
Abstract

Arguably, the birth of the Internet, the first multi-network communications experiment,

took place in November of 1977. This experiment connected the Advanced Research

Projects Agency Network (ARPANET) to external sites. Protocols used included TCP

(for packet switched routing) and Ethernet (to access a shared resource).

These protocols form the backbone of computing today. E.g., without TCP and without

Ethernet, we would have no Internet and no Wi-Fi. One implicit assumption remains

unchanged from 1977 to this very day. This is the belief that everyone will follow protocol,

and that selfish users will not try to manipulate these protocols.

This assumption makes sense if all users share a common goal, and seek to collaborate

with one another towards this goal. While this may be true for the US Defense establishment

in 1977, the shared common goal becomes patently absurd when you consider that 32 bit IP

address no longer suffice to encompass the number of hosts on the Internet. Furthermore,

it is a surprisingly simple matter to manipulate protocols such as TCP and Aloha, for gain,

at the expense of others.

In this thesis, we study the use of communications protocols that do not require the

good will and altruism of the various network users. In the terminology of Game Theory

and Mechanism Design, we study protocols that are incentive compatible. We show just

how vulnerable current protocols are to manipulation, to the detriment of all. We sug-

gest alternative protocols that prevent such failures. We also explore realistic models for

convergence to equilibria for such communication protocols.

iii



iv



Acknowledgments

First and foremost, I would like to express my gratitude to my supervisors, Prof. Amos

Fiat and Prof. Yishay Mansour. Working with these two great men was an honor and a

unique intellectual experience. Through numerous meetings Amos and Yishay became both

my mentors and my good friends.

I am deeply indebted and thankful to Amos. Amos’ trust in me has inspired me with

confidence and motivation. I often drew upon his rich experience and interesting insights.

His dedication to research, and his open mindedness have been a source of inspiration.

I consider myself very fortunate to have worked with Yishay. Yishay’s profound knowl-

edge in algorithmic game theory, as well as in computer science in general was invaluable

for my work. His amazing intuition was inspiring, and always helped me focus on the most

promising directions.

Amos and Yishay’s endless patience and willingness to give advice have immensely

contributed to all aspects of my work.

I would like to thank my co-authors Eyal Even-Dar, who contributed to this work, and

to Muthu Muthukrishnan, Vahab Mirrokni, and Georgios Piliouras for their part in a later

research.

I am thankful to Ilan Gronau, Gera Weiss, Daniel Marco and Edo Liberty for being

good friends and advisors. I also want to thank my friends and colleagues at the School of

Computer Science.

Last but not least, I would like to thank my family for their love and support. Especially,

I thank my wife Shelly for her endless encouragement and love, and for believing in me.

v



vi



Contents

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Dynamic Protocols in Equilibrium . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Multiple Access Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Learning to Play Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Protocols for Avoiding Congestion . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Queue Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Preliminaries 23

2.1 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Multi-Stage Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Competitive Analysis in Online Decision Problems . . . . . . . . . . . . . . 28

3 Strategic Protocols for Collision Resolution 31

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Characterization of Symmetric Protocols in Equilibria . . . . . . . . . . . . 37

3.3 Non-blocking protocols in equilibrium for latency cost . . . . . . . . . . . . 42

3.4 Efficient Protocols in Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Discounted Latency Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Socially Concave Games 69

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



viii CONTENTS

4.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Cournot Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Linear Resource Allocation Games . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Divergence of the best response dynamics . . . . . . . . . . . . . . . 79

4.5 Atomic, Splittable Routing Games . . . . . . . . . . . . . . . . . . . . . . . 80

4.5.1 Divergence of the best response dynamics . . . . . . . . . . . . . . . 82

4.5.2 Non-Convergence of the daily action profile . . . . . . . . . . . . . . 83

4.6 Uniqueness of Equilibrium in Socially Concave Games . . . . . . . . . . . . 84

5 Strategic Protocols for Congestion Avoidance 89

5.1 Congestion Avoidance Games . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Tail Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 RED Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Strategic Protocols for Queue Management 101

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Homogenous Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.1 An optimal online algorithm . . . . . . . . . . . . . . . . . . . . . . 106

6.2.2 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3 Heterogenous Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Preemptive Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Regulating Selfish Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6 An Optimal Offline Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.7 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Bibliography 125



List of Tables

1.1 Symmetric Equilibrium in Contention Resolution Games . . . . . . . . . . . 10

1.2 Queue management of latency sensitive agents . . . . . . . . . . . . . . . . 22

3.1 Notation Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Time-independent protocols for discounted latency cost . . . . . . . . . . . 59

4.1 Notation Chapters 4,5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 Notation Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

ix



x LIST OF TABLES



List of Figures

1.1 Load balancing game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 The time line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Time independent equilibrium for agents with latency cost . . . . . . . . . . 49

3.3 Equilibrium for agents with deadline cost . . . . . . . . . . . . . . . . . . . 51

3.4 Edge types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 An example of a tree for equilibrium computation . . . . . . . . . . . . . . 55

4.1 The parallel edges topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 A snapshot of buffer states . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xi



xii LIST OF FIGURES



Chapter 1

Introduction

This thesis addresses the problem of designing protocols for communication networks in

which the network users are selfish, and comply with the directives of a protocol only when

it is in their best interest to do so. Originally, network protocols were designed under

the assumption that users generally follow the protocol “no matter what”, a reasonable

assumption when networks are small in size, and serve homogeneous users of the same

organization. This enabled system designers to focus on optimizing for global objectives,

such as the overall utilization of the network, while pushing aside the benefit of individuals.

As networks grew in size, and especially since the rise of the Internet, where numerous

agents with different, often conflicting objectives interact, this assumption became problem-

atic. As in many other situations that involve interaction between self motivated agents, it

would be more reasonable to assume that each agent is in business for himself; agents opti-

mize their own parameters, be it in the context of maximizing their throughput, minimizing

their own delay, or minimizing payments associated with the cost of sending traffic.

Consider for example the Transmission Control Protocol (TCP), the Internet’s most

prominent and widely used protocol for avoiding congestions. When users transfer data

using TCP, they control their transmission rate by setting the size of packets. TCP pre-

scribes slow rate increase at times when there is no congestion, and a swift rate decrease

when congestion occurs. Different TCP variants (e.g., [62]) have been proven very effective

in coping with congestions. But what if a user is concerned with her own throughput and

not with the performance of the entire network? Is following TCP a rational decision from

the user perspective?

Perhaps the most appropriate framework for modeling and analyzing a system inhabited

1



2 CHAPTER 1. INTRODUCTION

by users who act selfishly is within game theory. In this framework, each user is regarded

as a selfish or a rational agent whose actions are intended to maximize her own utility.

