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The thermomagnetic flux-jump instability of the Bean critical state is considered, which may occur during
flux penetration in thin films of type-II superconductors in a perpendicular magnetic field. We calculate the
applied fieldBj at which this instability occurs and its dependence on the ramp rateḂa , on the nonlinear
current-voltage curve, and on the thermal resistance between the film and the substrate. As examples we
consider the thermomagnetic flux-jump instability at the straight edge of a superconducting film and of the
same edge containing a small indentation of semicircular shape. The presence of a small indentation drastically
reduces the field or ramp rate at which the thermomagnetic instability occurs.@S0163-1829~96!02938-4#

I. INTRODUCTION

Bean’s critical state model1 successfully describes the ir-
reversible magnetization in type-II superconductors by intro-
ducing a critical current densityj c(T,B) which in general
depends on the temperatureT and the magnetic fieldB.
Within the Bean model in the original longitudinal geometry
the slope of the stationary magnetic field profile equals
m0 j c(T,B) in the region where flux has penetrated. This non-
uniform flux distribution is not in equilibrium, and under
certain conditions a thermomagnetic flux-jump instability
may arise in this critical state. The flux-jumping process re-
sults in a flux redistribution towards the equilibrium state and
is accompanied by a sudden heating of the superconductor.

Flux jumping has been extensively studied in conven-
tional and high-temperature superconductors~see the re-
views in Refs. 2 and 3, references therein, and the recent
experimental and theoretical studies Refs. 4–9!. Two types
of flux jumps can be distinguished, namely, global and local
flux jumps. Aglobal flux jump involves vortex motion in the
entire volume of the sample. Alocal flux jump is restricted
to a small fraction of the sample volume. Depending on the
initial perturbation and on the driving parameters there are
two qualitatively different types of global flux jumps,
namely, complete and partial flux jumps. Complete jumps
turn the superconductor into the normal state. Partial jumps
self-terminate when the temperature is still less than the criti-
cal temperatureTc .

To illustrate the origin of a global flux jump we suppose
that the temperatureT0 of the sample is increased by a small
perturbationdT0 arising due to a certain initial heat release
dQ0. The critical current densityj c(T) is a decreasing func-
tion of temperature. Thus, the density of the superconducting
current screening the external magnetic field at
T5T01dT0 is less than it was atT5T0. This reduction of
the screening current leads to a rise of the magnetic flux
inside the superconductor. The resulting motion of the mag-
netic flux into the sample induces an additional electric field
dE0. The perturbationdE0 causes a further heat release

dQ1 and temperature risedT1, which reduces the supercon-
ducting screening current densityj c further. Under certain
conditions this results in an avalanche-type increase of the
temperature and magnetic flux in the superconductor, i.e., in
a global flux jump.

The relative effect of the flux and temperature redistribu-
tion dynamics on the flux-jumping process depends on the
ratio t of the flux (tm) and thermal (t t) diffusion time
constants.2 The dimensionless parametert is determined by
the corresponding diffusion coefficients,

t5
tm
tt

5m0

ls

C
, ~1!

wherel is the heat conductivity,s is the electric conductiv-
ity, andC is the heat capacity.

For t!1 (tm!t t), rapid propagation of the flux is accom-
panied by an adiabatic heating of the superconductor; i.e.,
there is not enough time to redistribute and remove the heat
released due to the flux motion. Fort@1 (t t!tm), the spa-
tial distribution of flux remains fixed during the stage of
rapid heating. These adiabatic (t!1) and dynamic (t@1)
approximations typically are used to approach the flux-
jumping problem.2 The flux-jump scenario significantly de-
pends on the relation between the values of the heat conduc-
tivity l, heat capacityC, and conductivitys(E) defined as
the slope of thej (E) curve. The dependence ofs on the
electric fieldE ~nonlinear conductivity! is an important fac-
tor determining the flux-jumping process.10,9 In particular, it
results in the dependence of the flux-jump fieldBj on the
ramp rateḂa of the external magnetic fieldBa which is
known from numerous experiments.2,3,5,8

In the longitudinal geometry of slabs or cylinders in a
parallel field, the Bean model means that the current density
j can have the values 0 orj c only. In the transverse geometry
of films in a perpendicular field, one hasj5 j c in the regions
where magnetic flux has penetrated, and a surface screening
current with possible values 0< j< j c in the central flux-free
region. In this central region the current density is uniform
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when the film thicknessd is less than the London penetration
depthlL . For thicker films withd@lL , the screening cur-
rent may be nonuniform across the thickness, forming a
current-caused longitudinal Bean critical state which was re-
cently computed.11

