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Abstract. The  propagation of the  normal  zone in composite  superconductors with high 
thermal  resistance  and high electrical  contact  resistance  between  the  superconducting  and 
the  normal  components of the  conductor is analysed.  It is shown that in certain  conditions 
propagation can result  from successive multiple splittings of the resistive domain  generated. 
The  minimum  initiation  current of this process has been  found  and has been  analysed  as  a 
function of the  composite  parameters and external  conditions. 

1. Introduction 

The conditions  under which a  normal  zone can exist and  can  propagate in composite 
superconductors-with  contact  thermal  resistance  and  electrical  resistance  between  the 
superconductor  proper  and  the  normal  metal matrix  have  been  repeatedly discussed in 
the  literature  (e.g.  Al'tov et a1 1975, Keilin and  Ozhogina  1977,  Kremlev  1980).  Calcu- 
lation of the  minimum  normal  zone existence current I ,  and  the minimum  normal  zone 
propagation  current Z, received the most attention. 

Akhmetov  and  Mints (1982, 1983a) analysed the  conditions  for  the existence of 
resistive  domains  (finite-sized  regions of the  normal  zone) in composite  superconductors 
with high thermal resistance and high electrical  contact  resistance. It was demonstrated 
both analytically  and by computer  simulation  that single resistive  domains are  stable if 
the  transport  current Z in a  specimen is in the  range I ,  < Z < Zf S I ,  . The minimum 
existence current Z, of a  resistive  domain  can be much  lower  than the  current I,,, , which 
is calculated  for  a  wide  range of composite  parameters  under  the  assumption  that  the 
normal  (resistive)  zone fills the whole  superconductor  (Akhmetov  and  Mints 1982, 
1983a). If I >  Z, a  single  resistive  domain  initiated by a  disturbance is unstable.  Over  a 
time of the  order of the  characteristic  time of temperature relaxation in the  supercon- 
ductor,  a  superconducting region is formed  at  the  centre of the resistive domain,  that is, 
the  domain splits in two.  Our  short  note  (Akhmetov  and Mints 1983b) demonstrated 
that  the  two  daughter  domains  recede  to  a  certain distance  and  then  each of them splits 
in two.  This  periodic  process of splitting in two of the two outermost resistive  domains 
continues  until  a  string of resistive  domains  stretches  across the whole  specimen. 

Resistive  domains in composite  superconductors with high thermal  resistance and 
high electrical  contact  resistance  were  detected  and  studied by Akhmetov et a1 (1983), 
Akhmetov  and  Baev (1984) and Keilin and  Kruglov  (1984). The results reported  are in 
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good  qualitative  and  quantitative  agreement  with  the  theory  (Akhmetov  and  Mints 
1982,1983a,  b). 

In the  present  paper we analyse in detail  the  propagation of the  normal  zone in 
composite  superconductors  with high thermal  resistance  and high electrical  contact 
resistance in the  case of I 2 If. 

2. Basic equations 

The distribution of the  normal  and  superconducting  zones along  a  composite  supercon- 
ductor is obtained  from  the  heat-transfer  and  continuity  equations which describe  the 
evolution of temperature  and of electric current  density. In this paper we consider  the 
two  specimens  shown in figure 1. These specimens are  composed of ribbons of equal 
width:  superconductor ( S ) ,  transition  layer  (i)  and  normal  metal (n). The  composite 
shown in figure l ( a )  consists of three such  ribbons.  This  composite is denoted below by 
TRC (for three-ribon  composite); d,, di and dn denote  the thicknesses of the  supercon- 
ductor,  the  transition  layer  and  the  normal  metal  ribbons respectively.  Obviously, the 
superconducting  and  the  normal  components of a TRC are in direct  contact  with  the 
coolant.  The  composite shown in figure l (b)  is made  up of five ribbons  and is denoted 

lo) I b )  

Figure 1. Specimen  geometry.  The  shaded  area  indicates  the  transition  layer. (a) TRC and 
( b )  FRC. 