This utility depends on the state of the system, and the system’s state is determined by the

users’ joint action. Informally, a game consists of a set of agents, each of which is endowed

with a utility function, and a set of strategies. An outcome of the game is a joint strategy

profile consisting of an action for each agent. A utility function maps joint strategy profiles

to real numbers, with the interpretation that the higher the utility function value is, the

better.

For example, in a network setting the utility function of agent Alice could be αd − w,

where α is a weighting constant, d is the bandwidth rate allocated to Alice and w is the

amount of money Alice is required to pay for the allocated bandwidth1. In this setting,

the action of an agent is the amount of money she is willing to pay, and the allocation is

determined by some underlying market mechanism.

Equilibrium analysis plays a major role in game theory and economic theory. The

fundamental concept of a Nash equilibrium of a game [82] is a joint strategy profile, where

no agent can obtain any gain by unilaterally deviating from her current action.

Algorithmic game theory has emerged as a major field of research over the past decade.

This new field combines computer science concepts of algorithm design, and complexity with

game theory and economic theory. It typically employs the analytic tools of discrete math-

ematics, and theoretical computer science, such as worst case analysis and approximation

ratios, in contrast to classical game theory and economic literature, where it is common to

make distributional assumptions regarding the agents. Examples of topics include complex-

ity of equilibrium computation, networking, mechanism design [83], combinatorial auctions

[30], online auctions [86], prediction markets, incentives in peer to peer networks, and spon-

sored search auctions [33]. See [84] for a comprehensive survey on algorithmic game theory.

The inherent heterogeneity and economic interests of Internet users suggests new tools,

combining algorithm design, and game theory need be used. Examples of algorithmic game

theoretic study of networks include network design [36], routing [91, 12], cost sharing of

links [8, 37], resource allocation [63], and bandwidth markets [66, 67].

The Price of Anarchy. A leading approach for analyzing the effect of selfishness is through

equilibrium quantification [94], as was first introduced by Koutsoupias and Papadimitriou

1See Keshav [68], and Shenker [95] for thorough a discussion on utility functions in a networking
environment.
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Figure 1.1: A load balancing game with four jobs, two of size 2 and two of size 1, on two
machines, S1, S2. Both schedules constitute a Nash equilibrium. Notice how no single job
can decrease her load by migrating to the other machine. However, the schedule on the left
has makespan 3, while the schedule on the right has makespan 4. This already shows that
the price of anarchy of this problem is at least 4/3.

[72]. At the heart of this approach lies the assumption that equilibrium is obtained in

the long run. The inefficiency in having selfish agents relative to centralized control is

then measured by the price of anarchy, which is the ratio between the worst possible Nash

equilibrium and the social optimum.

Price of Anarchy = max
x∈Nash Equilibria

Social cost when x is played
Optimal social cost

The equilibrium quantification approach had lead to several important results that en-

hanced understanding of selfish behavior. Koutsoupias and Papadimitriou [72] show lower

and upper bounds to the price of anarchy in a selfish load balancing problem. They consider

a game where n selfish users have single tasks that are to be scheduled onmmachines. Every

user seeks to place her task such that the load on the machine chosen is lower than any

alternative. The price of anarchy here is defined as the ratio between the makespan2(social

cost) in the worst Nash equilibrium, and the optimal makespan. Figure 1.1 shows Nash

equilibria in an instance of this game.

For identical machines, Koutsoupias and Papadimitriou show a tight bound of 2− 2
m+1

on the price of anarchy, when Nash equilibrium in pure strategies are being considered,

and a lower bound of Θ(logm/ log logm) on the price of anarchy when Nash equilibrium in

mixed strategies are being considered as well. In a subsequent work, Czumaj and Vocking

[31] show a tight bound of Θ(log(m))/Θ(log log(m)) on the price of anarchy, in a model in

which machines are uniformly related, but not necessarily identical.

2The makespan of a schedule is defined as the load of the maximally loaded machine.
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There is a rich literature on the price of anarchy concerns routing problems [91]. Routing

games model the practical problem of routing traffic in a large communication network such

as the Internet, where centralized control is unavailable. One such basic model assumes non-

atomic agents, where the number of agents is very large (infinite), and each agent controls

a negligible fraction of the overall traffic that needs to move from a source to a destination

in the network. An agent is assumed to have full control over the path through which

she routes her traffic. The cost of routing is the latency accrued along the edges of the

route in use, where the latency attributable to an edge depends on the amount of traffic

which is routed through it. In their seminal paper, Roughgarden and Tardos [93] show that

the price of anarchy in non-atomic selfish routing cannot exceed 4/3, when edges’ latency

functions are affine; in addition they show that the price of anarchy is independent of the

network’s size and topology. Subsequently they show that the performance of an optimal

flow in any network, does not exceed that of the worst Nash equilibrium in an augmented

network with twice the speed (i.e., where the latency of every edge is half its latency in the

original network).

Studying the inefficiency of equilibrium in such fundamental networking problems can

clarify performance issues when users act selfishly. For example, Roughgarden and Tardos

interpret their result as showing that the performance of IP networks (associated with de-

centralized user control) today, is at least that of ATM networks (associated with centralized

authority) a year ago (assuming that network speed doubles every year).

The price of anarchy has been studied in a wide range of other problems. Johari and

Tsitsiklis [63] show tight bounds of 4/3 on the price of anarchy in resource allocation

problems. Fabrikant et al. [36] study a network creation setting. Anshelevich et al. [8],

study games for sharing cost for using network resources.

It is not clear however, how to use these results when designing communication protocols.

The price of anarchy measures the performance of a system assuming connections have

reached a stable state. Furthermore, the utility of an agent is a function of all the actions of

other agents in the system. In order for her to realize that she cannot improve her utility,

an agent must be perfectly informed regarding the full state of the network, i.e., every edge

cost function, and every route of other agents. In a large scale network such information is

unavailable. Furthermore, large networks have a highly dynamic quality, as agents may join

or leave the network from, or simply try out different routes from time to time. Studying

the price of anarchy of a one shot routing game with full information is more relevant for
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studying the long term behavior of routing in the network, and probably not sufficiently

adequate for the design of network protocols in practice.

1.1 Dynamic Protocols in Equilibrium

In addition to addressing selfish behavior we also want to consider realistic settings, where

only limited information is available, and coordination is difficult. This is in contrast to

previous work on selfishness in networks.

Coordination: Consider the load balancing game described above. Let Alice and Bob

each have a unit size task, and let s1, s2 be two identical machines. The assignment A1,

in which Alice assigns her task to machine s1 and Bob assigns his task to machine s2 is a

Nash equilibrium. Similarly, the assignment, A2, where Bob’s task is scheduled on machine

s1 and Alice’s task is scheduled on machine s2, is a Nash equilibrium as well. In both of

the assignments A1, A2, neither Alice nor Bob can decrease their cost by switching to the

other machine. Moreover, these are the only equilibria in pure strategies. If makespan is

used as the system’s objective, then both equilibria correspond to an optimal assignment,

and the price of anarchy is 1.

