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Flux jumping in thin films
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The thermomagnetic flux-jump instability of the Bean critical state is considered, which may occur during
flux penetration in thin films of type-Il superconductors in a perpendicular magnetic field. We calculate the
applied fieldB; at which this instability occurs and its dependence on the rampBgateon the nonlinear
current-voltage curve, and on the thermal resistance between the film and the substrate. As examples we
consider the thermomagnetic flux-jump instability at the straight edge of a superconducting film and of the
same edge containing a small indentation of semicircular shape. The presence of a small indentation drastically
reduces the field or ramp rate at which the thermomagnetic instability 0¢Q0%63-182096)02938-4

[. INTRODUCTION 6Q, and temperature riséT,, which reduces the supercon-
ducting screening current density further. Under certain

Bean’s critical state modebkuccessfully describes the ir- conditions this results in an avalanche-type increase of the
reversible magnetization in type-Il superconductors by introtemperature and magnetic flux in the superconductor, i.e., in
ducing a critical current densitj,(T,B) which in general a global flux jump.
depends on the temperatufle and the magnetic fieldB. The relative effect of the flux and temperature redistribu-
Within the Bean model in the original longitudinal geometry tion dynamics on the flux-jumping process depends on the
the slope of the stationary magnetic field profile equalgatio = of the flux (t,) and thermal {;) diffusion time
toic(T,B) in the region where flux has penetrated. This non-constantg. The dimensionless parameteis determined by
uniform flux distribution is not in equilibrium, and under the corresponding diffusion coefficients,
certain conditions a thermomagnetic flux-jump instability
may arise in this critical state. The flux-jumping process re- ty Ao
sults in a flux redistribution towards the equilibrium state and ™ E “Ho e (1)
is accompanied by a sudden heating of the superconductor. ) o . )

Flux jumping has been extensively studied in convenWhere\ is the heat conductivityy is the electric conductiv-
tional and high-temperature superconductsse the re- ity, andC is the heat capacity.
views in Refs. 2 and 3, references therein, and the recent For 7<<1 (t,<t,), rapid propagation of the flux is accom-
experimental and theoretical studies Refs. 4-Tvo types Panied by an adiabatic heating of the superconductor; i.e.,
of flux jumps can be distinguished, namely, global and locathere is not enough time to redistribute and remove the heat
flux jumps. Aglobal flux jump involves vortex motion in the released due to the flux motion. Fer-1 (t,<ty), the spa-
entire volume of the sample. Rcal flux jump is restricted tial distribution of flux remains fixed during the stage of
to a small fraction of the sample volume. Depending on théapid heating. These adiabatie<€1) and dynamic £>1)
initial perturbation and on the driving parameters there ar@pproximations typically are used to approach the flux-
two qualitatively different types of global flux jumps, jumping problent. The flux-jump scenario significantly de-
namely, complete and partial flux jumps. Complete jumpsPends on the relation between the values of the heat conduc-
turn the superconductor into the normal state. Partial jump8vity A, heat capacityC, and conductivitys(E) defined as
self-terminate when the temperature is still less than the critithe slope of thej(E) curve. The dependence of on the
cal temperaturd . electric fieldE (nonlinear conductivityis an important fac-

To illustrate the origin of a global flux jump we suppose tor determining the flux-jumping proce¥¥? In particular, it
that the temperatur€, of the sample is increased by a small results in the dependence of the flux-jump fi#édg on the
perturbationdT, arising due to a certain initial heat release ramp rateB, of the external magnetic fiel®, which is
5Q,. The critical current density,(T) is a decreasing func- known from numerous experimerfts>®
tion of temperature. Thus, the density of the superconducting In the longitudinal geometry of slabs or cylinders in a
current screening the external magnetic field atparallel field, the Bean model means that the current density
T=Ty+ 8Ty is less than it was af =T,. This reduction of j can have the values O ¢y only. In the transverse geometry
the screening current leads to a rise of the magnetic fluxf films in a perpendicular field, one has j in the regions
inside the superconductor. The resulting motion of the magwhere magnetic flux has penetrated, and a surface screening
netic flux into the sample induces an additional electric fieldcurrent with possible values0j<j. in the central flux-free
S6Ey. The perturbationdE, causes a further heat releaseregion. In this central region the current density is uniform
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when the film thicknesd is less than the London penetration ~ The relation given by Eq(2) was first derived in the
depth\ . For thicker films withd>\, , the screening cur- framework of the Anderson-Kim modér?*which considers
rent may be nonuniform across the thickness, forming dhe thermally activated uncorrelated hopping of bundles of
current-caused longitudinal Bean critical state which was revortices. The vortex-gladsand collective cree** models
cently computed? result in more sophisticated dependenceg oin E. How-