by FRC (for  five-ribbon  composite). The  ribbon thickness in a FRC is Idn  for  each of the 
two  ribbons  made of normal  metal, di for the  transition layer  and d, for  the  supercon- 
ducting ribbon.  The  total thickness of the  normal  metal matrix in the FRC is therefore 
dn , the  same as in the TRC. However, in the FRC only the  normal  metal is  in direct  contact 
with the  coolant, 

We shall  assume  that  the  thermal  and  the electrical  resistances are  restricted  to  the 
transition  layers,  and  that di G dn , d,. Consequently,  when  the  parameters  are typical 
of superconducting  composites,  both  the  temperature  and  the  current  density in the 
normal  metal  and in the  superconductor  change  only  along  the x axis of the  conductor. 
FortheTRCtheheattransferandcontinuityequations(seee.g.Kremlev1980,Akhmetov 
and  Mints  1982,1983a,  b) of interest  are 

vnPn=KnT::-(Wo/dn)(Tn-T~) +pnj~+dpididn(djn/d.u)2 
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p ,d .d  ‘I’ - 
1 1 n l n  P n j n  + E, = 0. (3) 

Here v is the specific heat, K is the  thermal conductivity, WO is the coefficient of heat 
transfer  to  the  coolant  at  a  temperature T O ,  p is the resistivity, j is the  current  density 
and E is the  electric field strength. 

The system of equations  for  the FRC similar to equations (1)-(3)  is 

and  the  parameters 

i = is + in W = WO + (Ki/di) 

h = Ki/di W 6 1 pnj:d2/2Wo( T ,  - To)dn. 

Here T, is the critical temperature  and j c  is the critical current density of the  supercon- 
ductor.  Note  that if the  thermal  contact resistance is high,  that is, if the  heat  transfer  to 
the  coolant is much  greater  than  the  heat exchange  between the  normal  and  the  super- 
conducting  components of the  composite, we have WO > Ki/di,  hence h < 1. 

The system of equations describing the  temperature  and  current  distributions in the 
TRC can  be  rewritten in a  more  convenient  form as 

t , $ = l f & ’ -  O s +  2 4 1 -  h)i,E,+ &(l- h) l ! (d i , / dx )2+he ,  (8) 

l!i: - in + E ,  = O (9) 

where  the  characteristic  relaxation  times t, , t,, the  temperature variation  lengths l,,  l, 
and  the  length li over which current is leaked  from  the  superconducting  to  the  normal 
metal  are t, = d ,  un/W, t, = d,v,/W, = Kndn/W, e = K,d,/W and 1’ = (pI/pn)did, 
respectively. Note  that if the  electrical  contact resistance is high then 1, + 1, + li . 

Using the  same  notation  equations (4)-(6) can  be  rewritten  to  describe  the  distri- 
bution of temperature  and  current in the FRC as 

1 ~ ~ 8 ,  = $lie:: - 8, + @(l - h) i i  + ia(1 - h ) l ; ( d i , / h )   + h e ,  (10) 

it,& = tlfe; - he, + c~(l - h)i,E, + $&(l - h)l;( din/&) + he, (11) 

t l t i i  - in + E ,  = 0. (12) 

Similarly, for  equations (10)-(12) for  the FRC the characteristic  relaxation  times 4 ,  t,, 
the  temperature  variation  lengths in, in the  normal  and  superconducting  components 
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and  the  length 4 over which the  current is leaked  from  the  superconductor to  the  normal 
metal  are t, = it,, Z, = (1/2h)t,, in = ( l / ~ )  l,, = (l/V%) l, and 6 = (l /f i)  li respec- 
tively. Consequently, t, and i, in the FRC differ  considerably  from their  counterparts t, 
and l, in the TRC if the  thermal  contact resistance is high ( h  < 1). However,  for typical 
parameters of composite  superconductors  the  lengths l , ,   l ,  and li rank in the  same  order: 

In  further  numerical calculations we also  need to know the explicit form of the 
functions j c  = j c  ( 8,) and E, = E, (S,, is). In this paper we assume  for simplification that 
the critical current density is a  linear  function of temperature  and  that  the  current- 
voltage  characteristic  has  the  form 

L<i,<&. 

