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Self-generated flux in Josephson junctions with alternating critical current density
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We study an interesting state with a self-generated magnetic flux in a long Josephson junction. The critical
current densityj c is assumed to alternate randomly along the tunnel contact on a length scale much less than
the local Josephson penetration depth. The phase difference is then a sum of an alternating term and a smooth
term which self-consistently contribute to the formation of a stationary state with self-generated flux. Two
types of Josephson vortices are found in this state, one with magnetic fluxF1,F0/2 and another one with
magnetic fluxF25F02F1.F0/2. @S0163-1829~98!50306-2#
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Recently Mannhartet al.1 observed a self-generated ma
netic flux in asymmetric 45°@001# tilt grain boundaries in
YBa2Cu3O72x films in zero applied field. The authors ex
plained qualitatively the existence of this flux using a mod2

based on the assumption of adx22y2 symmetry component o
the order parameter and on the observation of facets
alternating orientation forming the grain boundary.3 This
model introduces a tunneling current densityj (x)
}sin@w(x)2a(x)#, wherex is along the grain-boundary line
w(x) is the phase difference caused by the flux, anda(x) is
the phase difference caused by the misalignment of an
tropic dx22y2-wave superconductors. The value ofa(x) is
determined by the orientation of the facets, for asymme
45° grain boundariesa(x)50 or p, therefore j (x)
}cosa(x)sinw(x).

The self-generated fluxFs(x) observed by Mannhar
et al.1 is randomly distributed along a meandering gra
boundary line. The fluxFs(x) changes its sign randomly, th
amplitude of Fs(x) variations is much less than the flu
quantumF0, and the averagêFs& is nearly zero.

In the framework of a model relatingj (x) to orientation
of facets,2 a meandering grain boundary results in an alt
nating critical current densityj c(x)}cosa(x). The length
scales for variations inFs(x) and j c(x) are of the same
order. This leads to a nonzero average^ j & of the tunneling
current densityj (x) induced by an alternating fluxFs(x).
Namely, the current densityj (x) is equal to j c(x)sinj(x),
where j(x)52pFs(x)/F0 is the alternating phase differ
ence caused by the fluxFs(x). Sincej c(x) and sinj(x) alter-
nate on the same typical scale, their product has a non
average^ j &. This consequence, which has not been m
tioned in the qualitative consideration,1 is important for un-
derstanding the self-generated fluxFs(x).

In a stationary state, however,^ j & has to be zero. The
contradiction is resolved if a smooth phase shiftc(x) arises
simultaneously with the fluxFs(x). The additional phase
c(x) causes an additional smooth current density^ j c&sinc(x)
which compensates the nonzero current induced by the
alternating phasej(x). The average current density^ j & is
then zero and a self-generated fluxFs(x) is establishedself-
consistently. Namely, on the background of an alternati
critical current density j c(x) the alternating fluxFs(x)
570163-1829/98/57~6!/3221~4!/$15.00
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causes a smooth phase shiftc(x), and the smooth phase shi
c(x) in its turn determines the alternating fluxFs(x).

In this paper we study this unusual stationary state wit
self-generated fluxFs(x) in a Josephson junction with a
alternating critical current density. We derive equations
termining the alternating phase differencej(x) and the
smooth phase shiftc(x). From these equations we obtain
spontaneous fluxFs(x) occurring when the average energ
density of the self-generated magnetic field exceeds that
critical value proportional to the average critical current de
sity. We find two types of Josephson vortices in a state w
a self-generated flux: one with fluxF1,F0/2, and one with
flux F25F02F1.F0/2.

Consider a one-dimensional, infinitely long Josephs
junction parallel to thex axis and assume that the critic
current densityj c(x) is a random function taking positive
and negative values. We denote the typical length scale
j c(x) as l and define the average value of the critical curre
density^ j c& as

^ j c&5
1

LE0

L

j c~x!dx, ~1!

with the averaging intervalL@ l . The effective Josephso
penetration depthLJ is introduced by

LJ
25

cF0

16p2l^ j c&
, ~2!

wherel is the London penetration depth.
In the case of a Josephson junction withl! l !LJ the

phase differencew(x) satisfies the equation4

LJ
2w92

j c~x!

