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Abstract
The phase difference ϕ across a Josephson junction is considered for a film
with a thickness d � λ, where λ is the London penetration depth in the
superconducting banks. Special attention is given to the case of a critical
current density jc varying along the junction. It is shown that a nonlinear
integro-differential equation determines the spatial distribution of ϕ for
d � λ. Josephson properties of grain boundaries in thin-YBCO films are
treated for the case of jc alternating along these boundaries. It is shown that
if the typical amplitude of alternations of jc is high compared to the average
value of jc, then a spontaneous flux and two types of fractional Josephson
vortices can be observed. The fractional Josephson vortices keep magnetic
fluxes φ1 and φ2, where φ1 + φ2 = φ0, φ0 is flux quantum, and
φ1 < φ0/2, φ2 > φ0/2. We demonstrate that these fractional vortices can be
observed in thin-YBCO films under conditions of appearance of the
spontaneous magnetic flux. A method is proposed to extract the fractional
vortices from the experimental flux patterns. Propagation of an
electromagnetic wave along a grain boundary with an alternating critical
current density is treated as an example of an application of the
integro-differential equation for the phase difference ϕ.

1. Introduction

Grain boundaries in thin films of high-temperature super-
conductors are of great interest and importance for funda-
mental physics and applications of superconductivity [1–4].
In particular, a notable interest in the Josephson properties
of the grain boundaries is motivated by experiments treating
symmetry of the order parameter [2–5]. In most cases a
model of a strongly coupled SIS-type Josephson junction
allows the description of the electromagnetic properties of the
grain boundaries in high-temperature superconductors [6, 7].
The tunnel junctions in thin films separate two thin-film banks
(grains) from touching each other along the edges. This
experimental set-up is quite different from the standard set-
up for bulk junctions. Indeed, the stray field outside the film
becomes an important factor, this field even governs the phase
difference spatial distribution if the film thickness d < λ,
where λ is the London penetration depth [8, 9]. In other
words, the Josephson electrodynamics is nonlocal if d < λ,

and instead of a local sine-Gordon equation for a bulk junction
an integro-differential equation has to be solved to find the
phase difference across a junction in a thin film [8–10].

In some cases an intrinsic inhomogeneity of the Josephson
properties of the gain boundaries in the cooper oxide
superconductors becomes fundamentally important. In parti-
cular, an intrinsic inhomogeneity results in unprecedented
Josephson properties discovered for asymmetric 45◦ [0 0 1]-
tilt boundaries in YBCO films [11–15]. First, these junctions
demonstrate an anomalous dependence of the critical current
Ic on an applied magnetic field Ha. The pattern Ic(Ha)
has no standard major central peak at Ha = 0, instead,
two symmetric major side-peaks appear at certain magnetic
fields Ha = ±Hsp �= 0 [11–16]. Second, spontaneous
randomly distributed magnetic flux has been discovered
at asymmetric 45◦ [0 0 1]-tilt grain boundaries in YBCO
superconducting films in zero-field cooled samples [17]. This
flux φs(y) changes its sign randomly (y-axis is along the grain
boundary line) and has an amplitude of variations less than
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the flux quantum φ0, the average value of φs(y) is nearly
zero.

Two fundamental observations result in a model to
consider Josephson properties of asymmetric 45◦ [0 0 1]-tilt
grain boundary in YBCO films [14, 15]. First, a fine scale
faceting of grain boundaries was found, the facets have a
typical length-scale of order of 10–100 nm and a variety of
orientations [4, 18–21]. Second, quite a few experiments
provide evidence of a predominant dx2−y2 wave symmetry of the
order parameter in many of the high-Tc cuprates; some studies
demonstrate that this symmetry is more complicated and is
a mixture of dx2−y2 and s-wave components [2, 3, 22–28].

