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~ Abstract- The origination of propagating normal do- 
mains in large superconducting composites is studied nu- 
merically by means of an effective circuit model. The ini- 
tial perturbation is considered to be a thermal pulse. The 
minimum energy required to form a propagating normal 
domain is calculated as a function of the dimensionless 
transport current and three parameters characterizing the 
cooling conditions and the conductor. An analytical ex- 
pression is proposed to determine this energy in the region 
of parameters of practical interest. 

I. INTRODUCTION 

Large composite superconductors have been recently 
tested for use in superconducting magnetic energy stor- 
age (SMES) systems [l]. These conductors are composed 
of superconducting multifilament strands embedded in a 
large normal metal matrix with high thermal and electri- 
cal conductivity to stabilize the conductor against super- 
conducting to normal transition. Because of the large size 
of the stabilizer, if a normal zone nucleates, the current 
in this region redistributes into the stabilizer, followed by 
a significant decrease of the joule power and the recovery 
of superconductivity. Despite the above stabilizing mecha- 
nism, it was found experimentally that normal domains of 
finite size can propagate along the conductor for transport 
currents larger than a certain threshold current I d  [l]. 

The dynamics of a traveling normal domain was investi- 
gated in a number of theoretical studies. Huang and Eyssa 
[2,3] performed numerical simulations for the diffusion of 
heat and the redistribution of current in the conductor in 
the presence of a normal zone. Their simulations showed 
the formation of a stable traveling normal domain. Dresner 
[4] proposed an analytical method to calculate the propa- 
gation velocity of a traveling normal domain, assuming the 
time dependance of the joule power. In [5,6] we investi- 
gated both numerically and analytically the nucleation and 
propagation of a traveling normal domain in large compos- 
ite superconductors using an effective circuit model. We 
proposed explicit equations for the velocity of the domain 
and for the threshold current I d .  
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We consider now the influence of an external perturba- 
tion of a total energy, Q p ,  on a large compos 
conductor >in the cryostable regime. We suppose that 
perturbation creates a normal nucleus. In case when tr 
port current I < Id  the superconducting state is st 
with respect to such perturbations. For I > I d  the su- 
perconducting state is metastable. This means that it is 
stable against perturbations with sufficiently sm 
that the normal nucleus dissapears after the per 
is over. If the value of QP exceeds a certain crit 
&in (which we name as initiating energy) the final state 
is a state with traveling normal domains. In general &in 
depends not only on the param 
tor and the coolant, but also on the time depend 
the perturbation and on its spatial distribution. 

composite and cooling conditions. 
In this paper we consider 

large composite superconductors. We treat the cr 
regime in case, when it is urlstable against the p 
tions resulting in traveling normal domains. The 
circuit model is used for numer 

11. THE MAIN EQUATIONS 

Let us consider a rectangular CO 

ribbons of equal width, a supercon 
and a stabilizer (normal metal) of 
ductor carries transport current I and is 
contact with a heat reservoir of te 

In order to obtain the initiating 
ics of the temperature and the curren 
tions in the composite has to be consider 
treatment of this problem requires the s 
diffusion equation for the temperature 
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set of Maxwell equations for the current density distribu- 
tion. A simplified one-dimensional model was proposed in 
[5,6]. This model takes into account the main physical fea- 
tures of the problem, and can be described by the electrical 
circuit sketched in Figure 1. 

R s  R S  

Figure 1: The effective circuit. 

The upper chain of resistors represents the stabilizer, 
each resistor of resistance, R, = p n A x / d n ,  where pn is 
the resistivity of the stabilizer and A x  is an arbitrary de- 
scretization length. Similary, the lower chain of resistors 
represents the superconductor each resistor of resistance, 
R, = p,Ax/d, .  Here p s  is the resistivity of the super- 
conductor, which vanishes in the superconducting phase, 
and is finite in the normal phase. Both chains are linked 
through a chain of resistors R = yRpndn /Ax ,  where Y R  is 
a numerical factor of the order of one, depending on the 
geometry of the conductor. Finally, the inclusion of a char- 
acteristic time scale in the electric current diffusion pro- 
cess is accomplished by taking into account the inductance 
of the stabilizer (the inductance of the superconductor is 
neglected) L = yl,uOdnAx. Here y~ is another numerical 
factor. This model yields a set of two one-dimensional 
diffusion equations for the current density distribution in 
the superconductor js(x,  t )  and for the temperature field 
T ( x ,  t )  

and 

aT 8 d T  
at a x  x C- = -@a) - W ( T )  + Q(T) + Q p ( x , t ) ,  (2.2) 

where C is the heat capacity and k is the heat conductivity 
both taken to be constant. The parameter j 3 I / d ,  is the 
current density in the superconductor far from a normal 
domain. The function W ( T )  is the rate of heat transfer 
to the coolant per unit volume, which can be written in 
the form W ( T )  = h(T)(T - To)/d, where d 3 d ,  + dn.  
The function Q ( T )  is the rate of Joule heating per unit 
volume having three contributions: from the Joule heating 
in the superconductor when it is in the normal state, from 

current. As a result, Q ( T )  is given by 

The function Q p ( x ,  t )  is the power of the external heating 
per unit volume. The total energy of the pulse is given by 

+m +a, 

Qp = A / d x  / dt Q p ( x ,  t ) .  (2.4) 
-a, -a, 

where A is the cross-sectional area of the sample. For con- 
venience, we use the following dimensionless variables, the 
temperature 8, and the current density in the supercon- 

where Tc is the critical temperature of the superconductor. 
We define L t h ,  the characteristic thermal length and Tth, 

the characteristic thermal relaxation time, 

the characteristic length of the current redistribution L m  

and the corresponding relaxation time Tm 

We assume here the ”step model” for the resistivity of the 
superconductor [7]. 

