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Abstract. The stability of electric currents in multifilamentary superconducting com- 
posites against flux jumps is discussed in detail. The normal procedure for such a 
quantitative stability investigation is carried out. In some particular cases the stability 
criteria are found and analysed. 

1. Introduction 

The flux-jumping phenomenon in hard superconductors imposes certain limits for 
their stable performance as electric conductors. The theories describing the initial 
stages of a flux jump have made it possible to derive criteria for the limits of stability 
of the superconductor (Wipf 1967, Hancox 1965, Hart 1968, Swartz and Bean 1968, 
Wilson et al 1970, Kremlev 1973, 1974, Mints and Rakhmanov 1975). These results 
are at least in qualitative agreement with experiments. 

It is well known that an instability of essentially the same nature may occur in so- 
called superconducting composites (see, for example, Wilson et ul 1970). These com- 
posites generally consist of a high number (up to a few thousand) of fine superconducting 
wires embedded by some method or other in a matrix of normal metals or their alloys. 
By reducing the size of the superconducting wires and by choosing an appropriate metal 
for the matrix it is possible to ensure the stabilization of the individual superconducting 
filaments (it is worth noting that any eventual breaks of the superconducting wires are 
also shunted by the matrix). 

Instability can grow in these composites as a collective effect since individual filaments 
are coupled to each other in one way or another. The complex nature of the composite 
makes it difficult to carry out an exact stability analysis. However, for a sufficiently 
large number of superconducting filaments N and with some definite assumptions 
about their behaviour it is possible to treat the composite as a quasi-continuous medium 
with some effective parameters. This approach to the problem was outlined in a pre- 
liminary report (Kremlev et al 1976). In this paper we present a more thorough deriva- 
tion of the basic equations for a wider set of different conditions. The stability criteria 
are found for some particular cases. 

An analogous approach has been developed by Duchateau and Turk (1975a, b), 
however without consideration of the applicability of the method. 
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2. Basic equations 

To describe the flux jumping in a composite conductor quantitatively one has to derive 
the equation for a small perturbation averaged over the volume including a large number 
of filaments n % l ,  but with n<N. Such an equation is evidently adequate if 

(1) the total number of filaments N in the composite is sufficiently high ( N B I ) ;  
(2) the rise-time of a flux jump is greater than the thermal and electromagnetic 

relaxation times of an individual element of a conductor; 
(3) all our variables (temperature, currents, fields, etc.) do not change too much 

over the distances comparable with the dimensions of the filaments. In particular, 
this requires that most of the filaments are saturated with current, i.e. the transport 
current in each filament is equal to its critical value. This is the case for a non- 
twisted composite and also for a twisted one carrying the transport current. 
However, for sufficiently large variations of external field the necessary distribu- 
tions can be realized in a twisted and even in a transposed conductor. 

If all the above-mentioned conditions are satisfied one can write the thermal and 
Maxwell equations for the small perturbations of temperature 0 and electric field E. 
In the approximation linear with respect to small 6 and E they are 

v d  =KV20 +- j ,  . E  

and the relation between current dcnsityj and E:  

j = j , + a E .  

In accordance with the general idea of the proposed method all our variables (e, E, j )  
are mean values taken over the volumes including some finite number of filaments. 

The parameters Y, j,, K, a correspondingly represent the mean values of specific 
heat, current density, thermal and electric conductivities. If xs and Xn are the fractions 
of the superconductor and of the normal metal in the composite (Xs+Xn= l), one 
obtains 

where vs and Yn are the corresponding values of specific heat, j c  = j c (T)  is the critical 
current density of the superconductor (Tis the temperature), a n  is the electric conductivity 
of the normal metal and af that of the superconductor in the flux-flow regime (the small 
nonlinear part of the volt-ampere curve is not of interest here). The mean value of the 
thermal conductivity K (transverse with respect to the filaments) is determined by the 
internal structure of the composite. It can be easily shown that as a rather good ap- 
proximation one can take K =(1 - -x81/2)~ , ,  where Kn is the normal metal conductivity. 

For the following it is necessary to choose a definite model of the critical state. 
Here we shall consider only Bean’s (1964) model, i.e. we assume that aj,/aH = aj,/aH =O. 