Next consider a film of a dx2−y2 wave superconductor with
a meandering grain boundary carrying a certain magnetic flux.
In this case there is a difference of phases of the order parameter
across the boundary caused by the magnetic flux ϕ and at the
same time there is an additional phase difference α caused by
the misalignment of the dx2−y2 wave superconducting grains.
The Josephson current density j( y) depends on the total phase
difference ϕ(y) + α( y), a model for j( y) results from an
assumption that j (y) ∝ sin [ϕ(y)+α(y)] [15]. The phase α( y)
depends on the relative orientation of neighbouring facets. The
asymmetric 45◦ [0 0 1]-tilt grain boundaries in YBCO films
prescribe α(y) = 0 or π and j (y) = jc(y) sin ϕ(y) with an
alternating critical current density jc(y) ∝ cosα(y) [15].

The basic features of the local Josephson electrodynamics
of an asymmetric 45◦ [0 0 1]-tilt grain boundary in YBCO films
with d > λ were considered analytically and numerically in
the framework of an alternating critical current density model.
A criterion of existence of a stationary state with a spontaneous
flux was derived assuming that the junction length L � l and
the local Josephson penetration depth λloc � l [29, 30]. It is
important to mention that the same alternating dependencies
jc(y) result in anomalous patterns Ic(Ha) [16].

In this paper we consider the nonlinear integro-differential
equation for the phase difference ϕ( y) in the case of a
Josephson junction in a thin film with a spatially varying
critical current density, i.e. for d � λ and jc = jc(y).
Special attention is given to the case of a critical current
density alternating along the junction. It is shown that if
the typical amplitude of alternations of jc(y) is high compared
to the average value of jc(y), then a spontaneous flux and two
types of fractional Josephson vortices can be observed under
the same conditions. These fractional vortices keep magnetic
fluxes φ1 and φ2, and are complimentary as φ1 + φ2 = φ0,
where φ0 is flux quantum, and φ1 < φ0/2, φ2 > φ0/2. An
electromagnetic wave propagating along a grain boundary
is treated using the nonlinear integro-differential equation
for ϕ(y).

2. Main equations

In this section we derive briefly the integro-differential
equation to study the stationary Josephson properties of grain
boundaries in thin film including the case of a critical current
density alternating along the grain boundary. Consider a
thin film (x, y plane) with a Josephson junction crossing this
film along the y-axis. The stray magnetic field significantly
influences the spatial distribution of the phase difference ϕ(y)
if d � λ. As a result an effective method to derive an equation

for ϕ(y) is to solve the spatial distribution of magnetic field
h(r) and current density j(r) inside and outside the film [10].
In the following we use this method for the case of a
nonuniform critical current density jc(y) and, in particular,
for an alternating jc(y).

Outside the film we have curl h = div h = 0 and,
therefore, it is convenient to introduce a scalar potential ψ(r)
for the outside field

h = ∇ψ ∇2ψ = 0. (1)

The general form of a solution of equation (1) vanishing at
z → ±∞ is

ψ(r, z) =
∫

d2k

(2π)2
ψ(k) eik·r−k|z| (2)

where k = (kx, ky), r = (x, y), k = |k|, and ψ(k) is the two-
dimensional Fourier transform of ψ(r, z = 0). In order to find
a boundary condition for equations (1) and (2) we consider first
the current and magnetic field inside the superconductor.

The London equation everywhere in the film except the
junction reads as

h +
4πλ2

c
curl j = 0. (3)

A similar equation for the two-dimensional sheet current
density g = (gx, gy, 0) follows from equation (3) after
averaging it over the film thickness

h +
4π�

c
curl g = 0 (4)

where � = λ2/d is the Pearl length [31]. At the junction
line x = 0, the sheet current component gy is discontinuous.
It is convenient to include this discontinuity into equation (4)
and to proceed with an equation which is valid for the whole
sample

hz +
4π�

c
curlzg = φ0

2π
f (y) δ(x) (5)

where the function f(y) is to be determined. Integration of
equation (5) from x = −0 to x = +0 links f(y) to the sheet
current discontinuity

f (y) = 8π2�

cφ0
[gy(+0, y) − gy(−0, y)]. (6)

Now we use the London relation for the sheet current density

g = − cφ0

8π2�

(
∇θ +

2π

φ0
A

)
(7)

where θ is the phase of the order parameter, ϕ = θ(+0, y) −
θ(−0, y) is the phase difference across the junction, h =
curl A,A is the vector potential, A(+0, y) = A(−0, y). It
follows then from equations (6) and (7) that f (y) = ϕ′(y).