^ j c&
sinw50. ~3!

We write the critical current densityj c(x) as

j c~x!5^ j c&@11g~x!#, ~4!

with ^g(x)&50. The length scale of variation ofg(x) is of
the order ofl and the typical values of maxug(x)u vary from
maxug(x)u;1 to maxug(x)u@1. In particular, if the average
^ j c& is small compared to the typical amplitude ofj c(x), then
maxug(x)u@1.
R3221 © 1998 The American Physical Society
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In terms of the functiong(x) we rewrite Eq.~3! for the
phase differencew(x) in the form

LJ
2w92@11g~x!#sinw50. ~5!

The idea of the following calculations is based on t
assumption thatl !LJ and on a mechanical analog
Namely, Eq.~5! for the phase differencew(x) coincides with
the equation describing the motion of a pendulum with
vibrating pivoting point ~Kapitza pendulum!. In this me-
chanical analogyw is the angle determining the position o
the pendulum andx is the time. We treat here the case wh
g(x) is rapidly alternating over the length ofLJ . In terms of
the mechanical analogy, this means that the dependenc
the phase differencew on x is similar to the trajectory of a
pendulum with a rapidly vibrating pivoting point. In thi
case, the motion of the pendulum is a slow motion alon
certain smooth trajectory with rapid oscillations around t
trajectory; the amplitude of these oscillations is sma5

Therefore, we write the phase differencew(x) as

w~x!5c~x!1j~x!, ~6!

wherec(x) is a smooth function with length scale of ord
LJ and j(x) is a rapidly alternating function with lengt
scale of orderl . The average value ofj(x) vanishes and the
typical amplitude of variations ofj(x) is small, i.e.,
^j(x)&50 and^uj(x)u&!1.

Substituting the ansatz~6! into Eq. ~5! and keeping terms
up to first order inj(x) we find

LJ
2c91LJ

2j92@11g~x!#@sinc1jcosc#50. ~7!

Two types of terms appear in Eq.~7!: terms alternating ove
a lengthl and smooth terms varying over a lengthLJ . The
alternating terms cancel each other, independently of
smooth terms, which also cancel each other. As a resul
obtain both functionsc(x) andj(x) from oneequation~7!.5

First, the alternating phasej(x) is determined by

LJ
2j95g~x!sinc. ~8!

In the derivation of Eq.~8! we omitted two out of three
alternating terms in Eq.~7! since they are proportional t
j(x) and therefore much smaller thang(x).

Second, an equation for the phasec(x) is derived by
averaging Eq.~7! over lengthsa@ l (a!LJ),

5 yielding

LJ
2c92sinc2^g~x!j~x!&cosc50. ~9!

Introducing the Fourier transform ofg(x) by

g~x!5
1

2pE2`

`

gke
ikxdk, ~10!

we find the solution of Eq.~8! in the form of

j~x!52
sinc

2pLJ
2E

2`

` gke
ikx

k2
dk52jg~x!sinc. ~11!

The functionjg(x) depends only on the alternating comp
nent of the critical current densitŷj c&g(x) and the self-
generated fluxFs(x), a measurable quantity, is
a

of

a
s

e
e

Fs5F0

j

2p
52F0

jg

2p
sinc. ~12!

This relation allows one to studyjg(x) experimentally. In
deriving Eq.~11! we ignored the dependence of sinc on x.
This may be done since on the length scalel the variations of
the smooth function sinc(x) are of orderl /LJ!1. Taking
into account that the alternating part of the critical curre
density has typical wave numbersk;1/l we estimatej(x)
from Eq. ~11! as

j~x!;2sinc
l 2

LJ
2

g~x!. ~13!

Therefore, typical values of the alternating phase differe
j(x) are small@^uj(x)u&!1# if

^ug~x!u&!
LJ

2

l 2
. ~14!

Next, using Eqs.~8! and ~11!, we calculate the averag
^g(x)j(x)& and thus obtain the equation~9! for the smooth
phase shiftc(x) in the final form:

LJ
2c92sinc1gsinccosc50, ~15!

where the constantg5^g(x)jg(x)& is given by

g5
cl

F0^ j c&
^Bs

2&5
^Bs

2&

^BJ
2&

. ~16!

