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Abstract. The influence of thermomagnetic (Ettingshausen and Nernst) effects on  the 
stability and dynamics of the critical state in hard superconductors has been considered. 
Both the criteria for stability against flux jumps and the nature of a developing instability 
have been investigated in some simple cases. It is shown that thermomagnetic effects 
lead to essential changes in  the dynamics of the critical state. The extent of the regime 
within  which thermomagnetic effects lead to oscillations of the temperature and electric 
field during a flux jump has been investigated in terms of characteristic parameters that 
depend on material properties and temperature. 

1. Introduction 

It is well known that  the critical state  instability in  hard superconductors  occurs  due to 
the avalanche-type increase of the electric field E and  the  temperature 6T fluctuations. 
This  leads to  total  or partial  penetration of the  external  magnetic field into  the sample 
(flux jump).  The corresponding  stability  criteria  have been obtained  from a linear 
analysis of the  thermal diffusion and Maxwell equations. It has been assumed that  the 
damping of both ST and E fluctuations  depends on  the  normal currents in  the resistive 
state,  the  heat  capacity v and  the  thermal conductivity K (see for example Wilson et al 
1970, Mints  and  Rakhmanov 1977). 

In this  paper  the influence of the  Ettingshausen and  Nernst transverse  thermo- 
magnetic effects on  the stability and dynamics of the critical  state is considered. These 
effects are responsible for terms  proportional to VT and E in  the expressions for  the 
electric current density j and  the  heat flux q, respectively. These terms may be important 
either  due to  the large gradients of 6T generated by the flux jump 

(I  V6T I 103-104 deg cm-l) 

or the relatively small values of K in hard superconductors. 
We  consider the conditions below the critical  state  stability for: (i) a plate  in  a  con- 

stant magnetic field, (ii) a wire with the  transport  current in a transverse  magnetic field, 
(iii) a tube in  a  time-dependent  magnetic field parallel to the axis of the tube. The range 
of parameters  has been determined where oscillations of 6T and E are possible during  a 
flux jump  (Mints 1978). 
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2. The basic equations 

Let us consider the time evolution of E and ST= T -  TO perturbations in the critical state 
in  the  linear  approximation (To is the initial temperature).  The expressions for j and q 
may be written in the  form (see for example Campbell  and Evetts 1972) 

j = j c e + u E + s ( n x  V T )  (1) 

q= -KVT+sT(Exn)  ( 2 )  

where j C  is the critical current density, e = E / E ,  n =  BIB, B is the  magnetic  induction, 
U is the conductivity in the flux  flow regime, S = s*c/+, S* is  the  transport  entropy  per unit 
vortex length  (Campbell  and Evetts 1972), c is the velocity of light  and C$ is the flux 
quantum.  The last terms in equations (1) and (2) describe  the  Ettingshausen and  Nernst 
effects respectively. 

To obtain  a closed set of equations  for T and E, we use Maxwell equations and the 
entropy density S balance  equation  (as  usual H =  B, where H is the magnetic field). 

curl curl E= - - - 4~ aj 
at 

T --= -div q+j*E. as 
at 

Since S* is conditioned by the electron excitations localised at the  core of the fluxoid 
(Caro li et aZ1964) the  transport  entropy of the fluxoid lattice is additive until the fluxoid 
c ores begin to overlap (B-  Hc,), that is, S= SO +nfs* ; nf =B,/+ is the fluxoid density, 
H,, is the  upper critical field and SO is the  entropy density excluding the fluxoid transport 
entropy. Let us define the dimensionless coordinates  as vl=vlL, time t l  =fK/VL2, tem- 
perature e=(T-To)/To, electric field E = ~ ~ ( T O ) L ~ E / T O .  F and t denote  the  dimensional 
coordinates and time, L is the  characteristic  length (for example L = b  for  the  plate in 
figure 1, L =  R for  the wire of radius R).  For simplicity it will  be assumed that,jc(B, T )  = 
j c (T )  (the Bean model). Thus  for j ,  one finds jC(@ =jc(To) + Tojte, where j t  = I ajc/aTI T ~ .  
We attempt  the  solution of the linearised equations (3), (4) in the  form: €(Q, t l)= 
exp (htl) €(VI), B(v1, tl)=exp (At,)  e(u1). The dimensionless parameter  h is an eigen- 
value to be defined. The critical state is unstable when A > 0. The electric field has only 

e 

Figure 1. The  distribution of temperature in the plate. 
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the z-component ( E ~ =  S) in  the cases of planar  and cylindrical geometry. Therefore 
using equations (1)-(4), one  obtains 

where 

and T is the  ratio of the  temperature  and  the magnetic diffusivities 

T =  ~- 
4TUK 

VC2 * 
(8) 