The final form of equation (5) is obtained by replacing the
sheet currents gx and gy by the tangential magnetic fields hx

and hy

gx = − c

2π
hy(x, y,+0) gy = c

2π
hx(x, y,+0) (8)
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and continuity equation div h = 0. A simple calculation
results in

hz − 2�
∂hz

∂z
= φ0

2π
δ(x)

dϕ

dy
. (9)

The two-dimensional Fourier transform of equation (9)
yields

ψ(k) = − φ0 ϕ̃
′(ky)

2πk(1 + 2k�)
(10)

where ϕ̃′(ky) is the Fourier transform of dϕ/dy. The stray
field in terms of the phase difference ϕ(y) is given by (10) and
thus

ψ(r, z) = −
∫

d2k

(2π)2

φ0 ϕ̃
′(ky)e−kz

2πk(1 + 2k�)
eik·r. (11)

To obtain an equation for ϕ(y), we use the current
continuity condition at x = 0

jc(y)d sinϕ(y) = gx(0, y) = − c

2π
hy(0, y,+0). (12)

It follows from equations (11) and (12) that

jc(y) sin ϕ(y) = cφ0

4π2d

∫
d2k

4π2

ϕ̃′′(ky)
k(1 + 2k�)

eikyy. (13)

We substitute now the inverse Fourier transform for ϕ′′ into
equation (13) and obtain an integro-differential equation for
ϕ(y) in the final form

[1 + g(y)] sin ϕ(y) = "0

∫ ∞

−∞
ds ϕ′′(s)Q

( |y − s|
2�

)
(14)

where for convenience we write the critical current density as

jc(y) = 〈jc〉 [1 + g(y)] (15)

〈jc〉 is the average value of the critical current density.
The dimensionless function g(x) characterizes the variation
of jc(y), the average value 〈g〉 = 0,

"0 = cφ0

16π2〈jc〉λ2
(16)

Q(η) = 1

2
[H0(η) − Y0(η)] = 1

π

∫ ∞

0
dt

e−ηt

√
1 + t2

(17)

H0, Y0 are Struve and second-kind Bessel functions [32].
Thus, the main integro-differential equation (14) allows

us to consider the stationary Josephson properties of grain
boundaries in thin films (d � λ) including the case of an
alternating critical current density jc(y).

It follows from equation (14) that the electrodynamics
of Josephson junctions in thin films is characterized by two
independent lengths "0 and �. In a very thin film, i.e., for
"0 � �, the main contribution to the integral (14) results
from a narrow vicinity of the point s = y and equation (14) can
be rewritten as [8]

[1 + g(v)] sin ϕ(v) = 1

π

∫ ∞

−∞

ds

s − v
ϕ′(s) (18)

where the dimensionless variable v = y/"0.

0 0.1 0 .2 0 .3 0 .4
0

π
0

π
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π
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Figure 1. Transformation of the phase difference ϕ(y) from a
function generated by a chain of single π -vortices and
π -antivortices (curve (a)) to a function being a sum of a smooth
phase shift ψ (dashed line) and a small rapidly alternating phase
ξ (y) (curve (e)). The typical length scale of faceting l changes from
l � λloc (curve (a)) to l � λloc (curve (e)). The graphs shown in
figures (a)–(e) have been computed numerically using equation (36)
to model a Josephson junction with a fixed length.

3. Spontaneous flux

In this section we consider spontaneous flux patterns in a
line Josephson junction in a thin film. We assume that
λ � l � "0 ,� and treat the case of a periodic alternating
critical current density jc (y) with a period of order of l.

The spatial distribution of the phaseϕ(y) strongly depends
on the relation between the length-scale of facetting l and the
local Josephson length

λloc =
√

cφ0

16π2λ 〈|jc(y)|〉 . (19)

In the case of l � λloc in the stationary state with
a minimal Josephson energy almost-single π-vortices are
located at the points where the misalignment phase α (y)
changes from 0 to π and almost-single π-antivortices are
located at the points where α (y) changes from π to 0 [33].
The phase ϕ(y) generated by the chain of the interchanging
π-vortices and π-antivortices is shown by a solid line in
figure 1(a). In the opposite case of l � λloc the phase
difference ϕ(y) transforms to a sum of a smooth phase shift
ψ (dashed line) and a small rapidly alternating phase ξ (y)
as shown in figure 1(e). As a result this case allows for the
two-scale perturbation theory approach [34].