Here,

Bs5
4p

c
^ j c&E g~x!dx5

F0

4pl

djg

dx
~17!

is the magnetic field generated by the alternating compon
of the critical current (̂Bs&50), and

BJ5
4p

c
^ j c&LJ . ~18!

We estimate the value ofg as

g;
l 2

LJ
2 ^g2&. ~19!

The assumption̂j(x)&!1 restricts the value ofg. However,
it follows from Eqs.~14! and ~19! that ^j(x)&!1 andg.1
hold simultaneously if

LJ

l
!^ug~x!u&!

LJ
2

l 2
. ~20!

In particular, Eq.~20! is satisfied when the average value
the critical current density is small compared to the typi
amplitude of its variations, i.e.,̂j c&!maxu j c(x)u.

To complete the description of a stationary state with
self-generated flux we calculate the energy of a Joseph
junction E.6 It takes the formE5E01Ew , whereE0 is inde-
pendent of the phase differencew(x) and
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Ew5
\^ j c&

2e
E dx$ 1

2 LJ
2w822@11g~x!#cosw%. ~21!

Using Eqs.~6!, ~11!, and ~16!, we obtain the energyEw in
terms of the smooth phase shiftc(x), namely,

Ew5
\^ j c&

4e
E dx$LJ

2c8222cosc2gsin2c%. ~22!

The solutionsc(x) of Eq. ~15! correspond to the minima an
maxima of the functionalEw@c(x)# @Eq. ~22!#.

Let us now apply Eqs.~15! and ~22! to two stationary
states in a Josephson junction with lengthL@LJ . The first
state occurs in zero applied field. In this case the average
inside the junction is zero and thus an alternating s
generated fluxFs(x) appears simultaneously with a pha
shift c5const. The second state occurs in nonzero app
field. In this case the average flux inside the junction is c
ried by Josephson vortices. The alternating self-gener
flux Fs(x) appears then simultaneously with a phase s
c(x), whose spatial dependence describes the vortices.

In the stationary state withc5const the values ofc are
determined by Eq.~15! which takes the form

sinc~12gcosc!50. ~23!

In the caseg<1 Eq. ~23! has two solutions,c50 and
c5p and thus, cf. Eq.~12!, there is no self-generated flux

In the caseg.1 there are four solutions of Eq.~23!,
namely,c52cg , 0,cg ,p, where

cg5arccos~1/g!. ~24!

The energy of a Josephson junctionE has a minimum for
c56cg and a maximum forc50,p. It follows then from
Eqs.~12! and ~24! that a self-generated flux

Fs~x!52F0

jg~x!

2p
sincg57F0

jg~x!

2p

Ag221

g
~25!

arises in the two states with the minimum energyE. Note that
the criteriong.1 means that the average energy density
the self-generated magnetic field̂Bs

2&/4p is higher than
F0^ j c&/4pcl.

From Eqs.~13! and ~25! we estimateuFs(x)u as

uFs~x!u;F0

Ag221

g

l 2

LJ
2

ug~x!u!F0 . ~26!

Note also that the average tunnel current density^ j & is equal
to zero for the state withc5const as

^ j &5^ j c~x!sinw&5^ j c&sinc~12gcosc!. ~27!

Next we consider a Josephson vortex. In this case
phasec(x) satisfies Eq.~15! and the boundary condition
c8(6`)50. It is convenient to write Eq.~15! as

LJ
2c952

dU

dc
, ~28!

where the functionU(c) is given by
ux
f-

d
r-
ed
ft

f

e

U~c!5211cosc1
g

2
sin2c. ~29!

Equation~28! describes the motion of a particle with ma
LJ

2 in a potentialU(c), wherec andx are the coordinate o
the particle and the time, respectively. This mechanical a
ogy allows for a qualitative analysis of the solutions of E
~28!. In Fig. 1 we show the dependence of the potentialU on
c for g<1 andg.1.