In  equations (5) and (6)  the vector n =  BjB is determined by the initial induction 
distribution in  the superconductor (8 = E = 0). In deriving equation (6) we have used the 
Maxwell equation 

We have neglected the dependence of U, K ,  v, S on x and y because they change slowly 
in the  range of the magnetic inductions B -  H0 5 A B -  4rrjcL/c (H0 is the applied magnetic 
field).? 

If the external magnetic field penetration  depth  lo=cHo/4rrjC satisfies the inequality 
l o  > b the  boundary  conditions  for  equations (5) and (6)  in the case of the plate (figure 1) 
are : 

&’(l) = 0 we(l)= - e y l ) - a E ( l )  (9) 

&(O) = 0 eyo) = o (10) 

where W =  Wob/K, WO is the coefficient  of heat  transfer  from  the  surface  and  the prime 
denotes  the differentiation with respect to x1 ( O G x l G  1). The general form of the dis- 
persion curves h=h(b) may be obtained by means of a  computer (see figure 2). The 
critical state is unstable in the  plate when b  b, (or ,8 Pc). 

The  last  terms in equations (1) and (2) correspond to two effects. The first is associ- 
ated with the  interaction between the fluxoids and  the  temperature  gradients.  Indeed, 
when the  fluctuation ST occurs  in  the  superconductor,  it generates the force f = - +jt x 
[e x n] ST/c-S*  VST, which acts on  the fluxoid. The second term in the  equation  for f 
describes the  thermoelastic stress arising in  the fluxoid lattice. Thus  the details of the 
distribution of ST (depending on  the external cooling) influence the stability. In  some 
cases the  temperature  gradient VST may prevent  penetration of the fluxoids into  the 
superconductor.  This effect increases the critical state stability and  this increase of the 
stability may be essential under  certain  conditions (see below). 

The second term  in  the  right-hand side of equation (2) describes the  heat flux q1 

transported by the fluxoids. q1 may be written as q 1  =s*Tonfu, where u = c [ E x  B ] / B z .  

t For v@), K@) this is true when AB/Hc,<l. For UKB-1 (see for example Gor’kov and Kopnin 
1975) one obtains the criterion AB/Ho< 1. The dependence of S on B may  be  neglected if Ho/H0< 1. 
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Figure 2. Dispersion curves for the plate at W=lOIO and po=(A) 0, (B) 0.6, (C) 0.8, 
(D) 0.9, (E) 1, (F) 1.5, and (G) 2. 

The  heat flux QI causes the  additional  heat release Q1 (besidesjcE) in  equation (6) due to 
the variation  in  length of the flux lines during  the  motion.  Indeed,  consider a wire with 
the current(J1z) where the flux lines annihilate at the wire axis. Then  the  heat 2.nrQ1 dr=  
s*T  dl will be released per  unit time in a volume dV=2nr  dr (the  dimension  along the 
z axis is equal to unity and  dl=nfv2x  dr is the  total length  variation of all flux lines 
passing through  the volume dV per  unit time). Hence Ql=sTE/r is  nothing  other  than 
Q1 from  equation (6)  written for cylindrical coordinates. In  the  planar case, the flux 
lines are rectilinear and  Ql=O.  Then  the effects associated with  heat  transfer by the 
fluxoids manifest themselves only on  the superconductor-coolant  interface, because the 
heat s*T (per  unit  length of the fluxoid) is absorbed when the fluxoid penetrates into  the 
superconductor. 

3. The  plate in the  magnetic  field 

Let us consider the influence of the  thermomagnetic effects on  the stability of the critical 
state  for  the case of the plate (figure 1) in a constant  magnetic field Holly. In this case 
equations (5) and (6) can  be solved easily and  the dispersion  equation X=X(b) may  be 
found  in  the general form. However, this  equation is very cumbersome and we shall 
obtain  the  stability  criterion using a more simple and obvious  method. 