309



R G Mints and I Papiashvili

3.1. Two-scale perturbation theory approach

We follow now the two-scale perturbation theory approach
[34] and write ϕ(y) as a sum of a smooth function ψ(y) with
a length scale much bigger than l and a small but rapidly
oscillating function ξ (y) with a length scale of the order of l,
i.e.,

ϕ(y) = ψ(y) + ξ(y) (20)

where |ξ(y)| � |ψ(y)|. Next we substitute equation (20) into
equation (14), keep the terms up to the first order in |ξ(y)| � 1,
and arrive at the following equation:[

sinψ + ξg cosψ − "0

∫ ∞

−∞
ds ψ ′′(s)Q

(∣∣∣y − s

2�

∣∣∣)]

+

[
g sinψ − "0

∫ ∞

−∞
ds ξ ′′(s)Q

(∣∣∣y − s

2�

∣∣∣)]
= 0. (21)

The terms included in the first pair of brackets in
equation (21) cancel each other independently on the terms
included into the second pair of brackets in equation (21) as
the two types of terms have very different typical length scales
[34]. The same reasoning is applicable to the terms included
in the second pair of brackets in equation (21). As a result we
arrive at a pair of integro-differential equations for ψ(y) and
ξ (y)

"0

∫ ∞

−∞
ds ψ ′′(s)Q

(∣∣∣y − s

2�

∣∣∣) = sinψ + 〈ξ(y)g(y)〉 cos ψ

(22)

"0

∫ ∞

−∞
ds ξ ′′(s)Q

(∣∣∣y − s

2�

∣∣∣) = g(y) sin ψ. (23)

It is important that in spite of the fact that both functions
g(y) and ξ(y) are rapidly oscillating the product ξ(y)g(y) has
both smooth and rapid contributions. The smooth part of
ξ(y)g(y) is given by the average 〈ξ(y)g(y)〉 which eliminates
the rapid alternations. The second term in the right-hand side
of equation (22) represents the contribution of the smooth part
of the product ξ(y)g(y). We obtain two equations for the two
functions ψ(y) and ξ (y) from one equation (21) as only two
types of terms with very different typical length scales appear
in equation (21). If g(y) had a wide range of typical length
scales the above separation would not be possible.

In the case of "0 � � (a relatively thick film with λ �
� � "0) the complexity of the system of integro-differential
equations (22) and (23) can significantly be reduced. Indeed,
we write

ξ(y) = −ξg(y) sinψ (24)

plug this relation into equation (23), and obtain an equation
for the function ξg(y)

"0

∫ ∞

−∞
ds ξ ′′

g (s)Q
(∣∣∣y − s

2�

∣∣∣) + g(y) = 0. (25)

Using relation (24) we transform equation (22) for the function
ψ(y) to its final form

"0

∫ ∞

−∞
ds ψ ′′(s)Q

(∣∣∣y − s

2�

∣∣∣) − sinψ(1 − γ cosψ) = 0

(26)

where the dimensionless constant γ > 0 is given by

γ = 〈g(y)ξg(y)〉 = "0

〈∫ ∞

−∞
ds ξ ′

g(y)ξ
′
g(s)Q

(∣∣∣y − s

2�

∣∣∣)〉
(27)

In the opposite case of "0 � �, i.e., for a very thin film we
obtain two equations for ψ(y) and ξ(y) by means of equation
(18). Indeed, we substitute equation (20) into equation (18),
keep the main terms in |ξ(y)| � 1, and we arrive at

1

π

∫ ∞

−∞

ds

s − v
ψ ′(s) = sinψ + 〈ξ(y)g(y)〉 cos ψ (28)

and
1

π

∫ ∞

−∞

ds

s − v
ξ ′(s) = g sinψ (29)

where we introduced a dimensionless variable v = y/"0.