In magnetization experiments the thermomagnetic flux-
jump instability originates in the outer region where the flux
has penetrated, since the electric fieldE generated by the
external magnetic field variation is maximum at the speci-
men edges. Computations12,13 show that the critical state in
this penetrated region is quite similar for the longitudinal and
transverse limitsd→` andd→0. In particular, in these two
limits the spatial distributions ofj andE are very similar.
Indeed, when complete penetration is reached these two ge-
ometries even exhibit identical current density and electric
field profiles. This finding allows one to use the expressions
for the fieldE of the longitudinal limit as good approxima-
tions for thin films in a perpendicular field. We note for
completeness that the magnetic field profiles are rather dif-
ferent in these two geometries.1,11–16

The presence of edge defects strongly modifies the flow
of the currents in the film and significantly affects the elec-
tric field generated in the flux penetration process. In particu-
lar, calculations as well as a simple estimate show that a
small indentation with a semicircular edge drastically en-
hances the value ofE in the vicinity of this edge
defect.17,12,18The enhancement of electric field in the pres-
ence of the edge defects is specific for the longitudinal ge-
ometry and can influence the critical state stability in thin
films.

Let us estimate the electric field occurring in typical mag-
netization experiments. The external magnetic field ramp
rate Ḃa is usually in the intervalḂa,1 T s 21. The electric
field E generated by the magnetic field variation is of the
order ofE;Ḃaxp , wherexp is the flux penetration depth. To
estimate the fieldE we usexp,1024 m which results in
E,1026 V cm21. This electric field interval corresponds to
the flux creep regime with the dependence ofj on E taking
the form

j ~E!5 j c1 j 1lnS EE0
D , ~2!

whereE0 is the voltage criterion at which the critical current
density j c is defined, j 1 determines the slope of thej (E)
curve, andj 1! j c . The actual choice ofE0 is not crucial.
Indeed, by choosing for the voltage criterion a certain value
Ẽ0 instead ofE0 we change the critical current density from
j c to j̃ c5 j c2 j 1ln(Ẽ0 /E0). The difference betweenj̃ c and j c
is small since ln(Ẽ0 /E0);1 and j 1! j c . It is common to de-
fine j c as the current density at whichE051026 V cm21.

The j -E curve in the flux creep regime is often described
as a power law,

j ~E!5 j cS EE0
D 1/n, ~3!

with n@1. Expanding this into a series in 1/n!1 and keep-
ing the first two terms, we find that if we taken5 j c / j 1, then
Eqs.~2! and ~3! coincide with an accuracy of 1/n2!1.

The relation given by Eq.~2! was first derived in the
framework of the Anderson-Kim model19–21which considers
the thermally activated uncorrelated hopping of bundles of
vortices. The vortex-glass22 and collective creep23,24models
result in more sophisticated dependences ofj on E. How-
ever, thesej (E) curves closely coincide with Eq.~2! if
j2 j c! j c . The recently developed self-organized criticality
approach to the critical state25,26 also results in Eq.~2! if
j2 j c! j c . The logarithmic dependence of the current den-
sity j on the electric fieldE in the interval j2 j c! j c is in
good agreement with numerous experimental data.27

Equation~2! yields the conductivity

s5s~E!5
d j

dE
5
j 1
E
. ~4!

We estimate this ass.1010 V21 cm21 using the typical
data j 1.103 A cm22 and E,1027 V cm21. It follows
from this estimate that the conductivitys determining the
flux-jump dynamics for magnetization experiments is very
high. As a consequence the dimensionless ratiot is also very
high. Thus, the scenario of a flux jump for the magnetization
experiments corresponds to the limiting case whent@1 and
the initial rapid heating stage of a flux jump takes place on
the background of a ‘‘frozen-in’’ magnetic flux.

In this paper we consider the thermomagnetic flux-jump
instability of the Bean critical state during flux penetration
into a thin film, which generates the background of a non-
uniform electric field. We find the flux-jump fieldBj and its
dependence on the external magnetic field ramp rateḂa and
the thermal resistance between the film and the substrate.
The general results are applied to consider the critical state
stability in a thin film with a straight edge without and with
a small indentation.

The organization of this paper is as follows. In Sec. II, we
derive a general criterion for the onset of thermomagnetic
instability flux jump in a superconducting film. In Sec. III
this criterion is applied to calculate the flux-jump field for a
thin film with a straight edge without and with a small semi-
circular indentation. Secton IV discusses these results.

II. STABILITY CRITERION

In this section we treat the stability of the critical state
assuming that the thermomagnetic flux-jump instability de-
velops much faster than the magnetic flux diffusion process.

