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Abstract. The superconducting state stability in twisted multifilamentary wire is 
investigated. The case of varying transport current and transverse magnetic field is 
considered.  It is shown that the current-carrying capacity I, of multifilamentary 
superconducting composites increases with  the decrease of the  twist pitch L and I, 
attains its maximum value at L less than some critical value L,. 

1. Introduction 

The  current-carrying  capacity of superconductors is 
limited by the  superconducting  state stability  relative 
to  perturbations of a  different  physical  nature  in  many 
cases of practical interest. If the  intensity of these  per- 
turbations is not too high,  then  the  maximum  transport 
current I ,  is determined by the  superconducting  state 
stability  with  respect to small  disturbances  (Mints  and 
Rakhmanov 1981,  1984). The problem  has  already 
been  considered by the  present  authors  for  the case 
when the twisting of the  superconducting wire is 
neglected  (Mints and  Rakhmanov 1982,  1984). It  has 
been  shown that  to  explain  the high  values of I ,  - Zs 
(where I, is the critical current)  one  has  to  take  into 
account  the  behaviour of the current-voltage  charac- 
teristics of a  hard  superconductor in the  region of low 
values of the  electric field E.  At low E this I-V charac- 
teristic  may be  presented in the  form  (Polak et a1 1973) 

j = i s  + il WE/&) (1) 

where j is the  current  density, j s  = j (Eo)  is the critical 
current  density  and  the  ratio j l / j s  is usually of the  order 
of (1-3) x lo-'. Then,  the  differential conductivity  of 
the  superconductor is a ( E )  = j l / E .  Assuming that jl = 
107A  m-* and E = V m-l  one finds that a(E)  = 
10'' Q-' m-', which is much  higher than  the  normal 
matrix  conductivity.  Since  the  superconducting  state 
stability  increases with the  increase of longitudinal  con- 
ductivity  (Mints  and Rakhmanov 1981),  then the value 
of I ,  depends on the  electric field E induced by external 
sources  (Mints  and  Rakhmanov 1982, 1984). 

In  this paper  the  maximum  transport  current I ,  for 
a  twisted  multifilamentary  superconducting  wire  placed 
in a  transverse  magnetic field B,(t) is found.  In 8 2 the 

stability  criterion for  a twisted  wire is obtained.  In 8 3 
the  electric field distribution  in  a  twisted  composite 
with a  transport  current is discussed and Q 4 investigates 
the  dependence of I on  the twist pitch L .  Finally, in 
8 5 the  equation  for Z, is found for the case of a wire 
with a sufficiently small twist pitch L .  

2. Stability criterion 

In order  to find the stability  criterion in the case of a 
twisted composite  superconductor  the  standard  method 
of stability  investigation  may  be  used  (Mints  and  Rakh- 
manov  1984). 

Let us  consider  a  twisted  multifilamentary  wire of 
radius R. in a  transverse  magnetic field B,(t). It is 
known (Carr 1983) that in this  situation  the  current 
density j has  both  a  longitudinal  component jll and  a 
transverse  component j,. Taking  into  account  the  cur- 
rent in the  normal  matrix  one  can  write 

ill = is  + il MEIEo)  + al lEl i  
( 2 )  il = a,E, 

where Ell and E ,  are  the  longitudinal  (along  the fila- 
ments)  and  transverse  components of the field E and 
GI!, U, are  the  longitudinal  and  transverse  conductivities 
of the  composite.  In  practical  situations  one may sup- 
pose that cqEl1, a,E_ 6 j l  4 is. 

We  consider  here only extended  disturbances (such 
as b,) and  therefore  can neglect heat  conduction  along 
the  composite in the following  derivation of the  stab- 
ility criterion. The considered  instability  causes tem- 
perature  and  electromagnetic field perturbations  to 
increase in a  correlated  manner.  Each  one of these 
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processes is characterised by its  respective  diffusion 
coefficient,  namely the  thermal diffusion  coefficient 
D, = K / V  and  the  magnetic diffusion coefficient D,= 
(voa)", where v is the  heat capacity  and K is the  heat 
conductivity of the  composite.  Let us introduce  the 
parameter t: 

(3)  

For  superconducting  composites T + 1. Accordingly, 
fast heating of composites  occurs  under  conditions of 
frozen-in  magnetic flux. Then,  one can  assume that 
in the initial stage of the instability  development the 
perturbation of the  current density 6j is equal  to  zero, 
i.e. 