3.2. Spontaneous flux

To fix ideas we now assume that "0 � � and consider a simple
model dependence

g(y) = g0 sin
(2πy

l

)
. (30)

In this case ξg(y) ∝ g(y) and we have

ξg(y) = ξ0 sin
(2πy

l

)
(31)

where the amplitude ξ0 is determined by equation (25). A
simple integration results in

ξ0 = g0

4π

l

"0
γ = g2

0

8π

l

"0
. (32)

Next, we treat the stationary states of a Josephson junction
in the absence of an applied magnetic field. In this case the total
flux inside the junction is zero, the alternating spontaneous flux
φs(y) = φ0ξ(y)/2π appears simultaneously with a certain
phase difference ψ = const, and the value of ψ is determined
by equation (26) which yields

sinψ (1 − γ cos ψ) = 0. (33)

Note that this equation also means that the average value of
the tunnel current density j( y) across the junction is equal to
zero.

In the case of γ < 1 equation (33) has two solutions:
ψ = 0, π . It follows then from equation (24) that there is
no spontaneous flux. It is worth noting that the energy of a
Josephson junction E [35] has a minimum for ψ = 0 and a
maximum for ψ = π . In the case of γ � 1 equation (33) has
four solutions: ψ = −ψγ , 0, ψγ , π , where

ψγ = arccos (1/γ ). (34)

The Josephson energy E has a minimum for ψ = ±ψγ and a
maximum for ψ = 0, π [29], and the spontaneous flux

φs = φ0ξ

2π
= −φ0ξg

2π
sinψγ

= ∓ φ0
g0

8π2

l

"0

√
γ 2 − 1

γ
sin

(2πy

l

)
(35)

arises in the two stationary states with ψ = ±ψγ .
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The above analytical approach to the problem of
spontaneous flux in a Josephson junction is based on the
assumption that the critical current density jc(y) is an
alternating periodic function. This simple model provides
a reasonable preliminary insight into the properties of
an idealized Josephson junction with an alternating jc(y).
However, this approach fails as a quantitative description of
any real system having a certain randomness of the spatial
distribution of the critical current density jc(y).

To illustrate the qualitative difference between the
spontaneous flux in the cases of a periodic and random
functions jc(y) we refer to a numerical calculation valid for a
thick film (d � λ). The problem then can be solved by means
of a time-dependent sine-Gordon equation [30]

ϕ̈ + αϕ̇ − ϕ′′ + [1 + g(y)] sin ϕ = 0 (36)

where α is a decay constant. The term αϕ̇ introduces
dissipation which results in a relaxation of the system towards
one of the stable stationary states, i.e., this approach allows us
to study both the dynamics and the statics of the system. To
solve equation (36) numerically we took α ∼ 1 and use the
finite difference scheme [36]. We adopted this method in our
case and checked stability and convergency of the obtained
solutions.

In particular, now consider the flux patterns for a case of a
grain boundary with 2N facets and a non-periodic alternating
critical current density jc(y). We treat this case numerically
using a stepwise function g(y) defined as: g(y) = g0 if
ai < y < bi , and g(y) = −g0 if bi < y < ai+1 (i =
1, . . . , N). It is convenient to introduce the random distances
ãi and b̃i with 〈ãi〉 = 〈b̃i〉 = 0 and a standard deviation σl

such that bi − ai = 0.5(l + ãi ) and ai+1 − bi = 0.5(l + b̃i).
The simulations start with an initial phase ϕi(y) matching the
condition of a given total flux.

The stationary state ϕs(y) corresponding to the zero total
spontaneous flux has a special role in the description of
Josephson boundaries with random alternating jc(y). Our
simulations show that in this case the function ϕs(y) is unique
for a given boundary, stable, and independent of the initial
guess ϕi(y). It is convenient to represent ϕs(y) as ϕs(y) =
ψγ + ξs(y) with ψγ = const and the variable part ξs(y)

having zero average, 〈ξs(y)〉 = 0, and a typical amplitude
|ξs(y)| < π/2.