In magnetization experiments the thermomagnetic fluxever, thesej(E) curves closely coincide with Eq2) if
jump instability originates in the outer region where the fluxj—j.<j.. The recently developed self-organized criticality
has penetrated, since the electric fi€ldgenerated by the approach to the critical st&#fe?® also results in Eq(2) if
external magnetic field variation is maximum at the speci-j —j.<j.. The logarithmic dependence of the current den-
men edges. Computatidisg® show that the critical state in sity j on the electric fieldE in the intervalj —je<fjcisin
this penetrated region is quite similar for the longitudinal andgood agreement with numerous experimental data.
transverse limitsl—o andd—0. In particular, in these two Equation(2) yields the conductivity
limits the spatial distributions of and E are very similar.

Indeed, when complete penetration is reached these two ge- o
ometries even exhibit identical current density and electric o=0o(E)= ﬂ: 1 4)
field profiles. This finding allows one to use the expressions dE E°

for the field E of the longitudinal limit as good approxima-

tions for thin films in a perpe.ndl_cular fle.|d. We note for_We estimate this as>10° 01 cm! using the typical
completeness that the magnetic field profiles are rather d'fdataj ~10 Acm-2 and E<10-7 Vem-L It follows
1 .

; i1, d1-16
fer(_?_r;]tem rtgseesr?czvgfg:gne]egﬁiéts stronalv modifies the flo from this estimate that the conductivity determining the
P 9 gy lux-jump dynamics for magnetization experiments is very

of the currents in the film and significantly affects the elec-, . . . .
o : . _ high. As a consequence the dimensionless rai®also very
tric field generated in the flux penetration process. In particus . : : o
) . X high. Thus, the scenario of a flux jump for the magnetization
lar, calculations as well as a simple estimate show that a

X . . > . experiments corresponds to the limiting case wherl and
small indentation with a semicircular edge drastically M-t e initial rapid heating stage of a flux iump takes place on
hances the value oft in the vicinity of this edge P g stag Jump P

defect!”128The enhancement of electric field in the pres-theI baﬁ.kground of a fro;éan-mh mﬁgnetlc flux. fuxc
ence of the edge defects is specific for the longitudinal ge- n this paper we consider the thermomagnetic fluxjump
instability of the Bean critical state during flux penetration

fc:lrrr:]estry and can influence the critical state stability in thminto a thin film, which generates the background of a non-

Let us estimate the electric field occurring in typical mag_unlform electric field. We find the flux-jump fielB; and its

netization experiments. The external magnetic field ramgl€Pendence on the external magnetic field rampBgtand
o . . : ) . the thermal resistance between the film and the substrate.
rate B, is usually in the intervaB,<1 T s ~*. The electric

) T e The general results are applied to consider the critical state
field E generated by the magnetic field variation is of the i in 4 thin film with a straight edge without and with
order ofE~B,Xx,,, wherex, is the flux penetration depth. To

. . o ; _~ asmall indentation.
estlmeitﬁe the f'?|10E we usexp<<10"" m which results in The organization of this paper is as follows. In Sec. II, we
E<10 "V cm™-. This electric field interval corresponds to ¢

i . . ! rive a general criterion for the onset of thermomagnetic
the flux creep regime with the dependence @i E taking  instapility flux jump in a superconducting film. In Sec. i

the form this criterion is applied to calculate the flux-jump field for a
thin film with a straight edge without and with a small semi-
o E circular indentation. Secton IV discusses these results.
J(E)=jct]sln B 2
whereE, is the voltage criterion at which the critical current Il. STABILITY CRITERION

density j. is defined,j, determines the slope of th€E)
curve, andj;<<j.. The actual choice oE, is not crucial.
Indeed, by choosing for the voltage criterion a certain valu
E, instead ofE, we change the critical current density from Let us consider a superconducting film of thicknebs

Jo 10 Jc=]c~JaIn(Eo/Eg). The difference betweefy andjc  gypjected to a magnetic field, perpendicular to the film
is small since InEy/Eg)~1 andj;<j.. Itis common to de- (xy pland. Now suppose that the temperature of the sample

In this section we treat the stability of the critical state
eassuming that the thermomagnetic flux-jump instability de-
velops much faster than the magnetic flux diffusion process.