In  this  case 

& ='[O e , a - i + i , ,  
3 ( i  - in )  e s a l - i + i n  

where 

r 2  = Pnds/psdn* 

Typically, r 2  Q 1. In  the  numerical calculations which follow we assume r = 0.03  and 
a= 2. 

3. Steady-state temperature distribution in the FRC 

In this  section  we  consider  the  steady-state  temperature  distributions  corresponding  to 
single  resistive  domains in the FRC. A similar  problem was solved  for the TRC by 
Akhmetov  and  Mints  (1982,1983a). 

Our first assumption is that  the  term he, in equation (11) is negligibly small. 
Obviously,  this  term  accounts  for  the  thermal  coupling of the  normal  and  supercon- 
ducting components of the FRC. Given  the current-voltage  characteristic of the  super- 
conductor  (equation (13)) we can  then  readily find the explicit form of the  distribu- 
tions of temperature 0, = 8, ( x )  and  current in = & ( x ) .  Let E ,  be  non-zero in the  range 
1x1 < 1; 1x1 < l implies that & ( x )  > 1 - i + i n ( x ) .  In  this  case 1 is found in a  straight- 
forward  manner  from  the  condition 8, ( l )  = 1 - i + in ( l ) ,  Here we shall not give explicitly 
the  resultant  and  rather unwieldy transcendental  equation  for finding the  dependence 
l = l (  i).  For  an  arbitrary  ratio of the  parameters of the  superconducting  component this 
equation  can  be solved  only  numerically. In figures 2(a), (b )  and (c) the  results of such 
computations  have  been  plotted  for  the following set of parameters: &/l,  = &/is = 33 
and h = 0.05,O.l and 0.2 respectively. As in the case of the TRC the  dependence l = l(i) 
for  a  single  resistive  domain  consists of two  branches:  one growing (upper  branch)  and 
one falling (lower  branch).  Note  that in the  constant-current  mode  the lower  branch of 
the l = l(i) curve  corresponds  to an unstable  domain  that  can  be  stabilised,  for  instance, 
in the  constant-voltage  mode.  The minimum  existence current i, of a resistive domain in 
the limiting  case ( l  Q l,) is then  found in the analytical form, namely 

i ~ = a ( l - h h )  4h ( m Is + ?). 
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Figure 2. Curves 1 = I ( i )  and a = a(i)  for the FRC with parameters = &/is = 33.1 = l(i); 
A, 8, = 0;  B, On is allowed to rise; C, a = a ( i ) .  ( a )  h = 0.05, ( b )  h = 0.1, ( c )  h = 0.2. 

Having  found  the  function l = l(i), the current-voltage  characteristic of the FRC can 
be  found  from  the  relation 

i tanh ( l / & )  1 i  
Q,= (1 + ?)2 ib/J + tanh(l/&) I ,  1 + r2 + 7- 

where 

Note  that  the  quantity &, defines the length  over which the  current  leaks  from  the 
superconducting  component of the FRC, in its normal  state,  to  the  normal  component of 
the FRC. 

Figure  3  plots  the current-voltage  characteristics of the FRC and of an  equivalent TRC 
(i.e. having  identical  values of all physical characteristics)  calculated  for the following 
setofparameters:I,/I, = 33,1i/Is = 75,&/& = 33andh = 0.2.Therangeinwhichresistive 
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Figure 3. Current-voltage characteristics: A, for a FRC with parameters l,& = b/i, = 33 and 
h = 0.2;  B, for a TRC with parameters l a / 1 9  = 33, l i / l s  = 75 and h = 0.2. 

domains  exist in the FRC is clearly  narrower  than  that in the TRC and is shifted  toward 
lower currents. 

