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We consider a single pancake vortex near the surface of a layered superconductor with very weak interlayer
Josephson coupling. The exact solution for the magnetic field inside and outside the sample is obtained in the
case of a planar surface perpendicular to the layers. From the general result we calculate the stray field of a
randomly distorted Abrikosov vortex parallel to the sample surface and perpendicular to the superconducting
layers. We give the mean square flux generated by this vortex through a band of given width on the sample
surface. To illustrate the general formula we apply it to the case when the displacements of the pancakes arise
from thermal fluctuations.@S0163-1829~96!00837-5#

I. INTRODUCTION

The most prominent of the high-temperature copper oxide
superconductors consist of a periodic stack of two-
dimensional CuO layers (ab planes! where the superconduc-
tivity presumably resides. These materials are extremely an-
isotropic. In particular, the maximum density of the
superconducting current perpendicular to the layers (c direc-
tion! is much less than in theab planes; i.e., the supercon-
ducting layers are weakly coupled. The discovery of the ex-
tremely anisotropic high-Tc superconductors stimulated
many theoretical studies of vortices of layered materials with
weak and very weak interlayer Josephson coupling.1,2

Magnetic flux in layered superconductors has several un-
usual properties as compared to magnetic flux in isotropic
superconductors. In particular, an Abrikosov vortex line ori-
ented nearly perpendicular to the superconducting layers
may be treated as a stack of two-dimensional point vortices
or ‘‘pancakes.’’3–5 Each of these pancakes resides only in
one of the superconducting layers and generates a magnetic
field B which has componentsBi andB' parallel and per-
pendicular to theab planes. BothBi andB' are proportional
to the small ratios/l!1, wheres is the layer spacing and
l5lab is the penetration depth for the currents in the layers.
The componentB' is spherically symmetric,

B'5ez
sF0

4pl2r
exp~2r /l!, ~1!

whereez is the unit vector in thec direction andr is the
distance from the pancake. The extension of the component
Bi is anisotropic, namely, short in the direction perpendicular
to the layers and wide along the layers,

Bi5er

sF0

4pl2r
sgnzFexp~2uzu/l!2

uzu
r
exp~2r /l!G , ~2!

er is the unit vector in the direction of the radius vector
rW 5(x,y), r5Ax21y2, the xy plane is parallel to theab
planes, and thez axis is along thec direction.

The main contribution to the self-energy of a single pan-
cakeE results from the currents in the layer where the pan-
cake is located. Indeed, in the London approximation for the
case of vanishing Josephson interlayer coupling ands!l
one has

E5EB1EI , ~3!

where

EB5
1

2m0
E @B21l2~rotB!2#dV ~4!

is the energy within the continuum approximation and

EI5
m0l

2

2s E I 2dA ~5!

is the energy of the sheet currentI in the pancake layer. The
ratio EB /EI is found from the estimates4,5

B;
F0s

l2r
for r,l, ~6!

I;
sF0

m0l
2r

for r,l. ~7!

It follows then from Eqs.~4! and ~5! that

EB}
F0

2s2

m0l
3 , EI}

F0
2s

m0l
2 ; ~8!

thus,EI /EB;l/s@1 andE'EI .
The slow decay of the sheet currentI}1/r makes the

integral in Eq.~5! size dependent, namely,

E'
sF0

2

4pm0l
2lnS Lj D , ~9!

whereL is the characteristic size of the sample in theab
plane andj5jab is the coherence length in the layers. Thus,
a single pancake has a diverging self-energy whenL/j→`
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and cannot exist in the bulk of a macroscopic sample. How-
ever, a pancake vortex near a surface which is perpendicular
to the layers has a finite energy, withL in Eq. ~9! replaced by
its distance from the surface.