In a network setting however, it is likely that Alice and Bob have never met, and cannot

agree in advance which of these two equilibria to implement. How does one reach a Nash

equilibrium in this case? One possibility is for all the users of the system to agree in advance

on a mapping from the set of active users to possible assignments (e.g., when Alice and Bob

meet, Alice chooses to s1, and Bob chooses s2).

Yet, typically, in a large network, users have little if any information about each other.

How can Nash equilibrium be implemented in this case? A possible protocol is for each user

to choose uniformly at random one of the machines (this would implement the additional

mixed strategy Nash Equilibrium). This protocol is a Nash equilibrium in the sense that if

Alice knows that when every user but her follows the protocol, her load is minimized when

she following the protocol herself. Is this the most efficient solution?

Lack of Information: Consider a router that seeks to maximize average Quality of Service

(QoS), but does not know the QoS requirements of the different channels. This is a case of

missing information. Adding payments allows the router to extract the missing information

and maximize social welfare.
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In this thesis we consider protocols for selfish agents in a variety of networking layers.

We design multiple access protocols for establishing selfish usage of physical resources that

require exclusive access (in Chapter 3). We consider protocols for routing, and bandwidth

allocation (in Chapter 4). Protocols for congestion avoidance are discussed in 5), and we

design protocols for regulating traffic in Internet switching points (in Chapter 6).

1.2 Multiple Access Protocols

A multiple-access channel is a broadcast channel shared among multiple users. Users make

use of the broadcast channel by sending messages onto the channel. If two or more users

simultaneously send messages, then the messages interfere with each other (collide), and are

not transmitted successfully. A multiple access channel is not centrally controlled, and to

utilize the channel efficiently the users employ a multiple access protocol, with the intention

of minimizing the chance of collisions (see [88] for a detailed introduction to this subject).

Motivating multiple access channels include cabled local area networks (such as Ethernet),

and radio local area networks (such as wireless LAN).

Several objectives are relevant when designing a protocol for multiple access. First, a

protocol should be stable, meaning that the rate at which messages are transmitted suc-

cessfully, defined as the protocol’s throughput, equals the rate at which new messages are

generated. Subsequently, the channel capacity is defined as the highest possible value of

arrival rate for which, the throughput indeed equals the arrival rate3. A second objective

is to maximize the throughput. And third, the delay4 should be minimized.

A typical simplifying assumption in multiple access protocol analysis is slotted time.

This means that time is divided into discrete time slots; during any time slot, each user can

send at most one message. In acknowledgement-based protocols, the user can determine (by

listening to the channel) whether the message was successfully transmitted. In full sensing

protocols the user can listen to the channel at every slot, regardless of whether the user

transmitted or not, and distinguish between a successful transmission and a “wasted” slot

(the binary feedback model) or even more, between a successful transmission, an idle slot,

and a collision (the ternary feedback model).

3If the arrival rate exceeds the throughput, then the average time it takes a message to leave the system
would eventually grow to infinity

4The delay of a message is defined as the lapse between a message generation and its successful
transmission.
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This model has been introduced by Abramson [2], who was confronted with the practical

difficulty of ensuring access to the mainframe computers of the University of Hawaii by

terminals located in the outer islands of the state. Abramson [2] proposed a simple protocol

for resolving collisions, eventually known as the ALOHA protocol. The ALOHA protocol

states that a newly generated message is transmitted immediately, hoping for no interference

by others. Should the transmission be unsuccessful, every colliding user, independently of

the others, re-schedules her transmission to a random time in the future (Randomness is

required to ensure that the same messages do not continue to collide indefinitely).

To analyze the performance of Aloha, it is usually assumed that new messages arrive

in accordance with a Poisson process, where each message is associated with a new user,

that vanishes from the system once her transmission is successful5. Under this assumption

it can be shown that the capacity of slotted Aloha is 1/e ≈ 0.37. The Poisson assumption

is used mainly because it makes the analysis of Aloha-type systems tractable, however, it

predicts successfully their maximal throughput. Assuming Poisson arrival process is a basic

assumption in the analysis of contention resolution protocols.

The ALOHA protocol has some very attractive properties: it is simple, it does not

require the user to listen in slots in which she is idle, and the protocol is “ageless” in

the sense that the transmission probability is independent of time. However, it suffers

from a significant weakness of being unstable, in the sense that overtime, the number of

pending messages goes to infinity. More sophisticated age-based protocols exists, where

the of transmission probability depends on the some time-counter, and can generally be

associate with a sequence p1, p2, . . ., of transmission probabilities. A Backoff protocol is

also associated with a sequence of transmission probabilities, however, the index t counts

the number of times a message collided with others.

Even more advanced is the full-sensing family of protocols, where transmission prob-

abilities can be based on the entire channel history, and as a result, be made much more

efficient than ALOHA. An important such class of protocols are Collision resolution proto-

cols, in which the users are trying to resolve collisions as soon as they occur. One notable

such protocol is the binary tree protocol, described by Tsybakov and Mikhailov [98], and

Capetanakis [22].

The binary tree protocol is designed for channels with ternary feedback; it states that

5More accurately, for the sake of showing that the capacity of slotted Aloha is 1/e, it is assumed that
the arrival process of new messages and re-scheduled messages is according to Poisson; the two assumptions
become close when the re-scheduling is done in a large enough time frame in the future.
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when a collision occurs, every user that is not involved in the collision waits for the collision

to be resolved, i.e., she seizes transmissions until every user involved in the collision had

successfully transmitted. The users involved in the collision split randomly with equal

probability into two subsets (by flipping a fair coin). Users in the first subset retransmit

in the next slot. The users in the second subset retransmit only after every user in the

first subset is successful. Whenever a collision occurs during the resolution of the initial

collision, the process repeats recursively.

Basing the transmission probabilities on the personal history of every user, makes break-

ing the symmetry between users possible, and essentially assigns each user with a unique

identity. A version of a binary tree protocols with capacity 0.487 exists, due to Mosely and

Humblet [79], and Vvedenskaya and Pinsker [100]. The current best upper bounds, on the

capacity that can be achieved by a full-sensing protocolis, is due to Tsybakov and Likhanov

[97] who have shown that no protocol can achieve capacity higher than 0.568.

