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Pancake vortex near the sample surface
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We consider a single pancake vortex near the surface of a layered superconductor with very weak interlayer
Josephson coupling. The exact solution for the magnetic field inside and outside the sample is obtained in the
case of a planar surface perpendicular to the layers. From the general result we calculate the stray field of a
randomly distorted Abrikosov vortex parallel to the sample surface and perpendicular to the superconducting
layers. We give the mean square flux generated by this vortex through a band of given width on the sample
surface. To illustrate the general formula we apply it to the case when the displacements of the pancakes arise
from thermal fluctuationd.S0163-1826)00837-5

I. INTRODUCTION The main contribution to the self-energy of a single pan-
cake€ results from the currents in the layer where the pan-
The most prominent of the high-temperature copper oxideake is located. Indeed, in the London approximation for the
superconductors consist of a periodic stack of two-case of vanishing Josephson interlayer coupling s
dimensional CuO layersap plane$ where the superconduc- one has
tivity presumably resides. These materials are extremely an-
isotropic. In particular, the maximum density of the E=&t &, (€)
superconducting current perpendicular to the layerdifec-  \yhere
tion) is much less than in thab planes; i.e., the supercon-

ducting layers are weakly coupled. The discovery of the ex- 1 by s 5
tremely anisotropic higf, superconductors stimulated 5B:ﬂf [B+\“(rotB)“]dV (4)
many theoretical studies of vortices of layered materials with o 0 _ o
weak and very weak interlayer Josephson couplihg. is the energy within the continuum approximation and
Magnetic flux in layered superconductors has several un- )

usual properties as compared to magnetic flux in isotropic _ Hoh 2

. - ; ; &= I“dA (5)
superconductors. In particular, an Abrikosov vortex line ori- 2s

ented nearly perpendicular to the superconducting layers .
may be treated as a stack of two-dimensional point vortice§® t.he energy of the sheet currdr_‘m thggpancake layer. The
or “pancakes.®5 Each of these pancakes resides only in' 210 £/£, is found from the estimat

one of the superconducting layers and generates a magnetic DS

field B which has component8; and B, parallel and per- B~)\T for r<a, (6)
pendicular to theb planes. BotlB andB, are proportional r

to the small ratios/A <1, wheres is the layer spacing and

N =N\g,p is the penetration depth for the currents in the layers. | ~ S_(DOT for p<\. (7)
The componenB, is spherically symmetric, MoN“p
b It follows then from Eqgs(4) and (5) that
j— 0 —
B =z ORI, @ d3s? d3s
. . . . . . gBm )\3 ' |OC )\2 ’ (8)
where g, is the unit vector in thec direction andr is the Mo Mo

distance from the pancake. The extension of the componegtys ¢ /&5~\/s>1 andE~E, .
By is anisotropic, namely, short in the direction perpendicular  The slow decay of the sheet curreit 1/p makes the

to the layers and wide along the layers, integral in Eq.(5) size dependent, namely,
s®q 2] sh? L
Bj=e,———sgre| exp(—|z|/\) ——exp(—r/N) |, (2 ~_— 0 | =
1= Zan2, > p(—[zl/N) ——expl ), (2 £ 477#0?\2|n é)' (9)

€ is the unit vector in the direction of the radius vector whereL is the characteristic size of the sample in thie
p=(X,y), p=x?+y? the xy plane is parallel to th@ab  plane and= ¢, is the coherence length in the layers. Thus,
planes, and the axis is along thes direction. a single pancake has a diverging self-energy whéf— o
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54 PANCAKE VORTEX NEAR THE SAMPLE SURFACE 9459
and cannot exist in the bulk of a macroscopic sample. How-
ever, a pancake vortex near a surface which is perpendicular
to the layers has a finite energy, within Eq. (9) replaced by

its distance from the surface.

