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Abstract. The critical state stability in a composite superconductor under an external 
stress, causing plastic strain yield, is considered. The obtained criterion of the stability 
against thermomagnetic-mechanical perturbations allows the explanation of the training 
phenomenon as a process of consequent strain hardening of the superconductor. 

The training of superconducting materials is a well known phenomenon in superconduct- 
ing magnetic systems. Recently the existence of training has been observed in short 
superconducting samples under significant mechanical stress (resulting from either external 
or ponderomotive forces) (Anashkin et a1 1975, 1977, Schmidt 1976, Schmidt and 
Pasztor 1977). The results obtained in this work confirmed the connection between the 
training phenomenon and the mechanical properties of superconducting materials. 

In the present paper we found the stability criteria of the current, magnetic field and 
mechanical stress distributions in the critical state in the composite superconductor, the 
stress being supposed to cause the plastic yield of the material. The thermomagnetic- 
mechanical instability (i.e. both flux jump and serrated yielding development) was 
investigated in the linear approximation for small perturbations. The plastic strain rate 
nonuniformity affecting the critical state stability of multifilamentary superconductors 
was also treated. 

Being interested in the critical state stability in the whole sample, we shall regard the 
composite superconductor as a uniform anisotropic superconducting medium. The 
physical properties of such a medium are defined by superconducting filaments and 
normal conducting matrix characteristics, averaged over the cross-section of the compo- 
site (see Mints and Rakhmanov 1977 and references therein). This approach is evidently 
valid provided that the scale of perturbations of interest is large compared to the charac- 
teristic dimensions of the composite superconductor structure and that the rise time of the 
perturbation is larger than the relaxation times of the individual elements of the medium. 
After averaging we obtain the equations for the temperature ( T )  perturbation 0 = T- TO 
(TO is the initial temperature) and the electric field E in the linear 6 and E approximation: 

d = K V 2 6 + j o E +  u(?;/?T)B (1) 

curl curl E= -(47r/c2)(?j/?#) (2) 

and the connection between the current density and the electric field 

(3) 
1 
P 

j = j o + -  E. 
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The quantities in (1)-(3) are averaged appropriately: v-the heat capacity, K--the heat 
conductivity, jo-the critical current density (the currents are assumed to flow in the same 
direction in the region of averaging), o-the applied stress, i-the plastic strain rate, and 
p-the resistivity. The last term in equation (1) describes the variation of the plastic 
deformation heating a i  due to the temperature perturbation 8, in the linear in 8 approxi- 
mation. In the case when only a part of the work of plastic deformation [o(i3i/aT)8] is 
released in the form of heat, the necessary modification can be introduced to the final 
result by a correction factor. Note, that the heating connected with the electric field 
induced by the superconductor motion in the magnetic field was omitted in equation (1). 
This term was estimated to be small (as far as H*/4.rru< 1, H being the characteristic 
magnitude of the magnetic field) in comparison with that directly describing deformation 
losses u(ai/aT)O. 

The set of equations (l), (2) enables one to investigate the critical state stability against 
thermomagnetic-mechanical perturbations for the given critical current density and 
plastic strain rate dependence on the temperature, magnetic field, strain and applied 
stress. Usingjo=O, (the normal state), equation (1) was used to determine the stability 
criteria of plastic yields of metals (Petukhov and Estrin 1975, Petukhov 1977). 

Let the dependence 8( t ) ,  E ( t )  be 8( t ) ,  E(t)-exp (rt), where F is the increment of 
instability (Mints and Rakhmanov 1977). To define the stability criterion of interest the 
heat and electrodynamics boundary conditions should be added to the system of equa- 
tions (1) and (2). The solution of equations (1) and (2) exists for some definite (eigen- 
values) values of r. The instability evidently appears for F 2 0. 

In this paper we consider the simplest case: j o  =jo(T) (Bean's model), i= i(o, T )  in  
the usual situation for composite superconductors, when the ratio of the coefficients of 
thermal diffusion, Dt is K / V  and of magnetic diffusion, Dm is c * p / 4 n  and T = Dt/Dm$ 1. 
Then in general for the T $  1 approximation aj/at=O (Mints and Rakhmanov 1977), and 
the relation between 8 and E follows : 

E= -p(djo/dT) B. (4) 
The condition aj/at=O used means that in the main for the ~ $ 1  approximation the 
instability in the composite superconductor develops, the magnetic field being frozen. It 
is obvious physically since Dm< Dt. 

Substituting (4) into (1) we obtain the equation determining the temperature pertur- 
bation 8 in the region of the superconductor where the current is present: 

In the region without current the equation for 0 has the form: 

Kv20 + [ o ( a i / a ~ )  - rV] e = 0. (6) 

The second-order equation system ( 5 )  and (6)  should be completed by the thermal 
boundary conditions and the temperature and heat flux continuity conditions on the 
boundary of the region with the current. The corresponding solution can be easily found 
for the samples with various geometries of magnetic field and current distributions, the 
existence of the solution with r 2 0 meaning the loss of stability. 