fine j. as the current density at whid,=10"°V cm™*. T 'is increased by a small perturbatiafi. To keep the
The j-E curve in the flux creep regime is often describedcritical state stable, i.e., to keep the screening current at the
as a power law, same level, an electric field perturbatiék arises. The ad-

ditional electric field SE causes an additional heat release
6Qo SE, which is the “price” for keeping the screening
' 3 current density at the same level.
The critical state is stable if the additional heat release
with n>1. Expanding this into a series innkk1 and keep- 5Q can be removed by the additional heat flBM/ resulting
ing the first two terms, we find that if we take=j./j,, then  from the temperature perturbatiafT. The temperature dy-
Egs.(2) and(3) coincide with an accuracy of Af<1. namics follows from the heat diffusion equation

1/n

. [ E
J(E):JC(E;
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JT _ The ratey characterizes the time development of the insta-
Cor =NATHE. (5 bility. If >0, any perturbation of the temperature will in-
crease; i.e., the stability margin corresponds/te0.

In the case of a thin film the background electric field is a

Let us now consider a film which is in a thermal contactf nction ofx andy onlv. One can thus separate the variables
with the substratéplanez=0). We characterize the thermal functi X y only. u P var

resistance of this contact by a heat transfer coeffidieand In the_heat diffusion equatlo_n and the functighi (x,y,2)
neglect the heat flux to the coolafmlanez=d). In this case matching the boundary conditionsat 0, d takes the form
the temperature perturbation satisfies the boundary condi- h
tions A 8T’ (X,y,0)=hoT(X,y,0) anddT’(x,y,d)=0, where oT= 0(x,y)(cosqz+ —sinqz), (12
the prime denotes the derivative with respectto Ag

To derive the explicit form of this stability criterion we whereq is determined by the equation
need the relation betweefiT and SE. To obtain this, we
calculate the decrease of the current density resulting h
from a temperature perturbatia¥T and the increase of the targd= E (13
current densitysj , resulting from an electric field perturba- ) ) ]
tion SE. If the critical state is stable, the total screening!n particular, it follows from Ezq.(132) th?t in the case of an
current density stays constant. Thus the relation betweeld€al thermal contact(—«) g~ w“/4d” and in the case of

SE and o follows from a high thermal boundary resistanded&\) g?~h/\d.
Substituting Eq(12) into Eq.(11) we find that the stabil-
8j=06j_+6j,=0. (6) ity margin is determined by the existence of a nontrivial

solution of the equation
In the critical state one hgs= . and the decrease pfdue to

e E,| 9]
the temperature perturbatiaghis g2 Ep | el
A 0—qg o+ | T 0=0, (14
Sj_=— % ST (7) with the boundary conditionV 6=0 at the edge of the film,
aT wheren is the unit vector perpendicular to the edge of the

film in the film plane.

(note thatdj./dT<0). The increase of the current density  The eigenvalue equatiofi4) has the form of the Schro

due to the electric field perturbatiafE is dinger equation of quantum mechanics. It means, in particu-
) lar, that the variational methétcan be used to determine
5j+=ﬂ5E=05E. ®) t‘rze lowest eigerlvalueé“energy”) q.ﬁqi.n gr)d eigenfunction
dE (“wave function”) 6(x,y) by minimizing the energy
o i ) functional £ 6(x,y)] with respect to the parameters

Combining Egs.(4) and (8) we find the relation between a,, a, ... of some trial functiond(x,y,a;,a,, ),
Sj . and 6E in the form where

5j+=IJE—15E=nJE SE, ) fa'zdxdy—af E,6%dxdy

° ° ELo(xy)]= (15
wheren=j./j;>1. From Egs(6), (7), and(9) then follows f 6°dxdy
that
and
11]9j nE,| dj
sE==| el sy=50) el sy (10) n| dj,
gl dT Jo | 9T a=—|—]|. (16)
N oT
Equationg4) and(10) allow us to understand the effect of

the background electric field,, on the critical state stability. 1. EXAMPLES
From Eq.(4) we see that a low-background electric field o ) )
E, results in a high differential conductivity=1/E, . In its To fix ideas we consider two examples, the long straight

turn this high conductivityr leads to a small electric field ©d9€ of a superconducting film of rectangular shape and the
perturbation since Eq(10) states thatsEx1/oxE,. The Same edge with a small semicircular indentation. We will see
smaller isSE, the less “costly” it is to remove the additional that this indentation drastically enhances the electric field
heat release. As a result, the lower is the background electri@duced during flux penetration. At this little defect the ther-

field E,, during creep, the more stable is the superconductin omagnetic flux-jump i_nstapility originates thus at much
state. ower values of the applied field than at a flawless edge. In