where q is the Heaviside step function (7 = 0 if x < 0 and 
71 = 1 if x > 0), and j c (T)  is the critical current density in 
the superconductor given by 

We treat perturbations with length L,  << L t h  and du- 
ration T, << 7 th .  In this case the function Q p ( x , t )  is 
proportional to a product of two delta functions: 

(2.10) 

where Q p  is the total energy of the pulse. 
Finally, we introduce three dimensionless parameters 

where ( is the ratio of the resistances of the superconductor 
and the stabilizer per unit length, a is the ratio of charac- 

the current in the stabilizer, and from the perpendicular teristic rates of Joule heating and heat flux to the coolant 



(Stekly parameter), and qp is the dimensionless total en- 
ergy of the pulse, where 

&h E C A L t h ( T ,  - To). (2.12) 

Equations (2.1) and (2.2) in the dimensionless form are 
given by 

0.15 

crf 0.10 

0.05 

(2.13) 

0 

b 
- 

- 

- 

where time is measured in units of Tth and length in units 
of L t h ,  the dimensionless parameters i, r and are 

L ,  X z -. (2.15) 7, 
T Z -  . j  

2 3 -  
j ,  ' 7 t h  ' L t h  

111. RESULTS AND DISCUSSION 

The value of qin for a given set of parameters i, a, c ,  T 

and X was obtained by means of numerical simulations of 
equations (2.13), (2.14) for different values of q p .  
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Figure 2: gin as a funct ion of dimensionless current i. a)  
a = .9, E = 120, r = 90. b) a = .9, ( = 190, T = 90. 

The initial conditions were taken as follows: 

e(2,o) = 0, i s ( x ,  0) = i. 

The large time behaviour of the system determines whether 
qp < qin or qp > qjn. Namely, for qp < qin the system 
tends back to the initial superconducting state, whereas 
for qp > gin a pair of travelling normal domains propagate 
in opposite directions along the system. The values of the 
parameters were taken from the References [1,4]. Typical 
values of t ,  r and X can be then estimated as [ = 100 - 
200, r = 10 - 100, and X = 0.1 -'1.0. Specifically, as we 
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Figure 3: qin as a funct ion of r .  a)  i = .6, a = .9, ( = 100. 
b)  i = .6, a = .9, c = 180. 

% 

are interested in cryostable conductors, the case a < 
considered. 

We plot the initiating energy, gin, as a functio 
t and a in Fig. 2-5. The results of numerical cal 
are presented by points. Solid 
following analytical estimation (see eq.(3. 
that the dependence of qi,, on X was found 
negligible. It should be emphasized that 
does not depend on any of the 
i --+ 1. 
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Figure 4: qj,, as a funct ion of ,$. a)  i = -5, a = .8, r = 
b)  i = .5, a = .9, r = 90. 

Let us estimate the value, of the initiating energy q 
from the following qualitative considerations. When a 
of the superconductor undergoes a normal trnsition, 
current is confined in the superconductor during a t 
interval of the order of rm/<. During this interval the 
perconductor in the vicinity of the transition front is un- 
stabilized as the value of the current i is higher than the 
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In case, when 1, << I d ,  which corresponds to T >> 1, 
formula (3.2) is a good approximation for the initiating 
energy qin. To estimate qin for a wider range of r we have 
to take into consideration that current is not constant in 
the normal domain due to  the redistribution into stabilizer. 
We account it by introducing the effective current i , j f ,  
which is a function of the ratio i c / / d  and &Jj  --+ i, when 
1, << i d .  In the first (linear) approximation we obtain 

where 7 is a numerical factor of the order of one. Substi- 
tuting i , f ~  in (3.2) instead of i and using (3.1) and (3.5) 
we find the following expression for initiating energy 

0.7s 0.80 0.85 o.90 0.95 1.m 
Q 2.3 (1 - i )3 /2  (ari2 + 0 . 7 5 ) ~ ' ~  

qin X - . (3.8) 
d? ai2 [ari2 - 0.75 (1 - i)] Figure 5: qin as a function of a. a) i = .5, = 100, 

r = 20. b) i = .6, ( = 100, T = 20. 
The value 7 = 0.75 we obtain by the best fitting to the 

minimum propagation current for the superconductor it- 
self. The normal zone boundary propagates with a certain 
velocity v. Thus, a region with the length of the order 
of vr , / t ,  in front of the normal domain, becomes tem- 
porary unstabilized. The effective Stekly parameter a e f f  
associated with this unstabilized superconductor is equal 

To initiate a propagating normal zone by a thermal pulse 
it is necessary to heat up to a temperature of the order 
of T,(i) a region of a certain length li,. In case, when 
the current in the superconductor is constant the value of 
lin = I ,  can be estimated from the heat balance equation 
and for large a e f f  it is equal to [7] 

to a e f j  = CY( >> 1 [5,6]. 

numerical data. Expression (3.8) approximates the results 
of numerical simulations with a maximum deviation less 
than 4% for the values of parameters 100 < ( < 200, 40 < 
r < 100, 0.8 < Q < 1.0 and transport current 0.5 < i < 
0.85. The initiating energy qin calculated by means of (3.7) 
is presented by solid lines in Fig. 3-6. 

To summirize: we obtained numerically the initiating 
energy for a traveling normal domain in a large composite 
superconductor as a function of transport current and four 
dimensionless parameters characterising the composite and 
cooling conditions. The effective circuit model used for 
numerical simulations. An analytical expression for the 
initiating energy suggested. The values of the initiating 
energy obtained by means of this formula are in a good 
agreement with the results of numerical calculations. - 1  

1, 5% Lth - - 
2 m* ( 3 4  
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