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The phase difference(y) for a vortex at a line Josephson junction in a thin film attenuates at large
distances as a power law, unlike the case of a bulk junction where it approaches exponentially the constant
values at infinities. The field of a Josephson vortex is a superposition of fields of standard Pearl vortices
distributed along the junction with the line density(y)/27. We study the integral equation fer(y) and
show that the phase is sensitive to the ratit, wherel :}\ﬁl)\L, A:2)\Eld, N\, and\; are the London and
Josephson penetration depths, and the film thickness. For< A, the vortex “core” of the sizd is nearly
temperature independent, while the phase “tail” scales\/ﬁ/yzzm\/Z)\L/d/yz; i.e., it diverges asT
—T,. Forl>A, both the core and the tail have nearly the same characteristic Ighgth
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I. INTRODUCTION 2
_ G N @
. . . . . . 2; 2 !
Recent interest in Josephson junctions in superconducting 16m%j A M

films has been driven by experiments probing the propertiegnere) | is the Josephson length of a junction made of bulk
of grain bgt:ndarles and, in particular, the order parametepanks of the same material and with the same critical current
symmetry:~* In these experiments, the junction plane wasgensity|j., and\, is the London penetration depth of the

normal to the film facesunlike traditional thin-film large-  panks. The other length is that of Pearl which describes the
area Josephson junctions in which the junction plane is pafiim:

allel to the faces of two films deposited on top of each gther

The junctions in fact are lines separating two thin-film banks 2)\E

touching only along the edges. The Josephson vortices at A= d @)
such boundaries are quite different from those at familiar

bulk junctions, because the stray magnetic field of a vortexVith d being the film thickness. S
results in an integral equation governing the phase In the next section we study the distribution of the phase

distribution® i.e., the problem becomemnlocal(as opposed difference¢(y) along the junction. We show that at large
to the well studiedocal sine-Gordon equation for junctions d|stance_s the phase approaches the limiting values of 0 or
between bulk superconductarZhe theory of thin-film junc- 27 OPeYing a power law:

tions is just emerging; there have been no attempts made to 1A

connect the phase difference at the junction line with the p(y—w)~27— — 3

measurable field outside the film. In fact, the data obtained y? '

on films are commonly analyzed with the help of bulk for-

mulas; see, e.g., Refs. 1 and 3. One of the motivations for the 21A

present work was to fill in this missing link. ply——»)~ e (4)

In the following section we describe the approach we em-
ploy for thin films and demonstrate it by solving the well- This constitutes a major difference from the phase distribu-
known problem of the Pearl vortéxBesides the transpar- tion in bulk junctions, wheres(y) approaches exponentially
ency and some advantages in providing analytic results fothe limiting values at infinities. We argue that this behavior
the fields in real space, the method can be readily applied tis prescribed by the stray field outside the film. As is seen
the problem of a thin-film junction. This is done in the next from Eqgs.(3) and(4), the characteristic length scale for the
section, where we rederive the integral equation of Mints andarge-distance phase variation §A .
SnapirG for the phase difference at the junction line, and We then consider the asymptotic behavior of the phase in
establish the relation between the phase and the measuraltteo limiting cases. We show that fbr A, the central part of
outside magnetic field. The theory contains two characteristhe Josephson vortgthe core is of a sizel which is nearly
tic lengths: one is related to physical properties of thetemperature independent. Since the phase tail has a scale
junction, VIA(T), the vortex structure changes withUnlike Joseph-
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son vortices in bulk junctions, in thin films the phase distri- Here the superscripts stand for the upper and lower faces
bution is not a universal function of coordinates with aof the film, z=*=d/2.
unique temperature dependent length scale. Instead this dis- If the environments of the upper and lower half-spaces are
tribution is described by two lengths, the ratio of whichrlis identical, we havén, , = _h;,y and
dependent.

