed state with a finite density of vortices is established
�see Fig. 2�c��.

Therefore, the rapid spatial alternations of the critical cur-
rent density jc�x� in case of 
�1 lead to the existence of a
specific equilibrium one-splinter-vortex state. This state ap-
pears if the applied field Ha is from the interval Hs1�Ha
�Hs2. It is worth noting here that the case of a standard
Josephson junction �jc=const� corresponds to �=0 and 

=1. It follows then from Eqs. �58�, �56�, �62�, and �46� that
for these values of the parameters � and �, we have �1=0,
�2=�0, Hs1=0, and Hs2=Hs, i.e., there is only one Joseph-
son vortex and the Meissner state exists if 0�Ha�Hs as it
has to be.19 This verification means that the above results are
self-consistent in describing the case of a standard Josephson
junction.

x

x

x

L

L

L

0

0

2ψγ

ψγ

-ψγ

ψL

ψγ

ψL

ψL

(b)
ψ0

(c)

ψ
0

ψ0

(a)

ψ

2π+ψγ

ψ

2π−ψγ

ψγ

-2π+ψγ

-2π-ψγ

-ψγ

ψ

FIG. 2. Spatial distributions of the phase 	�x� in a long junction
for different values of the applied field Ha and the internal flux �i.
�a� Ha�Hs1, �i=0; �b� Hs1�Ha�Hs2, �i=�1; �c� Ha�Hs2,
�i��a.
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C. Maximum supercurrent in the Meissner state

We calculate now the maximum supercurrent Im in the
Meissner state in a long junction, i.e., we assume that L
�� and the smooth phase 	 inside the junction is given by
one of its equilibrium values 	e=2�n±	
, where n
=0, ±1, ±2, . . ., is an integer. The spatial distribution of 	�x�
corresponding to the current Im is shown in Fig. 2�a�. It fol-
lows then from Eq. �50� that

	0� =
�


�
�cos 	
 − cos 	0� , �63�

	L� =
�


�
�cos 	L − cos 	
� . �64�

Using Eqs. �63� and �64� and the boundary conditions given
by Eqs. �30� and �31�, we obtain equations relating the cur-
rent I, the applied field Ha, and the phases 	0 and 	L,

Ha =
1

2
Hm�cos�	L + 	�� − cos�	0 − 	��� , �65�

I

Ic
=

2
�


− 2
Hm

Hs
�cos�	0 − 	�� + cos�	L + 	��� , �66�

where we introduce the field Hm as

Hm =
Hs1 + Hs2

2
=

Hs

2
�
 + �2. �67�

The two relations given by Eqs. �65� and �66� allow us to
obtain the dependence of the current I on the field Ha and the
phase 	0 in the form

I

Ic
=

2
�


− 4
Ha

Hs
− 4

Hm

Hs
cos�	0 − 	�� . �68�

It follows from Eq. �68� that the maximum current Im corre-
sponds to cos�	0−	��=−1. Combining the above calculation
valid for Ha�0 with the one valid for Ha�0, we obtain the
dependence Im�Ha� in its final form,

Im = 4Ic

Hs2 − �Ha�
Hs

=
c

2�
�Hs2 − �Ha�� . �69�

Thus, in the Meissner state, the maximum value of Im is
achieved at Ha=0 and is equal to

Im�0� =
cHs2

2�
= 2Ic��
 + �2 +

1
�

� . �70�

It is worth noting that for a standard Josephson junction
��=0,
=1�, therefore we have Hs2=Hs. As a result, Eqs.
�69� and �70� coincide with the similar equations that were
first derived by Owen and Scalapino.21

D. Maximum supercurrent in the mixed state

We calculate now the maximum supercurrent Im in long
junctions �L��� in the mixed state, i.e., we assume that the
applied magnetic field Ha is higher than Hs2. In the mixed

state, the field inside the junction, Hi, is almost uniform and
	�x� takes the form

	 = 	0 + 2
Hi

Hs

x

�
. �71�

The dependence of the supercurrent on the applied field fol-
lows from the boundary conditions �30� and �31� yielding the
system of equations