Contention Resolution Protocols for Selfish Agents

In Chapter 3 we concentrate on multiple access protocols for selfish agents. In this respect,

our work substantially deviates from classical results in the literature on multiple access

protocols. Whereas the utility of a single user may be taken into consideration, in the

classical literature (e.g., the delay of an individual user), it is never assumed that the users

themselves may deviate from a suggested protocol, in order to maximize their own utility.

Notice that a user entirely controls her transmission probability. It is also clear that both

in ALOHA, and in the binary tree protocol, a user that “cheats” during the randomized

rescheduling phase, may substantially shorten the delay she experiences. For example, in

ALOHA, a user that retransmits immediately after every collision, while the other users

follow protocol, would expect a constant delay, rather than a delay which is proportional

to the size of the time segment.

We consider a finite set of agents each of which has a single message she must send. We

focus on agents with latency cost, that is, the cost of an agent is a non-decreasing function

of the time until a successful transmission.

Many challenging problems arise when we assume agents are selfish: (i) At any moment

in time, there is an inherent uncertainty from an agent’s point of view, regarding the number

of other agents that are about to join the game in the future. (ii) Furthermore, even at
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a specific time slot, the number of currently active agents is kept unknown. (iii) Agents

cannot watch directly the actions of other agents; agents act simultaneously, and an agent

records only her own action, and the feedback from the channel.

In order to keep the analysis tractable, and to deepen our understanding of the game

theoretic aspects of contention resolution, we focus our attention on the resolution of a single

collision, and leave the issues of uncertainty regarding the number of active agents, and the

uncertainty regarding the arrival of future messages, for future research. We therefore

assume that a finite number agents arrive at the same time to the channel.

Channel access is modeled as a game in extensive form with simultaneous play, in which

the steps of the game correspond to time slots. At any step of the game, each agent can either

Transmit, or be Quiescent. A mixed strategy is interpreted as the transmission probability

in the corresponding time slot. Agents know the channel history (full sensing), and can

recall their own actions, but they not know the actual action profile played by the other

agents. A strategy is any mapping from channel histories to transmission probabilities, and

a protocol is a symmetric profile of behavioral strategies, in equilibrium.

We consider the following natural latency cost functions:

(i) Deadline costs: Agents are charged only when they have not been successful prior to

a common deadline.

(ii) Linear latency costs: The cost of an agent is the same as her delay.

(iii) Discounted latency costs: The cost of delay at every step decreases with a fixed dis-

count factor. This method is used to ensure a constant upper bound on the cost of

delay.

(iv) Impatient users: The cost of delaying an additional time slot increases with the num-

ber of time slots already spent in the system. Specifically we consider exponential

increase of the cost at every step.

We study equilibria when agents have such cost functions. For the deadline cost function

we exhibit an interesting phenomenon of an equilibrium. We show that when the number

of available time slots until the deadline is just above some threshold, linear in the number

of competing agents, all the agents successfully transmit before the deadline, with high

probability. In contrast, when the number of available time-slots until deadline is below

some threshold, also linear in the number of agents, then any protocol in equilibrium results
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Cost function Delay of Equilibrium
Linear Θ(exp(

√
n)

Time Independent
Linear Θ(n)),
Time Dependent with probability 1− exp(−n)
Discounted exp(n)
Impatient O(n); However, a protocol in equilibrium

need not exist
Deadline O(n)

Table 1.1: Efficiency of symmetric equilibria in contention resolution games with different
cost functions.

without any successful transmission. The threshold phenomenon is clearly observed in

Figure 3.3 on page 51, where numerical solutions of the system of equilibrium equations is

presented.

For the cost function (ii), (iii), and (iv), we show the existence of a unique protocol

in equilibrium when time-independent behavioral strategies are considered. We fully char-

acterize the time-independent equilibrium in the case of the latency cost, and show that

transmission probabilities are O(1/
√
k), when k messages are still pending. This implies

almost exponentially long delays. For the rest of the cost function we fully characterize

the efficiency of equilibrium. Perhaps counter-intuitively, we show that a time-independent

equilibrium for agents with discounted latency cost, suffers from exponential delays. On

the other hand, we show that the expected delay of impatient bidders is only linear.

We also design a protocol for agents with proportional latency cost, and show it is a Nash

equilibrium of the game. Additionally, our protocol is very efficient. With high probability,

all n agents successfully transmit within cn time, for some small constant c.

Table 1.1 summarizes our results on contention resolution protocols for selfish agents.

A preliminary version of these results appears in [39].

Related Models

Altman et al. [4, 5], study a game theoretic model of slotted Aloha. In their work a very

realistic model is studied, where agents have incomplete information as to the number of

agents pending. They also assume a stochastic arrival flow to each source. In [5] agents’

objective is delay minimization and in [4] agents’ objective is to increase their throughput.

Agents’ strategies are restricted though, to a single retransmission probability. This means



1.3. LEARNING TO PLAY EQUILIBRIUM 11

that agents do not “learn” from the feedback on the channel, and cannot adjust their

behavior accordingly. They show the existence of an equilibrium and give a numerical

analysis of the model that shows that the system is inefficient by increasing the delays

unduly, even under light traffic.

MacKenzie and Wicker [76] study stability of slotted Aloha, with selfish agents in the

multi-packet reception model. They assume that agents utility is a function of the num-

ber of attempted transmissions before success, (e.g., costs reflect power lost per successful

transmission). They show the existence of equilibrium strategies in this model. They also

show that for specific parameters, there exists points of equilibrium that attain the maxi-

mum possible throughput of Aloha. Menache and Shimkin [78] also refer to a model where

agents are concerned with minimizing their power investment. They provide some lower

bounds on the channel capacity that can be obtained in a Nash equilibrium, where agents

control their power levels but are assumed to be stationary.

Naor, Raz, and Scalosub [80] study a wireless channel in an interference bound envi-

ronment, in which, several transmissions may succeed simultaneously, depending on spatial

interferences between the different stations. In their model, agents are trying to maximize

their success probability at every transmission. They show that when interferences are ho-

mogeneous, system performance suffers an exponential degradation in performance at an

equilibrium. They also use a penalization scheme for aggressive stations, that ensure that

in equilibrium, the system’s performance value is a constant fraction of the optimal value.

1.3 Learning to Play Equilibrium

The basic definition of an equilibrium is static: describing a steady state of a system where

no agent has an incentive to unilaterally deviate. While an equilibrium can be viewed as

a steady state, an important conceptual issue is how such an equilibrium can be reached,

and which dynamics lead to an equilibrium (see, [49, 102]).

In the simplest model for learning in a game, a set of agents play simultaneously the

same game repeatedly. On each step, an agent may learn from past actions and payoffs.