For  hard superconductors TQ 1 and  one  can use the  adiabatic  approximation Xc+oo, 
hC7+0. In this case we may neglect the diffusion of heat  (Mints  and  Rakhmanov 1977). 
Then using equations ( 5 )  and (6) one finds E =  h6 and  the  equation  for E may  be written 
in the  form: 

En+2pE’+/3E=0. (1 1) 

The  boundary condition for this  equation at  x1 = 1 is not E’( 1) = 0 (see equation (9)) since 
the  heat diffusion is important  near  the surface (x1 > x0 = 1 -l,, where l, h-112 is the  heat 
length) due to external cooling. To obtain  the  boundary condition for  equation (1 1) we 
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integrate  equations ( 5 )  and (6) with respect to  x1 from x0 to 1. 

E ' ( x o ) = ~ ( ~ ! ~  0 0  edx1+2p[O(i)-O(xo)]+~j~ x0 ~ d x 1 )  

O(1) can  be  found  from  the  thermal  boundary  condition (9). Using equations (g),  (12) and 
(13) we obtain  the  boundary  condition  for  equation (1  1) (in the final expressions x0 = 1). 
For isothermal cooling (W-tco, O(l)-tO): 

&'(l)= -2p&(1). (14) 

In this case the stability criterion is  given  by (W+ CO, AB 8) : 
b < bo [T - tan-1 (PO-2 - 1)1/2]/( 1 - p02)1/2  (1 5 )  

where bo2= vc"4~j~jt  and p$= p2//3. 

The  boundary  condition  for  equation (1  1) under  adiabatic cooling (F'= 0) at a: < 1, 
p<1 is: 

E'( 1) = - c$&( 1). (1 6) 

The stability criterion may be written as? 

~ < ~ o ( T / ~ + ~ : o - I * . o )  (1  7) 

where a0 =sTlj,bo. The stability criteria (15) and (17) are  found to  the lowest order in 
X,-l/2, 

Thus  the influence of the thermomagnetic effects on the stability of the critical state 
depends on the dimensionless parameters cy0 and p0 connected with Nernst and Ettings- 
hausen effects  respectively. The  temperature dependence and  the  order of magnitudes 
of 010 and p0 may be obtained assuming, for instance, that v =  voT3/Tc3,jC=jo [l -(T/Tc)], 
s=soT[l-( T/Tc)]/Tc (Tc is the superconducting transition temperature). One finds 

The thermomagnetic effects become essential at low temperatures when pow l or 
T/TcSa2. The estimation of a is possible for alloys with Hc- 103-104 Oe because the 
experimental data for s(T, B )  are known for such materials (Fiory  and Serin 1966, Otter 
and Solomon 1966,  1967,  Lowell et a1 1969). (When B-tO S O N  1.2 x 10l1  Oe cm s-l K-l.) 
If Tc = 10 K, V N  104-105 erg cm-3 K-1 one obtains ~ ~ 0 . 2 - 0 . 0 7  or 1 when T: 5 x 
(10-2-10-3)Tc. Thus  for  the temperatures TT 1 K we have 010, po< 1. 

Let us consider the  situation qualitatively. When W+CO the large temperature 
gradient O'(1)w - 0,#2 (the 'heat barrier') arises near  the surface (figure  1). It leads to 
an increase of the surface current Is -sToOm which prevents the  penetration of the 

t In equations (15) and (17) we have neglected the small terms T1I3 and respectively (Mints and 
Rakhmanov 1977). 
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fluxoids into  the superconductor. Meanwhile there  are positive bulk  gradients of 0 
(figure 1) that decrease the  stability.  When W+ CO the  competition between these effects 
leads to  an increase in stability.  When W+O the ‘heat barrier’ arises because of cooling 
of the surface by the  Nernst effect. In this case the  thermomagnetic effects may increase 
or decrease the stability depending on  the  ratio of 010 (the ‘heat barrier’) and p0 (the bulk 
gradients of 0) (see equation (17)). 