6j=-6EIl + - - E ,  +-6T=O (4) 
a i  

dEIl aE ,  aT 
where 6E and 6 T  are infinitesimally  small per- 
turbations of the field E and  temperature T. Equation 
(4) allows us to find the  relation  between 6E and ST. 
Using  this relation  and  equations (1) and (2) to  obtain 
the  Joule  heating  term GTa(Ej)/aT, we find the  heat 
equation  in  a  linear  approximation  as 

The  heat conductivity of the  composite is usually 
high and W = 2 W a O / ~  < 1 ,  where W O  is the  heat  trans- 
fer coefficient. In this  case one can  assume  that 6T 
is uniform  over  the cross  section of the  wire.  Then, 
integrating  equation ( 5 )  over  the cross  section of the 
conductor  and using the  boundary  conditions 

K, (eR V 6 T )  = - Wo6T R = R0 ( 6 )  

we have 

where eR is the unit  vector in the  radial  direction;  the 
brackets ( ) indicate the value of the  enclosed  function 
averaged  over  the  cross  section.  The  superconducting 
state is stable ( 6 T  < 0) if 

In  the  range of high magnetic fields B,  yoj,Ro one 
may suppose  that j s  = js(Ba),j l  = j l (Ba)  and  the  criterion 
(8) may be  rewritten in the  form 

The stability  criterion ( 9 )  is similar to  the  analogous 
criterion  obtained  for  the  untwisted wire  (Mints  and 
Rakhmanov 1982). 

Thus,  to find I ,  one  has  to  calculate  the  longitudinal 
component of the  electric field. 

3. Electric field distribution 

The  electric  properties of twisted  multifilamentary 
composites  have  been  studied  extensively  (Carr 1983). 
It  has  been shown that in the case of the wire placed in 
a  varying  transverse  magnetic field the cross  section of 
the  conductor may  be  divided into  two regions:  an 
external  or  'saturated'  region in which Ell is non-van- 
ishing and  an  interior  one in which Ell = 0. To find the 
analytical  solution  for Ell in the  'saturated' region in a 
general  case is impossible. The  purpose of the  present 
calculations is to find Ell in some limiting cases being, 
however, of practical  interest. 

Let us suppose  that  the  value of g, is not  too high: 

where a is the effective field variation, to = ,uoL20,/ 
8n2 is the  characteristic  time of the resistive current 
decay in a  twisted  wire (Carr 1983), B, = 2j~~,$~/.7d is 
the  magnetic flux penetration field and B, is the ampli- 
tude of the Ba(t) variation in the  considered  process. 
Under  conditions (10) one can  write Maxwell's 
equation in the  form  (Carr 1983) 

curlB = B , .  ( 1 1 )  

In  the cylindrical coordinates R ,  q ,  z ,  where  the 
axis of the wire is along  the z direction,  the  solution 
of equation (11 )  may be  presented in the  form 

LB, 
E = - B , R s i n q e , + - V ( f ( R , q ) - R c o s q )  

2n 

(12)  
where Q, is measured  from  the  direction of B, ,  taken 
to  be  along  the x axis, e, is the unit  vector in the z 
direction  and f ( R ,  q )  is a  continuous  function giving 
the  distribution of E,. As the  radial  component of the 
current j R  = 0 at R = Ro, one finds by means of 
equation (12 )  the  boundary  condition in the  form 

af 
" 

dR 
- cos q R = Ro. 

The unit  vector ell parallel to  the filaments is given 
by 

ell = (e, + L e, )/[l + (2nR/L)'] 'l2 
2nR 

(14) 

where e, is the unit  vector in the Q, direction. By means 
of equations (12)  and (14) one finds 

If R = R l ( q )  is the  equation  for  the  interface  between 
'saturated'  and  internal  regions,  then 
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Substituting  formulae (2 ) ,   ( 12 )  and (15) into  the 
current  continuity  equation div j ( E )  = 0 we obtain  the 
equation  for f ( R ,  Q,) 

The  boundary  conditions (13) and (16) may  be  rewrit- 
ten in the  form 

” a @  a @  - 0  r = r l ( q )  -- - cosq  r = 1. 
dQ, a r  

(18) 
Note  that  the  non-linearity of the I-V characteristic of 
the  composite ( 2 )  results in the  non-linear  term in the 
right-hand  side of equation (17). 

