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electric field and critical current
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As a first step to a better understanding of the voltage—current characteristics of fine filtament
multifilamentary composite superconductors, the electric field and critical current along a single
spiral-shaped filament were studied. When the spiral superconducting filament was carrying
constant current and placed in a magnetic field, the local critical current and electric field vary due
to the change of the angle between the magnetic fieid and filament axis. A theory is presented
which enables us to calculate the mean and local values of the electric field and critical current of
spiral samples for arbitrary orientation between the magnetic field and spiral axis. The presented
experimental results are in good agreement with this theory.
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A twisted multifilamentary Nb-Ti composite was formed
with a certain number of spiral superconducting filaments
embedded in the normal metal matrix. In previous work
concerning a single spiral superconducting filament in a
field perpendicular to the spiral axis' we have shown that
the electric field, as well as critical current density, varies
along the filament. As a consequence of the electric field
variation along the spiral filaments a redistribution of the
filament currents takes place inside the composite. There-
fore the current-voltage characteristics of the composite
can differ from that of the individual filament, as shown by
Février and Renard?.

The aim of the present work is to obtain information
about the electric field distribution ailong the spiral
filament sample and to compare the critical currents of the
spiral sample with those of the straight sample at arbitrary
orientation between the magnetic field and the spiral axis.

Theory

At present it is well established that the current-voltage
characteristics of hard superconductors in a wide range of
electric fields, E, (at least for 107 yVem™' < E <
10°uV cm™") have the following form (see, for example,
Reference 3 and the references therein)

j=jc+j In(EIE,) (1)

where: j is the current; j. = j.(B,T,B, E,), is the critical
current corresponding to the electric field E,,, the magne-
tic induction B, and temperature 7; the parameter
ji(B,T,B) characterizes the slope of the E—j characteristic
and B is the angle between the magnetic field and the wire
axis. Usually E, = 0.1upto 1 pV cm™'.

Figure 1 represents the dependence of the critical
current, j., and the parameter j; on the angle ¢ = (7/2)—B
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(this notation allows us to simplify the equations deduced
below) for a straight Nb-Ti monofilamentary wire,
CFTH-14 (manufactured by Thomson-Brandt, France)®,
which was used for preparing a spiral sample. The outer
diameter of the copper stabilized wire was 52 pm and the
filament diameter was 36 um. Note that for this wire, in
the interval 0° < ¢ < 60°, the dependence j.(¢) can be
quite well approximated by the following formula

jd®) = j(¢=0°)[ 1 +0.75 (¢* + ¢%)] (2)
It should be noted that j () and j(¢) are even functions of

The curves shown in Figure 1 do not have universal
validity for Nb-Ti wires. In Nb-Ti wires with elongated
defects the functions depend on the aspect ratio of these
defects, as shown in Reference 5.

In this work we analyse the electric field distribution
and critical currents of a monofilamentary wire shaped
into a spiral with diameter 2R and twist pitch [, (see Figure
2) for arbitrary orientation of B. We assume that the
magnetic field is in the x—z plane and forms an angle ((° <
a < 90°) with the x axis.

Then the angle ¢ can be determined from the
equation

2mz
sin¢d =sinacos { + cos asin § cosT 3)
P
where
2nR
gL=", )

p

The dependence of ¢ on z for the spiral with /, =
10 R (corresponding to the sample used in our experi-
ments) is shown in Figure 3. The function ¢(z) has a
minimum at the point z = //2 and the corresponding value
®min = @ ~— C. Due to the change of the angle ¢ along the
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Figure 1 Measured dependence of: (a) j. ($)j. ($=0°); {b) j, on
angle ¢, for B=4T

spiral wire according to Equation (3), both j. and j, depend
on z.