In applications, the length may reach a micron size, 2 . 2w N
while the Pearl lengthA might not exceed\, by much. < =Ny, ——9y=h. (10
Hence, the limil> A is also of interest. We show that in this
case the scale of the phase variation in the core is of the sanhe this case we can consider only the upper half-space and
order as in the phase tail; i.e., iti§ A. This is done with the omit the subscript+ by the field components.
help of a variational technique. We substitute Eq(10) into Eq. (8) and use din=0:

In Section IV we provide examples af(y) obtained by

solving numerically the integral equation in accordance with ah, B
our asymptotic and variational estimates. h,= A ——=¢od(r). 11
Il. THIN FILMS Applying the 2D Fourier transform and recalling tha{(k)

= —ky(k) for the upper half-space, we obtain:
As was stressed by Peérj large contribution to the en-
ergy of a vortex in a thin film comes from the stray fields. In do
fact, the problem of a vortex in a thin film is reduced to that YP(k)=— K(1+KA)’ (12
of the field distribution in free space subject to certain
boundary conditions at the film surfateSince curh  the superscripP is added for convenience of reference to the
=divh=0 outside, one can introduce a scalar potential forPearl vortex. The distribution of the potentialeverywhere

the outsidefield: and, in particular, at the film surface follow readily:
h=Vy, VZy=0. (5) 2 ek
YP(r,z=0)=—¢ f——
Consider a thin film situated at=0. The general form of °) 472 k(1+KkA)

the potential which vanishes at- + of the empty upper

half-space is __ % f“’w
2 0 1+kA
2

[ dk ik-r—kz r r
'/’(r’z)_f 2mze © :f_X[YO(K)_HO(X”' 49

with k= (k k), r=(xy), andk=|k|. Here y(k) is the oo e have used Ref. 11, 6.562.2 Herg,, Y
) ; ; a : , 6. 2. . Yo are
two-dimensional2D) Fourier transform ofj(r,z=0). In the Struve and second-kind Bessel functions; their difference is

lower half-s_,pace_ we have to replazéy —Z in Eq. (6). well studied; see Ref. 8. The field distribution in real space at
Let the film thicknessl be small relative to the bulk pen- the film surface is given in Appendix A

etration depth of the film material, ; for simplicity, the
latter is assumed isotropic. For a vortexratO, the London

equations for the film interior read: lll. THIN-FILM JUNCTION

) Let a thin film have a line junction along theaxis.
Amh{ @) The London equation everywhere on the film except the

+ | = oz oo
h curlj= oz 5(r), junction reads:
wherez is the unit vector along the vortex axis. Averaging 2mA
over the thickness, we obtain h,+ ——cur,g=0, x=0. (14)
2mwA At the junction linex=0, the currentg, is discontinuous
—_— — L] y .
h,+ c curlg= dod(r), ®) " One can write for the wholg,y plane:

whereg(r) is the sheet current density. 27A
Since all derivatives)/ 9z are large relative to the tangen- h,+ ——curl,g=1(y) 8(x), (15
tial d/dr, the Maxwell equation cuH=41j/c is reduced to
conditions relating the sheet current to discontinuities of theyhere the functiorf(y) is still to be determined. To this end,
tangential field: integrate Eq(15) over the area within the contour following
the junction banks along= =0 and crossing the junction at
_Wg —h-—ht 4_779 —ht—h- 9) y, andy,; see Fig. 1. The magnetic flux through this contour
X c Y x X is zero, and we obtain:
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z o' (ky)
L [% W)= = k(I kA) (29

v T T T Ty, / y This gives the outside field distribution in terms of the yet
X unknown phase difference.
One can write Eq.(25 as ¢(k)=¢ "(ky) yP(K)/2,
| where (k) for the Pearl vortex is given in Eq12). This
suggests that convolution argument might be useful in relat-
FIG. 1. The junction is shown by a thick solid line. The dashed!Nd the field of the junction to that of Pearl vortices. To this

