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We consider the current density distribution function of a flux-creep regime in type-II superconductors by
mapping flux creep to a model with a self-organized criticality. We use an extremal equal-redistribution-type
model which evolves to Bean’s state, to treat magnetic flux penetration into superconductors and derive analog
of current-voltage characteristics in the flux-creep region.
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I. INTRODUCTION

In the presence of transport currents, the vortex structure
in a type-II superconductor is subjected to the Lorentz force.
This force per unit length of a vortex isfL= j 3fW 0, wherej is
the transport current density,fW 0=f0B /B, B is the magnetic
induction, andf0 is the flux quantum. The Lorentz force
acting on a unit volume of a vortex matter is therefore given
by FL=nfL= j 3B, wherensr d=Bsr d /f0 is the density of the
vortices.1,2

Consider as an illustration a superconducting slab parallel
to they, z plane and assume that a certain magnetic fieldBa
is applied along thez axis as shown in Fig. 1. In this case, we
have j = j ŷ and B=Bẑ related by Maxwell’s equation
dB/dx=−m0j . The Lorentz forceFL= jB is therefore propor-
tional to the density of vorticesn and its gradientdn/dx as
follows from FL= jB~BdB/dx~ndn/dx.

In high-current-density superconductors, defects of the
crystalline structure “pin” vortices. This leads to the creation
of various vortex configurations with flux “hills” and flux
“valleys.” Indeed, single vortices or vortex bundles redistrib-
ute spatially if the Lorentz forceFL~ j ~dn/dx overcomes
the pinning forceFpin. This means thatndn/dx~Fpin, i.e., a
steady vortex structure consists of fragments with slopes
dn/dxÞ0 sflux hillsd. On a macroscopic level, we haveFL
~ j and, therefore, the local depinning of vortices happens
when the local current densityj exceeds a certaincritical
value jc~Fpin. It was pointed out by de Gennes that the flux
hills with slopes statistically fixed by the critical current den-
sity jc are very much like sand piles.1

An effective approach to flux statics and dynamics in su-
perconductors with a high density of pinning centers was
first suggested by Bean.3 The famous Bean model assumes
that the current densityj is equal to the critical current den-
sity jc anywhere through the current carrying region. Origi-
nally, Bean considered the magnetic field independentjc. As
a result, the spatial variation of the field inside the sample is
linear, e.g., in a slab with thickness 2d ssee Fig. 1d, jc
=constant leads toB=Ba−m0jcux7du, whereBa is the field at
the sample surface. In general, for a better description of the
data available, the field dependence ofjc has to be taken into
account.4,5

In this paper, we treat the low-temperature flux creep in
type-II superconductors in the framework of the self-
organized criticality.6–17 We perform numerical simulations

in terms of current densityj , i.e., on a “macroscopic” level
and assume that the rules of dynamics ofj are formed on a
“microscopic” level of vortex avalanches.8 The distribution
function Gs jd of the current densityj is considered for an
equal-redistribution-type process.9 We show that this process
results in a self-organized Bean’s state with a complex dy-
namics, which can be mapped onto the low-temperature flux
creep.

The paper is organized as follows. In Sec. II, we discuss
the low-temperature flux creep. The self-organized criticality
of extremal process is treated in Sec. III. In Sec. IV, we
introduce the low-temperature flux-creep model and derive
the distribution function of the current densityj . The mag-
netic flux penetration into type-II superconductors and an
analog of current-voltage characteristics in the flux creep re-
gime are discussed in Sec. V. Section VI summarizes the
obtained results.

II. FLUX CREEP IN SUPERCONDUCTORS

There are few mechanisms which cause the depinning of
vortices for currents with a density less than the critical
value. In particular, both thermally activated depinning and
quantum tunneling4,18 result in vortices or vortex bundles
jumping from one group of pinning centers to another. This
type of vortex motion is called flux creep.19 It is observed if
the current density is from a narrow vicinity of the critical
currentsu j − jcu! jcd. The probability of depinning of a vortex
bundle depends strongly on the current density and tends to
unity when j → jc. The strong intervortex interaction leads to