As the  transport  current density tends  to  the value i = if ,  a typical dip  appears on the 
c a v e  8, = & ( x )  in the  neighbourhood of the  point x = 0, prior to  the splitting of the 
domain  in  two,  and  the  temperature 8,(0) tends to  the value 1 - i + in (0). No stationary 
resistive  domains  can exist in the FRC if i 2 i f .  

The effect of the  thermal coupling of the  normal  and  superconducting  components 
of the FRC, the  term he, of equation (11) which was neglected earlier, was taken  into 
account by a  numerical  solution of the  non-stationary system of equations (10)-(12) 
which describes  the  temperature  distributions On = On ( x ,  t )  and 8, = 8, ( x ,  t ) .  The resis- 
tive  domain  was  generated by an initial thermal pulse  localised in the  superconducting 
component of the FRC ( 8 , ( x ,  0) = 0 and & ( x ,  0) = 1 if ( x /  S & or & ( x ,  0) = 0 if 

The computations  made it  possible to analyse  both the dynamics of formation of a 
resistive  domain in the FRC and  the  thermal coupling of the  normal  and  superconducting 
components of the FRC. The main  results of these  computations  are  as  follows.  The 
initial thermal  pulse evolves to a  stationary single resistive  domain  over  a  time of the 
order of ts. The length of the  domain  generated, 1 = Z(i), is somewhat  greater  than  the 
value found  when  the  thermal coupling of the  normal  and  superconducting  components 
of the FRC is neglected  (see figure 2). However,  the current-voltage  characteristic of a 
specimen with the resistive  domain  remains practically unaffected. 

Figure 4 shows the  steady-state  temperature distributions in the  normal  and  super- 

1x1 > ;is). 
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Figure 4. Steady-state  temperature distribu_tions in the  normal  and  superconducting  com- 
ponents of a FRC with parameters l " / &  = & / l s  = 33 and h = 0.05 for i = 0.19, if = 0.2. 

conducting  components of the  FRC,  calculated  for  the following set of parameters: 
&/ls  = &/is = 33, h = 0.05 and i = 0.19.  The  transport  current density i is quite close 
here  to if = 0.2. Consequently,  the 8, = & ( x )  curve  has  a  characteristic  dip in the 
neighbourhood of x = 0. Note  that in contrast to  the  situation analysed  earlier (Akh- 
metov  and  Mints 1983a)  for the  TRC,  the  temperature of the  superconducting  component 
in the FRC exceeds  that of the  normal  component in any  cross-section of the  specimen. 

4. Propagation of the normal zone (i b 4) 

The  propagation of the  normal  zone  generated by an initial thermal pulse  for transport 
current  densities i B if  was investigated by a  numerical  solution of equations (7)-(9) for 
the TRC, and of equations (lo)-(  12)  for the FRC. Some of the results of these  computations 
for  the TRC were  published  earlier in a  short  note  (Akhmetov  and Mints  1983a). The 
initial thermal pulse was located in the  superconducting  component of the two  com- 
posites,  namely &, (x ,  0) = 0 and & ( x ,  0) = 1 if 1x1 6 $1, _(for the  TRC)  or 1x1 6 &L 
(for the  FRC); & ( x ,  0) = 0 if 1x1 > &ls (for  the  TRC)  or 1x1 > dl, (for  the  FRC).  In  the case 
of the TRC the  computations  were  performed for the following sets of parameters:  (i) 
&,/ls = 50, & / l s  = 100 and h = 0.05; (ii) &/l ,  = 33, li/ls = 75 and h = 0.2. In  the case of 
the FRC the  computations  were  performed  for l n / l s  = &/is = 33 and  (i) h = 0.05, (ii) 
h = 0.1, (iii) h = 0.2. 