Let us now consider a stack of pancake vortices. If it is A
perfectly aligned perpendicular to the layers, the in-plane
components of their magnetic fields compensate, and the re-
sulting magnetic field will be that of a usual Abrikosov vor-
tex line. Similarly, a distorted stack of pancakes yields the
field of a distorted vortex line calculated from the anisotropic ) )

London theory-? However, in the limit of very small or zero FIG. 1. A 5'“9'6 par?cak.e loca.ted at the poirg,0,0) hear the

Josephson coupling, novel features arise from the pancalisﬁa]mpl_e Surface<—Q (thick line) with the superconducting layers
. 67 . . in lines perpendicular to the surface.

picture’’ For example, it was shown that a distorted stack of

pancakes is attracted to a planar specimen surf@e generated by a randomly distorted Abrikosov vortex line par-
x=0) by an interaction energy decreasing only algebraically;|ig| to the sample surface and perpendicular to the layers.
as 1k, wherex, is the vortex distance from the surfate.  This paper is organized as follows. In Sec. II, we find the
This long-range attraction is caused by the dipole-dipole inmagnetic field generated by a pancake positioned near the
teraction of each pancake displacement with its image possample surface. In Sec. Ill, we apply this result to calculate
tioned atx= —Xxq, since each displacement is equivalent tothe mean square flux through a band on the sample surface,
adding a pancake-antipancake pair which annihilates thehich originates from a randomly distorted Abrikosov vor-
original pancake and generates a new pancake at the ditex line. In Sec. IV, we summarize the overall conclusions.
placed position. In order to complete these calculations one

has to add to the pancake and image fields the stray-field Il. SINGLE PANCAKE NEAR THE SURFACE

contribution to the interaction energy. While this contribu-
tion is negligible at large distanceg>\, where the dipole-
dipole interaction MS dominates, the stray-field energy
might give a non-negligible contribution if the distorted vor-

Let us consider a superconducting half-spaee) with a
single pancake located at the poimnt,0,0) as shown in Fig.
1. In order to find the magnetic field generated by this pan-
. cake we write the current density and the magnetic field in-
tex is close to the surface.

. . ide the superconductor gsj,+j, andB=B,+B,, where
In this paper we study a single pancake vortex located "o 4g are calculated by the method of images. The addi-
near the sample surface. We find an exact solution for thg’ v

e S onal current density, and magnetic field, are required to
total magnetic field3(r) generated by a pancake inside andgqiqfy the boundary conditions in the presence of a field
outside a superconducting half-space, as a first step towar‘i%mponent perpendicular to the sample surface
calculations of the stray-field contribution to the pancake in- The magnetic field®, is a sum of the fields geﬁerated by
teraction. We present the modification®r) caused by the the vortex at £,,0,0) arl;d antivortex at-{ x,,0,0). They and
existence of a planar surface. Note that the stray feldide " ”

h ductor is th tic field which i components of the field, and thex component of the
€ superconductor IS the magnetic lieid which IS measureq, .oy densityj, vanish on the sample surface by this con-

by common methods like HaII. probes or.magneto—optics N€4Lir ction. The vector potentiah, of the magnetic field
the specimen surface. Experiments which measure the mag- v

netic field inside the superconductor like muon-spin reso- v=TOtA, satisfies the equation

nance or nuclear magnetic resonance are much more com- b [ s >
plex and less accurate; cf. Refs. 9 and 10, and references A —\2aA =~ % £ P2 _ PTPp J 5.y (10
therein. The complete solution given below modifies the 27\ |p—pol? |p+pyl?

magnetic field both outside and inside the superconductor as . .
compared to the fields of the pancake and of its image alonavhere p=(x,y,0), andp,=(x,,0,0). Thesolution of Eq.
This problem, with similar results, has been considered by10) satisfying the boundary conditiojy(0y,z)=0 is the
Buzdin and Feinberdt superposition of two pancake fields of the fof) and(2).

A related problem of the magnetic field of a distorted The additional magnetic fielB, is defined inside the su-
vortex lattice inside and outside a superconductor with a plaperconductor X>0). We introduce now the phasge of the
nar surface was considered for small vortex displacenténts.superconducting order parameter and the vector potential
The extension of these results to anisotropic layered supeA, for the field B,=rotA,. In the London gauge
conductors and to arbitrarily large vortex displacements irdivA,=0, A,,=0, the equations foA, and ¢ take the form
principle can be obtained by linear superposition of the
single-pancake field obtained below. It appears that such ap-
plications can be done only numerically except in particular
cases like, e.g., the linear elastic energy of the pancake lattice
near a planar surface, or some properties of randomly posi- A,p=0, (12)
tioned or correlated pancakésThe single-pancake results
presented below are explicit expressions which enter sucwhereV, is the two-dimensional gradient in they plane
further calculations. As one example we calculate the meaand A,=2/dx?>+ 4°/ dy?. The boundary conditions for Egs.
square flux through a band on the sample surface, which i€l1) and(12) are given byj,(0,y,z) =0, which yields

@4
Aa—xZAAa=zV2¢, (11)
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(1)0(9(,0
[Aax_ 2 X ]