FIG. 1. Series of Bean’s states in a slab parallel to theyz plane.
A zero-field-cooled sample was subjected to a monotonically in-
creased field parallel to thez axis. The slope ofBsxd is proportional
to the critical current densityjc.
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a very complicated collective behavior of the vortex matter
especially in thin films where the stray fields result in non-
locality of the problem.20 Activation of a single vortex can
launch a local avalanche-type motion of vortex bundles, i.e.,
in the flux-creep region, the vortex matter is a system with
avalanche-driven dynamics. Such systems are the subject of
the modern theory of self-organized criticality which re-
vealed a variety of power-law distributions for the size and
duration of avalanches.6,7

Motion of vortices is accompanied by dissipation of en-
ergy. This can heat up the whole sample or a part of it to a
temperature higher than the critical temperatureTc. Under
certain conditions, an avalanche of even a small group of
vortices can trigger a run-away magnetothermal instability
causing the superconducting-to-normal transition.21

Within the original Bean model, the dependence ofj on
the electric fieldE is a highly nonlinear stepwise function

j = j cH0, if E = 0,

1, if E Þ 0,
J s1d

where j c= jcE /E and the electric fieldE is induced by the
flux motion.

It is well established now that in the narrow vicinity of the
critical currentsu j − jcu! jcd, i.e., in the flux-creep regime, the
dependence ofEs jd is a very steep function given by the
power law

j = j cS E

E0
D1/n

, s2d

wheren@1 is a parameter andE0 defines the critical current
density. It is common to definejc as the current density at
E0=10−6 V cm−1. It is worth mentioning that forn@1 we
can rewrite Eq.s2d as

j = j c +
j c

n
lnS E

E0
D , s3d

where the omitted terms are of the order 1/n2!1.
Equations2d was first derived considering the thermally

activated uncorrelated hopping of vortex bundles, the
Anderson–Kim model.5 The vortex-glass22 and collective
creep23,24models suggested later result in more sophisticated
dependencies ofj on E. Still, these dependencies reduce to
Eq. s2d provided j − jc! jc. The recently developed approach
of the self-organized criticality11,12 also leads to Eq.s2d if j
− jc! jc. It should be stressed that in the intervalj − jc! jc,
the power laws2d is in good agreement with numerous ex-
perimental data.25

A detailed study of the vortex dynamics in the flux-creep
regime was performed by Field and co-workers.13 In their
experiments, the magnetic field outside a tubular supercon-
ducting sample is ramped slowly, driving the flux into the
tube outer wall. After the flux front reaches the inner wall, it
spills out into the tube interior, the process recorded in real
time. This experiment distinguished between flux leaving the
superconductor in discrete bundles or avalanches. It was
shown that the probabilityDssd of an avalanche containings
vortices is a power law extending over 1.6 decades.

The dynamics of Bean’s state is typical of other spatially
extended dynamical systems. The high number of degrees of
freedom in these systems introduces the problem of coupling
between the individual degrees of freedom. In many cases,
even very complicated systems “self-organize” so that their
behavior can be described by a small number of collective
degrees of freedom.6,7

In some dynamical systems, individual degrees of free-
dom keep each other in a stable balance, which is not a
“perturbation” of some decoupled state and the situation can-
not be described in terms of a small number of collective
degrees of freedom. This type of the self-organized systems
has to be quite robust, otherwise, these systems would not be
able to evolve to a stable balanced “critical” state.6,7 The
sand piles and flux hills in superconductors exhibit many
features typical for the self-organized critical state.

Several models were suggested to study dynamical sys-
tems with extended spatial degrees of freedom and many
metastable states. These systems evolve to aself-organized
critical state without a detailed specification of the initial
conditions, i.e., the critical state is anattractor—robust with
respect to variations of parameters and the presence of
quenched randomness.

III. SELF-ORGANIZED CRITICALITY OF EXTREMAL
PROCESSES

We consider now a specific subclass ofextremalprocesses
demonstrating the self-organized criticality. In extremal
models, only the sites satisfying a certain extremal criterion
are involved at each step of the system evolution. In particu-
lar, the problem of low-temperature flux creep in supercon-
ductors can be mapped onto an extremal model.9,10

A. Low-temperature flux-creep model

At low temperatures, vortices at sites with slightly differ-
ent current densities have a different probability of depin-
ning: The depinning will happen first in a site with the high-
est current density.