An example of a computed ϕs(y) is shown in figure 2.
For this simulation we took ϕi(y) = const + ξi(y) with an
arbitrary small ξi(y). As stated above, the resulting phase
ϕs(y) is independent of ϕi(y). It is worth mentioning that the
spontaneous self-generated flux φs(y) = φ0ξs(y)/2π has a
wide range of length scales imposed by the random jc(y). The
randomness of jc(y) results in a considerably higher amplitude
of the flux variation φs(y) as compared to a periodic jc(y) (see
equation (35)).

4. Fractional Josephson vortices

In this section we consider Josephson vortices at a grain
boundary with a critical current density alternating along
the grain boundary. In the framework of the two-scale
perturbation theory, a single Josephson vortex is described

-30 -20 -10 0 10 20 30

y/λJ
-0 .1

0

0.1

 
 ξs

2π

Figure 2. A stationary solution ξ s (y) developed in a zero applied
magnetic field for a stepwise randomly alternating jc (y) with
g0 = 200, l = 0.1λJ , σl ≈ 0.06 l.

by the smooth phase ψ(y) being a solution of equation (26)
under the boundary conditions ψ ′(±∞) = 0. These boundary
conditions transform to sinψ±(1 − γ cos ψ±) = 0, with
ψ± = ψ(±∞), and it is convenient for further analysis to
assume that ψ− < ψ+.

In the case of γ < 1, equation (26) has one vortex-type
solution with a phase ψ(y) increasing monotonically from
ψ− = 0 to ψ+ = 2π . This solution describes a standard
single Josephson vortex with one flux quantum φ0. In the
case of γ > 1, equation (26) has two vortex-type solutions,
each of them describes a single fractional Josephson vortex.
Indeed, for the first fractional vortex the phase difference ψ(y)

changes from ψ− = −ψγ to ψ+ = ψγ , where ψγ is given by
equation (34). The total increase of the phase ψ is given by
ψ+ −ψ− = 2ψγ , i.e., this Josephson vortex carries a fractional
flux φ1 = ψγφ0/π < φ0/2. For the second fractional
vortex ψ+ = 2π − ψγ and ψ− = ψγ . The total increase
of the phase ψ is given by 2π − 2ψγ , i.e., this Josephson
vortex carries a fractional flux φ2 = (1 − ψγ /π)φ0 > φ0/2.
These two fractional vortices are complementary meaning that
φ1 + φ2 = φ0.

In our numerical study of fractional Josephson vortices we
treat the stationary states and the relaxation to the stationary
states using the sine-Gordon equation (36). We begin with an
‘ideal’ grain boundary with a periodically alternating critical
current density jc(y). The simulations started from a certain
initial phase ϕi(y) under the condition ϕi(L) − ϕi(0) = 2πn,
where n is an integer, the junction length L � λJ , and λJ is
the effective Josephson penetration depth given by

λJ =
√

cφ0

16π2〈jc〉λ. (37)

In this case the numerical procedure converges well to a final
stationary state.

In figure 3 we show a stable stationary solution for a pair
of fractional vortices. We compute the function ϕ(y) using the
model dependence g(y) = g0 sin(2πy/l) with g0 = 100 and
l = 0.1λJ, which yields γ ≈ 1.27 and ψγ ≈ 0.66; thus φ1 ≈
0.21φ0, φ2 ≈ 0.79φ0, the numerical simulation gives the
same value ofψγ . The magnified insets in figure 3 demonstrate
that ϕ(y) indeed consists of a smooth part superimposed by
a small fast oscillating term, i.e., the numerical simulations
for the single fractional vortices confirm the results of the
approximate analytic approach described above.
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-10 0 10 20 y/ λJ

0

2

4

6

ϕ

0 1 2
5.55

5.65

2π + ψ γ

2π − ψ γ

ψ γ 15 17
2

6.4
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(a)

(b)

Figure 3. The phase distribution ϕ(y) computed using
g(y) = g0 sin(2πy/l) and γ ≈ 1.27. Two fractional vortices with
φ1 ≈ 0.21φ0 and φ2 ≈ 0.79φ0 are clearly seen, the fine structure of
ϕ(y) is demonstrated in the magnified insets.

