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It is shown that in extremely anisotropic layered superconductors the interaction of vortex lines with a
parallel planar surface, which for straight lines along dhexis decreases exponentially over the in-plane
penetration depth\, becomes a long-range dipole-dipole attraction when the vortex line is distorted
randomly. This novel long-range fluctuation-induced attraction enhances the thermal fluctuations down
to depths much larger thahand may lead to flux creep towards the surface.

PACS numbers: 74.60.Ge

Abrikosov vortex lines in layered superconductors havehe result of the isolated-layer model exactly coincides
several unusual properties as compared to vortex linewith the result of anisotropic London theory in the limit
in isotropic or weakly anisotropic superconductors. InA. > A, where A, is the penetration depth for currents
particular, vortex lines oriented perpendicular to theperpendicular to the layers. The long-range attraction
superconducting layers may be considered as a stack o, therefore, also present in superconductors with finite
two-dimensional point vortices or pancakes [1-3]. Inanisotropy, where it is proportional to 2 exp(—2x/A.)
the case of large anisotropy the pancakes interact vitor long distancest between vortex and surface. Since
a magnetic pair potential, which parallel to the layersin high-T. superconductora, typically is a macroscopic
decreases logarithmically and perpendicular to the layerength, this surface attraction is really of long range.
decreases exponentially. Most importantly, the interaction We first give a simple physical interpretation of the
of pancakes within thesame layer is repulsive while  long-range fluctuation-induced attraction. Assume that
between different layers it iattractive and reduced by only one of the pancakes of a straight stack is displaced
a factors/2A < 1, wheres is the layer spacing andl = by a small distance away from the surface. This local
Aqp 1S the penetration depth for the currents in the layersdistortion is formally described by adding a pancake at the
As a consequence, the interaction of two straight stacks afew positionx + u and an antipancake at the equilibrium
pancakes at distange > A decays as eXp-p/A) since  position x, which annihilates the original pancake. The
at long distances the attraction and repulsion between threame procedure has to be done with the image stack
pancakes from both stacks compensates almost exactlyituated at the positior-x if the surface is ak = 0 (see
Thus, the interaction of two straight stacks is just the usudFig. 1). The two pancake-antipancake pairs are dipoles
short-range repulsion of Abrikosov vortices. with a strength proportional to the displacemenand

The repulsive and attractive interaction of point vor-a dipole-dipole interaction energy proportionalité/x?,
tices has a further important consequence, which to ouvhere 1/x* is the second derivative of the pancake-
knowledge has not been pointed out previously, namelypancake potentialln x). Therefore, the distorted vortex
the interaction of a distorted pancake stack with a surfacéne is attracted to its image, and thus to the planar surface,
that is parallel to the stack. Within the linear London the-by a long-range potential proportional #&/x>. This
ory the condition of zero perpendicular current through dong-range interaction of each displaced point vortex is
planar specimen surface may be satisfied by adding thi@ addition to the short-range interaction of a perfectly
magnetic fields and currents of image vortex lines [4—7]straight vortex line with its image, which is proportional
Each vortex then is attracted to its image since the imto Ky(2x/A) « exp(—2x/A), where Ky(x) is a modified
ages have opposite orientation (antivortices). Howeve3essel function.
this short-range attraction applies only when the vortex The interaction of a distorted vortex line with its
line is perfectly straight. As soon as the vortex line is dis- image may be calculated from the interaction of pancakes
torted, the compensation of repulsive and attractive termseparated by r,, = (X — X0 Ym = Yn>Zm — Zn) =
in the vortex-vortex interaction is no longer ideal. As a (X, Yimn»> Zmn) [8,9],
consequence, randomly distorted vortex lines felelna-
range attraction to the surface. 2In(ppm/€), n=m,

In this paper we derive this novel long-range attraction F =~ ¢, s 2] Do (1)
and discuss some of its consequences. We show that S ex;{— T>|n<T>’ n#m,
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whereg(z) is the correlation function

g(z) = ([u(z) — u(0)P). (5)

The integral (4) shows that the long-range interaction does
not depend on the layer separation

¢ 7 11 T For a calculation applying also {@,,, < A we use the
general expression for the two-pancake interaction [8,9],
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Where k = (kx’ky’ kZ)l q = (kx’ky)a p = kZl thus
x=0 x=0 q¢* =k; +k; and k*=g4*>+ p’>, and as above

