
This paper is concerned with the stability against flux jumpes of current and temperature 
distribution in a composite superconductor which has internal cooling channels. The 
stability and perturbation increments have been found. 
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It is known h2 that thermomagnetic instabilities, flux jumps, 
may arise in hard superconductors or superconducting 
composites. In the case of composites, the stability criterion 
strongly depends on the external cooling. For this reason, 
the cooling channels in conductors consisting of composite 
wires are usually provided in the bulk of the material. The 
present paper is concerned with the stability of such conduc- 
tors with respect to small perturbations covering a large 
portion of the sample volume. Although similar, this problem 
is different from the cryostatic stability which has been 
discussed in the literature 3. 

To initiate the instability in question, there must be an 
initial perturbation covering the entire sample cross-section 
and having a longitudinal dimension greater than the cross- 
section perimeter 2. Such a perturbation may be brought 
about by a flux jump in individual sample elements caused 
by current input and output, displacement of coil turns, etc. 

Note that this presentation of the problem eliminates the 
effect of twisting on the stability ~'s 

To find the stability criterion one has to derive the equations 
describing the evolution of small perturbations of the 
electric field E and the temperature T. Following the methods 
Used in 4,s, the inhomogeneous conductor with cooling 
channels is considered here as the continuous medium with 
parameters averaged over a small volume. The feasibility of 
such an approach has already been discussed in detail s . 

The averaged Maxwell equation has the following standard 
form: 

curl c u r l • -  47r 37  (1) 
c 2 3t 

where the current density j is given by: 

Yi = & (T, H) + ~k Oik Ek 

Js and oik are the averaged density of the supercurrent and 
conductivity tensor, respectively; i and k are tensor indices 
(X 1 = X , X  2 = y ,  X 3 = Z ) .  

Analogous to, for example, reference five, one may find in 
the linear approximation with respect to the temperature 
disturbance 0 = T-To. 
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30 ~ 320 217 H ( 2 )  
I) -~- = Z~LkKik-~i~X x + js E -  ro qH 

Where v and Kik are averaged heat capacity (without allowance 
of the helium circulating in the channels) and thermal con- 
ductivity tensor, ~H is the portion of the cross-section occu- 
pied by the channels, ro is the channel radius, qH is the heat 
flux to the helium from the unit cooling channel surface. 

Similarly for helium temperature T H we have: 

~0H 2qH 
11 H - -  = _ _  _ Ul) H - -  

3t r o 

~OH 

OZ 

OH = T H - T o  (3) 

where v H is the helium heat capacity, and u the helium velo- 
city. For simplicity it is assumed that the cooling channels 
are oriented along the axis oz. 

The averaged values of is, v, o, K appearing in (1) - (3) have 
been discussed 4,s. To determine the value qH exactly is 
extremely difficult since convection and boiling of helium 
and the specific structure of the composite must be taken 
into account. 

If the helium flow rate u is small the helium has enough time 
to receive heat so that OH = O and then qH = VH 2/roO. It is 
easily seen that the perturbation equations will in this case be 
identical with those for a composite without channel¢ 's, 
provided that the corrections in/'s, v, o, K have been properly 
taken into account. The values of o, K,/s decrease and the 
effective heat capacity v + 1) H I"/H increases when cooling 
channels are provided. However, in the first approximation 
the stability criterion for the composites is independent of 
the heat capacity 4,s. Therefore, the internal cooling will fail 
to be effective if the helium velocity is small. Note, that for 
hard superconductors without normal metal, the situation is 
quite different: the stability increases with heat capacity 2. 

When helium flows rapidly, its heating is insignificant: O >>OH 
Then we may use the conventional empirical equation for 
qH: qH = Wo ( T -  Trt), where TH ~-- To, Wo is the heat transfer 
coefficient. Then from (3) it follows that: 

PHrO 
0 ~ u - - O H  

wd 

Here, we have used the estimate: ()0H/DZ ~ OH/l and I is the 
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longitudinal dimension of  the perturbed zone. Consequently, 
the approximation 0 n < <  0 is valid if: 

Wol 
u > >  uc - (4) 

PHrO 

Approximat ion 0 "" O H may be used at u < <  u c. 

If  P is the cross-section perimeter,  then l >~P and u c ~> WoP/vHro. 
For an estimate we shall take W0 = 10 6 erg cm "2 K "1 s -1 , 
r0 = 10 -1 cm v H = 10 7 erg cm -3 K-1,P = 1 cm. Then 
uc ~ ] c m  S - 1  . 

