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As a first step to a better understanding of the voltage-current characteristics of fine filament 
multifi lamentary composite superconductors, the electric field and critical current along a single 
spiral-shaped fi lament were studied. When the spiral superconducting filament was carrying 
constant current and placed in a magnetic field, the local critical current and electric field vary due 
to the change of the angle between the magnetic field and filament axis. A theory is presented 
which enables us to calculate the mean and local values of the electric field and critical current of 
spiral samples for arbitrary orientation between the magnetic field and spiral axis. The presented 
experimental results are in good agreement with this theory. 

Keywords: superconductors; Nb-Ti; physical properties 

A twisted multifilamentary Nb-Ti composite was formed 
with a certain number of spiral superconducting filaments 
embedded in the normal metal matrix. In previous work 
concerning a single spiral superconducting filament in a 
field perpendicular to the spiral axis I we have shown that 
the electric field, as well as critical current density, varies 
along the filament. As a consequence of the electric field 
variation along the spiral filaments a redistribution of the 
filament currents takes place inside the composite. There- 
fore the current-voltage characteristics of the composite 
can differ from that of the individual filament, as shown by 
F6vrier and Renard 2. 

The aim of the present work is to obtain information 
about the electric field distribution along the spiral 
filament sample and to compare the critical currents of the 
spiral sample with those of the straight sample at arbitrary 
orientation between the magnetic field and the spiral axis. 

Theory 
At present it is well established that the current-voltage 
characteristics of hard superconductors in a wide range of 
electric fields, E, (at least for 10 -3 laV cm -I < E < 
102~tV cm -I)  have the following form (see, for example, 
Reference 3 and the references therein) 

j=j~+j~ ln(E/Eo) (1) 

where: j is the current; j¢ = j¢(B,T,~, E,,), is the critical 
current corresponding to the electric field E,,, the magne- 
tic induction B, and temperature T; the parameter 
jI(B,T,~) characterizes the slope of the E-j characteristic 
and 13 is the angle between the magnetic field and the wire 
axis. Usually Eo = 0.1 up to 1 IxV cm - t .  

Figure 1 represents the dependence of the critical 
current, j~, and the parameter jl on the angle dp = (:t/2)-15 
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(this notation allows us to simplify the equations deduced 
below) for a straight Nb-Ti monofilamentary wire, 
CFTH-14 (manufactured by Thomson-Brandt, France) a, 
which was used for preparing a spiral sample. The outer 
diameter of the copper stabilized wire was 52 ~tm and the 
filament diameter was 36 ~tm. Note that for this wire, in 
the interval 0 ° < ~ < 60 °, the dependence j~(Cp) can be 
quite well approximated by the following formula 

]c(q) = jc(q =0°) [ 1 + 0.75 (~2 + ~4)] (2) 

It should be noted that j¢(dp) and jl(dp) are even functions of 

The curves shown in Figure I do not have universal 
validity for Nb-Ti wires. In Nb-Ti wires with elongated 
defects the functions depend on the aspect ratio of these 
defects, as shown in Reference 5. 

In this work we analyse the electric field distribution 
and critical currents of a monofilamentary wire shaped 
into a spiral with diameter 2R and twist pitch Ip (see Figure 
2) for arbitrary orientation of B. We assume that the 
magnetic field is in the x-z plane and forms an angle (0 ° < 
o~ < 90 °) with the x axis. 

Then the angle ~ can be determined from the 
equation 

27~z 
sin ~ = sin ~ cos ~ + cos ~ sin ~ cos ' (3) 

lp 

where 

2rtR 
tg ~ = (4) 

Iv 

The dependence of ¢p on z for the spiral with lp = 
10 R (corresponding to the sample used in our experi- 
ments) is shown in Figure 3. The function dp(z) has a 
minimum at the point z = lp/2 and the corresponding value 
~mi. = ct - ~. Due to the change of the angle t~ along the 
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Figure 1 Measured dependence of: (a) Jc (¢)/Jc (~=0°); (b) j, on 
angle ¢, for B=4 T 

spiral wire according to Equation (3), both]¢ andjn depend 
on z. 

As one can see in Figure 1, the lower 9 is, the lower 
the critical current, j¢, is. For o~ < ~ there are two points on 
the curve 9 (z) where 9=0  and the minimum value of 
j~ [9 (z)] equals j~ (9=0). For 0¢ > ; the minimum value of 
J~ [9 (z)] equals j¢ (9mi,) = J¢ (0t - ~) (see Figure 3). 

