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We suggest a theoretical model allowing one to find analytically the velocity of a magnetic flux dendrite
penetration into thin superconducting films. The key assumptions for this model are based upon experimental
observations. We treat a dendrite tip motion as a propagating flux jump instability. Two different regimes of
dendrite propagation are found: A fast initial stage is followed by a slow stage, which sets in as soon as a
dendrite enters into the vortex-free region. The theoretical results and experimental data obtained by a
magneto-optic pump-probe technique are compared and a good agreement between the calculations and mea-
surements is found.
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I. INTRODUCTION

Magnetic flux penetration in type-II superconductors is
successfully described by the Bean critical state model.1 This
model assumes that the slope of the flux “hills” is given by
�0jc�T ,B�, where the critical current density jc�T ,B� is a
decreasing function of the temperature T and field B. Bean’s
critical state with its spatially nonuniform flux distribution is
not at equilibrium and under certain conditions the smooth
flux penetration process becomes unstable �see Ref. 2 and
references therein�. The spatial and temporal development of
this instability depends on the sample geometry, temperature,
external magnetic field, its rate of change and orientation,
initial and boundary conditions, etc.

Instabilities in the critical state result in flux redistribution
towards the equilibrium state �spatially homogeneous flux
throughout the sample� and are accompanied by a significant
heat release, which often leads to the superconductor-to-
normal-transition. The basic instability observed in Bean’s
critical state is the flux jump instability, which was discov-
ered already in the early experiments on superconductors
with strong pinning.2

The basic physics of flux jumping can be easily illus-
trated. Assume a perturbation of temperature or flux occur-
ring in Bean’s critical state. This perturbation can be caused
by an external reason or a spontaneous fluctuation arising in
the system itself. The initial perturbation redistributes the
magnetic flux inside the superconductor. This flux motion by
itself induces an electric field which leads to dissipation,
since the electric field does not only act on the Cooper pairs
but also on the unpaired electrons. This additional dissipation
results in an extra heating which in turn leads to an addi-
tional flux motion. This “loop” establishes a positive feed-
back driving the system towards the equilibrium state. The
flux jumping instability exhibits itself as a suddenly appear-
ing flux avalanche �flux jump� and heat release.2,3

Spatially resolved flux front patterns of Bean’s critical
state instability were first observed in Nb disks with thick-
nesses in the range of d�10−5 to 10−3 m by means of

magneto-optic imaging.4 Wertheimer and Gilchrist discov-
ered a well-defined pattern of flux dendrites with a width
w�10−3 m and propagation velocity v in the interval be-
tween 5 and 100 m/s.4 The dendrites velocity depended on
the disks’ thickness, for smaller d a higher v was found.

The modern magneto-optic technique allowing one to in-
vestigate flux patterns with time resolution on the order of
�100 ps5,6 stimulated quite a few experimental and theoret-
ical studies of flux front patterns arising in a process of
smooth flux penetration7 as well as in a process of critical
state instability development in superconducting films in a
transversal magnetic field. Different scenarios are considered
resulting in a variety of flux patterns, e.g., magnetic
turbulence,8,9 kinetic flux front roughening,10 magnetic micro
avalanches,11,12 flux dendrites,13–17 thermomagnetic finger-
ing,18 bending of flux-antiflux interface,19,20 and flux front
corrugation.21

A wealth of recent experiments convincingly demonstrate
that a propagating dendritic flux pattern driven by the flux
jumping instability is a general phenomenon typical for
Bean’s-type critical state.13–15,22–25 Indeed, the flux dendrites
were observed under a wide variety of conditions in super-
conducting films of Nb,13,14,22 YBa2Cu3O7−�,13,15,23 Nb3Sn,24

and MgB2.25

It is known that dendrite propagation in thin films shows
velocities up to 160 km/s,15 i.e., these velocities are much
higher than the speed of sound. This ultrafast motion of flux
dendrites in thin superconducting films is a long standing and
challenging problem.