The stray fieldBg is defined outside the superconductor 27 sgrk~
(x<0) and is a potentlal field; i.eBs= V¢, where the po- o0k, =—=——¢(0k,0). (24)
tential (x,y,z) satisfies the Laplace equation o 4

decaying atx— —<. To find the relation between(0k,q)

=0. 13 andE(O,k,q) we use the continuity conditions for tlyeand
z components of the magnetic field. As a result we obtain

x=0

It follows from the continuity conditior(15) that

Ay=0. (14
2y 2\R

The complete solutio® is thus given byB,+ B, inside Z(O.k,q)= (1+0°A7)B,x(0k.q) , (25
and by B, outside the superconductor. The perpendicular [k|+y9?\2+ (1+g°\?) Vk*+ g
component of the total magnetic fieR], satisfies the conti- where
nuity condition at the surface, namely,

- S
Box(—0y,2)=Bax(+0y,2) +Bx(0y,2). (19 B,x(0k,q) =i d)oﬁ?[exq —|k|x0) — exp( = yXo)]
(26)

The functionB,,(0.,y,z) plays the role of the source of the
stray field Bs outside and the additional magnetic fid8d  the Fourier transform of the fielB,,, Eq. (16).
inside the superconductor. It follows from the solution of Eq.  Using Egs.(1), (2), (20), (22), (25), and (26) we obtain

(10) thaf the complete description of the magnetic fi@¢k,y,z) of a
single pancake vortex located at a distangefrom the
B, (0y,2)=— 0o SX sgrz sample surface. We get the following explicit formulas for
pxi 2m\2 x§+y the Fourier transforms of the potentia{x,y,z) for the stray
2 field B,
z
Xlexp(—|z|/IN) ——exp(—rg/N) |, (16)
= l2li) = fexp(—o P . L e )
[AAY} - 0
ro=+Xx3+y>+2z% and a factor of 2 as compared to the K| +a*\2y+(1+0g°\%) Vk*+q°
single-pancake solution Ed2) reflects the contribution of x expl( VKZ+ q2) 27)

the image antivortex.
To solve Eqgs(11) and(12) we use Fourier transforms of and of the additional magnetic fieBl, ,
the form
|K|exp( — [K|X) + yg°\ Zexp( — yX)

1 ~ . . Eax(xakvq)z_?’(oykﬂ) 2\ 2 1]
_ iky+iqz, (1+9g°\9)
f(x,y,2) mj f(x,k,q)€ dkdg (17 (284
The resulting equations fGF(x), A, andA, are ~ ~ k[ exp(— |k]x)+ g2\ 2exp( — yx)]
_ _ Bay(xyk.Q)zulf(Olk:Q) (1+q2)\2) ’
P(x)=g(0k,q)e” K, (18 (28
d2A ~ Kl _ Bay(X,k,q) =i (0K expl— yx 280
R F0K) oAze M 9 2k, =Tg(0k,a)gexp —yx), (289
where
~ i d;&ax sq exp — |k|xg) —exp(—
—_ ~ : ¥Xo) ]
Aay =i Tdx ! 20 WOk, =idg——— o L0 (29)
|kl +g°N%y+(1+g°N\9)Vk*+q
Wwhere The components of the field, are
y= "2+ K>+ 2 (22) X=X
_ . o Bux(Xy,2)= )\zsgnz 2 X=X 22 exp(—|z|/N)
The solution of Eq(19) which satisfies the boundary con- o=-1 TXo)"TY
dition (13) and vanishes at—c is I
_ K —r—exp(—r(,/)\) , (303
~ Do o(0k,q)|k v
—_ 9 e e kX 2y 24— ¥X
Aax 20 (1+q2)\2) [e +q A€ ] (22) (I) 1
X,Y,2)= ——>SQre ——————exp(—|z|/\
We apply now the Fourier transform to Ed4) and take Boy(Xy,2)= 23750 0_21 (X—0Xg)*+y? R=[zl)
the solution B
- ~ ——ex —rgs/\ 30b)
=0k, q)exp(vk*+g°x), (23) : | (300
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s®, oo In Figs. 2a)—2(d) we visualize the field generated inside and

P E —exp(—r,/\), (300 outside the superconductor by a single pancake vortex resid-
T o==1Tg ing at distanceg,=0.5, 1, 2,and 10 from the sample sur-

o==+1 andr = (x— oxg) 2+ y?+ 22. face in units of the penetration depth The arrows indicate