As one can see in Figure 1, the lower ¢ is, the lower
the critical current, j, is. For « < { there are two points on
the curve ¢ (z) where ¢=0 and the minimum value of
je (¢ (2)] equals j. ($=0). For « > { the minimum value of
jc [¢ (Z)] equals jc (¢min) = jc ((X - ;) (See Figure 3)

According to Equation (1) the electric field, E(z),
may be written as

j— il (2)] l
ile @] |

As can be seen from Equation (5) the value of E(z) is
maximum at the points where (j—j o)/ (i{$(2)]) is a
maximum. It can be shown that E(z) is maximum at points
where j [¢(2)] is a minimum, supposing that the current, j,
is higher than the minimum value of j [¢(z)].

Let us define the critical current of the spiral sample,
Je. as the current at the mean electric field along the spiral
sample, £ = U/l = E_, where U is the voltage along the
length /. For one complete spiral the mean value, E, can
be written as

E(z) = E exp (5)

wi

)

filament

b,

Figure 2 Orientation of the spiral sample and the filament in
the co-ordinate system
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Figure 3 Dependence, ¢(z), for the spiral with //R = 10 and

different angles of «

- E le j = Jd9(2)]
E="" expi{ ...,

/ 0 \ Me(2)] |

P
According to the definition of ., we can write the integral
equation for j,

1 f b e = jdo()] |
€
0 P o)

In general, the solution of Equation (7) can be found only
by numerical calculations. As j. > j, for all angles ¢, the
integral Equation (7) can be solved analytically by the
saddle point method® (see Appendix). The results are as
follows

dz 6)

dz =1 )

- n(sin*G-sin’w)j. (0)
J()=j(0)+0.5/(0)In ) fora<g
2 j(0)
(8)
- | 4.5 sin?20)/(0)
J(@)=j(0)+0.25)(0)n | — =" | fora=¢
’\ 70) ©)

2nsing cosajL(a—C)l
cos(o—)j(a—~F) l
for90° > a > (10)

J(@)=j(a=1)+0.5j(a—E)In

where: j. = dj/d¢ and j, = d°jJdd?.

It can be shown, that for spirals of commercial
Nb-Ti wires the second term in Equations (8)-(10)
contributes only a few per cent to j, and with this accuracy
we can write

Te (@) = j0) for a<g (11)
Je (@) = jla=t) for a>% (12)

Note, that for « = 7/2, Equation (12) gives the exact value
for j. and E is constant along the spiral wire.
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Experimental details

The aims of the experiments described in the following
text were:

1 to compare the critical currents of a spiral sample in a
field perpendicular to the spiral axis [f(a=0)] with
those of a straight sample in a field perpendicular to its
axis [jc (¢=0)]; N

2 to obtain the dependence of j. of the spiral sample on
the angle o and to compare this with the theory
presented above; and

3 to verify experimentally that the local critical current
and electric field vary along the spiral sample.

The CFTH-14 described above was used for preparing all
samples. Three samples were prepared. Sample 1 (see
Figure 4a) with a distance of 450 mm between the
potential taps was wound on the cylindrical fibre-epoxy
former. If placed in the field parallel to the former axis the
wire is exposed to the magnetic field practically perpen-
dicular to the wire axis.

Sample 2 (see Figure 4b) was prepared so that at first
the measured superconducting wire was wound on insu-
lated Cu wire with a diameter of 1 mm with a twist pitch of
1.75 mm. Then this superconducting spiral on the Cu core
was wound on a sample holder with an identical shape to
that used for sample 1. The total length of the supercon-
ducting wire between the potential taps was 890 mm. If
placed in a field parallel to the former axis, the magnetic
field was practically perpendicular to the spiral axis.

Sample 3 is shown in Figure 5. The superconducting
wire was placed in the spiral groove machined on the
surface of the cylindrical fibre-epoxy former with a
diameter of 3 mm. The twist pitch of the spiral, [;, was
15 mm so that angle L = 32.1°. The ends of the sample
were soldered to the cylindrical copper contacts and three
pairs of potential taps were attached to the sample. The
distance between the taps was 2 mm. The sample holder
was constructed so that the angle could be changed
between 0 and 90°.

Results and discussion

Comparison of the critical currents j. and .