According to Equation (1) the electric field, E(z), 
may be written as 

J - Jo[, (~)]/ 
E(z) = E,,exp J, [9 (z)] j (5) 

As can be seen from Equation (5) the value of E(z) is 
maximum at the points where (j-jdg(z)])/(j@p(z)]) is a 
maximum. It can be shown that E(z) is maximum at points 
where j~[9(z)] is a minimum, supposing that the current, j, 
is higher than the minimum value ofj¢[9(z)]. 

Let us define the critical current of the spiral sample, 
~ ,  as the current at the mean electric field along the spiral 
sample, E = Ull = Eo, where U is the voltage alo.n..g the 
length I. For one complete spiral the mean value, E, can 
be written as 

tp x 
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Figure 2 Orientation of the spiral sample and the filament in 
the co-ordinate system 
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Figure 3 Dependence, ¢(z), for the spiral with /dR = 10 and 
different angles of cx 

= exp dz (6) 
0 j,[9(z)] 

According to the definition of~ ,  we can write the integral 
equation fo r']'¢ 

1 f It, j"~ - L [* (z ) ]  I 
J exp dz = 1 (7) 

lp 0 jn[9(z)] 

In general, the solution of Equation (7) can be found only 
by numerical calculations. As Jc "> Jl for all angles 9, the 
integral Equation (7) can be solved analytically by the 
saddle point method e' (see Appendix). The results are as 
follows 

L(n)=L(O)+O.Sj,(O)ln 
st (sin2;-sin200j'c'(0) l 

2 ] t - ~  ) f o r , < ;  

(8) 

~(o0 =j~(O) +0.25jv(O)ln 
4.5 sinZ(2~)j~.'(0) 

j,(O) 
foro~ = t; 

(9) 

j~(oO =j~(o~- ~) + 0.5j,(o~- ~)ln 
2nsin; cosotj~.(0t- ~) 

cos(0~-;)h(0~- ;) 

for90 ° > o~ > ~ (10) 

where: j" = djddO and j~' = d2jjd¢ 2. 
It can be shown, that for spirals of commercial 

Nb--Ti wires the second term in Equations (8)-(10) 
contributes only a few per cent to ]c and with this accuracy 
we can write 

j~(oO =j~,(O) for o¢_ ~ (11) 

j~ (or) = jc(o~-;) for o~ > ; (12) 

Note, that for tx = ~t/2, Equation (12) gives the exact value 
for Jc and E is constant along the spiral wire. 
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E x p e r i m e n t a l  d e t a i l s  

The aims of the experiments described in the following 
text were: 

1 to compare the critical currents of a spiral sample in a 
field perpendicular to the spiral axis ~(0¢=0)] with 
those of a straight sample in a field perpendicular to its 
axis [/'c (~=0)]; 

2 to obtain the dependence o f ~  of the spiral sample on 
the angle 0¢ and to compare this with the theory 
presented above; and 

3 to verify experimentally that the local critical current 
and electric field vary along the spiral sample. 

The CFFH-14 described above was used for preparing all 
samples. Three samples were prepared. Sample 1 (see 
Figure 4a) with a distance of 450 mm between the 
potential taps was wound on the cylindrical fibre-epoxy 
former. If placed in the field parallel to the former axis the 
wire is exposed to the magnetic field practically perpen- 
dicular to the wire axis. 

Sample 2 (see Figure 4b) was prepared so that at first 
the measured superconducting wire was wound on insu- 
lated Cu wire with a diameter of 1 mm with a twist pitch of 
1.75 mm. Then this superconducting spiral on the Cu core 
was wound on a sample holder with an identical shape to 
that used for sample 1. The total length of the supercon- 
ducting wire between the potential taps was 890 mm. If 
placed in a field parallel to the former axis, the magnetic 
field was practically perpendicular to the spiral axis. 

Sample 3 is shown in Figure 5. The superconducting 
wire was placed in the spiral groove machined on the 
surface of the cylindrical fibre-epoxy former with a 
diameter of 3 mm. The twist pitch of the spiral, /o, was 
15 mm so that angle ~ = 32.1 °. The ends of the sample 
were soldered to the cylindrical copper contacts and three 
pairs of potential taps were attached to the sample. The 
distance between the taps was 2 ram. The sample holder 
was constructed so that the angle could be changed 
between 0 and 90 °. 