Understanding the dynamics has two different perspectives. The first perspective is

developing general dynamics that will always reach an equilibrium (for any game). This

line of research includes computationally efficient procedures for correlated equilibrium [44,

56, 24, 17] and inherently exponential time procedures for Nash equilibrium [45, 46, 102,
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43, 57, 50] (see, [55] for communication complexity lower bounds). The second perspective

is analyzing specific simple and natural behavior and its resulting dynamics in concrete

games.

When considering a dynamic behavior, an important and critical question is to what

extent is it natural. We are interested in natural dynamics, since they will support the

belief that the system naturally reaches an equilibrium. We would like the individual agent

procedures to be rational, where the agent can be viewed as trying to maximize her long-

term utility. We would like the dynamics to be uncoupled, where each agent’s moves do not

depend on the utility functions of the other agents. I.e, every agent is mainly concerned with

her own utility. We would like the dynamics to be simple, which would support the idea

that they naturally occur. Finally, we would like the dynamics to be flexible in the sense

that different agents may behave differently (and will not have to follow specific prescribed

procedure).

One of the most natural and well studied dynamics is best response. It prescribes every

agent to play a utility maximizing action to the action profile played by the other agents

on the previous move. This dynamics dates back to Cournot [29], who showed that in

the Cournot oligopoly model with two participating agents, the best response dynamics

converges to Nash equilibrium. Rosenthal [90] showed that for every game in the class of

congestion games, a sequence of best response moves converges to the Nash equilibrium.

The fictitious play dynamics [20] may be regarded as an extension of the best response

dynamics, where an agent selects an action which is best response to the average action

profile of the other agents. In fictitious play Nash equilibria are absorbing states. That is, if

at any time period all agents play a Nash equilibrium, then they will do so for all subsequent

rounds. In addition, if fictitious play converges to any distribution, those probabilities

correspond to a Nash equilibrium of the underlying game. (see, [49] Proposition 2.2).

In another form of learning dynamics, every agent’s objective is to minimize her regret.

In a regret minimization setting each agent focuses on her own utility (and conceptually

is oblivious to the other agents utilities). By external regret we compare, in retrospect the

agent’s average utility to that of the best static action, namely, the best procedure in the

class of procedures that use the same action on every step. Having no-external regret means

that no static procedure would improve significantly the agent’s utility.

For example, consider Alice, who drives every morning to work, choosing one of several

alternative routes, and recording the time taken. After a year Alice reads in a newspaper
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report the daily average transit time on every alternative route. Alice’s external regret is

defined as the difference between her own average transit time, and that of the best fixed

route6.

By no-internal regret an agent compares her utility in retrospect using a larger com-

parison class. Her regret is defined as the difference between her average utility, and the

maximum utility she could have had, had she swapped each time she played action a to

another action b (where the maximum is taken over all possible pairs of swapping).

The main results in the literature are that there are no-regret algorithm and that their

average regret vanishes at the rate of O(T−1/2), where T is the number of time steps.

Regret minimization procedures prescribe to most of the requirement we mentioned. It

is rational, in the sense that the agent has a guarantee on her own utility regardless of how

the other agents act. It is distributed, since an agent needs to be aware only of her own

utility. Many of the no-external regret procedures are very simple, and they share the idea

that an agent increases the weight on actions that have been doing well. There is a large

variety of no-external regret procedures that have been studied, and more conceptually, the

assumption is not tied to any specific procedure, but describes the utility of the agents in

retrospect.

The regret minimization dynamics have attracted significant attention in recent years.

First, the no-internal regret dynamics converges to the set of approximate correlated equi-

libria [44, 56, 24, 17]. However, for continuous games, no general efficient no-internal regret

algorithm is known. Second, there have been works addressing the properties of no-external

regret dynamics in specific games. In zero-sum games it is known that the no regret dy-

namics will converge to the min-max solution [47]. However, for general games, it is known

that the no external regret does not necessarily converge to equilibrium [104].

Blum et al. [15] analyze the no-external regret dynamics in routing games showing that

most of the agents, most of the time, are playing near equilibrium strategies. Kleinberg et

al. [70] study the case where all agents employ a particular no-regret dynamics in a large

subclass of atomic congestion games, and show convergence to a pure Nash equilibrium.

Blum et al. [16] define the price of total anarchy as the ratio of the optimum to that of the

worst no-external regret dynamics, and show that it can be similar to the price of anarchy

even in cases where the dynamics do not lead to an equilibrium.

6This example appears in [32].
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Regret Minimization Dynamics in Socially Concave Games

In Chapter 4 we study learning dynamics in a general sub-class of concave games, which

we call socially concave games. The class of socially concave games includes many natural,

and well studied games, such as (i) Zero-sum games. (ii) Cournot competition [29], a

basic economic model for competition among firms. (iii) Resource allocation games [63],

that describe bandwidth allocation in networks. (iv) Splittable, atomic routing games [92],

where each agent must route her traffic over a congested network, and traffic can be split

between different routes.

We focus on regret minimizing dynamics. We show that if each agent follows any

external-regret minimization procedure then the dynamics converges in the sense that both

the average action vector converges to a Nash equilibrium and that the utility of each agent

converges to her utility in that Nash equilibrium.

In addition, for some specific examples of socially concave games we consider the best

response dynamics, in which every agent, at every step, plays best response to what the other

agents played on the previous step. The best response dynamics is known to diverge for

linear Cournot competition, and we show that it also generally diverges for linear resource

allocation games, and atomic splittable congestion games.

A preliminary version of our results on socially concave games appears in [35].

1.4 Protocols for Avoiding Congestion

Congestion avoidance algorithms for TCP are the primary basis for congestion control in

the Internet, and play an important role in its unprecedented success. The focus of Chapter

5 is a game theoretic analysis of congestion avoidance in data transmission protocols over

an IP network.

Congestion is a condition of a severe delay, caused by an overload of packets at one

or more switching points (i.e., routers). When congestion occurs, delays increase, and the

router begins to enqueue packets until it can send them, and eventually starts to drop

packets, when the queue size reaches its storage capacity.

In today’s Internet, congestion avoidance over IP networks is done by end-users: a user

controls her transmission rate; when a user notices her packets are dropped she adjusts

her transmission rate accordingly, in the hope of preventing congestion in the future. In

current implementations, a user halves its transmission rate. On the other hand, when her
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packets are getting through, she increases her rate by one unit. This type of end-to-end

congestion control was first proposed by Jacobson [62], and is known as Adaptive Increase,

Multiplicative Decrease (AIMD).

The switching point buffering policy also plays some role in congestions avoidance, since

users can recognize congestion only by noting packets are being dropped. Thus, a router’s

dropping policy indirectly affects the rate at which users adjust their transmission rates.

Two notable buffering policies are tail-drop, and random early detection. Tail-drop is the

simple greedy approach in which packets are dropped only when the router’s buffer is full.