line shows the contour used to obtain E#). end, we take

2 =~ —kz
l,//(l' Z):_f d°k ¢OQD (ky)e iK-r

27A (Y2 Y2 e (26)
|, [9y(+0y)—g,(—0y)]dy= , f(y)dy (2m)2 2mk(1+KA) ’
1 1
(16 substitute here
for anyy,; andy,. This gives: .
2 A (ky)=fimds<p’(s) e s, (27)
= [9y(+0y)=gy(=0y)]=1(y). 7
We now use the London relation _ ﬂ: _f d2r’¢P(r’ z)e*”"r' (28)
k(1+kA) ' '
c . . .
_ bo Vo+ —A) (19) and, after integration ovek, obtain
471' ®o "(s)
¢
and the definition of the gauge invariant phase difference Pp(X,y,z)= j_ ds— YP(xy—s,2). (29)
Thus, the field of the Josephson junction is a superposition of
+ 1
o) =0(=0y) = 6(+0y) - f dxAdxy) (19 fields of Pearl vortices distributed along the junction with the
. line densitye ' (y)/21r.
to obtain This remarkable conclusion could have been made on the
2 basis of comparison of Eg&) and(15) which suggests that
de A . . . ,
—=———[9,(+0y)—g,(—0y)]. (200 the Pearl solution foh, at the film surfaces the Green’s
dy c¢o function for h,(r,0) for arbitrary sources, in our case
Equations(17) and (20) now vyield: ¢ '(y)8(x)/27. The resul29) is more general, since it per-
tains to all components of the field everywhere outside the
¢>0 film, the surface included. It is worth noting that for bulk
fly)= g (y). (21)  junctions, a similar result has been obtained by Gurevich: the
_ field in the junction is a superposition of fields of Abrikosov
Thus, we have instead of E(L4): vortices distributed along the junction with the line density
2 A ¢ (y)2m®
h,+ 7; curlzg— bo 5()() dy' (22) To obtain an equation fop(y), we write:

This equation serves as the boundary condition for the j.d singo(y)=gx(0,y)=—ih;,’(o,y)
Laplace problem of the outside field. 2
As in the Pearl problem, we first rewrite E@2) replac-

H 2

ing the sheet currents with tangential fields according to Eq. __«c d°k k w(k)e'kyy
(10) and using dih=0: 2w

dh c d2k “n k .

A T 20 50 2 @3 R

Jz dy A72 ) 472 K(1+KA)

The 2D Fourier transform now yields (30)
¢0 where Eq/(25) has been used. We now substitute the inverse
—(k+K2A) (k)= 5— s "(ky), (24 transforms

\k/}v:\?é?(ﬂ(ky) is the Fourier transform ofi¢/dy. Thus we ZD"(ky):f dy o "(y) ek,
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AN ) r r which means that there the vortex flghg is distributed uni-
:f d?re T H, Yol

(31)  formly over the solid angle 2. We then obtain foty|— o:

k(1+kA)
into Eq. (30) and integrate ovek (which is equivalent to Ox 21A
utilizing the convolution theorejnWe obtain: sing= jd y—5|gny (40
Cc

ly—s |> The relations given in Eq$3) and(4) immediately follow. It
is worth recalling that in the bulk junctions the phage
=4 tan *(e”9) approaches the limiting values at infinities
Cd) asef‘yll)\]_
m, Q(w)=Hg(w) = Yo(w). (32 Another relation follows from fluxoid quantization, which
Je states that the total flux crossing the film dg. Since the
This integral equation for the phase has been obtained biptal flux is fd?rh,(r)=h,(k=0) we have
Mints and Snapiro using a different technique.
Although both Hy(w) and Yy(w) oscillate, the kernel bop (ky)
Q(w) decreases monotonically. This is seen from the inte- —kp(K) 0= 2m(11kA)| b, (41
gral representatiof:: k=0

sing(y)= 5 fds '(s)Q

which implies that ak,—0,

2 . e wt
o= |, e 33 ' (k)=2m, 3"(k))=0. (42
At small argumentsH<w? while Yo(w) diverges: By splitting the integration domain in Eq@37) into

v<u andv>u, we rearrange it to the form:

(39

2 w
Q(W—>O)~—; In5+y , o
SimP(U):,U«f dv Q)¢ "(v+u)—e"(v—u)],
wherevy is the Euler constant. For large only small values 0

of t contribute to the integral33), and we obtairf: (43)
where it was assumed that' (v) is an even and "(v) is an
Q(w)~2/mw. (35 odd function ofv. This form shows thai(0)= .
With better than 9% accuracy, the kernel can be approxi- [N bulk junctions the vortex field, at the junction plane
mated by a simple function: is related to the gradient of the phase difference:
2 w+l bo
Qw)~—In—-—, (36) h(0y)= 7 W "(y) (44)

which gives correct leading-order asymptoticsnat-0 and ~ (the junction thickness is assumed small relative\9. In
W0, thin-film junctions this relation does not hold. Instead, we