R e s u l t s  a n d  d i s c u s s i o n  

C2 
,FIBRE EPOXY FORMER 

C~ ~2 FILAMENT 

~ C O P P E R  CONTACTS 

Figure S Position of the potential taps on spiral sample 3 

sample, j~, at Eo=0.1 IxV cm -~ and for the spiral sample, 
"~c, at Eo = 0.1 I~V cm-] are compared in Table 1. 

One may see thaQ'¢ measured on the spiral sample is 
only a few per cent (1.6-2.8%) greater than j~ as predicted 
by theory. As an example, we can compare calculated and 
measured values of '~  at B = 4 T. For calculating ~'c for 
sample 2 at B = 4 T, the parameters to be inserted in 
Equation (8) are as follows: jc(0) = 1.242 A, jl(0) = 
0.013 A, ~ = 61°, j " ( O ) = j j 0 )  (1.5+9 ~2),ff(0)  = 1.242 A 
× 1.5 = 1.863 A. Then, from Equation (8) we obtain~'~ = 
1.275 A, which agrees well with the experimental value, 
1.272 A. Similar agreement between theory and experi- 
ment was found for other values of B. 

Comparison of the critical currents Jc andTc 

The E-j characteristics of samples 1 and 2 at 4.2 K for 
different magnetic fields are shown in Figure 6. The 

I ! | I I 

a b 00001 1 1.1 1.2 1.3 1./, 
Figure 4 (a) Sample 1 in perpendicular field and (b) spiral 
sample 2 in a field perpendicular to the spiral axis. Angle ~ for 
the spiral sample is = 61 ° 

Measurements of Tc (o:) on spiral sample 3 

Sample 3 was turned by steps of ct = 6 °. In each position 
current-voltage characteristics were measured and j~ 
determined. The measured ratio~'~ (00/ '~ (or = 0 °) = f(00 
at 4.07 T and 3.01 T is shown in Figure 7. 

The theoretical curve shown in Figure 7 has been 
calculated for B = 4 T using Equations (8)-(10). The 
parameters jc(0) and Jl(~) measured on the straight sample 
are: jc (~=0) = 1.242 A at B=4.0 T, and the measured 
parameter, j l (~), is shown in Figure/. From Figure 7 we 
see that for ot <-- ~ (~=32.1 °) the critical current, j~ (00, is 
practically equal tojc (ix=0°). This can be explained by the 
fact that in this range of angle ct, the minimum value of Iq)l 
is ~mi, = 0° (see Figure 3) and the critical current of the 
spiral sample is controlled by j~ (q)=0). For ct > ~ the 

i 
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I 
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Figure 6 Measured E-j characteristics of: O, the straight 
sample; and C), sample 2 in fields of = 5,4 and 3 T 
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Sample Critical Magnetic field, B(T) 
current 

(A) 5 4 3.2 

1 Jc (A) 1.050 1.242 1.388 
2 "Jc (A) 1.081 1.272 1.411 

40 

+1 

minimum angle ~ is ~min = ~ --  ~, and~(0t) should be 
approximately equal to L(ct - ~). From Figure 7 it can be 
verified that this is true with an accuracy better than 5 ° in 
ix, which is within the limits of measurement accuracy. 

Experimental verification of critical current and 
electric field variation along the spiral sample 

According to the theory presented above we have 
calculated the angle ~, the ratio j~[qb(z)]/jc(~=O) and the 
ratio E(z)/E(~=O) as a function of the co-ordinate z for 
spiral sample 3 (see Figure 8). Then we measured the 
voltage-current characteristics between the potential taps, 
a~-a2, b r b2  and q-c2,  in magnetic fields with B=I  up to 
5 T. The critical currents and electric fields measured 
between taps al-a2, b~-b2 and cl-c2 characterize the wire 
in the vicinity of points z = lp/4, z = lp/2 and z = 3 lp/4, 
respectively. 

I 
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Figure 7 Angular dependence of ratio jc(oOIjc(ot=O °) for spiral 
sample 3 at: Q, 4.07 and A, 3.01 T (measured); and D, 4T  
(theory). ×, This curve represents the ratio jc(#p)/jc(O) for the 
straight sample as a function of angle (I) 
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Table 1 Critical current obtained from Figure 6 for the straig.ht 
sample, Jc, at Eo = 0.1 p,V cm t and for the spiral sample,/'~, 
at Eo = 0.1 IJV cm -; 
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Figure 8 Variation of: (el <p; (b) Jc D(z)l /Jc D=0I ;  (c) E(z)/ 
E[~=0] along spiral sample 3 for cx = 0 (magnetic field 
perpendicular to the spiral axis) 