We use now the exact solutid@?) to calculate the stray the direction of the field3(x,0,z) in the planey=0. Thex
field generated by a pancake located far from the surfacé@nd z axes are drawn as dashed lines. The vertcakis
i.e., we suppose thak,>\. We further assume that denotes the position of the sample surface0, and the

X|,|z]<Xo. In this case the stray-field potentiglreduces to Pancake position is marked by a small circle 24,0,0).
The following features of the magnetic field of a pancake

By2(X,y,2)=

by sX are seen from these figures.
P(xy,2)== 7~ XZTyZF(x,Z), (31 First we note thaB is continuous across the sample sur-
0 face as it should be. Inside the sample the compoignt
where parallel to the superconducting layers performs a jump on the
planez=0; namely, it has a finite magnitude &t =0 but
o exp(ux/\)sin(uz/\) changes sign as one crosses the lae0. The resulting
F(x,2)= fo du LW tuyit e (320 sharp bend oB is a known feature of the pancake fi&fd

and reflects the finite sheet currerfi,y) in the pancake
This yields the magnetic field at the sample surface in théayer, Bj(x,y,+0)=—By(X,y,—0)= uol(X,y) X&,/2. This

two limiting casegdz| <\, jump is, of course, absent outside the sample since there is
no current. Notice that the component ofB inside the
B (0y,2)~— Dy s sarz (339 sample changes sign somewhere between the pancake posi-
XA Ar\? x§+y2 gre, tion and the surface. Without the stray-field contribution, this

sign change would occur only at the surface since one has
o SXyz Y B,y(0y,2)=B,,(0,y,2)=0. As a consequence, the measur-
(33b  able magnetic field outside the sample in the pancake plane
z=0 is orientedantiparallel to the vortex and is finite at the
surface due to the stray-field contribution.

A particular interesting field pattern is seen when the pan-
cake is far from the surfacey,>\; see Fig. 2d). The mag-
netic field lines then “flow” along the surface and flow back
into the superconductor. Note that this “U turn” occurs at

2B, SX\® |z| values large compared to and thus the magnitude of
B,(0y,z)~— 257 B2 (349 B is small there. It should be noted here that the current
A (X0 +YY) density has n@ component in the considered model of ex-
5 tremely weak Josephson interlayer coupling. The current
B,(0y,2)~ —(I)z—oz SXA7y , (34p  flows only in thexy planes, and near the surface it flows only
y TN Z(X5+Y?) in they direction.
The stray fieldBg outside the superconductor is a smooth
P, SX\? field which is sharply peaked near the surface point
w\2 22()((2)—+y2)' (340 x=y=z=0 closest to the pancake. The decayByfat the
surfacex=0 for large distanceg,z is given by the formulas
In the region|x|>\ the expression(31) for the scalar (33) and(34).

P
AV DT I ey T

B,(0 Po S% A 33

and|z|>\,

B,(0y,2)~

potential i simplifies to Figure 3 shows cross sections of the magnetic field in the
planes(a) y=0 and(b), (c) on the sample surface=0 for
D, S\XoZ Xo=A=1 in units of s®,/7?\%. One can see that the total
YXy.2)~— - Gy (xX2+20) (39 field near the origin is decreased substantially as compared

with the field B, of the vortex and its image
The symmetry of the spatial distribution of the magneticB,x(0,0,+0)= —s®o/2m\ or —=/2 in the units of the
field B(x,y,z) follows from Egs.(27)—(30), graph. At the origin this reduction is exactly by a factor of 2
sinceB,,(0,0,+0)=—B,(0,0,—0)==/4.
Bx(X,¥,2)=By(X,~Y,2),
. FLUX THROUGH THE SAMPLE SURFACE
Bx(x.y,2)=—By(xy,~2), PRODUCED BY A RANDOMLY DISTORTED

ABRIKOSOV VORTEX
By(X,y,2)=—By(X,~Y,2),
A stack of pancakes arranged to a perfectly straight Abri-

By(X,y,2)=—By(X,y,—2), kosov vortex line parallel to the sample surface and perpen-
dicular to the layers has its field parallel to the surface and
B,(X,¥,2)=B,(X,—V,2), thus has no stray field. Any nonuniform displacement of the

pancakes results in a stray field and in a mean square flux
B,(X,Y,2) =B,(X,y,— 2). (36)  through the sample surface.