Thus, the equation for the phase contains two independefi@ve, combining Eqg17), (21), and(10),
lengthsl andA. If A is chosen as a unit length, the equation &
0

acquires the form h(+0y,0)—h,(—0y,0)= SA® "(y). (45)
sing(u)= j dv ¢"(v)Q(lu—v)), (37 By symmetryh,(+0,y,0)=—h,(—0,y,0); therefore,
=112 39 h(+0y.0)= 2% 6 (y) (6
' X e A\ '
which shows that only the ratio of these lengths is relevant.
Hereafter, we use the notatigns for coordinates in com- In principle, all fields and currents can be calculated with

mon units, whereas the variables=y/A, v=s/A will be  the help of Eq.(25). Since due to the flux quantization

kept dimensionless. When needed we will use also varioug ’ (ky=0)=2m, Eq. (42), the integrals[”.dy can be

rescaled variables denoting themé&sy. evaluated without actual knowledge @{y). In particular, it
The solutione(y) should satisfy certain conditions gt s easily shown that

— * o, Since the Josephson curremt(0,y)«sin ¢ should

vanish at infinities, we can choose(+x)=27 and o 5
o(—»)=0. At large distances f_wzp(x,y,z)dy= f_w¢ (x,y,2) dy, (47)

2m $o . which implies that similar relations hold fofi”..dy of the
< W0y)=—hy(0y)= 27y? s1gny. (39 field components.
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A. Asymptotic solution for I/A<1 co(€) at large distances, e.gcg(é— —«)~1/¢, disagrees

The lengthl has a remarkable property of being weakly with require.men.t;{S) and(4). Therefore, we proceed to the
temperature dependeiftindeed, asT approachesT,, the ~ NeXt approximation:
productjc)\f is constant becausg.xA?x(T.—T), while = ont 01 =Cat w(ti+c 53
A2c1/(T,—T). On the other hand, the Pearl length<\? . (P. (P.O #1=Cot ity ) &9
«1/(T,—T) and diverges al.. Therefore, asT—T,, the and substitute this in Eq37):
ratiol/A—0. Also, this ratio might be small for sufficiently " d2c
thin film§ for anyT. Since the exact solution of the integral sincy+ ¢4 COSCO:/—LJ do —ZOQ(|u—v|)
Eq. (37) is not available, the search of an approximate result —w dv
in the limit u— 0 is well justified. " 42

It is wqrth noting that similar to the §tanda(Uqu) Jo- +’“f dv d—gole(|u—v|). (54)
sephson junction, the phage varies rapidly only near the —o v
vortex center ay=0 (within the “Josephson core’and the

; . . . . We now use Eq(51) to rewrite this as:
change is slow outside this domain. We will see that the asD)

domain of rapid change is of size u<1, whereas in the o d?t,
rest of the junction the phase varies as a power law. This ty COSCo—,uf dv WQ(lu—vl)
suggests employing an asymptotic procedure utilizing two o
different length scale¥: = d%, 2
Within this method, one looks for the solution of the form = f dv GoZ Q(lu—v])+ ;In|u—v| ,
e=3 ¢n= 23 u'(Cotty), p=l/2A<l, (48) ®9
n= n=

where we took into account that by desigp<t, at large
where the functions,(u) andt,(u) approximate the behav- distances. In the limi— 0, the integral at the left-hand side
ior of ¢ within the core and in thetail, respectively, andi  contains an extra factqr and, therefore, can be disregarded,
=y/A. In particular, this implies imposing the correct whereas
boundary conditions ati=0 only upon functionsc(u),

whereas the conditions at’s should be obeyed only by %_ 4p PSP (56
contributionst(u). Still, neither should diverge in the do- du _4M2+U2 =2m5(u). )
main of the othelthus providing a uniform asymptotic con- n=0
vergence of the so constructed approximatidesides, all Hence, for &> u, where cosy=(£—4)/(E+4)~1, we
¢n should have the correct symmetryg,( must be an even piain:
and ¢, an odd function ofu).

We expect the core to occupy a domain of the gizéor . dQ(u) 4 .
| in common unity an assumption to be confirmed. To find t=2m d[ul + Tup 39Ny (57)

an equation forcy(u), we introduce “stretched” variables ) )
Thus, at this stage of the expansion we have:

u v
=—, =_, (49 u dQ(ju 4
£ M 7 M gozqoo-f-,u,tl:Ztan_lﬂ-l—ﬂ'-l—Zﬂ',u Qd(L |)+TM
One can sety(u)=0 and obtain: (58

% d?c, The last term here compensates both the “wrong” behavior
sinc0(§)=f dnQ(ulé— 77|)ﬁ- (50)  of 2tan *(u/2u) at large distances and the divergence of
o K Q’(|u]) atu=0. One can see that magnetostatics require-
For u—0, we can use the asymptotic fol®¥) of the kernel ~ments(3) and(4) are now satisfied.