Let us consider  the dynamics of the critical state in the  plate. The value of h, (see 
figure 2) is determined by the  relaxation processes connected with the  heat  conductivity 
and the  normal  currents which have been neglected above.  When h$ /3, cy, p< 1 the 
dispersion equation may be written in the  form  (Gurevich  and  Mints 1979): 

where p‘ = /3 - h7 - p2/A. The  equation  for h, may be obtained  from  equation (19) by 
differentiation with respect to h under  the  condition ab/ah=O. When W $  hc1/2, one finds 

/3W+(2p--~)XC-(W7+4~~p)hc’1*=0, (20) 

Hence X, is determined by the  thermomagnetic effects when W<  W, where 

WC - aop0/7. (21) 

From  the  above estimates for cro and p0 (see equation (18)) we find WC- 10-102 which 
by the  order of magnitude  corresponds to the cooling by liquid helium. If W %  W,, h, 
does  not  depend  on CYO and p0 up  to po? 1 (figure 2). When W< 1, one  obtains from 
equation (19) 

Thus h, is defined by the  normal  currents,  the  heat conductivity and  the thermomagnetic 
effects. The influence of the  thermomagnetic effects on h, is essential due to the small 
values of 7 in hard superconductors. 

4. Cylindrical geometry 

In this section we shall consider: (i) a wire with radius R and with transport  current 
I= rR2jc in  a  constant magnetic field HL1_ z at W $  1 ; (ii) a  tube in the time-dependent 
magnetic field H,, (r )=hot+hl  sin wt  parallel to  the axis of the  tube ( z  axis). In these 
cases Pc < 1 when S = 0 and  the  thermomagnetic effects influence both  the stability and 
the dynamics of the critical state. In this section we shall use the following parameters: 

E=p0-310!2 7 = 2aopo. (24) 

4 .  I ,  Wire ulith transport  current 

The general solution of equations (5) and (6) cannot be obtained  for  arbitrary X with 
cylindrical coordinates. However it will be  shown below that  the  perturbations with 
h< 1 are  the most ‘dangerous’ in  some cases. Therefore we may write the  solution of 
equations (5) and (6) in the  form of a  power series in h< 1. Analysis of this solution 
shows that two kinds of dispersion curves are possible. They are illustrated in figure 3 
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Figure 3. Dispersion  curves for (a) the wire or (b) the tube. Full curves, Re X; broken 
curve, Im h. 

schematically. The full and  the  broken curves show Re h and  Im h respectively. If 
> p 2  (figure 3) Re h>O, so that  the evolution of the instability is accompanied by 

oscillations of 8 and E when f l 2  < fl< p,. (The oscillations in the critical state when s=O 
have been considered by Mints ( 1  978), Maksimov  and  Mints (1979)) The oscillation 
frequencies will  be found in the next section and here we shall investigate case (a)  in 
figure 3. This case is realised when ahjapl >O. Neglecting the  normal  currents 
(Tgmax ( p $ ,  v)) one  obtains ahjap I 0 if (< 0. 

Let us find the  magnitude of f l 1 ,  Equation ( 5 )  implies that  the electric field  is uniform 
E(r1, ~ ) = E O + O ( X )  when h+O (r l  and y are  the  polar  coordinates).  In  this case the 
criterion of the critical state  instability may be formulated  as the condition that  the 
I-E characteristic is negative when EO+O ( a I / a e o < O ) .  The full current I depends  on  the 
temperature  distribution 8(r1, y) which satisfies the  static  thermal diffusion equation 
with the  boundary  condition & l ,  y) =O. 

V2O+[l + q ( l  +p2r12-2pr1 sin y)-1/2]~0=O  (25)  

where p=AB/H,, AB=2.rrjcRjc and rl  is the dimensionless coordinate (OGrlG 1). The 
second term in the  brackets in equation (25) arises due to the flux line length  variations 
during  the  motion.  The  solution of equation (25) may be found in the general form. 
We shall consider here two simple limits: p ( <  l (the self-magnetic field  of the  current is 
much smaller that HL) and p B 1 ,  In  the  former case the  induction B is almost  uniform 
throughout  the wire cross-section (H,llx) and  the magnetic field  of the  current induces a 
weak curving of the flux lines. Calculating I (eo)  up  to terms of order p< 1, one  finds: 

p 1  = 8 ~ ( 1 +  2 p 0 0  (26) 

where p0 = ABo/H,, AB0 = 2.rrjCbo/c. All the  thermomagnetic  parameters  appearing  in 
equation (26) are multiplied by a  small value PO.  This is due to the  fact that  the  thermo- 
magnetic effects do not influence 191 when p+O because in this case the distribution of B 
is symmetrical and all the flux lines are parallel to the x axis. For fields H _ -  10-102 kOe 
and V- lo4 erg cm-3  K-1 one  can find p o - ( ~ v T , ) ~ / 2 / H , -  10-1-10-2. Therefore if p< 1 
the thermomagnetic effects influence the  stability only weakly even at EO, pow 1 .  