In this paper we derive an equation for a dendrite tip
velocity and demonstrate a good agreement between the the-
oretical results and experimental data for the propagation ve-
locity of a single flux dendrite branch. The paper is organized
as follows. In Sec. II we introduce the straight flux-dendrite
model. The dynamics of a single flux dendrite penetration
into a thin film is treated in Sec. III. In Sec. IV we compare
theoretical results on the velocity of a single flux dendrite
with our experimental data. Section V summarizes the ob-
tained results.
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II. STRAIGHT FLUX-DENDRITE MODEL

Dendritic flux structures which can be considered as a set
of single flux branches originating from a certain area were
observed in numerous experiments.15 In the case of a den-
dritic structure with few branches the single branches do not
affect each other. As a result penetration of flux dendrites
into the sample can be treated as motion of dendrites’ tips
driven by the flux jumping instability with a threshold local-
ized at the tips of the dendrites. The flux dendrite propaga-
tion generates an electric field proportional to the dendrite tip
velocity. “Ignition” of the flux jumping instability has to oc-
cur in front of the tips in the area where the electric field is
relatively low and the dependence of the current density on
the electric field is nonlinear. This nonlinearity is important
for the flux dendrite propagation process as it defines the
self-consistent dendrite tip velocity.

A typical magneto-optic image of a “dilute” dendrite pat-
tern in its final state is shown in Fig. 1�a�. Superimposed are
the current streamlines as determined by an inversion
scheme.26 In Fig. 1�b� the absolute value of the current den-
sity is shown. It is worth mentioning that the center of the
dendrite is current free and that the current follows the den-
drite branches. The current density decreases rapidly with
distance from a flux dendrite.

These experimental observations allow for a straight-line
flux dendrite model, which we use in our calculations. This
model assumes the following.

�a� The current of a straight-line dendrite first flows par-
allel to the sample edge, then closely follows the contour of
the dendrite branch until flowing parallel to the sample edge
again as shown in Fig. 2.

�b� In the current carrying area in front of a propagating
flux dendrite tip the electric field E is relatively low, the
superconductor is in the flux creep regime and thus the cur-
rent density j dependence on E is a power law

j = jc�E/E0�1/n, �1�

where jc is the critical current density, and n and E0 are the
parameters characterizing the current density-electric field
curve �at E=E0 we have j= jc�.27 It is common to define jc as
the current density at E0=10−4 V/m, for high-Tc supercon-
ductors n�10 but decreases with the applied magnetic
field.28 Equation �1� yields the electric field dependent con-
ductivity

��E� =
dj

dE
�

jc

nE
. �2�

Next, we denote the radius of the dendrite tip as �0 and
the width of the current carrying area as

�p = Beff/�0jc, �3�

where Beff=Bin−Bout, Bin is the field inside the dendrite, and
Bout is the field outside the tip of the dendrite.

Consider now the flux front stability at a tip of a moving
flux dendrite in the framework of the model developed to
treat the flux jump instability near a semicircle indentation at
the sample edge.29–31 This approach is based on the assump-
tion that the flux jumping instability develops much faster
than the magnetic flux diffusion. In the flux creep regime of
low-Tc and high-Tc superconductors this assumption holds
with a high accuracy.29,30

It follows from the general approach that the stability
margin of a flux jumping instability is determined by the
existence of a nontrivial solution of the thermal diffusion
equation30,31

�� − q2� +
nE

�
� �jc

�T
�� = 0, �4�

where � is the temperature perturbation, � is the heat con-
ductivity, E is the electric field generated by a time depen-
dent magnetic field, the parameter q is given by

FIG. 1. �Color online� Magneto-optic images of a dendritic flux
pattern in a YBCO film with the thickness d=330 mm subjected to
a field of Ba=15 mT. �a� Final state �after �10 s� of a dendritic flux
pattern with superimposed current distribution shown by the ar-
rows. The length of the arrows is proportional to the local current
density. �b� The absolute value of the current density is shown. The
bright areas indicate high current densities.