Let u > >  u c and consider a sample with geometry shown in 
Fig. 1. For simplicity it will be assumed tha t / s  is independent 
of  the local magnetic field (Bean's critical state model). The 
solution of  (1), (2) will be as usual: sought in the form: 

0 = Oo(x/b ) exp IXtK±/vbSI 

E = Eo(x/b) exp I;~tK±/ub21 

where K I. is the heat conductivity across the oz axis, and k is 
an eigen value to be determined. Then, eliminating Eo we 
have for / ,  L > >  b: 

0 iv - [X(1 + r )+  Wf] 0'o' - X[/3- r (X + Wf)] 0 0 = 0 

K± 
E o  = - -  [(x + w o  oo - 1 ] 

js b: 

4zrb2js I dis(T) ] e z r a x l , ,  2r~HWo b= 
/~ - - • Wf 

C2p ~ - T  , T =  - -  - i)C2 ' K.Lr 0 

( 5 )  

where oH is the conductivity along the oz axis. The differen- 
t iation is performed with respect to the dimensionless coor- 
dinate x/b. For a superconducting composite, the charac- 
teristic value of  7" is usually high: r = 10 - 10 3. The value of  
Wfmay lie between 10 "1 and 10. 

- I  
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Fig. 1 The sample geometry 

To determine the stability criterion, boundary conditions 
must be imposed on (5). The instability region corresponds 
to the parameters for which there exists a non-zero solution 
of  (5) with k > 0. 

To begin with we shall consider the simplest case. Assume 
that there is no transport  current and surface cooling, and 
that the magnetic flux total ly penetrates into the sample 
(Fig. 2). In this case the boundary conditions are: E o = 0, 
0 n = 0 a t x  = 0;E~ = 0 0 1 = 0 a t x  = b. The curve X = X(/3) 
is shown qualitatively in Fig. 3. The stability criterion may 
be written as (see Fig. 3): 

-b  

Fig. 2 The distribution of magnetic field in the sample assuming 
full f lux penetration 

X¢ 

Fig. 3 The curve h = h (/3) 
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t3 < ~c = ~(xJ (6) 

where Xc is the instability increment. 

If  IVf is not too small, X :  > >  1. In this limit we have 
(7--1 < <  IVf < <  7-2): 

,c wf 7- - --~ Wf 

~c \ 47"// 

Similarly in the case of  finite surface cooling: a - i f iv r  > >  1 
and IV< 1 (IV = tVob/rL) then Xcr > >  1 and 13c# ~- IV + Ivf; 
b - I¢7- > >  L and I4/>> 1 then Xc7- > >  1,/3c/7- = rr2/4 + Wf. 

Since for the composites cooled by liquid helium the condi- 
tion XcT- > >  1 is usually valid; we may reduce the fourth 
order equations (1), (2) to a second order ones. Following 
the method already published 2,s we have for 0: 

b2tq k ~)20 
+ (f3/T - Wf) 0 = 0 (7) 

i,k K-L OXi(~Xk 

The thermal boundary conditions must be imposed on (7). 
The parameter ~c in the criterion (6) is found from the con- 
dition of  existence of  the nontrivial solution of  the (7) with 
the appropriate boundary conditions. Just as in the case of  
Ivf = 0 at r > >  1 the stability does not depend in the first 
approximation of the magnetic flux distribution in the 
sample, but only on the volume occupied by the supercurrents. 

For example, in the case of  the geometry shown in Fig. 1, 
and w < 1, we have: 

13# < 13d7" = Ivf + IV (1 -I- b/L) (8) 

IfWf = 0, b/L = 0 then (7) coincides with the dynamic stabi- 
lity criterion ~ . Note, that in the approximation which corres- 
ponds to (7), X c = 0 and the results obtained by means of  it 
must be equivalent to the cryostatic stability criterion by 
Steckly 3. 

Using (8) one easily finds: 

_ 0"HWo ( b + 2 r / l _ i b ' /  (9) 
/S </1 bl d/s/dTI 1 + Z ro ] 

The value J1 has a maximum at some I"/H = r/opt as may be 
seen from (9). For example, one can assume that ls = xs/c, 
]c =Jo (I-T/To), oll = r/nOn, where 7/s and % are the concen- 
trations of  the superconducting and normal metals, 
respectively (Bn + r/s + r/H = 1), a n is the normal metal 
conductivity. As the values ro/b, rolL Wo T¢on/ro]~ are usually 
small, one readily f'mds from (9): r/opt ~ 0.5 and/ma x 
On I4/o (Tc-  To)/ro. 

In the case of  an arbitrary W we have for/3e: 

t~c 
_ _ _ W f = k  2 +q2 
T 

Ktan  K = W; q tan (q b L-) = IV 
\ / 

In particular, for W > >  1. 

r 4 1 -I- + Wf 

This result shows that the above limitation on/s  cannot be 
substantially changed by enhancing the heat removal from the 
outer surface. 

Let Wo = l0 6 erg cm "2. s -t K -~ , Te = 10 K, On = 10 2o s -1 , ro = 
10 "l cm. Then/max ~ 10 4 Acre "2. The higher current densi- 
ties may be attained not by a complete stabilization of  the 
conductor, but rather by eliminating the large scale pertur- 
bations. 
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