Let us now consider a stack of pancake vortices. If it is
perfectly aligned perpendicular to the layers, the in-plane
components of their magnetic fields compensate, and the re-
sulting magnetic field will be that of a usual Abrikosov vor-
tex line. Similarly, a distorted stack of pancakes yields the
field of a distorted vortex line calculated from the anisotropic
London theory.1,2 However, in the limit of very small or zero
Josephson coupling, novel features arise from the pancake
picture.6,7 For example, it was shown that a distorted stack of
pancakes is attracted to a planar specimen surface~at
x50) by an interaction energy decreasing only algebraically
as 1/x0

2, wherex0 is the vortex distance from the surface.8

This long-range attraction is caused by the dipole-dipole in-
teraction of each pancake displacement with its image posi-
tioned atx52x0, since each displacement is equivalent to
adding a pancake-antipancake pair which annihilates the
original pancake and generates a new pancake at the dis-
placed position. In order to complete these calculations one
has to add to the pancake and image fields the stray-field
contribution to the interaction energy. While this contribu-
tion is negligible at large distancesx0@l, where the dipole-
dipole interaction 1/x0

2 dominates, the stray-field energy
might give a non-negligible contribution if the distorted vor-
tex is close to the surface.

In this paper we study a single pancake vortex located
near the sample surface. We find an exact solution for the
total magnetic fieldB„r … generated by a pancake inside and
outside a superconducting half-space, as a first step towards
calculations of the stray-field contribution to the pancake in-
teraction. We present the modification ofB„r … caused by the
existence of a planar surface. Note that the stray fieldoutside
the superconductor is the magnetic field which is measured
by common methods like Hall probes or magneto-optics near
the specimen surface. Experiments which measure the mag-
netic field inside the superconductor like muon-spin reso-
nance or nuclear magnetic resonance are much more com-
plex and less accurate; cf. Refs. 9 and 10, and references
therein. The complete solution given below modifies the
magnetic field both outside and inside the superconductor as
compared to the fields of the pancake and of its image alone.
This problem, with similar results, has been considered by
Buzdin and Feinberg.11

A related problem of the magnetic field of a distorted
vortex lattice inside and outside a superconductor with a pla-
nar surface was considered for small vortex displacements.12

The extension of these results to anisotropic layered super-
conductors and to arbitrarily large vortex displacements in
principle can be obtained by linear superposition of the
single-pancake field obtained below. It appears that such ap-
plications can be done only numerically except in particular
cases like, e.g., the linear elastic energy of the pancake lattice
near a planar surface, or some properties of randomly posi-
tioned or correlated pancakes.9 The single-pancake results
presented below are explicit expressions which enter such
further calculations. As one example we calculate the mean
square flux through a band on the sample surface, which is

generated by a randomly distorted Abrikosov vortex line par-
allel to the sample surface and perpendicular to the layers.

This paper is organized as follows. In Sec. II, we find the
magnetic field generated by a pancake positioned near the
sample surface. In Sec. III, we apply this result to calculate
the mean square flux through a band on the sample surface,
which originates from a randomly distorted Abrikosov vor-
tex line. In Sec. IV, we summarize the overall conclusions.

II. SINGLE PANCAKE NEAR THE SURFACE

Let us consider a superconducting half-spacex>0 with a
single pancake located at the point (x0,0,0) as shown in Fig.
1. In order to find the magnetic field generated by this pan-
cake we write the current density and the magnetic field in-
side the superconductor asj5 j v1 ja andB5Bv1Ba , where
j v andBv are calculated by the method of images. The addi-
tional current densityja and magnetic fieldBa are required to
satisfy the boundary conditions in the presence of a field
component perpendicular to the sample surface.

The magnetic fieldBv is a sum of the fields generated by
the vortex at (x0,0,0) and antivortex at (2x0,0,0). They and
z components of the fieldBv and thex component of the
current densityj v vanish on the sample surface by this con-
struction. The vector potentialAv of the magnetic field
Bv5rotAv satisfies the equation

Av2l2DAv5
sF0

2p
ẑS rW 2rW p

urW 2rW pu2
2

rW 1rW p

urW 1rW pu2
D d~z!, ~10!

where rW 5(x,y,0), andrW p5(x0,0,0). Thesolution of Eq.
~10! satisfying the boundary conditionj x(0,y,z)50 is the
superposition of two pancake fields of the form~1! and ~2!.