FIG. 2. Current lines for the straight-line magnetic flux dendrite.
The full line to the left marks the strip edge.
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tan qd = h/�q , �5�

and h is the heat transfer coefficient to the coolant. The
boundary condition to Eq. �4� is n��=0 at the edge of the
film and n is the unit vector perpendicular to the edge of the
film. It is clear from Eq. �4� that the flux front stability is
highly sensitive to the electric field E generated by the vary-
ing magnetic field.29–31

III. FLUX DENDRITE TIP VELOCITY

The dendrite tip motion results in an electric field E,
which is parallel to the current density j. We consider this
field similar to the consideration of the electric field gener-
ated by a varying magnetic field at a semicircular indentation
with a radius �0 in a superconducting film with a straight
edge.31 This approach results in

E � Ḃin�p
2/�0. �6�

Assuming that �0	�p we estimate the magnetic field rate in
the vicinity of a dendrite tip propagating with a velocity v as

Ḃin � vBeff/�p. �7�

Combining Eqs. �6� and �7� we find that the electric field
generated at the inner edge of a moving flux dendrite tip can
be estimated as

E � vBeff �p/�0. �8�

Next, we assume a high thermal boundary resistance in
the films, which means that hd
�. This assumption can be
justified using typical values �=0.1 W K−1 m−1, d=330 nm,
and h= �700 to 1.3�103� W K−1 m−2.32–34 In this case of
hd
� we find from Eq. �5� that the value of q2�h /�d and
the stability criterion for flux jumping in thin film takes the
form31

Beff
2 Ḃinnd

2�0
2�0hjc

2 �djc

dT
� = 1. �9�

Consider now the critical current density to be linear in
temperature, i.e., jc= j0�1−T /Tc�. In this case we use Eq. �7�
to rewrite Eq. �9� as follows:

v = �
2�0

2jc
2hTc�0�p

ndj0Beff
3 , �10�

where ��1 is a numerical factor and j0 is the critical current
density at T=0. If we assume that �0��p and use Eq. �3�
then

v = 2�
hTc

ndBeff j0
= 2�

hTc

nd�Bin − Bout�j0
. �11�

It is worth noting that the criterion �9� gives the lower limit
of a dendrite tip speed. In other words, Eqs. �9�–�11� describe
motion of the threshold of a local flux jumping instability. It
is then obvious that a lower heat transfer to the coolant re-
sults in a lower critical state stability threshold. Therefore the
instability occurs at lower electric fields and slower moving
dendrite tips �vh�.

IV. COMPARISON WITH EXPERIMENT

We now compare the results obtained by Eq. �11� and our
experimental data. To measure the time dependent dendrite
length s=s�t� we used a magneto-optic single shot pump-
probe setup.15 The dendrites where nucleated at the edge of a
square YBCO thin film sample by focusing one part of a
single fs-laser pulse onto the film surface. The second part of
the laser pulse is fed into an optical delay line and is used as
the illumination source. This gives snapshots of the flux dis-
tribution after a given time. The time resolution is limited by
the response time of the magneto-optical layer. A typical ex-
periment was conducted as follows: The sample �10 mm by
10 mm YBCO film deposited on SrTiO3 with a thickness of
330 nm� was zero field cooled to 10 K and a magnetic field
of 17.3 mT was applied prior to the pump-probe run.

We observed two qualitatively different stages of dendrite
propagation. In the first few nanoseconds we observed an
extremely high velocity on the order of 160 km/s, later on
this velocity decreased to a value of 18 km/s. For additional
experimental details see Ref. 15. The existence of these two
distinct regions of dendrite propagation can be easily under-
stood using Eq. �11�. Indeed, as long as a dendrite crosses the
critical state area the field Bout is decreasing, therefore the
value of Beff=Bin−Bout is increasing and consequently the
velocity of the dendrite is decreasing. After the dendrite tip
crosses the critical state area its velocity stays constant as the
dendrite runs in a vortex-free area where Beff is a constant.