Consider for example the critical state stability in a cylindrical composite super- 
conductor with radius R and current I <  IC = .rrR2j0. The cooling conditions at the surface 
are as usual 

K (d8/dr)= - Wo8 (7) 
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where WO is the heat transfer coefficient to the refrigerant. Under the characteristic 
conditions for composite superconductors W= WOR/K < 1 (in particular, for liquid 
helium as refrigerant W ~ 0 . 1 ) .  In this case the temperature of the sample is practically 
uniform. This allows one to calculate the increment I' for any current distribution in the 
composite by integrating equations (5) and (6) over the sample cross-section, taking into 
account the cooling condition expressed in equation (7). As a result we find 

From the condition r<O we obtain the critical state stability criterion against the 
codeveloping magnetic flux jump and plastic deformation jerk : 

a= 0 - a ;  _. R p- PRjo 1 d j o  1 .  
aT 2 WO 2Wo d T  

The physical sense of the stability criterion of equation (8) is the following: the power 
released in the process of the flux jump and plastic deformation jerk should not exceed 
the power that is transported to the refrigerant. 

It should be mentioned that the stability criterion of the stationary regime of plastic 
yield in the absence of current in the sample has the form (Petukhov and Estrin 1975) 

CY<l (9) 
and the stability condition for the critical state in the absence of mechanical stress (Mints 
and Rakhmanov 1977) 

(IlIC) p < 1 (10) 

Combining the obtained criterion from equation (8) with equations (9) and (10) we 
see that in the critical state the flux jumps and serrations strongly interact, stimulating 
each other. Physically this is due to the slow character of both instability developments 
compared to the thermal diffusion time. Note also, that from the stability condition (8) 
it follows that the smaller the current, the larger the stress (strain) producing the insta- 
bility. This fact has been found experimentally (Schmidt and Pasztor 1977). Thus, the 
quenching current in the sample essentially depends on its mechanical properties (aZ/aT) 
and the applied stress magnitude, which in its turn can be determined by the pondero- 
motive forces, i.e. by the current. The criterion of stability against thermomagnetic- 
mechanical perturbations (8) allows one to understand the training phenomenon as a 
consequent process of strain hardening of the superconductor. In practice, if the current 
increases so that condition (8) is not satisfied, then as a result of instability development 
the flux jump occurs. This process is accompanied by intense heating of the sample and 
by a plastic deformation jerk and consequently strain hardening. The magnitude of 
a;/aT (for given stress applied) will decrease, and this, in accordance with equation (8), 
results in the increase of the quenching current in the next cycle. Provided the stress 
applied is not too large, the quenching current magnitude can be achieved, which can be 
determined from equation (10). 
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Consider the critical state stability in the case when the plastic yield is nonuniform 
along the sample axis (x axis). Let the x-dependence of the nonperturbed plastic yield 
rate be that, as shown in figure 1, where I<R (strong thin disc-shaped nonuniformity) 
and W< 1. The equation for the temperature perturbation 0 dependence on .x can be 
easily obtained by integrating equations (5) and (6) over the cross-section, taking into 

Figure 1. Variation of the plastic strain rate along the x axis of the sample. 

account the cooling condition in equation (7), the physical characteristics of the sample 
being uniform in the cross-section plane. The result is 

or 
d28 I 
dx2 ( Ic  

LZ-+ -/?’+a-i-y 

where 

L= R/2/(2 W )  y =: (vR/2 WO) I?. 
In the case under consideration the instability occurs for the first time near the planc 

x=O, where the plastic deformation power is maximal. Away from this region the 
temperature perturbation is evidently absent. Thus, the solutions of equation (1 l), 
which are of interest, vanish at infinity and the instability criterion can be easily found 
from these solutions at r = 0. 

In the case of strong nonuniformity (l4 R) the solution of equation (1 1 )  slowly varies 
on the characteristic scale of nonuniformity 1. The stability criterion can be easily 
obtained from solving equation (1 1) by means of the Fourier transform 

1 - ( I / Z C )  /?’> * E2 (12) 
where 

00 

E = 1 dxa(x) exp { - ( I x 1 /L) [ 1 - ( I / lc)  /?’]1/2>. 
L - 0 0  

It is seen from criterion (12) that the presence of the ‘weak’ link can essentially 
diminish the critical state stability (provided that the magnitude a2jaT at x = O  is fairly 
large). The instability appearing in the region of strong nonuniformity causes the flux 
jump, accompanied by intense heating and the plastic deformation jerk, and results in 
strain hardening in the hot region. In this case the training phenomenon is connected 
with the consequent process of strain hardening of ‘weak’ links. 
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Let us estimate the characteristic magnitude of the external stress, at  which the plastic 
yield of the material becomes unstable. Taking R-3 x 10-1 cm, aiIaT-3 x 10-2 s-1 K-1, 
WO- 1 W s-1 cm-2 we find from equation (9) that 0-2  x IO4 N cm-2. A characteristic 
value of the parameter B is about unity for composite superconductors. In this case (see 
equation (8)) the presence of current in the sample can essentially decrease the given 
estimate. 

Thus, we see that under the applied external stress, which causes the plastic yield of 
the sample, the critical state in multifilamentory superconductors can become unstable 
against the collective thermomagnetic-mechanical perturbation. This instability, which 
is due to the interaction between the flux jump and the plastic deformation jerk, allows 
one to understand the training process in superconductors as a process of consequent 
strain hardening, stimulated by the thermal softening. The nonuniformity of super- 
conductors leads to the training connected with the sequence of local stability breakdown 
in weak links. 

The author would like to thank Dr B V  Petukhov for fruitful discussions on the results 
of the work. 
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