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We study long Josephson junctions with the critical current density alternating along the junction. Equilib-
rium field-synchronized �FS� states are shown to exist if the applied field is from narrow intervals centered
around equidistant series of resonant fields Hm. In the mth FS state, the flux per period of the alternating critical
current density �i remains constant and is equal to an integer amount of flux quanta, �i=m�0. The values of
Hm are much higher than the flux penetration field Hs. Two types of single Josephson vortices carrying fluxes
�0 or/and �0 /2 can exist in the FS states. Specific stepwise resonances in the current-voltage characteristics
might be caused by periodic motion of these vortices between the edges of the junction.
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�-shifted Josephson tunnel junctions and sequences of
interchanging 0- and �-shifted Josephson junctions �see Fig.
1� are a subject of growing interest.1–19 The properties of
these complex systems have been treated for superconductor-
ferromagnet-superconductor �SFS� and superconductor-
insulator-ferromagnet-superconductor heterostructures,1–8

asymmetric grain boundaries in thin films of the high-Tc su-
perconductor YBa2Cu3O7–x �YBCO�,9–18 and YBCO/Nb zig-
zag junctions.19

It was predicted that in SFS Josephson junctions the �
shift in the phase difference � between the superconducting
banks is caused by the ferromagnet interlayer.1,2 This predic-
tion was confirmed in recent experiments with SFS �-shifted
junctions and SFS heterostructures of interchanging 0- and
�-shifted fragments.3–5 The asymmetric grain boundaries in
YBCO thin films are arranged in series of facets with a va-
riety of orientations and lengths l�10–100 nm.17 This spa-
tial structure in conjunction with the d-wave symmetry of the
order parameter results in grain boundary junctions with in-
terchanging 0- and �-shifted fragments.10,15

The critical current density, jc�x�, changes sign at each
contact between 0- and �-shifted fragments �the x axis is
along the junction�, which results in dramatic changes in
Josephson properties. In particular, the dependence of the
maximum supercurrent across the junction, Im, on the applied
field Ha is strongly affected by the alternations of
jc�x�.9,11,13,18 First, Im�Ha� is significantly suppressed at low
fields �Ha��H1=�0 /2�l, where � is the London penetration
depth and l is the period of jc�x�. Second, unlike the standard
Fraunhofer pattern with a major peak at Ha=0, two major
side peaks are observed at high fields Ha= ±H1, where H1
�Hs and Hs is the field of first flux penetration.11

In this paper, we find a series of equilibrium field-
synchronized �FS� states existing if the applied field is from
narrow intervals �Ha�Hs centered at the resonant fields
Hm= ±mH1, where m�0 is an integer. It is shown that in the
mth FS state the inner flux per period of jc�x�, �i, remains
constant and is equal to an integer number of flux quanta,
�i=m�0. We find that two high-field �Ha�Hs� Josephson-
type vortices with fluxes �0 or/and �0 /2 can exist in the FS
states.

We begin with a qualitative treatment of the FS states
using one harmonic model for the tunneling current density

j= jc�x�sin �, where jc�x�= j1 sin�2�x / l�, L=Nl, L is the
length of the junction, and N�1 is an integer. Assume that
the junction is in one of the FS states and the flux �i is fixed.
Since we have many vortices in the junction �Nm�1�, the
field is almost uniform and the phase ��x� takes the form

��x� = 2�
�i

�0

x

l
+ 	�x� , �1�

where the phase 	�x� is a smooth function with the typical
length scale �l and �	�x���1. Then we have

j�x� = j1 sin�2�
x

l
�sin�2�

�i

�0

x

l
+ 	� . �2�

In general, this current density alternates rapidly with a typi-
cal length scale 
l. In this case the coarse-grained approach
is the right tool to describe the smooth phase 	�x�.14 If we
average j�x� over a distance L� l, then the coarse-grained
tunneling current density j	 is zero. This is indeed true in all
cases but one. If the junction is in the FS state with �i
= ±�0, then coarse-graining of Eq. �2� leads to a nonzero
result,

j	 = 0.5j1 sin�	 ± �/2� . �3�

It is worth mentioning that j	� j1 and the final form of
the dependence of j	 on the smooth phase 	 coincides with
the � /2-shifted current-phase relation of a Josephson junc-
tion of conventional superconductors.
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FIG. 1. Schematic diagrams of �a� tunnel junction arranged in
series of interchanging 0- and �-shifted fragments; �b� spatial dis-
tribution of alternating critical current density.
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A similar calculation of the coarse-grained current density
j	 in the low-field region �Ha�Hs� leads to14