First,  let us consider  the  case  when Z = 0. In  the 
situation  under  consideration  the  ‘saturated’  region is 
small (1 - r l (q)  G 1) and one can  write  (Carr 1983) 

4a 
r l ( q )  = 1 - -/sin qI 

K 

The power  series of @(r, q )  in the  ‘saturated’ region 
at 1 - r < 1 - r l  G 1 may be  written in the  form 

cc 

@(r, Q,) = r COS Q, + W(Q,) + 2 b,(q) ( l -  r). 
n = 2  

(20) 
where Y and b, are  functions of q .  Expression (20) 
satisfies the  boundary  condition  at  r = 1 automatically. 

By means of equations (15) and (20) one finds 

E -  B,RO 
l 1  - [l + (2nR/L)2]1’2 

Substituting  expression (20) into  the  boundary  con- 
ditions (18) at  r = r l  we obtain  the  relation  between 
dY/dq,  and  rl(q): 

Using equations (21) and (22) one finds Ell in the  form 

E -  B,RO 
l 1  - [l + (2xR/L)’]  l,’* 

To find the  recurrence  relations  for b, we have to 
substitute  expansions (22) and (23) into  equation (17). 
Omitting  the  details of rather  complicated calculations 
we may state: 

(i) the  expansions (20)-(23) converge  rapidly; 
(ii) the  terms in the  right-hand side of equation (17) 

may be  neglected,  since  the  contribution of the first 
term in the  solution @ is of the  order of (2nRo/L)*  4 
1 and  the  contribution of the  second  one is of the  order 
of j l / j s  G 1; 

(iii) the first term  in  expansion (23) is  of the  order 
of a and  the  sum of the  other  terms is of the  order 
of a* and in the first approximation  this  sum may be 
omitted. 

Then, in the case under  consideration we have 

= B a  sin Q,(R,(Q,)  - R) .  (24) 

By making  use of relations (19) and (24) one can 
find the  averaged value Ell and  the stability criterion, 
as given by the  inequality  (9),  becomes 

or by substituting  the effective field variation a = 
&L2a,/16nj,Ro from (10) 

Note  that  the  value of L, is independent of the wire 
radius.  Supposing  that WO = lo2 W m-2 K-’, jl = lo7 A 
m-2, j,/laj,/aTI = 3 K,  8, = 5 x lo9 R-’ m-l  and B a  = 
1 T s-l, one finds that L, = 0.03 m. 

Equation (25) is valid at a G 1.  It is not  too difficult 
to show that in the  opposite  case, a S 1, the twisting 
does  not  affect  the  superconducting  state stability  since 
the  distribution of Eli is independent of L in this  situa- 
tion and  to find Z, one can  use the  results  obtained  for 
an  untwisted  wire. 

4. A wire with a small transport current 

Let us consider  a  wire. carrying  a current ZG I ,  = 
n R i j ,  and  suppose  that B ,  = 0 at t = 0 and  at t > 0 the 
value of B, increases  monotonically with the  rate B,. 
The  transport  current flows initially within the region 
R o ( l  - i )1/2 < R < R. where i = Z/Zs. At t > 0 the vari- 
able  magnetic field induces  the electric field E in the 
wire. The direction of the  component El of this field 
coincides with the  direction of the  transport  current at 
0 < Q, < n and Ell has  the  opposite  direction  at 
K < Q, < 2 n  (see  figure 1). In the case under  con- 
sideration i, a 4 1 and  one can  conclude  that  the ‘satu- 
rated’  region is small,  i.e. 1 - r l (q)  G 1. In this  situation 
the  boundary R,(Q,)  may  be  found by the  method  pro- 
posed by Carr (1974). According to this  method  the 
longitudinal  current flowing in the  ‘saturated’ region is 
considered  as  the  surface  current.  Taking  into account 
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’l 

Figure 1. Current and electric field distributions in a twisted 
wire  with  a transport current. 

that I # 0 and dB/dt = B, it  may  be  verified’ that  the 
calculations  described in detail in the  paper by Carr 
(1974) give the following  result for  R,: 

(27) 

(28) 
Expression  (28) is valid if Rl(cp) Ro(l  - i)’/’ or 

4a 
- < i < l .  n 

It  ought to be  emphasised  that  at n < cp < 2n  the field 
Ell exists in the  layer  R1 < R < R. where ill= -is and 
Eli = 0 in the  region R,( 1 - i)”’ < R < R1,  where ill = 

I s .  
To find (IEIil>, equation (24), with R l (q )  defined by 

expressions  (27)  and  (28),  may  be  used. The result of 
the  calculations  has the  form 

l \ 
\ 

l , , , , \  
0 0.5 1.0 

LIL, 

Figure 2. The dependence of i, on L/L, at 4nEc/Ro5, = 
0.04. 