Excluding E and j from the system (1-2) one can obtain the equation for the per- 
turbation 8 only. The time dependence O(t) may be taken in the form 8 N exp [ X ( ~ / ~ b 2 ) t ]  
where b is some characteristic dimension of the sample (e.g. its half-width). For the 
geometrical configuration of figure 1 (the one-dimensional case) we can write, using 
non-dimensional variables (Kremlev et al 1976) 

v = x ~ v ~ +  VnXn j s = ~ s j c  u = x ~ u ~ + x ~ o ~  

e i v - q i  +.I o/~+x(x.-~) O=O (3) 
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where T is the ratio of temperature and magnetic diffusivities: 

and 

The space derivatives in (3) are taken with respect to the variable x/b. 
Non-trivial solutions of (3) with appropriate boundary conditions exist only for 

some values of A=@?, 7 ,  . . . ). If, for the given values of the parameters, there exists 
some A >  0 for which the equations have a solution, instability occurs. 

t 
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I 
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Figure 1. The flat sample. 

For further analysis it is necessary to specify the thermal and electromagnetic 
boundary conditions for (3). The heat transfer on the boundary of a composite can be 
represented by 

or in a dimensionless form: 

e'(+ i )+ho(+  i )=o;  h=hoblrc (5 )  

where ho is the coefficient of heat transfer from the surface. 
The electromagnetic boundary conditions in the general case can be of the form 
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wheref(t) is a known function. However, it can be shown that the stability criterion 
(in the linear theory) is independent onf(t) as long as CIe does not lead to a large spatial 
variation of the internal magnetic field gradient. This requires that the skin depth 
ask =.I 8 8 1 ~  ( f ie)-  c / ( 2 7 r c ~ f i ~ / H ~ ) l / ~  should be greater than b, i.e. that 

d, the conditi In order to investigate the stability when this inequality is satisfi 
may be replaced by 

Supposiiig that He= IO4  G, U =  1019 cgse and h= 10-1 cm, one has f i e <  I07 G s-1 for 
the applicability of (7). 

The solutions of (3) can be found independently for two regions x e 6b and x > 6b 
(figure 1). For x = 8b we impose the usual conjugation conditions (Mints and Rakhmanov 
1975) 

0(6 + 0) 6(8 -0) O'(8-t-0) O'(8 -0) E(8)zO. (8) 

P 
Figure 2. The functions X(p) for different h and T .  (U)  h = 0: (A) T =  0, (B) O <  7 < rc, 
( C ) T = T u , ( n ) 7 > T u .  (b)h>O: (E)r=O, ( F ) ~ = T I > O , ( G ) ~ - > T I .  

The function A(!, r )  obtained by the use of equation (3) with the boundary conditions 
(5)-(8) for different heat transfer conditions is depicted schematically in figure 2. The 
stability criterion can evidently be written in the form 

F<y2(7, h, 6, ' * . )  (9) 
where y is some definite number to be determined for the given problem. 

Let us now investigate in more detail the limits of applicability of the proposed 
treatment. The shortest space scale for the variation of the solution of (3) in the case 
~ $ 1  is equal approximately to b/(A,~)112 for the dangerous perturbation with the 
eigenvalue A,. This scale must be greater than the structure scale b/N1/2 or 

N & A C T .  (10) 
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The same condition arises if we demand that the magnetic relaxation time inside the 
normal elements be smaller than the rise-time of the perturbation t j .  

Another ‘slow’ local process is the thermal diffusion inside the superconducting 
filament. The corresponding relaxation time tKS is of the order of t K S -  V ~ X & ~ / K ~ N  and 
it should again be smaller than fj; or 

In the case of a twisted conductor for ‘fast’ variation of the external field He, such 
that 

(where L is the twist pitch) the field distribution in the composite is largely analogous 
to the case of an untwisted sample (Wilson et ul 1970). Therefore, our treatment can 
be applied when the rate of change of the external field satisfies the inequalities 

if N B I  and conditions (10) and (11) are fulfilled. 

3. The soIution of the basic equations 

The solution of (3) can be written in the following form: 

t3=clexp (k;x) - fczexp ( k;x) +CS exp ( i k l x )  +cqexp ( ---- iy) 
where 

Substituting (1 3) into the corresponding boundary conditions produces a system 
of linear equations for the constants ct. A non-trivial solution of this system exists 
if its determinant A(A, P, T ,  . . . ) is equal to zero. This condition can be used to determine 
the desired functions h=h(P, T ,  . . . ). 

For the sake of simplicity we will consider in this section only the case 1=0 
(I-2jc6b=0, cf. figure 1). The generalization for I f 0  can be easily produced. 