The E-j characteristics of samples 1 and 2 at 4.2 K for
different magnetic fields are shown in Figure 6. The
critical current obtained from Figure 6 for the straight

CURRENT

_____

COPPER ®1mm

SUPERCONDUCTING
WIRE

Figure 4 (a) Sample 1 in perpendicular field and (b) spiral
sample 2 in a field perpendicular to the spiral axis. Angle ¢ for
the spiral sample is = 61°

Figure 5 Position of the potential taps on spiral sample 3

sample, j., at E,=0.1 pV cm™! and for the spiral sample,
Je, at Eq = 0.1 pV cm™! are compared in Table I.

One may see that j. measured on the spiral sample is
only a few per cent (1.6-2.8%) greater than j. as predicted
by theory. As an example, we can compare calculated and
measured values of j. at B = 4 T. For calculating j. for
sample 2 at B = 4 T, the parameters to be inserted in
Equation (8) are as follows: j.(0) = 1.242 A, j(0) =
0.013 A, L = 61°,j($)=j(0) (1.5+9 ¢7), jI'(0) = 1.242 A
x 1.5 = 1.863 A. Then, from Equation (8) we obtain j, =
1.275 A, which agrees well with the experimental value,
1.272 A. Similar agreement between theory and experi-
ment was found for other values of B.

Measurements of | («) on spiral sample 3

Sample 3 was turned by steps of « = 6°. In each position
current-voltage characteristics were measured and j.
determined. The measured ratio j. (&) / j. (&« = 0°) = f(o)
at 4.07 T and 3.01 T is shown in Figure 7.

The theoretical curve shown in Figure 7 has been
calculated for B = 4 T using Equations (8)-(10). The
parameters j(0) and j,(¢) measured on the straight sample
are: j. (¢=0) = 1.242 A at B=4.0 T, and the measured
parameter, j,(¢), is shown in Figure 1. From Figure 7 we
see that for « < { ({=32.1°) the critical current, j. («), is
practically equal to j. («=0°). This can be explained by the
fact that in this range of angle «, the minimum value of |¢|
is Opun = 0° (see Figure 3) and the critical current of the
spiral sample is controlled by j. (¢=0). For « > € the
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Figure 6 Measured E-j characteristics of: @, the straight
sample; and O, sample 2 in fields of ~ 54 and 3T
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Table 1 Critical current obtamed from Figure 6 for the straight
sample, j., at E, = 0.1 uV cm ™' and for the spiral sample, J,
atE, = 0.1 uVv om-

Sample Critical Magnetic field, B(T)
current
(A) 5 4 3.2
1 Jjo (A) 1.050 1.242 1.388
2 T (A 1.081 1.272 1.411

minimum angle ¢ is ¢min = & — C, and j(«) should be
approximately equal to j.(@ — {). From Figure 7 it can be
verified that this is true with an accuracy better than 5° in
«, which is within the limits of measurement accuracy.

Experimental verification of critical current and
electric field variation along the spiral sample

According to the theory presented above we have
calculated the angle ¢, the ratio j [$(z))/j.(¢=0) and the
ratio E(z)/E(¢=0) as a function of the co-ordinate z for
spiral sample 3 (see Figure 8). Then we measured the
voltage—current characteristics between the potential taps,
a;—a,, b;-b, and c,—c,, in magnetic fields with B=1 up to
S T. The critical currents and electric fields measured
between taps a,—a,, b;—-b, and c,—c, characterize the wire
in the vicinity of points z = [ /4, z = [ /2 and z = 3 [ /4,
respectively.