for small arguments. Sincefy( ) is odd in 7, the constant One should note, however, that while having the correct
terms in the kerne{34) yield zero after integration, and we behavior at large distancesg+ ut; acquires a finite discon-
obtain tinuity at the origin:
_ 2jw dpln |d200 51 (Pot uty)y=so=TE4p. (59)
sinc =—— né—n 5.
o(é) o & dzn This mismatch is proportional to the small parameteand,

in principle, could be cured by the core contribution We
omit this difficult calculation, because our major goal of es-
_ 1 tablishing the characteristic lengths of the phase variation is
Co(§)=21am *(&/2) + . (52) already gchieved. Near the vor?ex center V\I/Je have:
Note that by construction, this formula approximates the ac-
tual solution in the core; although the boundary conditions at
infinities and at zero are satisfied, the asymptotic behavior of

This equation has an exact soluttdf®

2y
e(y—0)=m+ 7, (60)
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whereas at large distances we have confirmed asymptotics e(u)=2tan (u/Ly)+ , (65)
(3) and (4). In other words,| is the characteristic length

within the core, whereas at large distances the scalfAs which satisfies the boundary conditions at infinities and var-

ies asm+2u/Ly near the origin. After the calculation out-

B. The casel/ A®1 lined in Appendix C, we obtain a relation betwdegpand the

parameteru:
The lengthl«<1/j . depends on the junction quality and is 5
often large. It may exceed considerably the Pearl lergth _ mlo(1+4Lp)
this is the case in many experimental situatidris.is of 2u= m+4LoIn2Ly° (66)

interest to consider Eq37) in the limit u— . It that foru<l. L ‘b It Likewi
Since sinp<1 at the LHS of Eq(37), the equation can be | IS seen tha L0rl>Ll 'Eh Ol.ml.Jt.S € smal, 90' IKEWISE,
satisfied only if”"—0, i.e., if ¢ is nearly linear inu in a argéu requirelo>1. the fimiting cases are:

broad domain adjacent to=0. In physical terms, this means 2u=Ly, p<l (67)
that the vortex core is likely to be large. Out of the capds ' ’
close to the limiting values of 0 and#2 at infinities. To 2
“shrink” the core domain we introduce new variables: 2u= ﬁ, w1 (69)
0
E=ul\p, n=vlu. (61)

. IV. NUMERICAL RESULTS
Equation(37) now takes the form:

We have solved numerically the integral E§2) by an

, iterative method. Starting from a certain trial functigp(y),
sing(§)= J d”_Q( wlé=ml). (62 e obtain the phase difference after1 iterations as
In the limit |¢]— o, we can replace the kernél(z) with the ei+1(Y) = @i(y) +AD{gi(y)}, (69)

large argument asymptoti¢85). As a result, the parameter

o . X , ly— S|
u drops Off(thIS.IS precisely why the scaling factor has been D{e(y)}=—sine(y)+ = J ds¢’ s)Q(
chosen as 4u):

(70)
singg( )~ f M where A is a constant. Equatiorf37) is equivalent to
|€— 7l D{¢(y)}=0. If the constanf is small enough to stabilize
1 (e . o the iterative procedure, tH®{¢;(y)}| becomes smaller for
S _f d7 o 77)( 1+ 44+ . )g_ — largeri. The solution|D{¢;(y)}|<e with an arbitrary accu-
&) - 3 |£]¢ racy O<e<1 is obtained by iterating the procedure until

63) [D{¢i(y)}| becomes less than .
The open circles of Fig. 2 show the results of humerical
we have integrated by partsj¢, and used ¢o(—7)  solution of Eq.(37) for the phase difference(y’) with y’
= — (7). This result coincides with requirement® and  =y/.\/IA and|/A=0.01. The solid curve is calculated ac-
(4). cording to the approximatiot62). It is worth observing that
The problem of the core structure can be addressed ale approximation is not only good for smal it is still
follows. The functional, minimization of which leads to Eq. fairly good for \IA<y<4\lA (see the insgtand deterio-

’

(37) for the phase, reads: rates slowly at large distances. As we will see below, the
large distance behavior has little effect on integrated quanti-
W{‘P}:f du(1- cose) ties such as the total vortex energy, mainly because the Jo-

—w sephson currents at these distances are exceedingly small.