Let us consider a superconducting film of thicknessd
subjected to a magnetic fieldBa perpendicular to the film
(xy plane!. Now suppose that the temperature of the sample
T0 is increased by a small perturbationdT. To keep the
critical state stable, i.e., to keep the screening current at the
same level, an electric field perturbationdE arises. The ad-
ditional electric fielddE causes an additional heat release
dQ}dE, which is the ‘‘price’’ for keeping the screening
current density at the same level.

The critical state is stable if the additional heat release
dQ can be removed by the additional heat fluxdW resulting
from the temperature perturbationdT. The temperature dy-
namics follows from the heat diffusion equation
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C
]T

]t
5lDT1 jE . ~5!

Let us now consider a film which is in a thermal contact
with the substrate~planez50). We characterize the thermal
resistance of this contact by a heat transfer coefficienth and
neglect the heat flux to the coolant~planez5d). In this case
the temperature perturbation satisfies the boundary condi-
tionsldT8(x,y,0)5hdT(x,y,0) anddT8(x,y,d)50, where
the prime denotes the derivative with respect toz.

To derive the explicit form of this stability criterion we
need the relation betweendT and dE. To obtain this, we
calculate the decrease of the current densityd j2 resulting
from a temperature perturbationdT and the increase of the
current densityd j1 resulting from an electric field perturba-
tion dE. If the critical state is stable, the total screening
current density stays constant. Thus the relation between
dE andu follows from

d j5d j21d j150 . ~6!

In the critical state one hasj' j c and the decrease ofj due to
the temperature perturbationu is

d j252U ] j c
]T UdT ~7!

~note that] j c /]T,0). The increase of the current density
due to the electric field perturbationdE is

d j15
d j

dE
dE5sdE. ~8!

Combining Eqs.~4! and ~8! we find the relation between
d j1 anddE in the form

d j15
j 1
Eb

dE5
j c
nEb

dE, ~9!

wheren5 j c / j 1@1. From Eqs.~6!, ~7!, and~9! then follows
that

dE5
1

s U ] j c
]T UdT5

nEb
j c

U ] j c
]T UdT. ~10!

Equations~4! and~10! allow us to understand the effect of
the background electric fieldEb on the critical state stability.
From Eq. ~4! we see that a low-background electric field
Eb results in a high differential conductivitys}1/Eb . In its
turn this high conductivitys leads to a small electric field
perturbation since Eq.~10! states thatdE}1/s}Eb . The
smaller isdE, the less ‘‘costly’’ it is to remove the additional
heat release. As a result, the lower is the background electric
field Eb during creep, the more stable is the superconducting
state.

We write the temperature asT5T01dTexp(gt) and use
Eqs.~5! and ~10! to find an equation fordT,

gCdT5lDdT1nEbU ] j c
]T UdT. ~11!

The rateg characterizes the time development of the insta-
bility. If g.0, any perturbation of the temperature will in-
crease; i.e., the stability margin corresponds tog50.

In the case of a thin film the background electric field is a
function ofx andy only. One can thus separate the variables
in the heat diffusion equation and the functiondT(x,y,z)
matching the boundary conditions atz50, d takes the form

dT5u~x,y!S cosqz1 h

lq
sinqzD , ~12!

whereq is determined by the equation

tanqd5
h

lq
. ~13!

In particular, it follows from Eq.~13! that in the case of an
ideal thermal contact (h→`) q2'p2/4d2 and in the case of
a high thermal boundary resistance (hd!l) q2'h/ld.

Substituting Eq.~12! into Eq. ~11! we find that the stabil-
ity margin is determined by the existence of a nontrivial
solution of the equation

D'u2q2u1
nEb
l U ] j c

]T Uu50, ~14!

with the boundary conditionn¹u50 at the edge of the film,
wheren is the unit vector perpendicular to the edge of the
film in the film plane.

The eigenvalue equation~14! has the form of the Schro¨-
dinger equation of quantum mechanics. It means, in particu-
lar, that the variational method28 can be used to determine
the lowest eigenvalue~‘‘energy’’ ! qmin

2 and eigenfunction
~‘‘wave function’’! u(x,y) by minimizing the energy
functional E@u(x,y)# with respect to the parameters
a1, a2, . . . of some trial functionu(x,y,a1 ,a2 , . . . ),
where

E@u~x,y!#5

E u82dxdy2aE Ebu
2dxdy

E u2dxdy

~15!

and

a5
n

l U ] j c
]T U. ~16!