I. B. SNAPIRO, AND E. H. BRANDT

9462 R. G. MINTS,
SSNNSNNNANN NN NN AT T 777 /7777
SOSNNNNNNNNNNNNNNN NN S fp S f s

LSES™SSSNNNANNNNNNNNNN N VA S S S
TISTSSSSINNNNNNNNNNN NN S s S
[ SSSSNNNINNNNNNNNNN N f S S
T SSSNNNNNNNNNNN NV s
e SSSNNNNNNNNNNN N S
I SSSNNNNNNNNN NN A s
s S SNNNNNNNNN NV PSS S
’’’’’ SNSNNNNNNNNN NN A S S S A
bk N NN N N L SR T I O O AV A SV AV
N e s ISSNNANKN VNS S S S S S
05l e sSNNNAN NN S S S S S S S
Tl s SNNNN NN NS S S S S S S S S
IS S et NNANNN NS S S S S S SSSrre
A A A S r i~ NNNVN PSS ot st ]
FAA A AL s\ S S SIS ottt
oMb b d b d L oSN\ S LA ]
R I 20 S SN G NN NN NN
\ARARRRRR S R A AR LRSS RSN
NN N NN NN S 2 A O N R N R
AR A I B S UL VA NN AN N N N A N
I R et A B B S WA UL SN NA L AN N NN LN
A ettt PP AV 20 B B A LA AL L. .. N SN
-0.5 0 0.5 1 1.5 2
(a) X

A o0V A B A

PSSSSONNNNINNNNNNNNNN NN Y v v b gy

LSES™SSNNNNNNNNNNNNNNN N VN v ff S S

TR RO NNNNNNNNNNNNNN NV f L

NNNNNANNNNN NSNS

NNNNNNNNY YVttt

NXENXNNNNNY Vs

NNNANNNNV S

NNNNNNNY s S

NXNNNNNY VLSS

NNNNNNV VA

N NNANNNWH A

NNXNY PP p s a s

: NNNANMNV S

I SN NNVH PSS S S S s

LA —mmSNNNNNV S S

F AV mmmsm s SNNN\N VS S S A IS o]