FIG. 1. Left: A distorted vortex line and its image composed¥mn = (Xmn, Ymn> Zmn)- Since (6) is valid for alk,,, we

of pancakeq!) and antipancakeg). Right: The two dipoles may obtain the total elastic energy of the distorted vortex

generated by ;he displacement cause a Iong-r_ange attractitime E,,; = Eeif + Ein from (2) and (6). Expanding this

between the distorted vortex and the surface (indicated by g, quadratic terms im, introducing the Fourier transform

vertical bold line).
d .
u@ = [ SEaper, ™)
2T

with ey = s® /47 moA?, p2, = x2, + y2 , andz, =
ms wheres is the layer spacing and the core radius of )
the pancake. Far,, = z, Eq. (1) applies to all distances and usings > explipz;) = 2w8(p) (for | p| = m/s) and
oo > &, DULTOF Zpy % 20y pon > A Was assumed. The J(@p/2m)[a(p)l* = [ dzu(z)* = (u?)L we obtain

total energy of a vortex line is composed of its self-

. ; R . . 2 3
energy and the interaction with its image line of opposite Ew = D f d’k 162 Fatr + fint) @)
orientation, namely, 4 873
1 k2 qz
E %‘_ ;[E(Xm XnsYm YnsZm Zn) fself = [+ 22 — T q2/\2 ) (9)

- :E(xm T XnsYm — YurZm — Zn)]s (2) 1

L= <k—2 k_)% _ ) 2ikcx (10)
fmt - 1 + k2A2 q2 9 fself e .
Remarkably, exactly the same result (8)—(10) is ob-
tained from the anisotropic London theory in the limit
A, — . Namely, the interaction energy of two London
vortices at positions;(z) andr;(z) is

where the sums are over the pancakes ofrda vortex

in the superconducting half spaee> 0, thus x,,,x, >

0. For a distorted vortex line parallel to the surface

x = 0 we define pancake displacements = u,,(z,) =

(thxm, Uym) DY WIItING x,, = x + tyy, aNd y, = uypy.

Keeping only the terms quadratic in thg, we obtain

from (2) the linear elastic energy of the vortex. B
We first consider random and isotropic displacements [ T f drap Vap(r = 1), (11)

with ensemble averages,,,) = (uyn) = 0, (Uymityn) = ) o )

(Uymityny = f(Im = nl), (mu,,) = 0. The long-range where the anisotropic interactiof, g(r; — r») (a, 8 =

interaction with the image line fatx > A then becomes x,y,z) is given in Ref. [10] as a Fourier integral over

from (1) and (2) Vaep(k). In the limit A, — o, the general expression
) Vap(k) = (®F/ o) (1 + k2A2)"'g,5(k) simplifies to a
g — __ PoLs LY a2 diagonal matrix with g.. = k2/4% gy, = k?/¢*, and
nt 3.2 Zex | | <(ul uO) >’ . . X ) A
647 oA x> 4 A g.. = 1 if z is along thec axis of the uniaxial super-

conductor. Inserting thi&/, (k) into (11) and integrat-
(3)  ing over the vortex and its image, we reproduce the result
where L is the vortex length. This fluctuation-induced (8)—(10) of the pancake approach. _ _
interaction is attractive and depends on the relative From Eg. (10) one reproduces the long-distance inter-
displacementg(u; — u)?) over a vortex length of order actions '(3) and_(4). Mort_eover, from the self-interaction
. Like a dipole-dipole interaction it decreases las?. (9) the line tensiorP of an isolated flux line [11] or stack

Sinces < A, one may approximate the sum in (3) by ~ Of pancakes is obtained,

DIL f‘” p( z) @3 In(1 + p2Ad)
Enw =573 d - , (4 P(p) = , 12
t 327T/.L())\3x2 0 Z €X A g(Z) ( ) (p) 87T/.L()/\2 pzAz ( )
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which determines the linear elastic self-energy of a ) = k T327T,uo)x4 dp 1 — codpz) (19)
distorted vortex line, giz B 2 27 In(1 + p2A2)°
o L d_p 2 ~ 2 . . . . .
Eeit =5 | 5P P(p)la(p)l-. (13) The functiong(z) is practically constant in the inter-
val relevant in Egs. (4) and (15). One hg$0) = 0
In real space this energy looks similar to Eq. (3), and for |z| > s one finds g(z) = c¢; + calzl/A with
¢y < c1. For the exampler/s = 100 some values of
2L s 0 — un)? the integral in (19), times\, are 0, 4.71, 5.07, 5.16,
Egir = ﬁ ZeXp<— " |l|> % 5.25, 5.29, 5.42, 5.53, 5.68, 5.84, 6.10, 6.85 fgs —
THOA 170 0,1,2,3,4,5,10,20,50, 100,200,500. The constancy of

1) 8 at z up to a fewa means that the thermal fluctuations
of the pancakes of one vortex line are neamcorrelated
at small wavelengths [3,12], and thus the cutoff length
5 . of severals, or the effective cutofig| = «/s, required
Eur = — OyL f dz ex;(— i) @ (15) to obtain expressions like Eq. (1% not crucial. This
‘ 87 oAt Jo A “elastic independence” of the pancakes originates from
the strong dispersion of the line tensi®tp) (12). For

The similarity of (4) and (15) leads to the following useful |;| > 2771 and for a usual string with nondispersive
relationship. If the correlation function (5) increases algethe thermal random walk yields(z) = |z|.

and sinces < A it can be approximated as

braically,g(z) = constX |z|”, one has (still foRx > 2) The expression fog(z) (19) was derived from the line
energyE.¢r (13), which does not depend on the vortex
Eint = —(yA?/4x®)Egs . (16) distancex from the surface. The correct calculation,

however, has to consider the total enemfyr + Eiy.