�
�a

�0
= �

�i

�0
−

�

2

L

�
sin 	m cos��

�i

�0

 , �72�

I = − 2�Ic cos 	m sin��
�i

�0

 , �73�

where the phase 	m is defined as

	m =
	0 + 	L

2
. �74�

Next, we use the Lagrange multipliers method to find the
maximum of the supercurrent defined by Eq. �73� under the
constraint given by Eq. �72� and arrive at

�0

�Ic

�I

��i
= L��a

��i

, �75�

�0

�Ic

�I

�	m
= L ��a

�	m

, �76�

where L is the Lagrange multiplier to be determined. In the
main approximation in � /L�1, the solution of Eqs. �75� and
�76� is given by

cos 	m cos��
�i

�0

 = ± sin 	m sin��

�i

�0

 . �77�

We plug now Eq. �77� into Eq. �72� and obtain

±
2�

�

�

L

�a − �i

�0
= cos2��

�i

�0

 . �78�

In the case of a long junction, the left-hand side of Eq.
�78� is small. As a result, in the zero approximation in � /L
�1, the flux inside the junction, �i, is a constant defined by
the roots of the equation cos���i /�0�=0, i.e., the values of
�i are given by �i= �n+1 /2��0, where n=0, ±1, ±2, . . ., is
an integer. In the next approximation in � /L�1, the flux �i
depends on the flux �a and we find

�i = ±� 2

��

�

L

�a
˜

�0
�0 + �n +

1

2

�0, �79�

	m =�2�

�

�

L

�a
˜

�0
� 1, �80�

where

�a
˜ = �a − �n +

1

2

�0. �81�
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It follows therefore from the theoretical calculations that
if the applied field Ha is increasing or decreasing, then inside
the intervals �n−1 /2��0��a� �n+1 /2��0, the flux in the
bulk, �i, is almost constant. At the ends of these intervals,
the flux �i “jumps” increasing or decreasing its value by one
flux quantum.

Using Eq. �73�, we find that the maximum supercurrent in
the zero approximation in � /L�1 is given by

Im � 2�Ic, �82�

i.e., for long tunnel junctions �L���, the value of Im at high
fields is almost field independent.

IV. NUMERICAL SIMULATIONS

We used numerical simulations to calculate the maximum
supercurrent in a wide range of parameters characterizing
Josephson tunnel junctions with alternating critical current
density. The computations were performed by means of the
time dependent sine-Gordon equation. The spatially alternat-
ing critical current density was introduced by the periodic
function g�x�. In the dimensionless form, this equation yields

�̈ + ��̇ − �� + �1 + g����sin � = 0, �83�

where the dimensionless time, �=�t, and space, �=x /�,
variables are normalized by the Josephson frequency � and
length �, ��1 is the damping constant,20

g��� = �2

2��

l
sin�2��

l
� + �0
 , �84�

the phase shift �0 defines the value of �, �=�2
 cos �0, and
N=L / l is an integer �N�1�.

The boundary conditions for Eq. �83� are given by the set
of Eqs. �28� and �29� and take the form

�0� =
2Ha

Hs
+

I

2Ic
, �85�

�L� =
2Ha

Hs
−

I

2Ic
. �86�

The convergency criterion for solutions matching Eqs.
�85� and �86� was based on the standard assumption that after
sufficiently large interval of time ���1�, the spatial average
of �̇2�� ,�� fits the condition ��̇2	��m

2 , where �m�1 is a
certain constant. We use a standard approach to calculate the
maximum value of the supercurrent Im. Namely, for each
value of the applied field Ha, we find the current Im for which
there is a solution of Eq. �83� matching boundary conditions
�85� and �86� and converging after a certain time �c�1, and
there is no solutions converging at ��1 for currents higher
than Im. We use the function ��� ,�c� calculated for the field
Ha as an initial condition ��� ,0� for the next value of the
field Ha+�Ha, where �Ha�Ha.