3 .  I .  Isothermal cooling 

For the very intense cooling of the composite surface (h+ CO) the corresponding condition 
for the determination of X(P, T )  is written 

Am= 16i(2kh(h +kz2)(h- kI2) -klkz[(h + (A - k12)’] cosh kl COY kz 
+(klz-k22)(h-k12)(h+k22) sinh k~ sin kz)=O (14) 

The results of numerical computations of y2 as a function of 7 for this equation 
are presented in figure 3. 
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For 7 9 1  the value of Xc is high, & % I  and Y ~ ( T )  can be found explicitly. To the 
first approximation 

(1 5 )  4137-213 N 1.82 7-213 

It follows from (15) 

Let us consider in more detail another limiting case, ~ % l ,  which is of the most 
interest for composite study. It can be shown that for T B  1 the following relation holds: 

220 - 

180- 

T 

Figure 3. The dependences y2(.) for different h. (a) ~ < l :  (A) h %l, (B) h=l ,  (C) 
h=O; (b) O <  T <  50. Curves At correspond to h= 00 and Bt correspond to h= 1. Com- 
putational results are shown by solid lines AI and B1. Curves A2 and B2 are calculated 
by means of formulae (20) and (27). Straight lines AS and I13 are obtained by means 
of Hart (1969) stability criterion. 

t,<tj<tm=b’/Dm, i.e. hc<l  and 7hC%l. For the ‘wavenumbers’, kl and kz in the 
first approximation one can write: 

Substituting these into (14) we get 

As (Ac+/+ 1, we can search for kz in the form kz = r /2  ++, 0 < + < 1. The value of 4 
now can be easily found from (18) along with the following equation for A@,T) in the 
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vicinity of h=hc: 

To find A, from equation (19) we can make use of the fact that for X = Xc, aA/aP = CO. 

The solution of this cubic equation then gives 

The expression, y2=7r2T/4, has already been found by Hart (1968). It represents 
the so-called dynamic stability criterion for the case considered. Note that the next 
term in the expansion of y2(.) is of the order of r 1 l 3 ,  and so it is of significance even 
for rather high values of T (see figure 3). For example, at 7’10 the expression (20) 
diverges from the exact value of y2 as found by the direct computation by not more 
than 20%. 

With the results obtained above we can determine the critical number Nc of filaments 
for which the conductor as the whole becomes unstable, although every filament is 
just stable. The criterion for stability of the individual filament in the massive normal 
block can be expressed in the form (Mints and Rakhmanov 1975): 

where ro is the filament radius, rc is the maximum radius at which the current distribution 
in the filament is stable, io = 2 , 4 ,  . . . is the first root of Bessel function Jo. By comparing 
(21) with (20) we find: 

Thus, for ~ = l O 3 ,  NC=1O2 (rc/ro)2. It should be noted, however that the condition 
hB 1 can hardly be realized by direct cooling with liquid helium. In fact, how 107 erg 
cm-2 s-1 K-1, K N 106-107 erg cm-2 s-1 K-1, b-0.1 cm, and it follows that h 5 1. 

The exact criteria for applicability of our treatment can now be derived. Substituting 
Ac (20) into ( 1 1 )  and (12) we get 

3 .2 .  Adiabatic insulation 

For the fully insulated composite (h=O) the condition for the determination of Y ~ ( T )  is 
written 

A0 = - 16i kdcz(k12 + k22) cos kz cosh kl[kl(X + k22) tanh kl - kz(k12 -A) tan kz] = 0. (24) 
The dependence Y ~ ( T )  for this equation is plotted in figure 3. For T >  n= 1/21 the 

value of y becomes constant (y2= 3) while hc-+O. This is because flux jumping is damped 
by the normal currents, which are not effective for X-tO (as j , ~ a E o c X ) .  It is these 
‘slow’ perturbations that become most dangerous for T > 1/21 (Kremlev 1974). 
146 
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By comparing (21) with the stability criterion, for the new case (/3 < 3) we can find 
the value of Ne:  

Thus, for a fully insulated conductor the stability is not greatly affected by the use of a 
composite. 

3 . 3 .  The case of an arbitrary heat transfer 

For finite h the determinant A@, p ,  T ,  11) has the form 

A = A0 + hAm. 

Numerical computations of the equation A = 0 allow us to find the dependences Y ~ ( T ,  h). 
As an example in figure 3, there is plotted such a dependence Of  y2(T) for h= 1.  

It should be noted that for T $  1, y2 is proportional to T ,  the slope of the corresponding 
lines increasing with the value of h up to the value of 7r2/4 for h+ 00. 