In Random Early Detection [42], packets are dropped before the buffer capacity is reached,

in order to signal impending congestion.

The AIMD protocol has been developed in order to promote a social good, namely,

efficient and fair use of the network, and is part of today’s TCP standard. When the users

are selfish the AIMD solution may pose a problem, as it is executed by the users, and

basically, if a user wishes to opt out she can do so by modifying her TCP/IP code7. When

users are selfish, it is natural to ask whether there exists a protocol, hopefully efficient, in

equilibrium, which users follow because it is in their best interest to do so, and not out of

altruism.

Kelly [66] models the congestion avoidance problem as a flow problem over a capacitated

network, where agents buy bandwidth along network routes, and the network sets the

prices for a bandwidth share at every edge. Kelly shows that a price equilibrium exists

in this framework, and furthermore, this equilibrium attains several desired properties,

such as fairness and efficiency. Kelly et al. [67] provide a heuristic argument that AIMD

quickly stabilizes send rates to levels corresponding to a fair and efficient sharing of network

resources. Low and Lapsley [75] show that when users employ Jacobson’s protocol [62], and

switches are maintained using the Random Early discard policy [42], then in the limit,

traffic flows converge to an optimal solution of Kellys flow market.

Karp et al. [65], attempt to explain the individual rationale for using congestion avoid-

ance protocols, through the study of selfish responses to congestion control. They propose a

simple framework, where adversary to model the unpredictable bandwidth availability from

the viewpoint of a single agent. In their model, an agent makes sequential decisions on her

transmission rate, with lack of information regarding the available capacity at every step,

7Modifying ones TCP code is not a trivial task. However, in some operating systems, e.g., Windows and
Unix, changing some parameters of TCP, such as the TCP timeout, can be done easily.
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based entirely on a binary feedback that tells him in the aftermath, whether the channel

has been congested or not.

On the one hand, an agent wishes to use the available capacity to its full, but on the

other hand, using more than the available capacity results in some degraded service. Karp

et al. model this through a utility function that, at every step, yields a payoff which is a

function of her transmission rate, and the available capacity. In their model the available

capacity is adversarial, and competitive ratio is used as a performance measure for several

agent policies.

Arora and Brinkman [10] present an almost optimal policy for controlling the rate of a

single agent using a Multiplicative Increase, Multiplicative Decrease approach. Kesselman

and Mansour extend the original model in [65] for multiple users, and present an almost

optimal policy, for maximizing social good, which is based on an adaptive version of AIMD.

Regret Based Congestion Avoidance Protocols

In Chapter 5 we propose a game theoretic study of congestion avoidance protocols. We

suggest a simple game, that follows the work of Karp et al. [65], to model the interaction

between users that transfer data through a common bottleneck. We assume that users’

utility is linear in their good-put, i.e., the amount of useful data they manage to transfer,

with a penalty, linear in the amount of transfer that exceeds the available capacity; this

corresponds to the gentle utility function studied in Karp et al. [65]. The main difference

between our model and Karp et al. [65] is that in our model the available capacity of an

agent is determined by the actions of other agents, and not by an adversary. The strategic

approach had been suggested in Karp et al. [65], however, they do not consider any specific

rule for allocating bandwidth to agents.

We study the congestion avoidance game with several router’s policies for packets drop-

ping, that is, a rule for mapping between a vector of the agents’ transmission rates, and an

allocation of rates to agents. The policies considered in our work correspond to known buffer

overflow policies such as (i) tail-drop, (ii) random early detection, and (iii) fair queueing.

We show that a unique Nash equilibrium exists in this class of congestion avoidance

games. We use tools from Chapter 4 to study protocols with a no-regret property. We

focus our attention on projected gradient descent protocols, for which the no-regret property

holds (see, [103]). We show that in a congestion avoidance game, when all agents adjust

their transmission rate in accordance with some projected gradient descent protocol, their
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average joint play converges to a Nash equilibrium.

A preliminary version of our results on congestion avoidance for selfish agents appears

in [35].

1.5 Queue Management

One of the main bottlenecks in the traffic flow inside communication networks is the man-

agement of queues in the connection points, such as switches and routers. If incoming

traffic from several sources is directed toward the same destination, it may be impossible

to immediately direct all the traffic toward the outgoing link, since the bandwidth of the

outgoing link is limited. Packet loss is therefore unavoidable.

The traffic in communication networks tends to arrive in bursts, which is the motivation

for buffering the packets in queues, located either at the incoming links, or the outgoing

links, or both. The packets arriving in a burst are stored in queues, and are later sent

in a speed determined by the bandwidth of both outgoing links and the backbone of the

connection device. If traffic is not too heavy, the queues will drain before more bursts

arrive, avoiding packet loss. This best effort approach relies on statistical characteristics of

communication traffic, assuming that the links are sometimes idle and not always used to

their full capacity.

Several types of communications, and especially real time application such as voice and

video, cannot rely on best effort, as they are highly sensitive to delays and jitter, and would

usually require Quality of Service (QoS) guarantees on bandwidth and delays.

QoS could be thought of as a contract between a service provider and a user. There

are two main approaches for attaining QoS on the Internet. The first is premium service

[14], in which the traffic is shaped upon the entry to the network. Contracts with users are

formed so that the service provider could always fulfil her agreements. Packets that are not

part of the premium service are given best-effort service. Thus, it is provisioned according

to peak capacity profiles. The second approach is assured service [27], which is provisioned

according to expected capacity usage. Assured service relies on statistical multiplexing that

allows for overbooking of service, based on the assumption that usually the users do not use

the same resource all at once. In the worst case that the demand for the resource overflows,

assured service specifies a priority based guarantees to users.

Differentiated services [27] is an approach for a implementing the spirit of assured service
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in IP networks. This approach is based on a simple, coarse grained mechanism for classifying

packets. The service provider treats packets from different classes differently. Differentiated

services, for example, can be used to provide low-latency, guaranteed service to critical

network traffic such as voice or video while providing simple best-effort traffic guarantees

to non-critical services such as web traffic or file transfers. Additionally, a service provider

may decide to treat differently packets of different paying customers (in a pay more - get

more fashion).

We consider a model with a single queue. Time is slotted, and a sequence of packets

arrive at the queue, each of which has an associated QoS class it belongs to. A queue

manager admits packets online. Whenever a packet is sent, the manager gains a value, that

degrades with the delay of the packet. The goal is to model the transmission of packets

bearing time-sensitive data such as audio or video, where the packet delay is a major

parameter in the assessment of the utility it obtains.

Subsequently, we assume that the QoS class of a packet has all the necessary information

regarding its value. I.e., it completely specifies the value of sending the packet as a function

of its delay.