Figure 3 shows numerical solutions forl/A
K ) ” ) _ =0.01,0.1,1,10, and 100. One sees that the slof{g) at
" ZLde(P (u)ﬁwdv #' (0)Q(u=v]. y=0 is suppressed; i.e., the vortex “core” expands with
64) increasing ratid/A.
To illustrate the core expansion with increasirid we
It is shown in Appendix B thatwithin a constant factorv plot in Fig. 4 the slopesi¢/dy’ at the origin obtained from
is in fact the total energy consisting of the Josephson, kithe numerical“exact”) solutions(open circley along with
netic, and magnetic contributions. We can now choose a s¢he slopes calculated using E6) obtained using the varia-
of trial functions ¢y(u) containing a variational parameter tional procedure described aboteolid curvg. We see that
which we callL y; the functions should be linear inat short  the trial functions(65) reproduce wellg’(0) for small u

distances. Substituting these functions in E¥) we find  =I1/2A, as they should because these functions are close to

W(L,) minimization of which gives the best value fop for  the actuale(y) for this case. It is worth noting, however,

a given set. that even for largew the ansatZ65) provides a reasonable
As an example of this procedure we choose estimate for the slope’(0).
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FIG. 2. The phase difference versusy’'=y/\IA for I/A — _ .
=0.01 oru=0.005. For this and the following plotg] A is chosen . FIG. 4. _The slope@_(y =0) fgr the set Of'“_HZA. shown in
as unit of length for convenience of comparison. The open circlesF'g.' 3_obt<_':1|ned t?y soIV|_ng numerically E7) (_open circlel The
are obtained by solving numerically the integral Ea7). The solid solid line is obtained with the help of the variational re<616).
curve is the approximatiotb2), which reads in terms of’ as ¢ . L
=2 tan }(y'/\2x) + . The inset shows the phase fdr>1 or for W€ foundL, yvhlch minimizes the energy. Then we evalu-
y>\IA. The dashed curve is the standard bulk solitop atedE numerically using the_: exact kern@l Figure 5 shows
=4 tan Y[ exp(y’/\2%)] which has the same slope at the origin, that these two approximations yield nearly_the same ener-
but approaches the value ofr2exponentially rapidly ag’ — . gies; the relative difference between them is plotted in the

inset and shows that the thin film ansatz yields lower ener-

As is shown in Appendix B, the total energy of a Joseph-gies foru<1, whereas the bulk ansatz is better for lagge
son vortex in a thin film reads:

V. SUMMARY

¢ ¢ W(w) | _ N
=163 VT gon dun (72) To summarize, we reiterate the following points:

16m 8 H The field associated with a Josephson vortex is a super-
Here, the prefactor?/872A is a natural energy scale be- position of fields of Pearl vortices distributed along the junc-
cause the self-energy of a Pearl vortex is given by this preftion with the line densitye’ (y)/27.
actor [multiplied by In(A/¢€) with & being the coherence _The Josephs_on vortex in thin films exter;ds to much larger
lengthl. We have calculatedE numerically using the trial distances than in the bulk due to the.(/y)” decay of the
function (65) with a too slow 1y asymptotics; we tried also

the bulk soliton 4 tan![exp(/Ly)], which decays at large 5r 7D (%)
distances faster than the needegf1For each trial function, 6
4 __ 4 F
2.0 [ 2 b
w T b
3 s
1.8 2 ¢ 1

2 102107 10° 10" 102
1.6 3
B |
14 tr
1.2 0 i 1 ! 1 1
0
102 10" m 10° 10" 10?
1.0 8
FIG. 5. The energyE of Eq. (71) in units of ¢2/87°A as a
function of u=I1/2A evaluated for the film ansatze
FIG. 3. Numerical solutions(y'), y’=y/\IA=u\A/l, of Eq. =2 tan }(u/Ly)+ 7 with Ly chosen to minimize the energy func-
(37) for I/A=0.01(open circleg, 0.1, 1, 10, and 10(crosses The  tional (64). The inset shows the relative differend®=(E
inset (/A =1) shows that the approximatidb?2), the solid curve, —E,;)/E, betweerE and the energ{,, calculated in the same way
which is good forl/A=0.01 fails forl/A=1. with the bulk ansatzp,=4 tan ! exp/Ly).
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phase difference at large distances. This power law is im- bo r r

posed by the magnetostatics of the stray fields outside and as hy(r,0)=5— K) + (9( X) } (A2)
such is the same for any film thickness long agi<\ ; and

thez dependence of the phase can be disregardém char- It is interesting to note that the field in this domain diverges
acteristic lengthL,, for the phase attenuation at large dis- faster than in the bulk vortex far<\, , whereh,ecIn(r/\,).