For the most interesting case with T B ~  and hT>l it can be 
As in the previous sections we can make use of power expansions. 

shown that ACT$ 1. 
If h s l ,  one finds 

Substituting Xc (27) into (1 1) and (12) we find the following applicability criteria: 

By comparing (27) with the criterion (21) we again find the value of N c :  

Nc N 0.2 Th -- 

4. The simplified theory 

In this section we shall discuss only the composites with T B  1. The heat transfer will 
be considered to be not too weak, so that hT$l. In this case the value of hC7 is also 
high, A c ~ +  1 (see $3.3). The existence of a large parameter X?T allows us to reduce 
the order of the basic equation (3). 

By substituting (2) into Maxwell equation ( 1 )  we can write 

As V2E has some finite value, while A , T $ ~ ,  to the first approximation the following 
equation must hold: 

E+--8=0;  1 djs 
U dT 
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this gives the relation between E and 8. Substituted into the heat diffusion equation (l), 
it results in 

This equation can be obtained directly by dividing equation (3) by hrB1, with TB 1 .  
The above derivation is presented in order to illustrate how the instability for T$ 1 
actually occurs. 

The development of the perturbation according to (29) proceeds at fixed current 
density (r = Dt/DmB 1) while the dissipation grows as a result of lowering of the critical 
current density. An equivalent equation has been proposed by Hart (1968) from 
qualitative considerations. 

Only thermal boundary conditions need be supplied to the equation (29). The occur- 
rence of h > 0, as earlier, signifies instability. 

In the case of a flat slab with the boundary conditions ( 5 )  one can derive the following 
relation to determine y(h, T) 

vzo + (pir -x)e=o. (29) 

The corresponding dependence of y(h)/d/Z is plotted in figure 4. It can be seen 
that the isothermal regime ( y z n  r1/2/2) is reached at about h z  10. 

h 

Figure 4. The value y ( h ) , W 2  for T @  1 and ~ T S  1. 

It follows from (29) that for T$ 1 the stability is determined only by the total volume 
occupied by currents and does not depend on their direction. In fact, the electric field 
occurs neither in the equation (29) nor in the boundary conditions. The perturbation 
develops simultaneously for both portions x >  6b and x< 6b of conductor. This is in 
sharp contrast to the case of r< 1,  where the development of the perturbations proceeds 
quite independently in these two regions. 

With the aid of (29) one can investigate the stability of samples with different con- 
figurations. Thus, for a circular conductor with given transport current (figure 5) the 
equation (29) takes the form (r > 6 ; h = 0) : 

(31) 
1 
r r  

e!{+- et+@ e=o. 
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Figure 5. The wire with a fixed transport current. 

where 

R being the wire radius. 

parameter 6 is determined by the transport current I :  
The coordinate r is normalized here by the conductor radius R. The value of the 

The solution of (3 1) with the corresponding boundary conditions is readily performed. 
The maximum permissible transport current Im can be found from the following 

0 L 1 5  RlRo 20  

Figure 6. (U) The function Im(R)/Zc for 
for the wire: 791,  h+1. 

I 
0 '  5 10 15 20 

h 

the wire: h 9 1 ,  ~ 9 1 .  (b) The value Rc(h)/Ro 
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relation : 

where S = 6(Im) and Jo, J1, NO, NI are the corresponding Bessel and Neumann functions. 
The dependence of ImlIc on R/Ro for h& 1 is plotted in figure 6(a). 

For R < R ,  (figure 6a) stability is not violated even for I=I, (6=0, i.e. the whole 
cross-section is filled with current). To determine R,  we can find from (31) and from the 
boundary conditions 

The dependence of Rc on h is plotted in figure 6(b). The value of Rc essentially 
depends on the heat transfer coefficient h :  

RclRo-t2, 4 for h-+co, and Rc+O for h+O. 

5. Conclusions 

Equations have been deduced describing the development of the collective mode insta- 
bilities in superconducting composites with a sufficiently high number of filaments, 
N &  1. On the basis of these equations, stability criteria have been derived for arbitrary 
values of external heat transfer coefficient ho. 

The stability of the composite has been shown to depend strongly on the heat exchange 
intensity and not, in the first approximation, on heat capacity and on the value of 
transport current. For h<l  the stability also does not depend on the composite heat 
conductivity. 

It has been shown that for some N > N ,  the composite as the whole can become 
unstable, even though all its constituent filaments are stable. 

In the case of a high value of the ratio of temperature and magnetic diffusivities 
7 and for hTB 1 the simplified calculation scheme has been derived based on the second- 
order equation (first proposed by Hart 1968 from the qualitative considerations). 
Within this simplified scheme the stability of a circular composite has been investigated. 
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