A flux line diffusing in a random pinning potential may Since the interaction with the surfadg, depends on
exhibit y ~ 1 [9], thus Ein =~ —(A2/4x?)Ewis is NOt @ % and the eqmpartlon theorem requires c_onstant energy
very small correction t@s;. kgT per mode, we find that the fluctuation amplitude
To obtain the thermal fluctuations one has to condepends on. Explicitly we obtain from (4) and (15) for
sider the pronounced dispersion (“nonlocality”) of the line@ Vortex line atx > A/2 the short-wavelength thermal
tensionP « 1/p? (12) at largep > A~!. This means fluctuations, i.e., the valug(z) ats < |z] = A,
that a single displaced vortex “feels” a parabolic poten-
tial of curvaturep?P(p) = ® In(ar/s)/4m woA* (with ) ~ 22° kB_T[ A 1 } (20)
a = 1.16 for s < A) originating from the global inter- In(wA/s) e 4x% In(aA/s) 1
action with all pancakes within a distance of orderof
along the stack. Therefore, the self-energy (3) caused b§o we have the interesting result that the correction to the
short-wavelength fluctuations is simply thermal fluctuations decreases away from the suréextye
as a power law. This increase ofu?) originates from the
5 softening of the flux-line lattice near the surface.
(u?). 17 Consideringu, and u, separately, we find that the
surface-caused softening of a vortex line is indeed

Each pancake only weakly feels the usual “local” (nondisJSotropic at largex but becomesanisotropicfor x < A.
persive) line tension that originates from the nearestYhe general expression obtained from (2) and (6) shows
neighbor interaction. For long tilt wavelengtds /¢ >  that to a good approximation the contributions of each
), however, the line tension (12) of the pancake stack i§lisplaced pancake to the elastic energy addepen-
local, P = ®2/8 uoA2, as can be seen also by insertingdently. Each pancake contribution is composed of the

Eo— DL IN(aA/s)
self 87#0)\4

a uniform tiltu; — ug = 7 in (14). interaction between six objects, namely, the displaced
In terms of the Fourier transform (7) the correlationPancake and the hole (antipancake) it leaves in the vor-
function g(z) in (4) and (15) may be expressed as tex line, their images in theamelayer, theundisplaced
straight vortex line, and its image. Explicitly one has
2 dp , . 2
4@ = = [ 2 apiin - cotpa].  (19) L
LJ 2m o = 7 [a(x) W2y + b(x) ()],
87 oA
Writing the self-energy (11) fqr an isolated vortex of al A2 [ 2x
finite lengthL as a sum over discrete modes with wave a(x) = | ¥ a2 Rl )
vectors p, and amplitudesu,, and ascribing to each )
mode the average thermal energyl” (sinceu,, has two b(x) = In ar A AK’<2—X> 21)
components), one obtaikhi( »)|>) and with (18), s 4x2 2x O\ A )



VOLUME 76, NUMBER 5 PHYSICAL REVIEW LETTERS 29 ANUARY 1996

with « = 1.16. For large x > A/2 one hasa =  anisotropic superconductors the attraction is reduced by
b =1In(aA/s) — A?/4x?>, and for x < A/2, a = a factor of exp—x/A.). Formally, the long range is due

b — A%/2x*, b = In(aA/s), since the derivatives are to the noncutoff factoi /42 in Eq. (10).

K{(r) = —1/r and K{(r) = 1/r?> for r < 1. The In conclusion, we have shown that in extremely
thermal fluctuations anisotropic layered superconductors there is a long-range

interaction between the sample surface and a distorted
2kpT A? vortex line parallel to the surface and to theaxis. this
€ob(x) interaction causes a spatial variation of the thermal fluctu-
ations even at distances much larger than the in-plane
become thus asymmetric near the surface, with London penetration depth, which might affect the melting
(u})/(u3) = b/a > 1. Note that the curvaturea  process of the vortex lattice [19] and the evaporation of
in (21) turns negative at smatl. To check the stability vortex lines into independent pancake vortices [3,12].
of a pancake stack close to the surface and to obtaim the presence of sufficiently strong random pinning, a
the correct pictures of penetration and exit, one ha$luctuation-induced long-range force attracts the distorted
to add the (always positive) stray-field energy [13,14]vortex line to the surface. This additional force may lead
and the restoring force of the current densjty) that to flux creep towards the surface.
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