The model suggested by Zaitsev9 simulates a part of a
superconductor withL sites using the closed boundary con-
ditions. Numbersj i s0ø i øLd are the values of the current
density j y at L sites of thex axis. At each simulation step, a
site numberm with the maximum current densityjm is found
ssee Fig. 2d. This current density is reduced by a certain
valueD chosen randomly with an equal probability from the
interval 0,D,1:

jm → jm − D, jm±1 → jm±1 + D/2. s4d

It was shown that the stationary state of this model exhib-
its the basic features typical for self-organized criticality
systems.9 It is worth mentioning that Zaitsev’s model con-
serves the total current

I = o
n=1

L

jn = k jlL, s5d

so that the average current densityk jl is also conserved.
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The system approaches Bean’s state starting from any ini-
tial state with a givenk jl. In this state, almost all sites have
current densities less than a certain valuejc. We assume that
each site maps an area in a superconductor containing a
bundle of vortices and ascribe the depinning of this bundle to
a single “vortex” of Zaitsev’s model. Motion of this vortex
changes the local current density byD. The distribution of
the values ofD sreferred to below asD-distributiond is re-
lated to the amount of vortices leaving a given site, i.e., all
details concerning vortex dynamics, including microscopic
vortex dynamics, are “hidden” in theD-distribution.

B. Dynamics of extremal processes

The flux-creep model described above conserves the total
currentI; this leads to a high level of correlation between the
sites. In extremal models, the extremal sites are chosen ac-
cording to problem-specific criteria. We will call these sites
ignition sites. The changes at ignition sites provoke changes
at neighboring sites, again according to rules specific for a
given model. The sites drawn to be active by the ignition
sites will be calledinvolved. An involved site in its order can
became an ignition site if it matches a certain extremal cri-
terion. A system in a critical state is characterized by a criti-
cal value of some dynamic parameter. For the flux-creep
model, this parameter isjc which is theleastvalue of j in the
ignition sites. That means that for the flux-creep model, all
ignition sites have values greater thanjc.

The rules of dynamics given by Eq.s4d are illustrated
schematically in Fig. 3. The interval of values of current
densities at ignition sites is called anactivezone. Each site in
the active zone, anactivesite, becomes an ignition site at a
certain moment. At any step, only a small part of all sites is
active. As shown in Fig. 3, the majority of sites belongs to
the calm zone. We will consider the dynamic properties of
the low-temperature creep models4d using this terminology.

IV. LOW-TEMPERATURE CREEP SIMULATIONS

We have performed numerical simulations of the low-
temperature flux creep based on the rules of dynamics given

by Eq. s4d. Our simulations clearly demonstrate that the cur-
rent density distributionGs jd is an exponential dependence
up to a certain critical valuejc, i.e.,

Gs jd = A exps j / jed, for jc − 1 , j , jc, s6d

whereA and je are parameters of the distributionssee Fig. 4d.
The distribution functionGs jd is cut off sharply atj = jc. In
the active zones j . jcd the “tail” of Gs jd decreases as 1/L,
whenL→` ssee Fig. 5d.

The function Gs jd has another cutoff atj c−1 if the
D-distribution in the intervals0,1d is chosen to be uniform.
Indeed, there are only two options to have a site with the
current densityj : sad To decrease the current density in the
ignition site byD, andsbd to increase the current density in
one of the involved sites byD /2. The lowest value ofj is
obtained by subtracting from the minimum value of the cur-
rent density in an ignition site, which isjc, the maximum
value from theD-distribution, which is 1. As a result, the
distribution functionGs jd has a cutoff from the left. This
cutoff is not universal and depends on theD-distribution. A
continuously decreasingD-distribution eliminates both the
left cutoff and the deviation ofGs jd from the exponential in
the vicinity of j c. The details of theD-distribution affect only
the tail of the functionGs jd in the intervalj . jc. Therefore,
values of the current densityj are distributed according to
the exponential law of Eq.s6d in almost all sites of the sys-
tem.