A queue manager is confronted with two challenges, resulting from informational barri-

ers: (i) Lack of information regarding the future arrival of packets, due to chaotic behavior

of incoming flows [99]. (ii) The marking is done voluntarily the users, and selfish users can

mark packets improperly to improves their performance.

To handle the first challenge we use competitive analysis [18] to evaluate the performance

of queue management algorithms, meaning that we derive bounds on the ratio between the

total value of the optimal offline scheduling, to the total value of the online policy, over the

worst case input. To cope with selfish marking, we associate a cost with the service. Our

pricing schemes charge for every packet in a way that encourages users to report their QoS

class truthfully.

Competitive analysis has been applied to buffer management of deadline sensitive pack-

ets, known as the bounded delay model, where the time-loss function is a step function.

The initial value from sending a packet drops to 0 after a deadline is reached. Kesselman

et al. [69] show that a greedy algorithm, which sends the most valuable packet at every

step attains a competitive ratio of exactly 2. In a restricted model, where packets have only

two possible values, low value 1, and a high value α > 1, they show that the greedy has a

competitive ratio of exactly 1 + 1/α.
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Li et al. [74] improve the competitive ratio of the bounded delay problem to 1.854 for

the general bounded delay model. And Englert and Westermann [34] showed a 1.893-

competitive memoryless algorithm and 1.828 competitive history dependent algorithm.

Chin et al. [25] present a randomized algorithm that achieves a competitive ratio of

e/(e − 1) ≈ 1.582. Chin and Fung [26] present a lower bound of 5/4 on the competi-

tive ratio of any randomized algorithm. If the deadline of a subsequent packet must be past

the deadline of an earlier packet, then Li et al. [73] give an optimal online algorithm with

a competitive ratio equal to the golden ratio.

In [69, 7, 74, 34, 25, 26, 73] the algorithm is not informed regarding future arrivals, but

it is assumed that the queue manager is fully informed about the type of a packet, for every

packet, i.e., a packet’s value as a function of time. When every packet represents a selfish

agents, wishing to maximize the value from sending the packet, they do not necessarily

report the true type of a packet, unless they are incentivized to do so (the algorithms

described in those works do not motivate truth telling).

The theory of mechanism design deals with the problem of incentivizing agents to report

their type truthfully. When the private type of an agents is a single number, the mechanism

design problems is said to be a “single parameter” problem. A lot is known about the design

of mechanisms for single parameter agents [9]. In particular, every monotone algorithm,

namely, where an increase in the value of a winning agent keeps him winning, admits a

truthful mechanism. The payment scheme associated with a monotone algorithm charges

every winner the minimum value that would have been sufficient for him in order to win. For

example, in the bounded delay problem, when the private type of a packet is its value, and

the arrival time and deadline are known to the mechanism, the mechanism design problem

is in the single parameter domain. Notice that the greedy algorithm, which is monotone,

admits a truthful mechanism.

Cole, Dobzinski, and Fleischer [28] define a special class of “prompt mechanisms”, as

mechanisms that are able to compute the fee to charge a packet before it is being sent. They

observe that the greedy algorithm [69] does not admit a prompt mechanism, and propose

a prompt mechanism with a competitive ratio 2. They also show a matching lower bound

on every prompt mechanism.

Chapter 6 deals with loss per time which is more moderate than the step function in

the bounded delay model. In particular, we focus our attention on the case where the value

of a packet degrades linearly in time. Naor [81] studied a linear loss model, in a similar
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queueing problem. Instead of letting a centralized authority do the admission control, Naor

considered a queue formed by selfish agents. In his model, known today as Naor’s model,

selfish agents arrive at a FIFO queue, inspect the queue size and decide whether to join or

balk. Each agent has a benefit of R from a completed service, but there is a fixed cost for

every unit of time wasted in waiting for the service. The agents arrival process in Naor’s

original model is distributed as a Poisson process, and the service time is exponentially

distributed8.

Naor points out that selfish customers will enter the queue even if their benefit from

doing so is small, concluding that individuals decisions are not socially optimal. He shows

how to compute a socially optimal joining strategy9 as a function of the arrival rate. To

incentivize agents to join in accordance with the optimal strategy, Naor suggests levying

tolls on the agents, at the queue entry point, assuming that the utility of an agent to be

quasi-linear with money. The appropriate toll, effectively regulates the queue size, and

hence achieves (expected) optimal social welfare.

Naor’s model had been extensively studied in various setting. Knudsen [71] extends

Naor’s results to multi-server systems, while simultaneously generalizing the benefit-cost

structure. Yechiali [101] extends Naor’s result to queues with general (that is, not necessarily

poisson distributed) inter-arrival times. Adler and Naor [3] study the case of constant service

rate. For a non-FIFO queue management, Hassin [58] shows that optimal social welfare can

be attained without tolls in a LIFO queue, when customers can renege at any time. For a

detailed discussion see [59].

Competitive Queue Management for Latency Sensitive Packets

The focus of Chapter 6 is online queue management for packets with value that strictly

decreases with time. Several versions of this problem are considered.

We first consider a non-preemptive model, where the queue manager cannot drop a

packet after it is admitted, and a FIFO queue discipline. The simplest case is that of

homogenous packets, where all packets have the same intrinsic value upon arrival, and a

constant loss per unit of time. We give a lower bound of φ ≈ 1.618 on the competitive

8These assumptions correspond to the usual M/M/1 queueing model.
9Naor only considers threshold strategies, where the agents join the queue if its size is below a threshold,

and otherwise balk.
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ratio (even for randomized algorithms), which we match with a simple threshold policy

that attains this competitive ratio.

For heterogenous packets and linear value loss,

(i) We give a simple threshold queue policy, “doubling threshold”, with a competitive

ratio of 8.

(ii) We observe that this problem has an O(n log n) time optimal offline algorithm (im-

proving upon the obvious matching approach).

(iii) We show a lower bound of φ3 ≈ 4.236 on the competitive ratio of any deterministic

online algorithm.

We also relate the issue of the online competitive ratio to an online mechanism design

problem for packets generated by selfish agents. In this case there is little reason to trust

the “intrinsic value” claimed by the owner. We reinterpret our online algorithms as yielding

an incentive compatible online pricing scheme for heterogenous packets, that guarantees a

constant fraction of the optimal social welfare (defined as the sum of agent utilities).

We also consider a model that allows preemption, i.e., dropping packets from the queue,

and a queue discipline which is not FIFO. For the homogenous packets case, we show that

the LIFO policy attains the optimal solution, and that no pricing mechanism is required

to implement this policy. For the case of heterogenous packets we show that the greedy

algorithm attains a 2-competitive ratio even if the latency cost function is arbitrary (but

non-increasing). In addition, we show a randomized algorithm with a competitive ratio of

at most e/(e− 1).