In the caseg<1, the curveU(c) has two maxima of
equal height located atc50,2p. A Josephson vortex corre
sponds to the trajectory of a particle motion which starts
the potential maximumc50 @point a in Fig. 1~a!# at time
x52` with zero velocity @c8(2`)50# and ends at the
potential maximumc52p @point b in Fig. 1~a!# at time
x5` with zero velocity@c8(`)50#. This solutionc0(x)
exhibits c0(`)2c0(2`)52p, i.e., it describes a vortex
with the flux F0 localized in a region with typical sizeLJ .

In the caseg.1, the curveU(c) has three maxima o
equal height located atc52cg , cg , 2p2cg and therefore
two trajectories exist corresponding to two different Jose
son vortices.

The first vortex is described by a trajectory of a partic
which starts with zero velocity atc52cg @point a in Fig.
1~b!# at timex52` and ends with zero velocity atc5cg
@point b in Fig. 1~b!# at time x5`. This solutionc1(x)
exhibits c1(`)2c1(2`)52cg , i.e., it describes a vortex
with the flux F15cgF0 /p,F0/2.

The second vortex corresponds to the trajectory of a p
ticle starting with zero velocity atc5cg @point b in Fig.
1~b!# at time x52` and ending with zero velocity a
c52p2cg @point c in Fig. 1~b!# at time x5`. This solu-
tion c2(x) exhibits c(`)2c(2`)52p22cg , i.e., it de-
scribes a vortex with the flux F25F02F15F0
2cgF0 /p.F0/2 localized in a region with the size of th
order ofLJ .

The fluxF1 and energyE1 of the first vortex tend to zero
wheng→1. An approximate solution forc1(x), F1, andE1

FIG. 1. The dependence of the potentialU on c for g,1 and
g.1. ~a! g50.5, ~b! g52.
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can be found if 0,g21!1. In this case,cg
2'2(g21) and

U(c)'cg
2c2/42c4/8. It follows then from Eq.~28! that

c1~x!'A2~g21!tanhS x

LJ

Ag21

2 D , ~30!

i.e., the fluxF15A2(g21)F0 /p!F0 is localized over a
lengthLJ /Ag21@LJ , and the energy is

E1'
2A2

3

\^ j c&LJ

e
~g21!3/2. ~31!

In the case ofg@1 we havecg'p/2 and therefore
F1'F2'F0/2. The main contribution to the potentia
U(c) ~21! comes from the term (g/2)sin2c and both the first
and second vortices are described by

c1,2~x!'arcsinF tanhS x

LJ

Ag D G . ~32!

Each of the two vortices is localized in a region of si
LJ /Ag5F0 /(4plA^Bs

2&)!LJ and has an energyE1,2

which is independent of̂j c&,

E1,2'
\^ j c&LJ

e
Ag5

F0

4p2
A^Bs

2&. ~33!

It follows from Eq.~12! that a self-generated flux exists
the presence of a Josephson vortex for any value of the
rameterg since cÞ0. The alternating fluxFs(x) is then
y

ys
o
n

a-

proportional to jg(x)sinc(x), i.e., the rapidly alternating
componentjg(x) is modulated by a smooth factor sinc(x)
imposed by the vortex. In the caseg,1 a state with a self-
generated flux can be studied experimentallyin the presence
of vortices.

Let us now illustrate our calculations by the mod
j c(x)5^ j c&1 j̃ csin(2px/l). From Eqs.~11! and ~16! we find
jg(x)5(4l 2 j̃ c /cF0)sin(2px/l) and

g5
2l l 2

cF0

j̃ c
2

^ j c&
. ~34!

As expectedjg(x) depends only on the alternating comp
nent of j c(x) and a self-generated flux exists (g.1) if the
amplitude is j̃ c@^ j c&.

In conclusion, we have shown that in a long Joseph
junction with an alternating critical current density, a se
generated flux arises if the average energy density of
self-generated magnetic field is higher than a critical va
proportional to the average critical current density. Tw
types of Josephson vortices exist under these conditions:
with flux F1,F0/2 and one with the complementary flu
F25F02F1.F0/2. The stability of these vortices remain
to be checked.
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