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Self-generated flux in Josephson junctions with alternating critical current density

R. G. Mints
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
(Received 20 August 1997

We study an interesting state with a self-generated magnetic flux in a long Josephson junction. The critical
current densityj . is assumed to alternate randomly along the tunnel contact on a length scale much less than
the local Josephson penetration depth. The phase difference is then a sum of an alternating term and a smooth
term which self-consistently contribute to the formation of a stationary state with self-generated flux. Two
types of Josephson vortices are found in this state, one with magnetidflend /2 and another one with
magnetic flux®,=d,— D, >D,/2. [S0163-18208)50306-7

Recently Mannharet al! observed a self-generated mag- causes a smooth phase shiftx), and the smooth phase shift
netic flux in asymmetric 45{001] tilt grain boundaries in  #(x) in its turn determines the alternating fldx(x).
YBa,Cu30-,_, films in zero applied field. The authors ex-  In this paper we study this unusual stationary state with a
plained qualitatively the existence of this flux using a médel self-generated fluxb4(x) in a Josephson junction with an
based on the assumption ofiz_,2 symmetry component of alternating critical current density. We derive equations de-
the order parameter and on the observation of facets witfermining the alternating phase differen¢g¢x) and the
alternating orientation forming the grain bounddryhis  Smooth phase shiff(x). From these equations we obtain a
model introduces a tunneling current density(x) spontaneous flud 4(x) occurring whe_n t_he average energy
«si o(X)— a(x)], wherex is along the grain-boundary line, de_rysﬂy of the self-ggnerated magnetic f|elq gxceeds that of a
() is the phase difference caused by the flux, aiig) is critical value proportional to the average critical current den-

the phase difference caused by the misalignment of anisc?—ity' We find two types of Jqsephson vortices in a state with
tropic dyz_,z-wave superconductors. The value @fx) is a self-generated flux: one with fluk,<®y/2, and one with

determined by the orientation of the facets, for asymmetrigluég)ris:idq;?_aq)érfe?doi/rﬁ'ensional infinitely long Josephson

45 grain boundariesa(x)=0 or m, therefore j(x) junction parallel to thex axis and assume that the critical

*CoS(X)SiNg(X). current densityj.(x) is a random function taking positive
The self-generated fluxby(x) observed by Mannhart onq pegative values. We denote the typical length scale of

1 . . . . .
etal is randomly distributed along a meandering grain-j () as| and define the average value of the critical current
boundary line. The flup4(x) changes its sign randomly, the density(j.) as

amplitude of ®(x) variations is much less than the flux
quantum®, and the averagéd,) is nearly zero. . 1L

In the framework of a model relating(x) to orientation (ic)= EJ’O Je(x)dx, @)
of facets? a meandering grain boundary results in an alter- o )
nating critical current densityj.(x)cosx(x). The length with the.averaglng llnt.erval_>l. The effective Josephson
scales for variations inby(x) and j.(x) are of the same Penetration depti, is introduced by
order. This leads to a nonzero averdgg of the tunneling

current densityj (x) induced by an alternating flusb4(x). A%L%, )
Namely, the current density(x) is equal toj.(x)sin&(x), 167N (] )

where §(x) =27 P y(x)/Pg is the alternating phase differ- \,nerel is the London penetration depth.

ence caused by the flukg(x). Sincejc(x) and si(x) alter- In the case of a Josephson junction witkel <A ; the
nate on the same typical scale, their product has a nonzeyhase difference(x) satisfies the equatién

average(j). This consequence, which has not been men-

tioned in the qualitative consideratioris important for un- 5 jo(X)

derstanding the self-generated fidx(x). AJe"— ———sing=0. ()