A. Finite difference scheme

We solved Eq. �84� numerically using the leap frog
method, which was adopted to our case. We checked the

stability and convergency of the obtained solutions and ar-
rived at

� →
�n−1

m + �n+1
m

2
� �̃n

m, �87�

�̇ →
�̃n

m − �n
m−1

��

, �88�

�2�

��2 →
�n

m+1 − 2�n
m + �n

m−1

��
2 , �89�

�2�

��2 →
�n+1

m − 2�n
m + �n−1

m

��
2 , �90�

where �� and �� are steps along � and � axes, correspond-
ingly, the superscript m is for the discrete � axis, and the
subscript n is for the discrete � axis. Next, we choose �� to
be equal to 1 /12 of the period of the rapidly alternating
function g��� and set ��=��. As a result, we arrive at the
following final difference scheme:

�n
m+1 = − �1 − �����n

m−1 + �2 − �����̃n
m − ��

2�1 + gn�sin �̃n
m.

�91�

To obtain sufficiently accurate numerical data but to keep
the time which is necessary for the numerical simulations
reasonable, we choose the convergency criterion and the
value of the decay constant � to be dependent on the length
of the junction L. Specifically, we used for convergency cri-
terion the following relations:

���̇2	 � 10−7 for L � 8� , �92�

���̇2	 � 10−4 for L � 8� . �93�

The value of the decay constant � of junctions with L�8�
was chosen from �=2 for L=� /2 to �=0.25 for L=8�. In
the case of junctions longer than 8�, we took � to be depen-
dent on the convergency rate

� = 1.2 if ���̇2	 � 10−7, �94�

� = 0.1 if ���̇2	 � 10−4. �95�

B. Results of numerical calculations

In this section, we summarize the results of our numerical
simulations for short �L���, long �L���, and intermediate
�L��� junctions and compare the numerically calculated
data to the theoretical results.

In Fig. 3�a�, we demonstrate the dependence of the maxi-
mum supercurrent on the applied flux, Im��a�, for a short
junction, L=0.25�. In agreement with the theoretical results
obtained in Sec. III A �see Eq. �45��, we find that Im��a�
� I���a� except for small deviations at low fields. In Fig.
3�b�, we plot the internal flux �i as a function of the applied
flux �a. It is seen from the graphs that �i��a, which is in
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agreement with the assumptions of the theoretical calcula-
tions of Sec. III A. Small flux jumps, ����0, are seen in
Fig. 3�b� in the vicinity of �a=n�0, where n is an integer.
These small flux jumps are generated by the high density
screening currents ���jc�x��	� �jc�x�	 flowing at the edges of
the junctions. The length of these current-carrying edges is of
the order of l, and therefore the value of �� can be estimated
as follows. First, using Maxwell’s equations, we find the
field drop �H at the edges to be �H�4���jc�	l /c. Next, we
estimate �� as a product of the field drop �H and the effec-
tive area of the junction, 2�L, i.e., ���2�L�H. Finally, we
write the parameter � as ����jc�	l / �jc	�. Combining these
three relations, we find an estimate for �� in the form

�� �
�

2�

L

�
�0. �96�

It is worth noting that �� coincides with the coefficient in
Eq. �72� for the difference between the internal flux and the
applied flux. Using the data �=2�3 and L=� /4, we obtain
��=0.14�0, which is in a good agreement with the flux
jumps shown in Fig. 3�b�.

In this study, we assume that the applied field is smaller
than the side-peak field Hsp. The “resonances” at the side
peaks are discussed in detail in Refs. 12 and 15. We show in
Fig. 4 the maximum supercurrent Im��a� and internal flux
�i��a� at the side peaks for completeness and to reveal the
flux plateaus appearing in the dependence �i��a� at Ha

= ±Hsp.
In Fig. 5, we show the internal flux �i for a long junction,

L=30�, as a function of the applied flux �a. The value of �i
is less than one flux quantum if the field Ha is lower than the
second penetration field Hs2. In this region of fields, the
slope d�i /d�a is proportional to � /L�1, i.e., it is almost
zero. As a result, for long junctions in low applied fields, we
observe two relatively long flux plateaus. These flux pla-
teaus, flux jumps, and significant hysteresis in the magneti-
zation curves �i��a� are clearly seen in the whole area of �a.
All these features of magnetization curves are in a good
agreement with the theoretical results obtained in Sec. III.