The measured critical currents, jc, at E,  = 
1 ~tV cm -1 are shown as a function of B in Figure 9. The 
measured ra t io /c [ , (z ) l /k ( ,=0)  at B=4 T for z =/p/a,/o/2 
and 3 lp/4 is shown in Figure 8b. The 2 mm gap between 
the potential taps is relatively large compared with the 
twist pitch length, and from the voltage, U, measured 
between them only the mean value of the electric field 
between the taps can be calculated. Thus, the real electric 
field in z = 10/4 and z = 3 Ip/4 is greater than that 
calculated from U.,,_, and Uq_c, and in z = 10/2 it is 
smaller than calculated from U'-t,,_b,. Consequently, the 
measured ratio, jc [~(z = (lp/2))I/L. [¢ (z  = (1o/4))1, is 
smaller, as could be expected from the theory. 

In Figure 8c it can clearly be seen that the electric 
field decreases very rapidly for z~  lp/4 and z X (3/4)lp. 
The experiment confirmed that the voltage between b j-b2 
was unmeasurably small for currents which give rise to 
measurable voltages between a~-a2 and crc2.  

Thus, the described experiments confirmed that the 
critical current, as well as electric field, varies along the 
spiral sample and the theory presented describes this 
variation. 
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Figure g Critical current, Jc, for Eo=l ~V cm ~ measured 
between the potential taps a~-a 2 and b~-b2 on the spiral s a m p l e  
a s  a function of B. Values of Jc between a~-a2 and c~-c2 are 
identical 

Conclusions 

It was shown that the electric field distribution in the spiral 
superconductor in a homogeneous magnetic field is very 
inhomogeneous. Because, in a multifilamentary wire the 
mean longitudinal electric field along the composite is 
constant, we suppose that the high inhomogeneity of E in 
filaments must be compensated for by high inhomogeneity 
of E in the normal matrix. This means, that in those parts 
of the composite where j~(z) is maximum, i.e. E is 
minimum, the current density in the matrix is maximum. 

It has been shown that the critical current of a spiral 
superconductor, ~'~, is mainly controlled by the critical 
current at points with maximum value of E[~(z)]. For tx __ 
~, it leads to'~¢~0 0 ~j¢(O) ~ constant, and for 0( > ~, the 
critical current jj(x) ~ j~ (oc-~). The critical current of the 
spiral sample in the field perpendicular to the spiral axis 
does not differ significantly from that for a straight sample 
in a perpendicular field. 
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Appendix 

The dependence']'~(00 can be obtained analytically when 
et<~, 90°>0t>~ and ~t=~. For solving the integral Equa- 
tion (7) the saddle point method 6 may be applied. The 
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applicability of this method is shown by the fact that along 
the spiral the quantity 

j"~ - j~ [~)(z)] 
q(z) = 

j, (z) 
>> 1 

except for areas in the vicinity of points where j~ [~(z)] is 
minimum. Then (see, for example, Reference 6) 

1/2 

1 lp 1 ( [ 2 J r )  

I0exp [q(z)) dz = -- ~ exp [qm~,] d2q ] 
lp Z,, _~Z2 ]Zo 

(At)  

where Zo are points at which the quantity q(z) is maximum 
and qmax=q(Zo). Thus, for caiculating~(o 0, the maximum 
of q(z) and the values d2qldz 2 at the points zo need to be 
found. Let us do this for the cases where: tx < ~, 90 ° > oc > 
L ~ = 0 .  

Case where (~ < 

Two points exist on the curve ~(z) where 9. (zo) =0. In the 
vicinity of these points the ratio q(z)= (j¢-jjz))/jt(z) is 
maximum, and a small range of z in the vicinity of these 
points determines the integral in Equation (7). The 
derivative dqldz is given by 

dq dO~[  j'¢ + j ¢ -  jcj,' 1 
dz dz jl [ j¢ J¢ Jl 

(A2) 

where 

d/'c djl 

Note that ~'c - Jc ~ jl (as will be shown later) and, 
consequently, the second term of Equation (A2), in 
square brackets, is small due to the low value ofjl/jc ~. 1. 
Further, in order to simplify the final equations, we shall 
neglect it. Then the derivative dq2/dz 2 needed for calculat- 
ing the integral involved in Equation (7) is 

d2q = - / d C p / 2  j:'(O) 

dz2 k dz }Zo j,(O) 
(A3) 

where j'~' = d2jfld~ 2. 
The values of Zo in which @ (Zo)=0 are determined 

from the condition 

2nzo) tgo¢ 
cos ~ = - tg~ 

and 

(A4) 