III. EXAMPLES

To fix ideas we consider two examples, the long straight
edge of a superconducting film of rectangular shape and the
same edge with a small semicircular indentation. We will see
that this indentation drastically enhances the electric field
induced during flux penetration. At this little defect the ther-
momagnetic flux-jump instability originates thus at much
lower values of the applied field than at a flawless edge. In
both cases we approximate the film by a superconducting
half planey>0 and assume the film thicknessd to be much
smaller than all other relevant lengths of this problem.

The background electric fieldEb(x,y) follows from Fara-
day’s law rotEb52Ḃ with appropriate boundary conditions.
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In the fully penetrated state the current density has saturated;
therefore, the current-caused part of the inductionB(x,y)
does not change with time when the applied fieldBa is fur-
ther increased. One thus has rotEb52Ḃa . The resulting
Eb(x,y) in the critical state crucially depends on the speci-
men shape as discussed in detail in Ref. 12. For partial pen-
etration one has in longitudinal geometry for the half space
y>0 the current densityj5exj (y) with j (y)5 j c for
0<y<yp and j (y)50 for y.yp , whereyp5Ba /m0 j c is the
penetration depth. The background electric field in this case
is Eb5exEb(y) with

Eb~y!5H Ḃa~yp2y! for 0<y<yp,

0 for y>yp.
~17!

In particular, max$Eb(y)%5ḂaBa /m0 j c occurs at the edge
y50. The background electric field~17! is a good approxi-
mation also for thin films.11,13Inserting Eq.~17! into Eq.~14!
we obtain

u9~y!1c1~yp2y!q~yp2y!u~y!5q2u~y!, ~18!

whereq(j)50 for j,0, q(j)51 for j>0, and

c15
nḂa
l U ] j c

]T U. ~19!

Before we solve the eigenvalue equation~18! we note that
from physical reasons we expect that the instability origi-
nates at the film edge whereEb(y), Eq. ~17!, is maximum.
We further expect that the heat flows mainly alongz, into the
substrate, and much less heat flows alongx and y. This
means that in Eqs.~14! and ~18! one should have
u¹2uu!q2u. Therefore, the criterion for thermomagnetic
flux-jump instability may be found by equating in Eq.~18!
the heat production term at the edge,c1ypu(0), to theheat
sink termq2u(0). This yields the criterion for flux jumping
at the straight edges of films,c1yp5q2. Using the expres-
sions forc1 andyp we present it as

c1yp
q2

5
BjḂan

m0lq
2 j c

U ] j c
]T U51 . ~20!

The stability criterion~20! determines the flux-jump field
Bj at the straight edges and in particular the dependence of
Bj on the external magnetic field ramp rateḂa and the heat
transfer coefficienth from the film to the substrate.

We shall use now Eq.~18! to estimate the widtha of the
eigenfunctionu(y), i.e., the extension of the heated region at
the onset of flux jumping. Our above considerations assume
that this width is wider than the film thickness but still nar-
rower than the penetration depthyp , d!a!yp . This is in-
deed the case, as we can easily estimate by a variational
method.28 With a simple Gaussian trial function
u5exp(2y2/2a2) the integrals in Eq.~15! are easily evalu-
ated, and minimization with respect toa yields the stability
criterion ~20! and the width

a5p1/6c1
21/35p1/6S ypq2D

1/3

. ~21!

For the second equality we used the criterionc1yp5q2, Eq.
~20!. Assuming that qyp@1 we find, from Eq. ~21!,
d!a!yp , which was required for the criterion~20!. Note
that the conditionqyp@1 leads toyp@d for the case of an
ideal thermal contact between the film and the substrate and
to yp@Al/hd for the case of a high thermal boundary resis-
tance.

As a second example we consider the same straight film
edgey50 but with a small indentation with a semicircular
edge,x21y25r0

2, y>0. The radiusr0 of this defect should
be larger than the film thicknessd and much smaller than the
penetration depthyp'Bj /m0 j c at which the instability oc-
curs,d!r0!yp . The presence of this indentation strongly
modifies the flow of the critical currents and drastically en-
hances the background electric field which is induced during
flux penetration by the moving vortex lines.17,12,18

The current stream lines first are parallel to the edge
y50, then the current flows on circles concentric with the
defect~centered atx5y50), and then flows again parallel to
y50; cf. Fig. 1. The straight and circular flows are separated
by the parabolay5(x22r0

2)/2r0. This current densityj has
the same orientation as the electric fieldEb . However, the
magnitudes j and Eb exhibit different behavior: While
j5 j c is constant in the considered penetrated region,Eb is
sharply peaked at the indentation and decreases monotoni-
cally to zero as it approached the front lineyfront(x). Beyond
the flux front one hasj5Eb5B50. For longitudinal geom-
etry, the exact shape of the front line is known,
yfront(x)5max@yp ,(rp

22x2)1/2#, with rp5r01yp . This lon-
gitudinal result may be used as an approximation for the
film, as is confirmed by computations.11–13 Inside the region
of circular flow the conditions rotEb52Ḃa and Eb50 at
r5Ax21y25rp are satisfied by the solution

Eb5ew

Ḃa

2 S rp
2

r
2r D . ~22!