A. Relation between the currentsje and jc

This relation can be calculated analytically using the nor-
malization of the distribution functionGs jd and the average
current density conservation rules. Indeed, the normalization

E
−`

jc

Gs jddj = AE
−`

jc

exps j / jeddj = 1 s7d

relatesA, jc, and je

A =
1

je
exps− jc/ jed. s8d

Next, we calculate the average value of the current density

FIG. 2. Illustration of the dynamics rules of Zaitsev’s low-
temperature flux-creep model.

FIG. 3. The calm and the active zones for a one-dimensional
flux creep model. The rules of dynamics given by Eq.s4d are illus-
trated by the dashed lines.
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k jl =E
−`

jc

jGs jddj s9d

and obtain the relation ofA, jc, and je to k jl:

k jl = Aje
2s jc/ je − 1dexps jc/ jed. s10d

Combining Eqs.s8d and s10d, we find:

jc − je = k jl. s11d

If the D-distribution is uniform, we havek jl=1/2 and

jc − je = 1/2. s12d

B. Origin of the exponential dependenceG„j…

We performed numerical simulations for a few different
extremal models and obtained the current density distribution
function Gs jd for all of them. In addition to the uniform
distribution for D, we tested exponential, Gaussian, and
power-law distributions. TheseD-distributions are more
“natural” than the uniformD-distribution, since they decay
gradually and have no cutoffs. All of them lead to the expo-
nential form ofGs jd if two conditions are satisfied:s1d Inter-
actions in the model are local, meaning that an ignition site
affects only sites in a nearby region of a finite size, ands2d at
each step, the sum of dynamical variabless j id stays constant.
In other words, the exponential forms6d of Gs jd is universal;
meaning that it does not depend on the form of the
D-distribution, on the dynamic rules of redistribution ofD
between neighbors, and on how many sites from the vicinity
of an ignition site are involved in the redistribution process
sfor example, next-nearest neighbors can be included into the
dynamicsd. Thus, the exponential behavior ofGs jd is typical
for extremal models with short-range interactions and a con-
servation relation for the dynamical variable.

The exponential behavior ofGs jd can be obtained analyti-
cally as the most probable distribution of the dynamical vari-

able j i. To simplify the derivation, we use discrete values of
j by dividing the domain of possible values ofj into small
intervals. In this case, each site is characterized by a certain
value j i. We denote the number of sites with the same value
j i asni and write the conservation relations in the form

o
i

ni = L, o
i

ni j i = k j ilL. s13d

Distribution of L sites among the intervals withj = j i is
described by a sethnij, whereni is a number of sites in each
interval. The number of states corresponding to the same set
hnij is given by

FIG. 4. The dependence of the
distribution functionGs jd on the
current densityj .

FIG. 5. Distribution functionsGs jd for different values of the
length of the systemL in the regionj . jc ftails of Gs jdg.
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G =
L!

Pini!
. s14d

Using Stirling’s formula, we have fors=ln G

s = L ln L − o
i

ni ln ni s15d

The maximum ofs is found using Lagrange method for
conditional extremum with two conditionss13d

F = s + sa + 1dL − bk jlL,

]F

]ni
= − ln ni + a + b j i = 0. s16d

We finally obtain

ni = ea+b j i s17d

with a andb defined by

o
i

ea+b j i = L, o
i

j ie
a+b j i = k jlL. s18d

Using continuous forms of Eq.s18d

E ea+b jdj = L, E jea+b jdj = k jlL, s19d

we find

b =
1

je
, ea = A =

1

je
expS−

jc
je
D . s20d

Thus, jc, je, andk jl are indeed related by Eq.s11d and

Gs jd =
1

je
expS j − jc

je
D =

1

eje
expS j − k jl

je
D . s21d

This distribution function contains an independent param-
eter je characterizing the function width. The value ofje is
proportional to the widthdD of the D-distribution and de-
pends on the spatial dimension of the model, on the number
of the neighbors of the ignition site, etc.

It is worth mentioning that the main features of the distri-
bution functionGs jd can be formulated in terms of a certain
effective “temperature.” Indeed, the above derivation ofGs jd
is based on the arguments which are used to derive the Gibbs
distribution for a system of nonidentical particles. We can
rewrite Eq.s21d in the formGs jd=exps−e j /td / je, where the
effective “energy”e j and the “temperature”t are defined as
e j =as jc− jd with an arbitrary coefficienta andt=a je. Using
Eq. s11d, we find for the average energy

ke jl = as jc − k jld = aje = t. s22d

The parameterje is proportional to the widthdD of the
D-distribution, and the same is true for the effective tempera-
ture: t~dD.