r
1+Kln

tances is Forr> A, one can use the asymptotic expandib2.1.30 of
Ref. 8:
A
Lx~M~AJ\E. (72) boA A2
h,(r,0)= 3|10 —2) . (A3)
Hence, for moderately thin filmg(\ | ), the lengthL,, is of 2mr '
the order of the bulk Josephson length. The tangential component at the film surface is
The characteristic length, at small distance¢the core
sizg is | for I<A as is seen from Eq52). This is the case o bo r r 2
in very thin films and for any film thickness close enough to h,(r,0)= a2l X) _Yl(X) - —|. (A4)
T.. Thus, forl<A, the Josephson vortex is characterized by r4mA &
two lengths,L..= 1A at large distances ariy=1 at short  The asymptotics are readily obtained:
ones. These two lengths have differdntlependencies, and
therefore the vortex structure changes with temperature. bo r r2 r 2
Hence, the situation in films is distinctly different from that h,(r,0)= AT 1- X o2 In TN +0 —2 (A5)
in bulk junctions, where the structure is universal for &ll r 2A%
and is characterized by a single lengtl(T). for r<A, and
Forl> A, the characteristic length at all distances is of the

same order: bo 3A2 A4

h,(r,0)= 1——2+O(—4) (AB)

Lo~L.~\lA. (73 r r

for r>A. As expected, the behavior at large distances cor-
responds to the Coulomb field of a point “charge” creating
he flux ¢¢ in a solid angle Zr. Note also the ¥/divergence

of h, atr—0.

The results obtained in this work for the thin-film limit,
d<<\_, should hold also for thicker films as long as one can,
disregard the dependence of the phase. Without going into
formal details of the difficult problem of a junction in a slab
of finite thickness, we may guess that thdependence af

is weak wherd<<\ j, since\; is the shortest length at which APPENDIX B
the phase can van( is assumed to exceeqd ). This makes The Josephson coupling energy is
our results applicable to experimental situations as those of
Ref. 3 where junctions in YBCO films with ~0.15 um ¢(2) = dy
andX;~1 um have been studied. E;= f —~(1—cosp). (B1)
1673 J-= A
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The total field energyEg is twice this amount. The kinetic
energyEy of the supercurrents is the integral over the film
volume of the quantity %ALJZICZ—wAgZ/CZd Since ac-
2_ ~2(R2 2
APPENDIX A cording to I_Eqs(lO) g°=c (hy +hy)/47r (hy,y are taken at
z=0), we find readily:

The componenh, at the film surface is

2

k

E =—f—k2¢(k)w(—k)- (B3)
1 r r K
AL S i PP L BV AR SN am ) an?
27A 2A A A
It is now straightforward to show with the help of E¢g5),
We have forr <A: (27), and(31) that the total energy
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E=EJ+EF+EK=1— (B4)

whereW is given in Eq.(64).

APPENDIX C

The first integral in Eq(64) is easily evaluated for the
ansatz(65):

One can estimate the contributid, of the double integral
as follows. Since for the ansat@5) ¢’ (u)=2Ly/(u?+L3),

we have
dudv Q(Ju—v])
W2=2'“‘LéfJ' 2, 12, 2
(Lot+u)(Lg+ov2)

st [

dsdtQ]t|)
+(s+1)2[4L2+(s—1)?]
(C2)

2
0

PHYSICAL REVIEW B53 144501

Here, all integrals are from-o to «© and we have changed
variables:s=u+v, t=u—v. After integration overs one
obtains:

=dt Q(t)

—. (C3
4L2+1?

W2:87T,U/L0f
0

Further analytical progress is difficult to make, and we resort
to the approximatior{36):

[

dw
n
1+w?

2wly+1
2wl

W2:8/.Lf
0

(C4

We now minimizeW=W,+W, with respect toL, and
obtain the relation(66) betweenL, and x. Numerical com-
parison shows thai (L) so obtained differs by less than 3%
from the result of using the exact kerr@lin Eq. (C3).
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