mPLLfti///«¢\\\\\\\///44444///x/

| iy PN S S NN

\RRRRRRS [N NN NN NN

ARRRRR AN NN NN

ARRRR IR RAR RSN

o5k BN SN NN

T PV AANANNNY

15 2
(b) X

EES S 55 N N NN NN N N N N N S R S S T
e N N N L W W S
IST\\\x\\\ﬁ\\\\\\\\\\\\\\\\\\\\\Q
e e S S N N N NS S S N O U U L U O BN
..... N N R S S L L NN t
,,,,,, e N N N N N N N N N N N N
~~~~~ R e S N N N N N U U U U U U O I O
B e N NS S
I S e S S S N O O O N
P S N N e N U U L
o e R S N N N L U U O I
N P s S N N A
s e N S S T S
2 S S S i e S S N NN I
F AN A o o e e N L N N N UL U I
F LA A S A eSS N Y
[N N A Ve e N N NN Y]
0iiiii+£iﬁiﬁ _____ IS A
VTV T TR P e i M SN
IR TATR R P o A A B TN
IR T N N NN et VAVl I B B YA
NN N NN N e et A B B B
05N N NN NN N e e e Rt gV A AV A B B I
S PN S —— PPN R ERE R
-0.5 0 0.5 1 15 2
(© X
O NNNNANR T 77
NNNNNNNNNV Vs
SNNNNNANN Y s
ERRRARAARREE HE
gISNINNNNANNNN i S L
SSSSINNNN Y s
[essSNNNNNA N 2
M s sSNSNNNNNNN N S S A e r P f f J S S S S S ]
67\\\\\\\\\\H\fl////////f\\\!9////////,,1
S SOONNNA B P EANNSSSSSN NNV A e
R e R A T T T T T N N N I B B e atates
ARARARRRR N\ S s m]
AR AR NNV S prrrmn
' NI R A
N : NNV
AR R4
AR
NNy
~~\\ /o
\\\l//
~N\ /s
- NN~
///\\
g AN
s f AN
e f AN
s fF AN
s/l EN
/N
10
(d) X

FIG. 2. Visualization of the magnetic field of a pancake positioned at a distendeom a planar surfacdvertical dashed line

perpendicular to the superconducting layers. In units of the penetration deptie has(a) x,=

0.5, (b) Xo=1, (¢) X,=2, and (d)

Xo=10. The arrowgof constant lengthdenote the field direction. The pancake is marked by a circle.

To characterize these quantities we calculate the mean
square flux through a band of an arbitrary widthon the

do

o (91#
TP s
dz J’,w&x dy

sample surface, which is generated by a randomly distorted

Abrikosov vortex line parallel to the sample surface and per-

pendicular to the layers; i.e., the function
K(a)=(d?%a)),

where

@(a)=foafmex(0,y,z)dydz

Let us first find the flux through a band of widtlz on the

(37

(38)

. Dgs
_IZWAZ

*® u
du
f,w V1+u?(Jul+1+u?)

X iuZ
ex IUX

Next we consider a distorted Abrikosov vortex line with
pancakes atr,=(Xo+ Uy,,Uyn,2+Ns), where n=0,+1,
+2,...,and thejlsplacements of the pancakeg, ,uy, are
assumed to be small; i.¢uyn|,|uys|<Xo. We treat here ran-
dom and isotropic displacements with ensemble averages
<uxm>:<uym>:01 <uxmuyn>:0' (UxmUxn) = fx(Im—nl),
and(Uy Uy = fy(m—nl).

The flux through a band of widttz on the sample sur-

1—ex;{— 1+u2ﬁ } (40)

A

sample surface, which is generated by a pancake located ffce generated by this distorted vortex line is given by the

the point §q,0,0); i.e., the quantity

dCI)p_fOO
dz  J_.

It follows from Eq. (27) that

B,(0y,z)dy.

(39

sum over pancake contributions,

dod dd
Ezz E (Xg+Uyp Uy NS) *

(41)

This quantity depends only on the displacements Keep-
ing the term linear inu,,, and changing the sum to an integral
we obtain
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~ 00 Uy(p) ;{ Xo)
D(p)=— —————exg —J1+pAAZ=|.
=3 [pIN+ 1+ p2\2 PN

(43
Using the Fourier transforrﬁ)(p) we present Eq(37) for
K(a) in the form

k(@)= J " PEp 44
@=r| 5 1®P)Tl-cogpa)l, (44
wherelL is the sample thickness.

As an example we apply Ed44) to the case when the
displacements of pancakes arise from the thermal fluctua-
tions of an Abrikosov vortex. Faxo>\ we gef

87L kBT)\4

®in(1+pA\?2)° (45

|Hx(p)|2:

Using Egs.(44) and(45) we find that for any value c& and
lp[A<1

~dp 2Xg
K(a)=16kgT 57X —pzxo)\—T [1—cogpa)].
0

(46)
It follows from Eq. (46) that
2Xo a?
K(a)~ 4\/_kBT — T) xo_)\<1’ (47)
K(a)~8wkgT %) & >1 48
(a)~8wkgT|alex TN o h (48)

Note that the characteristic length separating the coherent
limit K(a)>a? from the diffusive limitK(a)>a is yX\.

IV. CONCLUSIONS

In conclusion, we have calculated the magnetic field of a
pancake vortex positioned at arbitrary distamgefrom the
planar surface of a layered superconductor with layers per-
pendicular to the surface and with vanishing Josephson in-
terlayer coupling. The magnetic stray field outside the speci-
men was fully accounted for. From this general solution the
magnetic field of a stack of such pancakes, forming a vortex
line, is obtained by linear superposition. As an application of
the general results we give the variance of the magnetic flux

FIG. 3. Thex component of the magnetic field generated by athrough a band of arbitrary width on the specimen surface.

pancake forxg=X\ in units s®,/7?\3. (8) B,(x,0,2) for z=0.1
(curve a), 0.2 (curve b), 0.5 (curve c), 1 (curve d); (b)
B,(0y,z) for z=0.1(curvea), 0.5(curveb), 1 (curvec), 2 (curve
d); (c) B,(0y,z) for y=0.1 (curve a), 0.5 (curve b), 1 (curve
c), 2 (curved). The dashed lines in graplf@) and(c) indicate the
z axis.

dCD__ D,
E_IZW)\

Jx g u 4_uz
u exp i—
R TN A

1+ uz%> J_ dgux(f)exy{ —i L;\—g)

Applying the Fourier transform to Eq42) we find

(42

This width may be interpreted as the width of a strip-shaped
detector scanning the surface of the superconductor in the
ac plane, moving along the axis, and measuring the stray
field of a distorted vortex line parallel to the surface dimd
averageto thec axis. This stray-field variance decays expo-
nentially with the vortex distance, from the surface, and it
increases with the strip width first quadratically and then
linearly whena exceedsy/Xo\.
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