j	 = − j1� l

4��1
�2

sin 2	 � j1, �4�

where the Josephson length is given by

�1 = �c�0/16�2�j1 � l . �5�

Comparing Eqs. �2�–�4�, we find that if the phase factor,
sin �, modulations caused by the field and the critical current
density modulations caused by the structure of the junction
are synchronized ��i=m�0�, then the critical current density
jc�x� is significantly enhanced as all local tunneling currents
flow in the same direction �see Fig. 2�. The widths of the
intervals �Ha�Hs�H1 of existence of the FS states are de-
fined by minimization of the free energy. It is worth men-
tioning that similar commensurate states exist in conven-
tional junctions with spatially modulated properties.20,21

Consider now a Josephson junction with �� l��J, where
�J is the local Josephson penetration depth

�J = �c�0/16�2���jc�	 , �6�

and the averaging over the junction length is defined as

�f	 = 

0

L

dx f�x�/L . �7�

In this case the static spatial distribution of the phase ��x� is
given by

�J
2�� − ic�x�sin � = 0, �8�

where ic�x�= jc�x� / ��jc�	 is the dimensionless critical current
density. Next, we expand ic�x� in Fourier series and obtain
instead of Eq. �8�

�J
2�� − �

n=−�

�

inei2�nx/l sin � = 0, �9�

where in are the Fourier coefficients of the Fourier-
transformed ic�x�.

Since l��J, the phase � can be written as14,22

� = 2��ix/�0l + 	�x� + �x� , �10�

where 	�x� is a smooth function with the typical length scale
��J� l and �	�x���1, and �x� is a rapidly alternating func-
tion with the length scale �l. In addition, we assume that
��x�	=0, and ���x��	�1. Following Refs. 14 and 22 we
average Eq. �9� over the junction length and obtain the equa-
tion describing the smooth �coarse-grained� phase 	�x� in the
mth FS state

�J
2	� − �im�sin�	 − �m� + �m sin 2�	 − �m� = 0, �11�

where �m=arg�im�, �m, and �m are defined by

�me−i2�m = � l

2��J
�2

�
n=1

�
im+nim−n

n2 . �12�

The complexity of Eq. �11� can be significantly reduced.
Indeed, one can estimate �m��l /2��J�2�1, which means
that �m� im. As a result the third term in Eq. �11� can be
neglected and Eq. �11� yields

�m
2 	� − sin�	 − �m� = 0, �13�

where �m=�J /��im�. The boundary conditions to Eq. �13� are
given by the field at x=0 and x=L:

�	��0,L =
4��

�0
��Ha�0,L − mH1� . �14�

It is worth noting that, in particular, Eq. �13� describes
Josephson-type vortices with size ��m� l and flux �0.

It follows from Eqs. �11� and �13� that equations describ-
ing the coarse-grained phase 	�x� are the same as for Joseph-
son junctions of conventional superconductors in the Meiss-
ner state.

Specific symmetry of jc�x� might lead to a Fourier series
with some of the Fourier coefficients being zero. In this
case only the third term in Eq. �11� is nonzero. In particular,
if jc�x� is a stepwise function �see Fig. 1�, then we have
i2k=0 and i2k+1=− 2i

��2k+1� , where k is an integer. In the FS

states with the field Ha located in the intervals �Ha centered
at “odd” resonant fields Ho,k= �2k+1�H1, Eq. �11� takes the
form

�o,k
2 	� − sin 	 = 0, �o,k = ���k + 1/2��J; �15�

for “even” resonant fields He,k=2kH1, Eq. �11� yields

�e,k
2 	� − sin 2	 = 0, �e,k = 2�k�k

�J
2

l
, �16�

where �k is a constant ��1=0.9, �2=1.1, �3=0.9, and �k
�1 for k�3�. It is seen from Eqs. �15� and �16� that even-
field vortices carrying flux �0 /2 are by �J / l�1 wider than
odd-field vortices carrying flux �0.
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FIG. 2. �a� Coarse-grained tunneling current density dependence
on the applied field for the case of a stepwise critical current den-
sity, N=40, and ��x. Schematic diagrams of spatial distributions of
the tunneling current density for junctions that are �b� not in the FS
states �small local currents tend to cancel each other�; �c� in the FS
states �field synchronized local currents flow in the same direction�.
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Next, we calculate the width of the intervals �Ha of ex-
istence of the FS states by minimizing the free energy F of
the junction. This can be done explicitly if we specify the
spatial distribution of the critical current density jc�x�. Here,
for brevity, we use the one harmonic model, i.e., we assume
that jc�x�= j1 sin�2�x / l�:

F = � Ha

Hsm
�2

−
�m

l

Ha

Hsm

4��i

�0

+ 

0

L �m
2 ��2 −

1

2
sin�2�m

l
x + �m�cos ��dx

L
,

�17�

where F is normalized by Hsm
2 L /8� and the field Hsm is

defined as Hsm=�0 /4���m. If there are no vortices in the
junction, then 	=0 and ��x�=2��ix /�0l+�0, where �0 is a
constant. The minimum of the free energy, Fm=F�Hm�, is
achieved for �0=�m,

Fm = �2��m

l�0
�2

��a − �i�2 −
sin��N�m − �i/�0��

�N�m − �i/�0�
, �18�

where �a=2�lHa. Finally, we fix the applied field Ha and
minimize Fm with respect to the internal flux �i. It follows

from this calculation that, if Ha is from the narrow interval
mH1−Hsm�Ha�mH1+Hsm, then the flux �i is constant and
equal to m�0, i.e., Hi�mH1.

The above theoretical analysis can be supported by nu-
merical simulations. To treat both the statics and dynamics of
the phase difference ��x , t� we introduce time dependence
into Eq. �8� and arrive at

�̈ + ��̇ − �J
2�� + ic�x�sin � = 0, �19�

where ��1 is a decay constant and the term ��̇ describes
dissipation. As a result of this dissipation the system ends
up in one of the stable stationary states which is a solution
of Eq. �8�. We used the finite-difference explicit method
�see Ref. 23 for details� and boundary conditions ��
=4��Ha /�0 at the edges of the junction to solve Eq. �19�,
assuming that the alternating critical current density jc�x� is
stepwise.

The magnetization curves �dependencies of �i on �a� ob-
tained by numerical simulations are shown in Fig. 3. The
plateaus with �i=const are clearly seen for the series of the
four FS states. The field inside the junction is constant for
each of the FS states in contrast to junctions of conventional
superconductors for which the internal field is constant only
in the Meissner state. It is seen in Fig. 3 that the magnetiza-
tion curve of a junction in the FS state is the same as the
magnetization curve of a junction of conventional supercon-
ductors but with the field Ha biased by mH1. Our numerical
simulations confirm that the width of the plateau in which
the internal field is constant is proportional to ��im�=�J /�m,
as it follows from the above theoretical analysis.

Next, we simulated numerically the dynamics and statics
of single Josephson-type vortices in the FS states using Eq.
�19� �see Figs. 4 and 5�. We observed stable Josephson-type
vortices carrying fluxes �0 �for odd resonant fields� and �0 /2
�for even resonant fields�. The width of vortices with flux �0
scales proportionally to ��im� and the width of vortices with
flux �0 /2 is by a factor �J / l�1 larger than that of �0 as
follows from Eqs. �15� and �16�.
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FIG. 3. �a�–�d� Magnetization �i��a� of a junction with stepwise
critical current density and N=40. �a� The plateaus with �i=const
reveal the first four FS states. The curves �i��a� in the vicinity of
three FS states Ha= �b� H1, �c� 3H1, and �d� 5H1. �e� Magnetization
of a junction of conventional superconductors. �f� �i��a� of a con-
ventional junction in the Meissner state.
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FIG. 4. �a� Phase 	�x� distribution for vortices carrying flux �0

at three “odd” resonant fields H1, 3H1, and 5H1. �b� The same three
curves are shown to collapse into one curve if the coordinate is
normalized by �1, �3, and �5.
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In addition, in the numerical study we found that periodic
motion of single vortices between the edges of the junction
produces steps in the current-voltage characteristics at an
equidistant series of voltages Vm=m�0cs /L, where m is the

number of fluxons inside the junction and cs is the Swihart
velocity.24 These high-field steps are similar to the zero-field
steps in junctions of conventional superconductors.25–27 In
detail, the study of the effect of high-field vortices on the
current-voltage characteristics of the FS states will be pre-
sented elsewhere.

To summarize, we find a series of equilibrium FS states in
Josephson junctions with periodically alternating critical cur-
rent density. The FS states exist if the applied field is from
narrow intervals centered at equidistant series of fields. In FS
states the flux in the junction is fixed and the maximum
supercurrent across the junction is significantly enhanced.
Two types of single high-field vortices with flux �0 or/and
�0 /2 exist in FS states.

One of the authors �R.G.M.� is grateful to J. R. Clem, V.
G. Kogan, J. Mannhart, and C. W. Schneider for support and
stimulating discussions.
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