The additional magnetic fieldBa is defined inside the su-
perconductor (x.0). We introduce now the phasew of the
superconducting order parameter and the vector potential
Aa for the field Ba5rotAa . In the London gauge
divAa50, Aaz50, the equations forAa andw take the form

Aa2l2DAa5
F0

2p
¹2w, ~11!

D2w50, ~12!

where¹2 is the two-dimensional gradient in thexy plane
andD25

2/]x21]2/]y2. The boundary conditions for Eqs.
~11! and ~12! are given byj x(0,y,z)50, which yields

FIG. 1. A single pancake located at the point (x0,0,0) near the
sample surfacex50 ~thick line! with the superconducting layers
~thin lines! perpendicular to the surface.
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HAax2
F0

2p

]w

]x J U
x50

50. ~13!

The stray fieldBs is defined outside the superconductor
(x,0) and is a potential field; i.e.,Bs5¹c, where the po-
tentialc(x,y,z) satisfies the Laplace equation

Dc50. ~14!

The complete solutionB is thus given byBv1Ba inside
and by Bs outside the superconductor. The perpendicular
component of the total magnetic fieldBx satisfies the conti-
nuity condition at the surface, namely,

Bsx~20,y,z!5Bax~10,y,z!1Bvx~0,y,z!. ~15!

The functionBvx(0,y,z) plays the role of the source of the
stray fieldBs outside and the additional magnetic fieldBa
inside the superconductor. It follows from the solution of Eq.
~10! that5

Bvx~0,y,z!52
F0

2pl2

sx0
x0
21y2

sgnz

3Fexp~2uzu/l!2
uzu
r 0
exp~2r 0 /l!G , ~16!

r 05Ax021y21z2 and a factor of 2 as compared to the
single-pancake solution Eq.~2! reflects the contribution of
the image antivortex.

To solve Eqs.~11! and~12! we use Fourier transforms of
the form

f ~x,y,z!5
1

4p2E f̃ ~x,k,q!eiky1 iqzdkdq. ~17!

The resulting equations forw̃(x), Ãx , andÃy are

w̃~x!5w̃~0,k,q!e2ukux, ~18!

d2Ãax

dx2
2g2Ãax5w̃~0,k,q!

F0uku
2pl2 e

2ukux, ~19!

Ãay5
i

k

dÃax
dx

, ~20!

where

g5Al221k21q2. ~21!

The solution of Eq.~19! which satisfies the boundary con-
dition ~13! and vanishes atx→` is

Ãax52
F0

2p

w̃~0,k,q!uku
~11q2l2!

@e2ukux1q2l2e2gx#. ~22!

We apply now the Fourier transform to Eq.~14! and take
the solution

c̃5c̃~0,k,q!exp~Ak21q2x!, ~23!

decaying atx→2`. To find the relation betweenw̃(0,k,q)
andc̃(0,k,q) we use the continuity conditions for they and
z components of the magnetic field. As a result we obtain

w̃~0,k,q!52
2p

F0

sgnk

q
c̃~0,k,q!. ~24!

It follows from the continuity condition~15! that

c̃~0,k,q!5
~11q2l2!B̃vx~0,k,q!

uku1gq2l21~11q2l2!Ak21q2
, ~25!

where

B̃vx~0,k,q!5 iF0

sq

11q2l2@exp~2ukux0!2exp~2gx0!#

~26!

the Fourier transform of the fieldBvx, Eq. ~16!.
Using Eqs.~1!, ~2!, ~20!, ~22!, ~25!, and ~26! we obtain

the complete description of the magnetic fieldB(x,y,z) of a
single pancake vortex located at a distancex0 from the
sample surface. We get the following explicit formulas for
the Fourier transforms of the potentialc(x,y,z) for the stray
field Bs ,

c̃~x,k,q!5 iF0

sq@exp~2ukux0!2exp~2gx0!#

uku1q2l2g1~11q2l2!Ak21q2

3exp~Ak21q2x!, ~27!

and of the additional magnetic fieldBa ,

B̃ax~x,k,q!52c̃~0,k,q!
ukuexp~2ukux!1gq2l2exp~2gx!