Joldl) J s
Jo =0

T
A

a %
o e
1 e ]
1 1
0 30 60 90

Figure 7 Angular dependence of ratio j.la)/j.{a=0° for spiral
sample 3 at: @, 4.07 and A, 3.01 T (measured); and D, 4T
(theory). X, This curve represents the ratio j.($)/j.(0) for the
straight sample as a function of angle ¢
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Figure 8 Variation of: (a) ¢; (b) j. (2] / j. [9=0); (c) ElzV
Elp=0] along spiral sampie 3 for a = 0 (magnetic field
perpendicular to the spiral axis)

The measured critical currents, j,, at E, =
1 uV cm~! are shown as a function of B in Figure 9. The
measured ratio j [¢(2))/j($=0) at B=4 T for z = [ /4, /2
and 3 /4 is shown in Figure 8b. The 2 mm gap between
the potential taps is relatively large compared with the
twist pitch length, and from the voltage, U, measured
between them only the mean value of the electric field
between the taps can be calculated. Thus, the real electric
field in z = [/4 and z = 3[/4 is greater than that
calculated from U, _,, and U, .. and in z = [J2 it is
smaller than calculated from U, . Consequently, the
measured ratio, j. [¢p(z = (l,,/2))]/]L [0z = (/4] is
smaller, as could be expected from the theory.

In Figure 8c it can clearly be seen that the electric
field decreases very rapidly for zS [/4 and z $ (3/4)1,,.
The experiment confirmed that the voltage between b,-bz
was unmeasurably small for currents which give rise to
measurable voltages between a;—a, and c¢,—c,.

Thus, the described experiments confirmed that the
critical current, as well as electric field, varies along the
spiral sample and the theory presented describes this
variation.
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Figure 9 Critical current, j., for E,=1 uV cm ' measured
between the potential taps a,—a, and b,—b, on the spiral sample
as a function of B. Values of j. between a,—a, and c,—c, are
identical

Conclusions

It was shown that the electric field distribution in the spiral
superconductor in a homogeneous magnetic field is very
inhomogeneous. Because, in a multifilamentary wire the
mean longitudinal electric field along the composite is
constant, we suppose that the high inhomogeneity of E in
filaments must be compensated for by high inhomogeneity
of E in the normal matrix. This means, that in those parts
of the composite where j{z) is maximum, i.e. E is
minimum, the current density in the matrix is maximum.

It has been shown that the critical current of a spiral
superconductor, j., is mainly controlled by the critical
current at points with maximum value of E[¢(z)]. For « <
g, it leads to j(&) =j.(0) = constant, and for « > T, the
critical current j.(«) = j. (o-T). The critical current of the
spiral sample in the field perpendicular to the spiral axis
does not differ significantly from that for a straight sample
in a perpendicular field.
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Appendix

The dependence j(«) can be obtained analytically when
<G, 90°>a>f and a={. For solving the integral Equa-
tion (7) the saddle point method® may be applied. The

applicability of this method is shown by the fact that along
the spiral the quantity

7'; - jc [¢(Z)]
—_—s
h(2)

except for areas in the vicinity of points where j, {¢(2)] is
minimum. Then (see, for example, Reference 6)

q(z) =

12

lp 2n

1 1 =

,—I exp [¢(2)] dzgl‘g €XP [Gmax] “ dzq]

p | 2
0 dz- iz

(A1)

where z,, are points at which the quantity g(z) is maximum
and ¢nax=9(z,). Thus, for calculating j(«), the maximum
of g(z) and the values d’g/dz” at the points z, need to be
found. Let us do this for the cases where: « < {, 90° > « >
T, a=0.

Case wherea < {

Two points exist on the curve ¢(z) where ¢ (z,)=0. In the
vicinity of these points the ratio q¢(z)= (J.—j(2))j(z) is
maximum, and a small range of z in the vicinity of these
points determines the integral in Equation (7). The
derivative dg/dz is given by

d .C .,C *.;_.c.,

da  9efie ”_'] (A2)
dz dzjl jc jc jl

where

L e 9

]C_‘d(p,]‘—d¢

Note that . — j. = j, (as will be shown later) and,
consequently, the second term of Equation (A2), in
square brackets, is small due to the low value of j/j. < 1.
Further, in order to simplify the final equations, we shall
neglect it. Then the derivative dg/dz* needed for calculat-
ing the integral involved in Equation (7) is
dq ey O N
dz2 ( dz) i0) (A3)
2

where j. = d%/d¢>.
The values of z,, in which ¢ (z,)=0 are determined
from the condition

2nz, tgo (Ad)
cos| ——|=—-—"_
)
and
d¢ 2n 18 1
(2], =7 sinteosa(1- 257
=_2_7f (sin? L-sin® )2 (AS)

l

p

Substituting Equation (AS) into (A3), we find, finally,
that

Cryogenics 1987 Vol 27 April 187



Spiral superconducting Nb—Ti filaments: M. Polék et al.

d’q

dz?