In  the limit of p& 1 the  induction dependence of o(B) = CTHH,-,/B (see for example 
Gor'kov  and  Kopnin 1975) is important because B(0, y)-H,< AB. If p-tso equation 
(26) may be solved easily and  the condition aI/aso=O leads to  the  equation  for P I :  

~ 1 3 / 2 - ( 1 6 / 3 ) 5 1 5 1 - 8 7 1 ~ 1 1 / 2 - 1 6 ~ 1 = 0  (27) 
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where 7 1  = T O H H ~ J ~ A B O  is the  magnitude of T(B) when B= A&. If s=O, one finds 

/ 31=(16~1)2 /3 .  (28) 

When S# 0 and p03B71 the stability is controlled by the thermomagnetic effects only, 
The results of the numerical solution of equation (27) are shown in figure 4. 

T i  

Figure 4. Temperature dependence of RC for a wire  with the  transport current in a self- 
field for U= (A) 0, (B) 0.1, (C) 0.3, (D) 0.5. 

4 . 2 .  Tube in a time-dependent magnetic field 

Let us consider a  tube, inside radius ro and outside  radius r0+2b. The applied  magnetic 
field H , ,  =hot+hl sin wt is parallel to  the axis of the  tube  and Zo=cH,, /47rjc > 2b. 

Let us denote the  heat transfer coefficients on  the  tube interior and exterior as WO+ 
and WO- respectively. If WO+>  WO- then VrB< 0 and  the thermomagnetic effects 
stabilise the critical  state.  If WO- > WO+ then  the situation is opposite. 

The solution of equations ( 5 )  and (6) can  be  obtained  in  the  planar limit r o 9 b  (which 
is equivalent to  the case of two parallel plates). The  dispersion curves are shown  quali- 
tatively in figure 3. 

First  let us consider the region where h< 1. One  may easily find the  equation  for PI 
using the  condition aI/a&o=O or  the direct  expansion of E and B with respect to h: 

where W== Wo+bo/K. When W+= W-9  1  the  thermomagnetic effects do  not influence 
81, (81 = 37). If W+# W- the magnitude of 81 depends on  the relation between W+ and 
W-. For example 

811/2=${[52+%(7+?])]1~2+~} W+$l, w-=o (30) 

8 i 1 ’ 2 = a { [ ~ 2 + ~ ( T + q ) ] 1 / 2 - ~ }  w-91,  w+=o. (3 1) 
The values of and q at T - 4  K are of the  order of 10-1 and 10-2 respectively. Therefore 
in  hard superconductors with 72 10-3 the critical  state stability is controlled mainly by 
the  thermomagnetic effects. Next we shall  treat the case W+91, W-=O in  more  detail 
assuming that  the magnetic flux enters  the  superconductor (ho 0), 5,q  4 1 and T =O. 
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Let us consider  the complex solutions for h= X(b). Calculating b =b(h)  up  to terms 
of the  order of X we find that ahjapl B1 < O  when PO> 3 . 0 5 ~ ~ 0  (see figure 3). Thus  the 
oscillations of 0 and E may  occur at low temperatures T Z   T c / 6 .  The analytical expressions 
for X0 = Re h and W O  =Im X may be obtained  in  the  limit I h, I 9 1. In  this case the dis- 
persion equation  can  be  expanded  into a power series in ~ 0 - 1 1 2  by analogy with the case 
of the  plate  (Gurevich and  Mints 1979). The results have the  form: 

h0 = p  [ 2 ( P 2  - [ l2  - . ll/r2 (32) 

WO = 2 p(p"2 - 5)  ['I - ( p  - 5 ) 2 ] 1 / 2 / 7 2  (33) 

8 2 1 1 2  = 4 + (17/2)1'2 p p  = [ + 7 1 1 2  Re A 1 1 2 9  1, (34) 

When = pc, one  obtains 

A c = p c / v ~  / J O / ~ ~ U O ~ : T ~ / ~ T .  (35 )  