~11q2l2!
,

~28a!

B̃ay~x,k,q!5 i c̃~0,k,q!
k@exp~2ukux!1q2l2exp~2gx!#

~11q2l2!
,

~28b!

B̃az~x,k,q!5 i c̃~0,k,q!qexp~2gx!, ~28c!

where

c̃~0,k,q!5 iF0

sq@exp~2ukux0!2exp~2gx0!#

uku1q2l2g1~11q2l2!Ak21q2
. ~29!

The components of the fieldBv are

Bvx~x,y,z!5
sF0

4pl2sgnz (
s521

1
sx2x0

~x2sx0!
21y2Fexp~2uzu/l!

2
uzu
r s
exp~2r s /l!G , ~30a!

Bvy~x,y,z!5
sF0

4pl2sgnz (
s521

1
sy

~x2sx0!
21y2Fexp~2uzu/l!

2
uzu
r s
exp~2r s /l!G , ~30b!
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Bvz~x,y,z!5
sF0

4pl2 (
s521

1
s

r s
exp~2r s /l!, ~30c!

s561 andr s5A(x2sx0)
21y21z2.

We use now the exact solution~27! to calculate the stray
field generated by a pancake located far from the surface;
i.e., we suppose thatx0@l. We further assume that
uxu,uzu!x0. In this case the stray-field potentialc reduces to

c~x,y,z!'2
F0

p2l

sx0
x0
21y2

F~x,z!, ~31!

where

F~x,z!5E
0

`

du
exp~ux/l!sin~uz/l!

11u21uA11u2
. ~32!

This yields the magnetic field at the sample surface in the
two limiting casesuzu!l,

Bx~0,y,z!'2
F0

4pl2

sx0
x0
21y2

sgnz, ~33a!

By~0,y,z!'
F0

p2l2

sx0yz

~x0
21y2!2

ln
l

uzu
, ~33b!

Bz~0,y,z!'2
F0

p2l2

sx0
~x0

21y2!
ln

l

uzu
, ~33c!

and uzu@l,

Bx~0,y,z!'2
2F0

p2l2

sx0l
3

z3~x0
21y2!

, ~34a!

By~0,y,z!'
2F0

p2l2

sx0l
2y

z~x0
21y2!2

, ~34b!

Bz~0,y,z!'
F0

p2l2

sx0l
2

z2~x0
21y2!

. ~34c!

In the regionuxu@l the expression~31! for the scalar
potentialc simplifies to

c~x,y,z!'2
F0

p2l

slx0z

~x0
21y2!~x21z2!

. ~35!

The symmetry of the spatial distribution of the magnetic
field B(x,y,z) follows from Eqs.~27!–~30!,

Bx~x,y,z!5Bx~x,2y,z!,

Bx~x,y,z!52Bx~x,y,2z!,

By~x,y,z!52By~x,2y,z!,

By~x,y,z!52By~x,y,2z!,

Bz~x,y,z!5Bz~x,2y,z!,

Bz~x,y,z!5Bz~x,y,2z!. ~36!

In Figs. 2~a!–2~d! we visualize the field generated inside and
outside the superconductor by a single pancake vortex resid-
ing at distancesx050.5, 1, 2, and 10 from the sample sur-
face in units of the penetration depthl. The arrows indicate
the direction of the fieldB(x,0,z) in the planey50. Thex
and z axes are drawn as dashed lines. The verticalz axis
denotes the position of the sample surfacex50, and the
pancake position is marked by a small circle at (x0,0,0).