4’ (sin’tsin? )1'5(0)
= =" (sin“C-sin“«) "
26 Ip2 II(O)

(A6)

Using Equation (A6), the integral Equation (7) can be
solved and for j.(«) and « < { we find

a(sin’G-sin’w)j(0) \’
20

Jo@) = j(0) + 0.5,(0)In La<g

(A7)

Note that this procedure also enables us to calculate the
current-voltage characteristic of the spiral superconduc-
tor, which takes the form

j =T+ j(0) In (EIE,) (A8)

because the ratio of the maximum electric field to the
value E(j.) can easily be found. As

J = i0) |
i0) |

thus, one can determine

Emux = E() exp (Ag)

EmaxG::) N(Sinzc - Sinza) ]:(0)
E Q) _( 2/ (0)

The condition E,,,,> E is, at the same time, a criterion of
applicability of the expression (A7), and the electric field
changes from zero along the length 2 /, in the vicinity of
the points z, only, i.e. in the interval (z-z,) < {,. The
value of /| is of the order

172
) >1La<t (Al0)

~£ h(0)
2n° (sin?C - sina) j. (0)

<P,a<t (A11)

1

Case where 90°>a > {

In this case there are no points on the curve ¢ (z) where ¢
= 0. According to Equation (A2) the value of ¢(z) is
maximum at the point where ¢ is minimum (¢,,,;, = « — ¢).
ie atz=1[)2

Thus, for [d’g/dz?], > we obtain

Sl
dz? L dz?
The values of [d*¢/dz?], ,, can be found by differentiating
Equation (3) according to z. Finally we obtain

Jje{o=F)
o J(a=E)

(A12)
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d’¢ 4% sing cos «
dz? |l I3 cos (o)

(A13)

Using Equations (A12) and (A13) we can calculate the
integral in Equation (7) and for j(«) we obtain

| 2 msingeosay (L)
| cos(a-L)jy (a-t) | °
(Al14)

J@) = j(a-%) + 0.5),(a-0)ln

a>L

Analogically the voltage—current characteristic of the
spiral superconductor can be found, which in this case has
the form

J=Jjc+ji(a=L) In (E/E,) (A15)

As one has

E -k ‘ j—jc(a—C)} (AL6)
max — o exP | j| (a—t,) j

after a simple transformation for the ratio E,..(j.)/
E(jc) in Equation (A15) we obtain

Emux(i'c) ( 2 nSinC COS(Xj:. (0‘ - C) 172
EG) | cos (a=C) j (a=¥)

It is to be noted that the condition E,,,, > E is the
criterion for applicability of Equation (A14), and the
electric field deviates from zero along the length 2/, in the
vicinity of the point z = [/2, i.e. in the region | z —
/2 | < l,. The value I,, as follows from calculations made
previously, is of the order of

. _lf,_COS(oz—?;) i (=) Al
* " 2a?sinC cos « Jo (0=5) (Al%)

>1La>C (Al7)

From Equation (A14) we see thatTC (x) increases if the
angle « is increased. Thus, at o ~ ¢, the function j, («)
exhibits a slight minimum.

Casewherea =

With this geometry, the maximum ¢(z) occurs at z=l)2,
where ¢ = 0 and d¢/dz = 0. Calculating the integral in
Equation (7) we obtain

|45 5in(20) o (0) |

(=) = j.(0 0.25,(0) 1 AlY
.’L(“ t.r) ]t.( )+ ]I( ) n [ j[ (0) ] ( )