2n tg 2~ 112 

lp 

=2._~n (sin 2 l;_sin 2 et)l/2 
lp 

(A5) 

Substituting Equation (A5) into (A3), we find, finally, 
that 
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d2q ] 4~t 2 j',:'(O) 
- -  = -- (sin2~-sin2oO dz 2 k,, ¢2 j~(0) (A6) 

Using Equation (A6), the integral Equation (7) can be 
solved and for fl(00 and 0~ < ~ we find 

~(o0 = jc(O) + 0.5j,(0)ln 
{ n(sin2~-sin2oOfl(O) l 

--2j,(O--~ i' ,0¢ < ; 
(A7) 

Note that this procedure also enables us to calculate the 
current-voltage characteristic of the spiral superconduc- 
tor, which takes the form 

j = j~ + j.(0) In (E/E,,) (A8) 

because the ratio of the maximum electric field to the 
value E ~ )  can easily be found. As 

[ d2-~-~ ] _ 4n2 sin~ c°s°~ 

[ dz- lo/2 12 cos (0¢-~) (A13) 

Using Equations (A12) and (A13) we can calculate the 
integral in Equation (7) and for j¢(ct) we obtain 

I ~(o 0 = jc(ot-~) + 0.5j.(0~-~)ln t 
2 nsin~cosoq,.(a-~,). 

i 

cos(o~-~)j, (o¢-~) ! ' 

o¢>~ (AI4) 

Analogically the voltage-current characteristic of the 
spiral superconductor can be found, which in this case has 
the form 

j = j~ + j, (tx-~) In (E/E,,) (A15) 

As one has 

{ J-  J~(O) I 
E . . . .  = E,, exp j.(0) J (A9) 

thus, one can determine 

Em.x¢) / n(sin2~-.sin'-o0 j:'(0)/,,2 
- - - -  = -> 1,0~<~ 
-F ~ )  ~ 2 j, (0) ] 

(AIO) 

The condition Em,~'> E is, at the same time, a criterion of 
applicability of the expression (A7), and the electric field 
changes from zero along the length 2 1~ in the vicinity of 
the points zo only, i.e. in the interval (z-z,,) < /~. The 
value of l~ is of the order 

q - ~ j, (0) 

2x2 (sin2;; - sin200 Jc' (0) "~ [ 2  0¢ < (Al l )  

Case where  90 ° > a > 

In this case there are no points on the curve q~ (z) where 
= 0. According to Equation (A2) the value of q(z) is 
maximum at the point where q~ is minimum (q~.,. = o~ - ~). 
i.e. at z = lr,/2. 

Thus, for [d2q/dz2]lg 2 we obtain 

-~ffl ¢,2 = - dz---; l~ ,  J , (~ - ; )  ( g 1 2 )  

"~ 2 The values of [d-00/dz ]t#, can be found by differentiating 
Equation (3) according to z. Finally we obtain 

i j-j~ (o~-~) (AI6) E . . . .  = E,, exp ~ j, (ot-~) 1' 

a t ier  a simple transformation for the ratio E . . . . .  ~tc) / 
E(jc) in Equation (A15) we obtain 

Emax~c) ( 2 :tsi_._n~ cosoc j'~ ( o~ -- ~) )~/2 
0"~"-~ = cos (o~-~) j, (o¢-;) >> 1, o~ > ~ (A17) 

It is to be noted that the condition E . . . .  ~ E is the 
criterion for applicability of Equation (A14), and the 
electric field deviates from zero along the length 212 in the 
vicinity of the point z = lff2, i.e. in the region ]z - 
lr,/2 [ < 12. The value 12, as follows from calculations made 
previously, is of the order of 

cos ( ~ -  ; )  j, (~ - ; )  

/2 = 2:t 2 sin~ cos c~ j'~. (0¢-~) (AI8)  

From Equation (AI4) we see that'/~ (00 increases if the 
angle o: is increased. Thus, at 0~ - ~, the function j"~ (ct) 
exhibits a slight minimum. 

Case where oc -- ~ 

With this geometry, the maximum q(z) occurs at z=lo/2, 
where ~ = 0 and dqb/dz = 0. Calculating the integral in 
Equation (7) we obtain 

14"5 sin2(2~)J'~'(0) I (A I9 )  
j,.(o~=;~) = j~(0) + 0.25j,(0) In I j, (0) / 
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