In a stationary state, howevefj) has to be zero. The (e
contradiction is resolved if a smooth phase shifk) arises We write the critical current density;(x) as
simultaneously with the fluxd(x). The additional phase _ i
#(x) causes an additional smooth current denitysiny(x) Je ) =(i1+9(x)], (4)
which compensates the nonzero current induced by the fagjith (g(x))=0. The length scale of variation @f(x) is of
alternating phase&(x). The average current densify) is  the order ofl and the typical values of miy(x)| vary from
then zero and a self-generated fll(x) is establishedelf-  maxg(x)|~1 to maxg(x)|>1. In particular, if the average
consistently Namely, on the background of an alternating (j.) is small compared to the typical amplitudejgfx), then
critical current densityj.(x) the alternating flux®¢(x)  maxg(x)|>1.
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In terms of the functiorg(x) we rewrite Eq.(3) for the ¢ ¢
phase difference(x) in the form ‘Ds:‘boﬂ: —<I>02—gsinx,b. (12
o
2 n_ : —
A" =[1+g(x)]sing=0. ®) " This relation allows one to studgy(x) experimentally. In

The idea of the following calculations is based on thed€rVing Eq.(11) we ignored the dependence of gion x.
This may be done since on the length sdalee variations of

assumption thatl<A; and on a mechanical analogy. i ; .
: o ; the smooth function six) are of orderl/A ;<<1. Taking
Namely, Eq.(5) for the phase differen coincides with . ) I
v, Ba(5) phase ce(x) coincides wi into account that the alternating part of the critical current

the equation describing the motion of a pendulum with a ; ; 4
vibrating pivoting point(Kapitza pendulum In this me- density has typical wave numbeks-1/ we estimate¢(x)

chanical analogy is the angle determining the position of from Eq.(11) as

the pendulum and is the time. We treat here the case when 2
g(x) is rapidly alternating over the length &f;. In terms of E(X)~ — siny— g(X). (13)
the mechanical analogy, this means that the dependence of A§

Lheenggﬁ;? wgﬁrznﬁgp%r;yx \I/isbff:[ril;lg r;ﬁlé:ﬁ;r?gﬁf r)I/noIh?s Therefore, typical values of_ the alternating phase difference
case, the motion of the pendulum is a slow motion along é(x) are small(|&(x)[)<1] if

certain smooth trajectory with rapid oscillations around this A2

trajectory; the amplitude of these oscillations is small. (|g(x)|)< -3 (14)
Therefore, we write the phase differengéx) as |12

@(X) = (X) + &€(X), (6) Next, using Egs(8) and (11), we calculate the average
(g(x)&(x)) and thus obtain the equatidf) for the smooth

where ¢(x) is a smooth function with length scale of order phase shifty(x) in the final form:

Aj and ¢(x) is a rapidly alternating function with length

scale of ordet. The average value @f(x) vanishes and the A2y — singr+ ysinycosy=0, (15)
typical amplitude of variations ofé(x) is small, i.e.,
(£(x))=0 and(|&(x)|)<1. where the constang=(g(x) £4(X)) is given by
Substituting the ansai®) into Eq. (5) and keeping terms 5
up to first order in&(x) we find Y= CA (Bz>— (BS) (16)
Oojc)  (BY)

Ay + A3 —[1+9g(x)][sing+ écosp]=0.  (7)

Two types of terms appear in E(): terms alternating over

a lengthl and smooth terms varying over a length. The . D, di

alternating terms cancel each other, independently of the Bs:—(jc)f g(x)dx= — =22 (17)
smooth terms, which also cancel each other. As a result we ¢ 4w\ dX

obtain both functionsi(x) and¢(x) from oneequation(7).” s the magnetic field generated by the alternating component

Here,

First, the alternating phasgx) is determined by of the critical current (Bs)=0), and
ATE"=g(x)sing. ®) A
B;=—(j)A;. 18
In the derivation of Eq.8) we omitted two out of three e (oA (18

alternating terms in Eq(7) since they are proportional to
£(x) and therefore much smaller thaiix).
Second, an equation for the phag€x) is derived by