; both cases we approximate the film by a superconducting
We write the temperature &6=Ty+ 5Tex and use i .
Egs. (5) and(10) to fiﬁd an equationofoﬁT PO) half planey=0 and assume the film thickned¢o be much
' ' smaller than all other relevant lengths of this problem.
The background electric field,(x,y) follows from Fara-

Ji
e oT. (11 day’s law roE,= — B with appropriate boundary conditions.

yCST=NAST+nE, 9T
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In the fully penetrated state the current density has saturated,; P=p,

therefore, the current-caused part of the inductigfx,y) . y= yp
does not change with time when the applied fiBlgis fur- — >
ther increased. One thus hasEgt —B,. The resulting ——/ﬁ\—i//——\\

Ep(X,y) in the critical state crucially depends on the speci- —_—

men shape as discussed in detail in Ref. 12. For partial pen- ~————>— 0
etration one has in longitudinal geometry for the half space =N
e N —

y=0 the current densityj=¢j(y) with j(y)=j. for ST TN
O<ys=y,andj(y)=0 fory>y,, wherey,=B,/uoj. is the
penetration depth. The background electric field in this case //*\\
is E,=¢eEL(y) with

. Po

B - for O=sy=y,,

Eu(y)= a(Yp—VY) Y=VYp 17 . . . o N
0 for Y=Y, FIG. 1. A film with an indentation in the form of a semicircle

. with radiusp, and centered at=y=0. The straight and circular
In particular, mafEy(y)}=BaBa/uoj. occurs at the edge lines are the field lines of the current densjitand electric fields
y=0. The background electric field7) is a good approxi- (in the film plane during penetration of magnetic flux.
mation also for thin films3Inserting Eq(17) into Eq.(14)

we obtain For the second equality we used the criteriay,=q?, Eq.
, 5 (20). Assuming thatqy,>1 we find, from Eg. (21),
0"(y) +ealyp=y)9(yp—y)6(y)=q6(y), (18 d<a<y,, which was required for the criteriof20). Note
_ _ that the conditiomqy,>1 leads toy,>d for the case of an
where#(¢) =0 for <0, 9(¢)=1 for £=0, and ideal thermal contagt between thepfilm and the substrate and
to y,>+/A/hd for the case of a high thermal boundary resis-
] (190  tance.
As a second example we consider the same straight film
) edgey=0 but with a small indentation with a semicircular
Before we solve the eigenvalue equati@s) we note that edge,x2+y2=p§, y=0. The radius, of this defect should
from physical reasons we expect that the instability origi-ye |rger than the film thicknessand much smaller than the
nates at the film edge whegg,(y), Eq. (17), is maximum. o eiation deptly,~B;/uoj. at which the instability oc-
We further expect that the heat flows mainly alangnto the curs,d<pg<y,. The presence of this indentation strongly
substrate, and much less heat flows alongndy. This 5 ifies the flow of the critical currents and drastically en-

means tzhat in Eqgs.(14) and (18 one should have pances the background electric field which is induced during
|V<6|<q®6. Therefore, the criterion for thermomagnetic g penetration by the moving vortex liné&!2-18

flux-jump 'nStab'l,'ty may be found by equating in EQ.8) The current stream lines first are parallel to the edge
the heat production term at the edgey,6(0), to theheat —y_q then the current flows on circles concentric with the
sink termq~6(0). This yields the criterion for flux jumping  Gefect(centered ak=y=0), and then flows again parallel to
at the straight edges of films,y,=q". Using the expres- y_q. cf Fig. 1. The straight and circular flows are separated
sions forc, andy, we present it as by the paraboly = (x2— p2)/2p,. This current density has
the same orientation as the electric fi€lg. However, the

A - -1 (20) magnitudesj and E, exhibit different behavior: While
q 2N j=]c is constant in the considered penetrated reginis
. L . . . sharply peaked at the indentation and decreases monotoni-
The stability _crlterlon(ZO) det_ermm(_as the flux-jump field cally to zero as it approached the front lipg,«(x). Beyond
B; at the straight edges and in particular the dependence ¢f . fux front one hag=E,=B=0. For longitudinal geom-
B; or} the eﬁfama'hn;agnezc ?_?'d rarr;]p raE and the heat etry, the exact shape of the front line is known,
transfer coefficienh from the film to the substrate. Viron(X) =maxy, , (p2—x2)¥2], with p,=po+Y,. This lon-