The critical  state is unstable when /3 > /l2 (h0 > 0), so that  at p 2  p< pc the  evolution of 
the  instability is accompanied by the oscillations of 0 and E with the frequency W O .  Note 
that we are considering  the oscillations of 0 and E superimposed on  the  constant back- 
ground electric field Eo =hor0/2c arising  due to  the term hot in H , ,  ( t ) .  It is necessary that 
j cE>O during  the  instability where E is the  total electric field in  the superconductor. 
The  condition of the applicability of equations (32)-(35) is I h, I 9 1 or Tc/4TB 1. How- 
ever the  condition PO< l is not satisfied at low temperatures (see equation (18)). When 
p0 1 we may put 010 = T = 0. It may  be  shown that  the situation  illustrated  in figure 3 (a)  
is realised if p0 > 0.62. Thus  the oscillations of 0 and E occur when 

3.05 010< p0 < 0.62.  (36) 

Let us consider the response of the system to the  external magnetic field h1 sin wt 

Using the  Laplace  transformation of equations (5 )  and (6)  we find that  the steady-state 
when A w = w - w ~ < w ~ ,  ho<O, 1 x 0 1  < l .  

solution of equations ( 5 )  and (6)  near  resonance  has  the form: 

T=To+---   (4-x12)+T1 {cos (Wt+q)-exp [ ( x 1 - 2 ) ( ~ / 2 ) ~ / ~ ]  jcb2Eo 
2K 

x cos [wt+q+(x1-2) (w/2)1 /2] }   (37)  

E=Eo+E1 COS (wt+rp) (38) 
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5. Conclusions 

We have examined the influence of thermomagnetic effects on  the stability of the critical 
state  for  some simple systems. It has been shown that these effects influence the stability 
criterion weakly when 1. The exceptions may be: (i) the critical state stability at low 
temperatures (TY  1 K) when pow 1 ; (ii) systems with pc< 1, for example a wire with a 
transport  current I=7R2jc, a tube  and so on; (iii) alloys with  high Hcz.  If B<Hc,  
then soccln (H,,/Ho) (Kopnin 1975). Therefore we expect an increase of a for alloys 
with Hcz-  10”-10G Oe. In this case the  interval of T where p07 1 may increase to 
several degrees. 

Note  that  for nonsymmetrical cooling W+#  W- ($4.2) the stability of the critical 
state  depends on the sign of W+- W-. This effect  gives a  chance to separate  the  contri- 
bution of the  thermomagnetic effects if the  direction of the magnetic field is changed 

The  thermomagnetic effects are essential when one considers the dynamics of the 
critical state. For example these effects lead to oscillations of B and E during  the flux jump 
in the  tube at low temperatures T 2  Tc,’6. It is important to note  that  the radical  change 
of the dispersion curves h = h(L) may arise already when 20, p0 < 1 because of the small 
values of T in hard superconductors. 

(H+ - H ) .  

References 

Campbell A M  and Evetts J E  1972 Critical Currents in Superconductors (London: Taylor and Francis) 
Caroli C, de Gennes P G  and Matricon J 1964 Phys. Lett. 9 307-11 
Fiory A T  and Serin B 1966 Phys. Rev.  Lett. 16 308-12 
Gor’kov L P  and  Kopnin N B  1975 Usp. Fir.  Nauk 116 413-48 
Gurevich AV1 and Mints R G  1979 Dokl.  Akad. Nauk 245 83-6 
Kopnin N B  1975 Zh. Exp. Teor. Fiz. 69 384-91 
Lowell J, Munoz JS  and Sousa J B  1969 Phys. Rev. 183 497-506 
Maksimov I L  and Mints R G  1979 Fiz. Nizk. Temp. 8 842-50 
Mints R G 1978 Pis’ma v Zh. Exp. Teor. Fiz. 27 445-8 
Mints R G  and Rakhmanov A L  1977 Usp. Fiz. Nauk. 121 499-524 
Otter F A  and Solomon P G  1966 Phys. Rec.  Lett. 16 681-5 

Wilson MN,  Walters C R ,  Lewin JD, Smith P F  and Spurway A H  1970 J .  Phys. D: Appl. Phys. 3 1517- 
- 1967 Phys. Rev. 164 608-17 

46 