We estimate the value of as

2
averaging Eq(7) over lengthsa>1 (a<A ), yielding ~ |_2<92>_ (19)

Aj

A2y —sing—(g(x) &(x))cosp=0. 9
W W= {900 £00)cosy ® The assumptioN&(x))<<1 restricts the value of. However,
Introducing the Fourier transform gf(x) by it follows from Eqgs.(14) and(19) that (£(x))<1 andy>1
hold simultaneously if
1 (= )
_ kX
g(X)—ZWf%gke dk, (10 A, AS

|—<<|9(X)|><|—2- (20)

we find the solution of Eq(8) in the form of
i o IE particul;ar, Eq.(20()j is satisfied Wnen the avgragehvalue ofI
Sing (= Qe . the critical current density is small compared to the typica
X)= = 27 A2) e K2 dk=—&y(x)sing. (1D amplitude of its variations, i.e(j.)<maxj.(x)|.
J To complete the description of a stationary state with a
The function&,(x) depends only on the alternating compo- self-generated flux we calculate the energy of a Josephson
nent of the critical current densit{j.)g(x) and the self- junction £° It takes the forme=&y+ &,, where&, is inde-
generated fluxP(x), a measurable quantity, is pendent of the phase differenggx) and
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&= e dx{z Aje'“—[1+g(x)]cosp}. (21
Using Egs.(6), (11), and(16), we obtain the energy,, in
terms of the smooth phase shif{x), namely, -r
"
ggoz%‘:)f dx{A3y'?2—2cosy— ysirty}. (22 )
e .
@
The solutions/(x) of Eq. (15) correspond to the minima and U

maxima of the functionaf [ #(x)] [EQq. (22)].
Let us now apply Eqgs(15 and (22) to two stationary ol
states in a Josephson junction with lengt¥ A ;. The first
state occurs in zero applied field. In this case the average flux
inside the junction is zero and thus an alternating self- AL
generated fluxdy(x) appears simultaneously with a phase
shift ¢s=const. The second state occurs in nonzero applied

field. In this case the average flux inside the junction is car- 2 ) L w L

ried by Josephson vortices. The alternating self-generated (b) w3 0 w3 n 5w3 W

flux ®4(x) appears then simultaneously with a phase shift

¥(x), whose spatial dependence describes the vortices. FIG. 1. The dependence of the potentialon ¢ for y<1 and

In the stationary state witiy=const the values ofy are ~ ¥>1. (@ y=05,(b) y=2.
determined by Eq(15) which takes the form

sing(1— ycosy)=0. (23

In the casey<1 Eq. (23) has two solutionsjy=0 and Equation(28) describes the motion of a particle with mass
= and thus, cf. Eq(12), there is no self-generated flux. AJ in a potentiall (), wherey andx are the coordinate of
In the casey>1 there are four solutions of Eq23), the particle and the time, respectively. This mechanical anal-

U(g)=—1+ cosy+ %sinzzp. 29

namely,y=—., 0,4, 7, where ogy allows for a qualitative analysis of the solutions of Eq.
(28). In Fig. 1 we show the dependence of the potertfian
W, =arccoslly). (24  yfor y<1 andy>1.

In the casey<1, the curveU(y) has two maxima of
equal height located at=0,27. A Josephson vortex corre-
sponds to the trajectory of a particle motion which starts at
the potential maximumy=0 [point a in Fig. 1(@)] at time

The energy of a Josephson junctiénhas a minimum for
==, and a maximum fory=0,7. It follows then from
Egs.(12) and(24) that a self-generated flux

Iy x=—oo with zero velocity[ ' (—>)=0] and ends at the
cps(x):_q)owsim/,y:;qpogg(x) -1 (25  potential maximumy=2 [point b in Fig. 1(a)] at time
2m 2m Y x=o0 with zero velocity[ ' ()=0]. This solution g(x)

exhibits () — o(—)=27, i.e., it describes a vortex

1yvith the fluxd localized in a region with typical siza ;.
In the casey>1, the curveU(y) has three maxima of

equal height located at=— ¢, ¢, 2m— ¢, and therefore

arises in the two states with the minimum enefgiNote that
the criteriony>1 means that the average energy density o
the self-generated magnetic fiel@®2)/4 is higher than