Substituting  equation (30)  for the stability  criterion (9), 
and  neglecting  small terms,  one can find the  value of 
the  maximum  transport  current 

The  dependence Zm(L/Lc) in  equation (31) is shown in 
figure 2. The  current I ,  attains its  maximum  value 
2Z,(nEc/ROBa)1~2  at L 4 L,. Equation (31) is valid if the 
inequalities in (29) are fulfilled.  Expression (31) allows 
one  to  write  these  inequalities in the  form 

L / L ~  i 0.9 €,/ROB, 1. (32) 

5. A wire  with a current I -  l, 

For  a wire  with  a transport  current I - Z, the  current- 
carrying  capacity  may  be found in the case of a < 1. 
To  determine I ,  we shall  calculate the  value of E,, in 
the main  approximation with respect  to a 4 1. First, 
we shall  consider  the  situation  when aZ/a t  = 0. Since 
Z/Zs  - 1 and a 4 1 a  good  approximation is R, (q)  = 
Ro(l - i)li2 at 0 < q < n and  R1 = R. at n < q < 2n 
in analogy  with the  results of the previous  section. The 
value of El, may  be  calculated by means of equation 
(17).  Following the  procedure  described in 0 3 it may 
be  shown that  the  terms in the  right-hand side of this 
equation  are negligible  at a < 1. Thus we  have 

(33) 

To obtain  the  value of Ell one  has  to find the solu- 
tion of equation (33) which satisfies the  boundary  con- 
ditions  (18).  Substituting  this  solution  into  equation 
(15) we have,  to  a first approximation 

From  criterion (9) and  relation (34) we find the 
equation for I ,  at L < L, 

4nE, 8 1 5 ,  + (1 - i,)3’2 - 1 
-= -  
ROB, 3 1 - 0.5i, (35) 

The values of i, = Zm/Zs given by equations (31) and 
(35) coincide at L < L, and  4n€,/Roka 4 1. It follows 
from  equation (35) that I ,  = I ,  at  1.5nEC 2 ROBa.  The 
dependence of i, on €,/ROB,, calculated with the  help 
of equation (35),, is shown in figure  3  (curve A). 

For  the case I # 0 the calculations  analogous to  the 
previous  ones give the  equation  for Z, in the  form 

where 

gl(i,) = -2[im + ln(1 - i,)] 
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Using equations (38) and (39) and  the  criterion (9) one 
can find the  equation  for i, in the  form 

The  dependence of i, on E,/RoB, for  the untwisted 
wire is shown in figure 3 by curve B. The comparison 
of curves A and B shows  that  the twisting  results in an 
appreciable  increase of the  current I,. 

E J R O B ,  

Figure 3. The dependence of i,,, on E,/R,& at i = 0. 
Curves: A, twisted  wire  with L Q L,, B, untwisted  wire. 

The boundaries of the  stable regions in the (Z, B,) 
plane  are  shown in figure 4 for  different  values of Z,. 
The  dependence of i, on  the  parameter p,&l + A ) /  
4nE, is shown in figure 5 for  different  values of A = 
2nR0B,/poZ. 

To  compare  the  current-carrying capacities of the 
twisted and  untwisted wires  let us consider  the  situation 
in which Z = 0 and B, is high enough  to  penetrate  the 
untwisted  wire  completely. In  this  case in the untwisted 
wire the value of El, is given by the  expression 

Ell = ez&(Y - Y o )  (38) 
where y o  is defined by the  equation 

3 1  
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6. Conclusions 

(i) The twisting of the multifilamentary super- 
conducting  composites  leads to a  considerable  increase 
of the  current-carrying  capacity. 

(ii) The critical  value L, of the twist pitch L is 
obtained:  at L @ L, the  current-carrying  capacity 
attains its maximum. 

(iii) The  equation allowing one  to calculate the 
maximum transport  current  at L @ L, is found. 
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