The irrotational 1/r term in Eq. ~22! means a pronounced
enhancement of the background electric field near small in-
dentations. The height of this maximum is

FIG. 1. A film with an indentation in the form of a semicircle
with radiusr0 and centered atx5y50. The straight and circular
lines are the field lines of the current densityj and electric fieldE
~in the film plane! during penetration of magnetic flux.
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max$Eb(r)%'Ḃarp
2/2r0, which is higher than the maximum

field Ḃayp, Eq. ~17!, at the defect-free edge by a factor
yp/2r0@1.

We expect the thermomagnetic flux-jump instability to
originate at the position of maximumEb , i.e., at the edge
r5r0 of the indentation. As for the defect-free edge, we will
find that the widtha of the nucleusu(r) is much smaller
than the penetration depthrp'yp and even smaller than the
defect radiusr0. The curvature of the indentation may thus
be disregarded. ExpandingEb(r) with respect to
(r2r0)/rp!1 and keeping only the constant and linear

terms, we obtainEb(r)5
1
2 Ḃa(rp /ro)

2@r02(r2r0)#. The
resulting eigenvalue equation has thus the same form as Eq.
~18! if one makes the replacementsy→r2r0, yp→r0, and
c1→c2 with

c25
Ḃarp

2n

2r0
2l

U ] j c
]T U ~23!

andrp'Bj /m0 j c . The stability criterion for flux jumping at
a small indentation of radiusr0 is thusc2r05q2. Using Eq.
~23! we present it as

c2r0
q2

5
Bj
2Ḃan

2m0
2lq2r0 j c

2 U ] j c
]T U51. ~24!

The stability criterion~24! determines the flux-jump field
Bj at a small indentation and in particular the dependence of
Bj on the external magnetic field ramp rateḂa , the indenta-
tion radiusr0, and the heat transfer coefficienth from the
film to the substrate.

Using the same replacement as above we find that the trial
function u5exp@2(r2r0)

2/2a2# has the width

a5p1/6c2
21/35p1/6S r0

q2D
1/3

. ~25!

Assuming thatqyp@1 we find d!a!r0; i.e., the thermo-
magnetic flux-jump instability originates only in a narrow
band at the curved edge of the indentation.

IV. CONCLUSIONS

Comparing the criteria~20! and~24! for the onset of ther-
momagnetic flux-jump instability at the straight edge of a
film with and without indentation, one finds that the factor
c1yp in Eq. ~20! is replaced byc2r0, wherec2'c1yp

2/2r0
2 .

Thus the ramp rateḂa at which a flux jump occurs at a given
flux-jump fieldBj is smaller for the indentation by a factor
2r0 /yp'2r0m0 j c /Ba!1. At a constant ramp rate the insta-
bility occurs at a smaller fieldBj when the film edge exhibits
an indentation. It follows also from Eqs.~20! and~24! that at
a straight edgeBj}Ḃa

21 and at a small indentationBj

}Ḃa
21/2

To fix ideas we consider the example of a rather thick
film, d5100mm, r05200 mm, j c5109 A/m2,
j c /u] j c /]Tu510 K, n550, andl50.1 W/K m. Using Eqs.
~24! and ~13! we find for h>103 W/K m2 the estimate
Bj'Ḃa

21/2 where the units are tesla forBj and T/s forḂa .
Thus even in a thick film the flux-jump instability occurs at
rather high fields. In particular, this estimate results in
Bj510 T for Ḃa51022 T/s and inBj51 T for Ḃa51 T/s.

This example reveals that in much thinner films thermo-
magnetic flux jumping is not to be expected within the range
of fields and ramp rates occurring in typical experiments or
applications of superconducting films. Clearly, the reason for
this stability of the critical state is the effective cooling of a
thin film on a substrate. If desired, the parameters of an ex-
periment may be chosen such that the predicted flux-jump
instability should occur. But note that for very large applied
fields the penetration depthrp'Ba /m0 j c formally will be
larger than the half widtha of the film; in this case one has
to putrp5a in c2, Eq.~23!. Further increase ofBa above the
field of full penetrationBp5m0 j ca will then not lead to flux
jumping since the electric field has saturated to a final profile
even as the current density.
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