The time dependence of the dendrite length s=s�t� can be
calculated using Eq. �11�. The effective field Beff is the cru-
cial parameter for this calculation. To find Beff we measured
the flux distribution on the edge of the sample by using our
magneto-optic setup. The data �circles� and a fit �solid line�
are shown in Fig. 3. We use the function

Bout�s� =
a1

cosh4�s/a2�
+

a3

cosh2�s/a4�
�12�

as a fitting function. The least-squares fit of Eq. �12� to the
experimental data results in a1=295.22 mT, a2=0.212 mm,
a3=−207.11 mT, and a4=0.125 mm, with a coefficient of

FIG. 3. �Color online� Shown is the magnetic flux distribution in
our superconducting sample measured perpendicular to the edge.
The measured data are shown as circles, whereas the solid line
represents a least-squares fit. This fitting function given by Eq. �12�
was used as Bout�s�.
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determination R2=0.9993 and �2=0.485, where �2 is the
sum of the squared deviations divided by the number of used
data points minus the number of parameters �degrees of free-
dom�. Using the fitting function in Eq. �11� as Bout�s� we
obtain a differential equation for the dendrite propagation

ds

dt
=

�

Bin − Bout�s�
, �13�

with �=2�hTc /ndj0. Based on our experimental data we as-
sume that the field Bin is constant and equal to the field at the
sample edge, i.e., Bin=Bout�0�.

The solution of Eq. �13� with the initial condition s�0�
=s0 takes the form

D�s� − D�s0� = �t , �14�

where

D�s� = �a1 + a2�s −
a1a2

3
�2 +

1

cosh2�s/a2��tanh�s/a2�

− a3a4 tanh�s/a4� . �15�

The dependence s�t� following from Eqs. �14� and �15� is
shown in Fig. 4 by the solid line. We use for this plot s0
=0.1 mm and the values d=330 nm, Tc=90 K, j0=9
�1010 A/m2, h=3�103 W K−1 m−2, �=0.75, and n=8,
which result in ��1.67 and D�s0��0.26. It follows from
Fig. 4 that with these reasonable assumptions we find a good
agreement between experiment and theory.

To check Eq. �11� further we compare the calculated ve-
locities with the velocities obtained from line-focus
measurements.15 In this case, a line through the center of the
sample is heated and dendrites start to run not only at the

sample edge, but perpendicular to the heated line, too. More-
over, in the line-focus experiments the heated line cuts into
the Meissner phase through the sample center. Therefore
dendrites originating near the center never cross the critical
state region but instead penetrate into the flux-free area. In
this case, as expected from Eq. �11�, we do not find a regime
with increased velocities, however, we find a thickness de-
pendence.

In Fig. 5 one can see the experimentally obtained thick-
ness dependent velocity and a fit v1/d. One reason for the
slight deviations between the theory and experiment may be
that we had to use different YBCO films to obtain the data,
i.e., the values for parameters like Tc or Beff may vary from
sample to sample.

V. SUMMARY

The main result of this study is Eq. �11�. It describes the
dynamics of a single flux dendrite and it was shown that a
good agreement with the experimental data has been
achieved.
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FIG. 4. The time dependence of the length of a magnetic flux
dendrite, s�t�. The solution of Eqs. �14� and �15� with s0=0.1 mm
and �=1.67 is shown by the solid line; the experimental data are
shown by the solid dots �Ref. 15�. The dependence s�t� for the first
15 ns is shown in the inset.

FIG. 5. The dependence of the flux dendrite velocity on the
sample thickness v�d�. The dashed line is a fit of v1/d revealing
the dependence given by Eq. �11� and the solid dots are the experi-
mental data �Ref. 35�.
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