In Figs. 6�a� and 6�b�, we show the spatial distributions of
the phase ���� in a long junction, L=30�. The graph in Fig.
6�a� is obtained for a junction in the Meissner state, i.e., for
the applied field Ha from the interval 0�Ha�Hs1. In this
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FIG. 3. The maximum supercurrent Im and internal flux �i de-
pendencies on the applied flux �a for a short junction �L=0.25�,
�=2�3, and 
=6�. The arrows indicate the sweeping direction of
the applied flux, the points are for the results of the numerical
calculations, and the solid lines are for the surface current I���a�
given by Eq. �45�.
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�=2�3, and 
=6�. �a� The function Im��a� with two side peaks
located at �a= ± �L / l��0; �b� the dependence �i��a� exhibiting flux
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case, the flux inside the junction is zero. The graph shown in
Fig. 6�b� is calculated for a junction in the one-splinter-
vortex intermediate state, i.e., for the applied field from the
interval Hs1�Ha�Hs2 and the internal flux �i=�1 �see Eq.
�58��. These numerical results are in a good agreement with
the theoretical calculation of Sec. III B.

In Fig. 7�a�, we plot the maximum value of the supercur-
rent Im as a function of the applied flux �a for a long junc-
tion, L=20�. At low applied flux, the maximum current is
linearly dependent on �Ha�, yielding the middle triangle in
agreement with Eq. �69�. If the applied flux is sweeping up,
then the maximum current in the mixed state is higher than
the maximum current in the Meissner state Ha=Hs2
−4��Ic /c and flux penetrates into the junction �flux jump�
and the dependence Im��a� changes. If the applied field is
sufficiently high, then the maximum current is approximately
equal to 2�Ic, in agreement with Eq. �82�. In Fig. 7�b�, we
plot the internal flux �i as a function of the applied flux �a.
As it is assumed for fields lower than the first penetration
field, the junction is in the Meissner state. When sweeping

the field from low to high fields, the flux penetrates into the
junction at Ha=Hs2−4��Ic /c yielding a finite flux density.
When sweeping the field from high to low values, the Jo-
sephson vortices leave the junction one by one yielding the
additional two steps between the plateau and the mixed state.
In the interval of high applied fields, the flux jumps are of
order of one flux quantum �0 and, in between the fluxes, is
almost constant in agreement with Eq. �79�.

In Fig. 8�a�, we plot the maximum current as a function of
the applied flux for a junction with an intermediate length
L=2���. In Fig. 8�b�, we plot the flux �i as a function of
the applied flux. It is seen that the flux �i differs from the
applied flux �a by less than one flux quantum �0 as for the
short junctions. The flux jumps happen at �a= �n+1 /2��0,
where n is an integer. The value of �� is well approximated
by Eq. �96�.

V. SUMMARY

To summarize, we consider theoretically and numerically
the maximum supercurrent across Josephson tunnel junctions
with a critical current density which is rapidly alternating
along the junction. These complex Josephson tunnel systems
were treated recently in asymmetric grain boundaries in thin
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films of high-temperature superconductor YBa2Cu3O7−x and
in superconductor-ferromagnet-superconductor heterostruc-
tures.

Our theoretical study is based on the coarse-grained sine-
Gordon equation. We derive boundary conditions to this
equation and find explicit dependencies of the maximum su-
percurrent across a junction on the magnetic field in the
Meissner and mixed states for short and long junctions. We
show that in the case of a Josephson junction with rapidly
alternating critical current density, there can exist one-
splinter-vortex mixed state and two flux-penetration fields.
The obtained theoretical results are verified by numerical

simulations of exact sine-Gordon equation. We demonstrate
that the theoretical and numerical results are in a good agree-
ment.
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