The  computations  revealed  the following pattern of normal  zone  propagation  in  the 
TRC and  the FRC for i b i f .  Over  a  time of the  order of ts (in the TRC) or f (in the FRC)  a 
non-stationary  resistive  domain  created at  the  start grows in size to a  length  about  equal 
to lb  (or &). The  temperature of the  superconducting  component  at  the  domain  centre 
(at x = 0) decreases to & ( O )  = 1 - i + in(0) ,  the  electric field ~ ~ ( 0 )  vanishes by virtue 
of the current-voltage  characteristic (equation (13))  and  a  superconducting  interlayer 
is formed in the  neighbourhood of the point x = 0. As a  result the  non-stationary  resistive 
domain,  triggered by the initial  thermal  pulse at i b i f ,  splits in two. The two daughter 
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Figure 5.  Distributions of temperature  and  current  density is at  the  moment of splitting of a 
resistive domain: (a )  in  a TRC with parameters l n / l s  = 33, &/is = 75 and h = 0.2 for i  = 0.70; 
( b )  in  a FRC with parameters / “ / l s  = l,/!$ = 33 and h = 0.2 for i = 0.50. 

domains  separate,  recede  and grow  in  size. At a  distance of the  order of 1, (or h )  each of 
them  again  splits in two.  Figure 5 shows the  distributions of temperature On = & , ( x )  and 
8, = & ( x )  and of current  density i, = i, ( x )  in the TRC and in the FRC at the  moment  when 
the  electric field in the  domains vanishes (the  moment of splitting).  Computations  were 
carried  out  for  the following parameters: ln/ l ,  = 33: li/l ,  = 7 5 ,  h = 0.2 and i = 0.7 (for 

e s  O L  llOo ,150 ,200 

1 .2  
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Figure 6 .  Evolution of temperature  distribution  in  the  superconducting  component  during 
the  splitting of the resistive domain in a mc with parameters l,/L = 50, l , / l i  = 100 and h = 
0.05 fori  = 0.70. 
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Figure 7. The process of formation of a  string of resistive  domains in a TRG with  parameters 
ln / l s  = 50, l ) / &  = 100 and h = 0.05 fori  = 0.70. 

the TRC); & / l s  = &/is = 33, h = 0.2 and i = 0.50 (for the  FRC).  Figure 6 shows the  tem- 
perature  distribution Os = & ( x )  in the  superconducting  component of the TRC in the 
course of resistive domain splitting at  different  moments  of  dimensionless  time t = t / t s  
( l n / I s  = 50, li/& = 100, h = 0.05 and i = 0.7). 

Further  propagation of the  normal  zone  proceeds  as follows. The  outermost resistive 
domains  (the  leading  ones)  continue moving away from  the origin ( x  = 0). Their  length 
increases  and  at  a  distance of the  order of li (or 6) from  the place of the  previous splitting 
each of the two  leading  domains splits  in  two  (into  a  leading and  a  drop-out  domain). 
This  process of formation  and successive  splittings of the leading  domain is repeated 
periodically. At  the  moment of splitting the  lengths of the  leading  and  the  drop-out 
domains  are  roughly 2 and a of the  length of the  parent  domain  (see figure 6). Note  that 
the newly born  leading  domain invariably keeps moving  away  from the  point x = 0. In 
contrast  to  this,  the  drop-out  domain  moves slowly (as  compared with the leading  one) 
in the  opposite  direction  until  the  leading  domain splits in two. At this  moment  the 
drop-out  domain  stops  and  assumes  a fixed position.  Figure  7  illustrates  the  above 
process of formation of a string of equidistant  (to within the  chosen  computation 
accuracy)  resistive domains in  a TRC (the  pattern is quite similar  in an FRC). The 
parameters  chosen  for  the  computation  were ln/ ls  = 50, li/Zs = 100, h = 0.05 and i = 0.7. 
Note  that  a similar  ‘self-organisation’ of dissipative  structures appears in a  number of 
problems in  physics,  biophysics,  chemistry and biology (see,  e.g., Nicolis and  Prigogine 
1979). 