The following features of the magnetic field of a pancake
are seen from these figures.

First we note thatB is continuous across the sample sur-
face as it should be. Inside the sample the componentBx
parallel to the superconducting layers performs a jump on the
planez50; namely, it has a finite magnitude atz560 but
changes sign as one crosses the layerz50. The resulting
sharp bend ofB is a known feature of the pancake field3–5

and reflects the finite sheet currentI (x,y) in the pancake
layer, Bi(x,y,10)52Bi(x,y,20)5m0I (x,y)3ez/2. This
jump is, of course, absent outside the sample since there is
no current. Notice that thez component ofB inside the
sample changes sign somewhere between the pancake posi-
tion and the surface. Without the stray-field contribution, this
sign change would occur only at the surface since one has
Bvy(0,y,z)5Bvz(0,y,z)50. As a consequence, the measur-
able magnetic field outside the sample in the pancake plane
z50 is orientedantiparallel to the vortex and is finite at the
surface due to the stray-field contribution.

A particular interesting field pattern is seen when the pan-
cake is far from the surface,x0@l; see Fig. 2~d!. The mag-
netic field lines then ‘‘flow’’ along the surface and flow back
into the superconductor. Note that this ‘‘U turn’’ occurs at
uzu values large compared tol and thus the magnitude of
B is small there. It should be noted here that the current
density has noz component in the considered model of ex-
tremely weak Josephson interlayer coupling. The current
flows only in thexy planes, and near the surface it flows only
in the y direction.

The stray fieldBs outside the superconductor is a smooth
field which is sharply peaked near the surface point
x5y5z50 closest to the pancake. The decay ofBs at the
surfacex50 for large distancesy,z is given by the formulas
~33! and ~34!.

Figure 3 shows cross sections of the magnetic field in the
planes~a! y50 and~b!, ~c! on the sample surfacex50 for
x05l51 in units ofsF0 /p

2l3. One can see that the total
field near the origin is decreased substantially as compared
with the field Bv of the vortex and its image
Bvx(0,0,10)52sF0/2pl3 or 2p/2 in the units of the
graph. At the origin this reduction is exactly by a factor of 2
sinceBax(0,0,10)52Bsx(0,0,20)5p/4.

III. FLUX THROUGH THE SAMPLE SURFACE
PRODUCED BY A RANDOMLY DISTORTED

ABRIKOSOV VORTEX

A stack of pancakes arranged to a perfectly straight Abri-
kosov vortex line parallel to the sample surface and perpen-
dicular to the layers has its field parallel to the surface and
thus has no stray field. Any nonuniform displacement of the
pancakes results in a stray field and in a mean square flux
through the sample surface.
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To characterize these quantities we calculate the mean
square flux through a band of an arbitrary widtha on the
sample surface, which is generated by a randomly distorted
Abrikosov vortex line parallel to the sample surface and per-
pendicular to the layers; i.e., the function

K~a!5^F2~a!&, ~37!

where

F~a!5E
0

aE
2`

`

Bx~0,y,z!dydz. ~38!

Let us first find the flux through a band of widthdz on the
sample surface, which is generated by a pancake located at
the point (x0,0,0); i.e., the quantity

dFp

dz
5E

2`

`

Bx~0,y,z!dy. ~39!

It follows from Eq. ~27! that

dFp

dz
5E

2`

` ]c

]x
dy

5 i
F0s

2pl2E
2`

`

du
u

A11u2~ uuu1A11u2!

3expS iu zl D F12expS 2A11u2
x0
l D G . ~40!

Next we consider a distorted Abrikosov vortex line with
pancakes atrn5(x01uxn ,uyn ,z1ns), where n50,61,
62, . . . , and thedisplacements of the pancakesuxn ,uyn are
assumed to be small; i.e.,uuxnu,uuynu!x0. We treat here ran-
dom and isotropic displacements with ensemble averages
^uxm&5^uym&50, ^uxmuyn&50, ^uxmuxn&5 f x(um2nu),
and ^uymuyn&5 f y(um2nu).