Do(jeydmen. : - . ; : )
From Egs.(13) and (25 we estimatd®(x)| as ;v;(r)] t\;gj;;g?;@S exist corresponding to two different Joseph
Nov et The first vortex is described by a trajectory of a particle

|Ds(x)[~ Py Y —|9(x)|<®y. (26)  Which starts with zero velocity ay=— ¢, [pointa in Fig.

A3 1(b)] at timex= —o and ends with zero velocity at=,

" [point b in Fig. 1(b)] at time x=cc. This solution ¢4 (x)
Note also that the average tunnel current den@ityis equal exhibits () — gy (— ) =24, i.e., it describes a vortex

to zero for the state withy=const as with the flux = g, B/ 7< Dy/2.
. . . S The second vortex corresponds to the trajectory of a par-
(iY=(ic(0)sing)=(jsimy(1—ycosp).  (27) b jectory ot a p

ticle starting with zero velocity aty= ¢, [point b in Fig.
Next we consider a Josephson vortex. In this case th&()] at time x=

—o and ending with zero velocity at
phasey(x) satisfies Eq(15) and the boundary conditions ¥=27— ¥, [pointc in Fig. 1(b)] at timex=<c. This solu-

' (£%)=0. It is convenient to write Eq(15) as tion ¢rp(x) exhibits yo() = (=) =2m—2¢,, i.e., it de-
scribes a vortex with the flux®,=d,—d;=d,
du — ¢, Do/ m>D/2 localized in a region with the size of the
Ajy'=— av (28)  order ofAj;.

The flux®, and energy; of the first vortex tend to zero
where the functior () is given by wheny—1. An approximate solution fo#;(x), ®,, and&;
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can be found if 6< y—1<1. In this case;//§~2(y—1) and  proportional to &,(x)sin(x), i.e., the rapidly alternating

U(lﬁ)~1ﬁ$¢2/4— J*18. 1t follows then from Eq(28) that componentéy(x) is modulated by a smooth factor gifx)
imposed by the vortex. In the cage<1 a state with a self-
X [y—=1 generated flux can be studied experimentadiyhe presence
Pr(X)~V2(y— 1)tam‘< i \ T) , (30 of vortices
J Let us now illustrate our calculations by the model

i.e., the flux®,=2(y—1)®,/m<D, is localized over a j(X)={jc)+] csin(2mx/l). From Egs.(11) and(16) we find
lengthA;/\y—1>A;, and the energy is gg(x)=(4I2Tclc<bo)sin(2wxll) and

jo A
51%& ﬁ<]c> J(y_ 1)3/2.

- 22 2
Y= —— .
3 e CCI)O <Jc>

As expectediy(x) depends only on the alternating compo-
nent of j.(x) and a self-generated flux existg$1) if the

(34)

In the case ofy>1 we havey,~=/2 and therefore
O, ~P,~dy/2. The main contribution to the potential

U(#) (21) comes from the termy/2)sirty and both the first aMPlitude isj >(jc). _
and second vortices are described by In conclusion, we have shown that in a long Josephson

junction with an alternating critical current density, a self-

X generated flux arises if the average energy density of the
zpl,z(x)warcsir{tanr(—\/;) , (320  self-generated magnetic field is higher than a critical value

A proportional to the average critical current density. Two
types of Josephson vortices exist under these conditions: one
with flux ®;<®,/2 and one with the complementary flux
D,=0y— D, >d/2. The stability of these vortices remains
to be checked.

Each of the two vortices is localized in a region of size

Ayly=®o /(47N (B2)<A; and has an energy;,
which is independent ofj .,
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