Obviously,  the  formation of a  periodic  string of resistive  domains  results in an 
increased  potential  difference g;. As  an  example, figure 8 plots Q; = Q;(t) (curve A)  and 
g;‘ = q ’ ( t )  (curve B) calculated  for  a TRC with l,,/ls = 50, li/& = 100 and h = 0.05, for 
two  values of the  transport  current  density: i = 0.55 and i = 0.7.  Here Q;’( t )  is the 
potential  difference  across  the  leading  domain.  Figure 8 clearly  shows that as i increases 
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Figure 8. Functions = q ( t )  (A) and p' = q ' ( t )  (B) for  a TRC with parameters l n / l s  = 50, 
l x / l s  = 100 and h = 0.05 for (a )  i = 0.55 and (b )  i = 0.70. 

the  function q ( t )  tends  to  linearity ( Q ,  - t ) .  Note  that  the Q, = Q,(?) and Q,' = Q,' ( t )  curves 
of the FRC are similar to  those of figure 8. 

The  mean velocity v of the leading  domain in a  superconducting  composite  with  high 
contact  resistance  obviously  determines  (at i 3 if) the velocity of normal  zone  propa- 
gation.  Figure 9 plots  the  ratio v/vo as  a  function of transport  current density i ,  where 
v0 = Ls/ts (for  the TRC) or v0 = &/ts (for the FRC ). The following parameters  were  used 
in the  calculations: li/ls = 75, &,/ls  = & / L  = 33 and h = 0.2. For  comparison, we show in 
the  same figure the  normal  zone  propagation velocity  as  a  function of i in a  composite 

i 

Figure 9. Functions U = v (i): A, for a TRC with parameters I,,/l, = 33, l , / l s  = 75 and h = 0.2; 
B,  for a FRC with parameters ln/ ls  = &/is = 33 and h = 0.2; C ,  for a composite equivalent to 
the TRC and  the FRC with zero  contact  resistance. 
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superconductor  equivalent  to  the TRC and  the FRC but  having  zero thermal  and electrical 
contact  resistance  between  the  normal  and  the  superconducting  components.  Note  also 
that  in  the  range 0 < i - if G if of the  transport  current  the  advance of the  leading  domain 
in the  interval  between  two successive splittings is essentially  non-uniform.  The velocity 
of the  leading  domain is a  maximum at  the  moment of formation; it  then  decreases  and 
reaches  a  minimum at  the  moment of splitting. At i b if the velocity of the  leading 
domain is practically constant. 

Obviously,  the  period a of the  domain  structure  formed as  a  result of the 'self- 
organisation'  as  described  above  depends on the value of the  transport  current  density. 
This dependence is shown  for  the TRC in figure 10 and  for the FRC in figure 2. In the case 
of 0 < i - if G if we meet with considerable  computational difficulties when  calculating 
the  domain  structure  because a grows  indefinitely ( a  + m) as i + i f .  Figure 2(a) also 
shows that  taking  the  thermal coupling of the  normal  and  superconducting  components 
of the FRC into  account  results in a  certain  decrease of the  transport  current density i f .  

5. Effect of boundary conditions on  the propagation of the domain structure 

In  order  to  study  the effect of specimen  boundaries on the processes of formation  and 
propagation of resistive  domains, we have  analysed the  situation in which the  tem- 
perature 8 of the  normal  and  superconducting  components of the  composite is assumed 
to  be  zero (8, = 8, = 0) for 1x1 > L. Calculations  were  carried out  for  a TRC with the 
following set of parameters: l n / l s  = 50, Zi/Zs = 100, h = 0.05 and L = 2 3 i ,  for  four values 
of the initial transport  current density: i = 0.55, i = 0.60, i = 0.65 and i = 0.70. The 
thermal pulse that  triggered  the  formation of the initial  non-stationary  domain was 
localised in the  superconducting  component ( & , ( x ,  0) = 0 and &(x, 0) = 1 if 1x1 S 11,; 
& ( x ,  0) = Oif 1x1 > H , ) .  