~ We shall use now Eq18) to estimate the widtia of the  gjtydinal result pma)? be used as an approxpimation for the
eigenfunctiond(y), i.e., the extension of the heated region atfjim as is confirmed by computation’:3 Inside the region
tEe OE.Set 9(; frllux jurgpin%. OUL atf)_cl)ve rc]prllsideragions .ﬂssumgf circular flow the conditions rét,= —Ba and E,=0 at
that this width is wider than the film thickness but still nar- I g ;
rower than the penetration depyfy, d<a<y,. This is in- p=\X"+y"=p, are satisfied by the solution
deed the case, as we can easily estimate by a variational
method®® With a simple Gaussian trial function Ba( 2 )

oT

NB,
C]_: N

C1¥Yp BjBan | dj

aT

6=exp(—y?/2a?) the integrals in Eq(15) are easily evalu- Ep=6€, —
ated, and minimization with respect ¢oyields the stability
criterion (20) and the width

(22

13 The irrotational 14 term in Eg.(22) means a pronounced
a= 16 Y3— /g Yp 21) enhancement of the background electric field near small in-
! q?) dentations. The height of this maximum is
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ma><{Eb(p)}~Bap,2)/2po, which is higher than the maximum IV. CONCLUSIONS
field Bayp, EQ. (17), at the defect-free edge by a factor ~ Comparing the criteri@20) and(24) for the onset of ther-
Yol2p0>1. momagnetic flux-jump instability at the straight edge of a

We expect the thermomagnetic flux-jump instability to film with and without indentation, one finds that the factor
originate at the position of maximur,, i.e., at the edge cyY, in Eq. (20) is replaced byc,po, WhereczwclyS/Zpg.
p=po of the indentation. As for the defect-free edge, we will Thus the ramp ratB, at which a flux jump occurs at a given
find that the widtha of the nucleusf(p) is much smaller flux-jump field B; is smaller for the indentation by a factor
than the penetration depth~y, and even smaller than the 2po/y,~2popojc/B5<1. At a constant ramp rate the insta-
defect radiuspy. The curvature of the indentation may thus bility occurs at a smaller fiel@; when the film edge exhibits
be disregarded. ExpandingE,(p) with respect to an indentation. It follows also from Eq&0) and(24) that at
(p—po)/pp<<1 and keeping only the constant and lineara straight edgijOCB;1 and at a small indentatior,

terms, we obtairEy(p) = & Ba(pp/po)Lpo—(p—po)]. The  *Ba* _ _
resulting eigenvalue equation has thus the same form as Eg. T0 fiX ideas we consider the example of a rather thick
(18) if one makes the replacements+p—pg, y,— po, and film, = d=100um,  po=200 um, jo=10° ~Am?,
c— s with ic!19jc1dT|=10 K, n=50, and\=0.1 W/K m. Using Egs.
v (24) and (13 we find for h=10° W/K m? the estimate
B;~B, "? where the units are tesla f@; and T/s forB,.
(23)  Thus even in a thick film the flux-jump instability occurs at
rather high fields. In particular, this estimate results in
andp,~B;/uoj.. The stability criterion for flux jumping at B;=10T for B,= 102 T/s and inBj=1T for B,=1TIs.
a small indentation of radiugs, is thusc,po=0?2. Using Eq. This example reveals that in much thinner films thermo-
(23) we present it as magnetic flux jumping is not to be expected within the range
. of fields and ramp rates occurring in typical experiments or
Copo BiBan applications of superconducting films. Clearly, the reason for
q° _Zuéxquoji this stability of the critical state is the effective cooling of a
- o ] ) ] thin film on a substrate. If desired, the parameters of an ex-
The stability _crlterlon_(24) det_ermln(_as the flux-jump field periment may be chosen such that the predicted flux-jump
B; at a small indentation and in particular the dependence ofstapility should occur. But note that for very large applied
B; on the external magnetic field ramp r&g, the indenta- fields the penetration depthy,~B,/uoj . formally will be
tion radiuspy, and the heat transfer coefficientfrom the  |arger than the half widtka of the film; in this case one has

- Bapf)n
27 2p2N

i,
oT

e
oT

=1. (24)

film to the substrate. . ‘to putp,=ain c,, Eq.(23). Further increase d&, above the

Using the same replatz:emzent as above we find that the trigjeld of full penetrationB,= woj.a will then not lead to flux
function 6= exf —(p—po)72a“] has the width jumping since the electric field has saturated to a final profile

13 even as the current density.
_ _e.—13_ _1/e PO
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