y

(a)

(b)

2πn+ψγ

2πn-ψγ

2π(n+2)− γ

2π(n+2)+ γ

2π(n+1)+ γ

ψ

ψ

ψ

Figure 4. Two chains of fractional vortices in a grain boundary with
a periodically alternating critical current density: (a) an ‘ideal’
chain; (b) a chain with vortex–antivortex ‘defects’. Empty triangles
mark the positions of the fractional vortices with the fluxes φ1 <
φ0/2, full triangles correspond to φ2 > φ0/2. The up-down
orientations of triangles indicate the field direction of vortices. For
this particular calculation we use g(x) = g0 sin(2πx/l), g0 = 150,
l = 0.1�J , which result in γ ≈ 2.85, ψγ ≈ 1.21, and φ1 ≈ 0.39φ0,
φ2 ≈ 0.61φ0.

Consider now a dilute chain of fractional vortices. Let a
vortex with the fluxφ1 be situated somewhere in the chain. The
phase ψ of this vortex changes from 2πn − ψγ to 2πn + ψγ

with an integer n. Therefore, one expects the phase of an
adjacent vortex to start with the value 2πn + ψγ and end
up with 2π(n + 1) − ψγ , the total phase accumulation of
these two vortices being 2π . In other words, the chain
consists of a sequence of pairs of vortices with fluxes φ1

and φ2. This qualitative picture is confirmed by numerically
solving equation (36). Figure 4(a) shows the result of such
a calculation for which we took g(x) = 150 sin(20πx/�J ),
that corresponds to γ ≈ 2.85, ψγ ≈ 1.21, and the fluxes
φ1 ≈ 0.39φ0, φ2 ≈ 0.61φ0. The final stationary state of
our numerical procedure simulating the relaxation process
depends on the choice of the initial phase ϕi(x). By
taking a proper non-monotonic dependence ϕi(x), we may
end up with a stationary solution shown in figure 4(b). A
remarkable feature of this solution is the existence of fractional
vortex–antivortex pairs clearly seen in the simulation of
figure 4(b), the pair with the fluxes ±φ1 is followed by the
pair with ∓φ2.
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Figure 5. (a) The phases ϕs(y) with the total flux φ = 0 and ϕ(y)
with the total flux φ = 2φ0 calculated for
g0 = 90, l = 0.1λJ , σl ≈ 0.015 l, which gives ψγ ≈ 1.21, and φ1 ≈
0.39φ0, φ2 ≈ 0.61φ0. (b) The thin line depicts ϕ(y), the thick line
depicts the phase ϕv(y) generated by the fractional vortices and
extracted from the phase ϕ(y).

Next we consider a flux pattern for a chain of vortices
in the case of a randomly alternating critical current density
jc(y). Assume that this chain starts with a region where the
phase is given by ϕs(y) = ψγ + ξs(y), therefore, ψγ is the
value of 〈ϕ(y)〉 at the ‘tail’ of the neighbouring vortex or
antivortex. If the neighbour carries the flux φ2, the average
phase should increase from ψγ to 2π −ψγ in the neighbour’s
domain. Another option appears if the neighbour carries the
flux −φ1 generating a decrease of the average phase difference
〈ϕ(y)〉 from ψγ to −ψγ .

In figure 5(a) we show the curves ϕs(y) with a zero
total flux and ϕ(y) with a total flux of two flux quanta.
The following method allows for subtracting of the fractional
Josephson vortices from a ‘noise’ flux pattern. First, we
draw the straight lines 2πn ± ψγ at the graph of ϕ(y) (see
figure 5(b)). We see that ‘random’ variations of ϕ(y) are
nested on one of these lines everywhere, except a few relatively
sharp phase ‘jumps’ from one line to the next. The Josephson
vortices should be centred at ϕ(y) = πn where ϕ′′(y) = 0.
Then we take a domain situated between lines πn and π(n+1)
and form ϕv(y) = ϕ(y) ∓ ξs(y), choosing the minus if the
random parts of ϕ(y) and ϕs(y) are identical, and the plus
otherwise. The curve ϕv(y) shown by a thick line at figure 5(b)
is smooth and clearly represents the fractional Josephson
vortices.