The main  results of the analysis are as  follows. After  the  formation of four  domains 
(as  a  result of the  appropriate  number of splittings) in the i = 0.55 and i = 0.60 modes, 



936 A A Akhmetov and R G Mints 

2 -  
'p 

1 -  

I I I I I  I I I 

0 0.2 0.4 I <  06 0.8 1.0 

i 

Figure 11. Current-voltage characteristic of a specimen with resistive domains (a TRC with 
parameters in,% = 50, l,/iI = 100 and h = 0.05). The specimen contains  a single domain (A), 
four domains (B) and six domains (C). 

and  after  the  formation of six domains in the i = 0.65 and i = 0.70 modes,  the  leading 
domains  reach  the  boundariesof  the specimen (1x1 = L )  and  the  temperature  and  current 
distributions 8, = 8, ( x ) ,  8, = & ( x )  and in = & ( x )  cease to change.  The  transport  cur- 
rent  density i was then  varied slowly (in comparison with the  relaxation  rates of On and 
8,) and  the  potential  difference  qwas calculated  for  each  value of i. The current-voltage 
characteristics  thus  obtained,  the Q, = q( i), are  shown in figure 11 and  the  corresponding 
stationary  positions of the resistive  domains  for  several  different  values of i are shown 
schematically in figure 12. The figures demonstrate  that when the  transport  current 
density i increases  from i = 0.55 to i = 0.71, the  potential difference Q, grows  linearly. 
The change in temperature  distribution 8, = 8, ( x )  reduces  to only a negligible displace- 
ment of the  inner resistive  domains  (domain 1 in figures 12(a) and (b ) ) .  At i = 0.71 these 
domains  split  and  their  positions in the specimen  change  drastically. As can be  seen in 
figure 11, the  decrease  in  transport  current density iis  accompanied by a  strong  hysteresis 
(see  also  figure 12(d) where  the  distribution of resistive  domains is shown  for the initial 
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L I  l ,  

Figure 12. Schematic  arrangement of resistive domains at different values of the transport 
current density i. 
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value i = 0.65) because  the  number of resistive domains  and  their  positions within the 
specimen  remain  unaltered.  Furthermore,  the  multi-domain  structures  generated  at 
i > if exist  when i diminishes to below if (see figure 11). The results of the calculation 
also  show that  an  increase in the  number of resistive domains in a finite-sized specimen 
does  not  lead  to  a  proportional growth of the  potential q. For  a fixed number of domains 
and  a  given  transport  current density the value of q is practically independent of the 
distribution of domains  within  the  composite. 

In  order  to analyse the  multi-domain  structures in a finite-sized specimen  when 
i < if for  stability, we calculated the  time of coalescence ti of two resistive domains 
as  a  function of the initial  separation b between  them.  These  domains were  initiated in 
the  superconducting  components of a TRC with parameters &,/l, = 50, l i / l s  = 100 and 
h =0.05 at i = 0.4 and if = 0.5 by an initial  thermal  pulse  such that @,(x,  0) = 0 
and & ( x ,  0) = 1 if lb " x 1  < 11, and lb + X I  < 11,; & ( x ,  0) = 0 if / b  + X I  > 11, and 
jb - x1 > 11,. Figure 13 plots the  function ti = z f ( b ) .  Clearly, tf - t, at b - l,. However, 
the  time zf rapidly  increases as b increases. If we recall that  the distance  between  resistive 
domains in multi-domain  structures (in finite-sized specimens  when i < if) is  of the  order 
of l, % l , ,  it  becomes  clear  that  these  structures  are  metastable.  Having  been  created 
once, in some  manner,  they exist virtually indefinitely (for  constant i) and  disappear 
jumpwise if i drops  to i - i, . 

6. Conclusions 

It is shown  that  the  normal  zone  initiated by a  thermal  pulse in composite  superconduc- 
tors  with high thermal  resistance  and high electrical  contact  resistance  can propagate via 
multiple  splitting of resistive  domains. The minimum current If at which this  process 
starts is less than,  or of the  order  of,  the minimum  normal  zone  existence current Z,. 
The  formation of resistive  domains in a  superconductor  results in various  hysteresis 
effects in quenching  and recovery of superconductivity. 
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