V. FLUX PENETRATION MODEL

Extremal models are useful for studying macroscopic pro-
cesses in superconductors and, in particular, the magnetic

flux penetration. The periodic boundary conditions which we
used above were convenient to describe the part of the sys-
tem far from the sample edges. In this section, we modify the
model to allow for studying the flux penetration.

Consider a slab in the parallel magnetic field as shown in
Fig. 1. Due to the symmetry, we can do simulations in one-
half of the sample. Assume that the applied field increases

with a rateḣ and penetrates the sample from the edge atx
=−d. At this edge, we have:

j0st + dtd = j0std + ḣdt. s23d

The dynamics rule at the middle of the slabsx=0d has the
form

jLst + dtd = jLstd − D,

jL−1st + dtd = jL−1std + D/2, s24d

where jLstd corresponds to the site atx=0. It is worth men-
tioning that there is no current conservation at the sample
boundaries at each simulation step. However, in a stationary
state, the current conservation holds for large time intervals.

A. Introduction of the “real” time scale

The above model of the self-organized low-temperature
flux creep does not formulate the rules of the current density
dynamics in terms of real time; instead, it operates with the
simulation steps. These steps correspond to the sequential
depinning events in the process of numerical simulation. The
real time step corresponding to two successive simulation
steps depends on temperature, current density, and other pa-
rameters of the system, and can vary significantly. This has
to be taken into account in order to relate the numerical and
experimental data.

The temporal variation of the applied magnetic field has
its time scale, which has to be synchronized with the “inner
clock” of numerical simulations. This synchronization can be
done by calculating the real time interval between two suc-
cessive depinning events. The extremal models of the low-
temperature creep are based on the assumption that the de-
pinning probability Pd strongly depends on the maximum
currentjm. We assume that this dependence has the exponen-
tial form

Pd ~ expF jm − jc
j1

G ~ expF jm
j1
G, for jm , jc. s25d

The mean time between two depinning eventskdtl is in-
versely proportional toPd and, therefore, we write

kdtl = dtr expF−
jmstd

j1
G , s26d

wheredtr is the time interval of atick of the “real clock.”
The last equation provides the synchronization rule for the
numerical steps.

Using Eqs.s23d and s26d, we arrive at the synchronized
boundary condition atx=−d in the form
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j0st + dtd = j0std + ḣdtr expF−
jmstd

j1
G . s27d

Changing the time scale so thatḣdtr → ḣ, we rewrite Eq.s27d
in the form convenient for recursive calculations

j0 → j0 + ḣ expF−
jm
j1
G . s28d

We now treat the numerical analog of thej-E curve for
the low-temperature magnetic flux creep. The self-organized
criticality model does not operate with the electric fieldE
explicitly. Therefore, we have to relate the fieldE to certain
characteristics of the model.

When a stable state is established, the magnetic flux re-
distributes inside the sample keeping the critical current den-
sity jc almost constant. According to the Faraday law, the
magnetic field varying in time generates an electrical field.

We assume here that the dependence betweenE and ḣ is

linear, i.e.,E~ ḣ.
We demonstrate in Fig. 6 how the asymptotic current den-

sity j is established for several values of the magnetic field

ramp rateḣ. Figure 7 shows the dependence ofE on the

asymptotic value ofj , the analog of thej-E curve of Bean’s
state. This logarithmicj-E curve is consistent with Eq.s3d as
well as with numerous experimental data.25

VI. SUMMARY

We demonstrate that an extremal type model evolves to
Bean’s type state. The distribution function of the current
densityGs jd in this self-organized state was obtained by nu-
merical simulations as well as analytically. We found that
Gs jd has a characteristic cutoff at the critical current density.
We map the low-temperature magnetic flux-creep process to
dynamics of an extremal model with Bean’s type critical
state to treat magnetic flux penetration into superconductors
and derive an analog of the current-voltage characteristics in
the flux creep regime.
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