5. Electromagnetic wave propagating along a grain
boundary

In this section we consider an electromagnetic wave
propagating along a line Josephson junction with a spatially
alternating critical current density. In this case the phase
differenceϕ depends on the coordinate y and time t, and instead
of equation (20) we write

ϕ(y, t) = ψ(y, t) + ξ(y, t). (38)

A straightforward generalization of equations (22) and
(23) results in equations for the time-dependent smooth
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ψ(y, t) and rapidly alternating ξ(y, t) functions. We assume
that λ � l � l0, �, and |ψ(y, t)| � |ξ(y, t)|, take into
account the displacement current, and arrive at the system

"0

∫ ∞

−∞
ds ψ ′′(s, t)Q

(∣∣∣y − s

2�

∣∣∣) = ω−2
J ψ̈ + sinψ

+ 〈ξ(y)g(y)〉 cos ψ (39)

"0

∫ ∞

−∞
ds ξ ′′(s, t)Q

(∣∣∣y − s

2�

∣∣∣) = g(y) sin ψ (40)

where the Josephson frequency ωJ is given by

ω2
J = 2e〈jc〉

h̄C
(41)

and C is the specific capacitance of the grain boundary.
Consider now an electromagnetic wave propagating along

a Josephson junction in the absence of an applied magnetic
field. In this case the average flux inside the junction is zero
and it is convenient to write solutions of equations (39) and
(40) in the form ξ = −ξg(y) sin ψst, ψ(y, t) = ψst + ζ(y, t),
where ψst is a solution of the stationary equation (22), and
|ζ(y, t)| � 1. Linearization of equation (39) leads to

"0

∫ ∞

−∞
ds ζ ′′(s, t)Q

(∣∣∣y − s

2�

∣∣∣) = ω−2
J ζ̈ + ω2

γ ζ (42)

the dimensionless parameter ωγ is given by

ωγ =
{√

1 − γ if γ < 1√
γ − 1/γ if γ > 1.

(43)

In the case of a plane wave we have ζ(x, t) ∝ exp(−iωt +
iky). Substituting this relation into equation (42) we
obtain a dispersion relation ω(k) for an electromagnetic wave
propagating along a Josephson junction with an alternating
critical current density,

ω = ωJ

√
ω2

γ + 2l0�k2Q̃(2k�) (44)

where

Q̃(η) =




1

π
√

1−η2
ln

1+
√

1−η2

1−
√

1−η2
if η < 1

1√
η2−1

[
1 − 2

π
arctan 1√

η2−1

]
if 1 � η.

(45)
It follows from (45) that

Q̃(η) ≈
{

2
π

ln 2
η

if η � 1
1
η

if η � 1
(46)

and therefore

ω ≈ ωj




√
ω2

γ + 4"0�k2

π
ln 1

k�
if k� � 1

ωJ

√
ω2

γ + k"0, if k� � 1.
(47)

The effect of an alternating critical current density on
the dispersion relation ω(k) of an electromagnetic wave
propagating along a Josephson junction is most important in a
narrow vicinity of k = 0, whereω ≈ ωJωγ . The dimensionless
parameter ωγ varies from ωγ = 0 to ωγ > 1 depending on the
value of γ . It is worth noting that for k� � 1 and k"0 � 1 we
have ω(k) ∝ √

k. This is a consequence of a small thickness
of the film (d � λ) or in other words of the stray field outside
the sample [9].

6. Summary

To summarize, we derive an integro-differential equation for
the phase difference across a Josephson junction in a thin film
in the case of a critical current density rapidly alternating along
this junction. A dispersion relation for an electromagnetic
wave propagating along a grain boundary is obtained as an
example of an application of this integro-differential equation.

We demonstrate that if a typical amplitude of alternations
of the critical current density is high compared to its average
value, then a spontaneous flux and two types of complementary
fractional Josephson vortices can be observed under the same
experimental set-up. An effective method is proposed to
extract the fractional Josephson vortices from an experimental
flux pattern.
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