The flux through a band of widthdz on the sample sur-
face generated by this distorted vortex line is given by the
sum over pancake contributions,

dF

dz
5(

n

dFp

dz
u~x01uxn ,uyn ,ns!

. ~41!

This quantity depends only on the displacementsuxn . Keep-
ing the term linear inuxn and changing the sum to an integral
we obtain

FIG. 2. Visualization of the magnetic field of a pancake positioned at a distancex0 from a planar surface~vertical dashed line!
perpendicular to the superconducting layers. In units of the penetration depthl one has~a! x050.5, ~b! x051, ~c! x052, and ~d!
x0510. The arrows~of constant length! denote the field direction. The pancake is marked by a circle.
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dF

dz
5 i

F0

2pl3E
2`

`

du
u

uuu1A11u2
expS i uzl

2A11u2
x0
l D E

2`

`

djux~j!expS 2 i
uj

l D . ~42!

Applying the Fourier transform to Eq.~42! we find

F̃~p!5
F0

l

ũx~p!

upul1A11p2l2
expS 2A11p2l2

x0
l D .

~43!

Using the Fourier transformF̃(p) we present Eq.~37! for
K(a) in the form

K~a!5
2

LE2`

` dp

2p
uF̃~p!u2@12cos~pa!#, ~44!

whereL is the sample thickness.
As an example we apply Eq.~44! to the case when the

displacements of pancakes arise from the thermal fluctua-
tions of an Abrikosov vortex. Forx0@l we get8

uũx~p!u25
8pLkBTl4

F0
2ln~11p2l2!

. ~45!

Using Eqs.~44! and~45! we find that for any value ofa and
upul!1

K~a!516kBTE
0

`dp

p2
expS 2p2x0l2

2x0
l D @12cos~pa!#.

~46!

It follows from Eq. ~46! that

K~a!'4ApkBT
a2

Ax0l
expS 2

2x0
l D , a2

x0l
!1, ~47!

K~a!'8pkBTuauexpS 2
2x0
l D , a2

x0l
@1. ~48!

Note that the characteristic length separating the coherent
limit K(a)}a2 from the diffusive limitK(a)}a is Ax0l.

IV. CONCLUSIONS

In conclusion, we have calculated the magnetic field of a
pancake vortex positioned at arbitrary distancex0 from the
planar surface of a layered superconductor with layers per-
pendicular to the surface and with vanishing Josephson in-
terlayer coupling. The magnetic stray field outside the speci-
men was fully accounted for. From this general solution the
magnetic field of a stack of such pancakes, forming a vortex
line, is obtained by linear superposition. As an application of
the general results we give the variance of the magnetic flux
through a band of arbitrary widtha on the specimen surface.
This width may be interpreted as the width of a strip-shaped
detector scanning the surface of the superconductor in the
ac plane, moving along thec axis, and measuring the stray
field of a distorted vortex line parallel to the surface and~in
average! to thec axis. This stray-field variance decays expo-
nentially with the vortex distancex0 from the surface, and it
increases with the strip widtha first quadratically and then
linearly whena exceedsAx0l.
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FIG. 3. Thex component of the magnetic field generated by a
pancake forx05l in units sF0 /p

2l3. ~a! Bx(x,0,z) for z50.1
~curve a), 0.2 ~curve b), 0.5 ~curve c), 1 ~curve d); ~b!
Bx(0,y,z) for z50.1 ~curvea), 0.5 ~curveb), 1 ~curvec), 2 ~curve
d); ~c! Bx(0,y,z) for y50.1 ~curve a), 0.5 ~curve b), 1 ~curve
c), 2 ~curved). The dashed lines in graphs~a! and~c! indicate the
z axis.
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