Table 1.5 summarizes our results regarding the competitive ratio for different variants

of the online queue management problem.

A preliminary version of our results on competitive queue management for latency sen-

sitive agents appears in [40].
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Policy Value Time cost Lower bound Upper bound
FIFO Homogeneous Homogeneous φ ≈ 1.618; φ

for randomized
algorithms

FIFO Heterogeneous Homogeneous φ3 ≈ 4.236 8
for deterministic

algorithms
LIFO Heterogeneous Homogeneous 1 1
Preemptive; Heterogeneous Heterogenous 1 2
deterministic
Preemptive; Heterogeneous Heterogenous 1 e/(e− 1) ≈ 1.58
randomized

Table 1.2: Summary of results for latency sensitive queue management, with a linear time
cost function.



Chapter 2

Preliminaries

We use R to denote the real numbers, and R+ to denote [0,∞).

2.1 Game Theory

In this section we cover some basic models and equilibrium concepts from game theory

which are used in this thesis. We begin with the most basic game model. A game in

strategic form is a model for interactive decision making in which every agent makes her

decision, and the agents are taking actions simultaneously. An agent’s choice comes from a

set of strategies; every agent is endowed with a utility function that maps the vector of all

agents choices to the reals. Every agent makes her choice so as to maximize her own utility

function, and a vector of choices is said to be in a Nash equilibrium, if no agent can increase

her utility by changing her own action while the other agents stick to their choices.

Definition 2.1. [Strategic game] A strategic game is a triple Γ = {N, {Si}i∈N , {ui}i∈N , },
that consists of

(i) A finite set N = {1, . . . , n} denotes the set of agents, where n is a positive integer.

(ii) For each agent i ∈ N a nonempty set Si ( the set of actions available to agent i)

(iii) For each agent i ∈ N a real valued utility function ui from S =
∏

i∈N Si to the positive

reals.

For s ∈ S let s−i denote the strategy combination of all agents except i, i.e., s−i =

(sj)j 6=i. An action profile is said to be in a Nash equilibrium if no agent can increase her

23
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payoff by unilaterally deviating.

Definition 2.2. [Nash equilibrium in pure strategies] A Nash equilibrium in pure strategies

of a strategic game is a profile s∗ ∈ S of actions with the property that for every agent i we

have

ui(s∗i , s−i) ≥ ui(si, s−i) , for all si ∈ Si

Thus for s∗ to be a Nash equilibrium it must be that no agent i has an action yielding a

higher payoff to that generated when she chooses s∗i , given that every other agent chooses

her equilibrium strategy s∗j .

An action si ∈ Si is an ε-best response to s−i ∈ S−i if for every action ri ∈ Si,

ui(si, s−i) ≥ ui(ri, s−i)− ε. We denote by BR(s−i) the set of all 0-best response actions to

s−i. A joint strategy s ∈ S is an ε-Nash equilibrium, if for each agent i we have that si ∈ Si

is an ε-best response to s−i. For ε = 0 a 0-Nash equilibrium is a Nash equilibrium.

The notion of a mixed strategy Nash equilibrium models equilibrium of a game in which

participants actions are generalized to be probability distributions over their actions set,

rather than pure deterministic actions. In this case, a selfish agent acts so as to maximize

her expected return. Let ∆(Si) denote the set of all probability distributions over Si, and

refer to a member in ∆(Si) as a mixed strategy of agent i. A mixed extension game of Γ

is derived by setting ∆(Si) as agent i strategy space, and setting agent i utility function to

be her expected utility, over the joint profile of mixed strategies. A mixed strategy Nash

equilibrium of a strategic game is a Nash equilibrium of its mixed extension.

A Nash equilibrium in pure strategies need not always exists. However, Nash [82], in

his seminal work, shows that a mixed strategy Nash equilibrium, exists for every game.

Concave Games

Rosen [89] extends the definition of a strategic game by considering games where a strategy

of an agent is a convex and compact set, and her utility function is concave.

Definition 2.3. A concave game is a game Γ = {N, {Si}i∈N , {ui}i∈N} such that,

(i) For every i, the set of actions Si is a closed, convex and bounded set;

(ii) The utility function ui of agent i is a strictly concave function in her own arguments.

I.e., for every two feasible action profiles (si, s−i), and (s′i, s−i), and every λ ∈ [0, 1],

ui(λ · si + (1− λ)s′i, s−i) > λui(si, s−i) + (1− λ)ui(s′i, s−i)
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Rosen shows that a Nash equilibrium always exists in concave games. Furthermore, in

case that the utility functions satisfy an additional concavity requirement, he calls diagonal

strict concavity, the equilibrium of a concave game is unique. To explain the diagonal strict

concavity requirement, we define a function σ :
∏

i∈N Si×Rn → R to be a non-negative sum

of the utility functions, σ(s, λ) =
∑

i∈N λiui(s). For each fixed λ ∈ Rn a related mapping

g(s, λ) in terms of the gradients ∇iui(s)1 is defined by

g(s, λ) =


λ1∇1u1(s)

λ2∇2u2(s)
...

λn∇nun(s)

 . (2.1)

Definition 2.4 (Diagonal strict concavity from [89]). The function σ will be called diago-

nally strictly concave for a joint strategy space S, and a fixed r ≥ 0, if for every two distinct

strategy profiles, s0, s1 ∈ S, we have

(s1 − s0)T g(s0, λ) + (s0 − s1)T g(s1, λ) > 0

Theorem 2.5 (from [89]). Let Γ be a concave game for which the diagonal strict concavity

property is satisfied. Then Γ admits a unique Nash equilibrium point.

2.2 Multi-Stage Games

In many situations agents engage in the same interaction over again and again. For example,

consider a set of agents, each of which is required to route the same amount of traffic every

second over a common network, or buy a a share of network bandwidth at the beginning of

every day. In such an interaction agents receive a payoff after every stage of the game, and

can change their actions from stage to stage based on feedback they received in previous

stages.

A multi-stage game is a basic model for this type of interaction, that consists of repeat-

edly, and simultaneously playing a one shot game Γ = {N, {Si}i∈N , {ui}i∈N}. Namely, on

every stage t = 1, 2, . . ., every agent i ∈ N simultaneously chooses an action, st
i ∈ Si, and

1The i’th element of the gradient ∇iui(s) is defined as the gradient of ui in the i’th strategy, i.e., when
si ∈ Rmi , mi > 0 is a positive integer, then ∇i(ui(s)) = ( ∂

∂s1
i
ui(s), . . . ,

∂

∂s
mi
i

ui(s)).
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subsequently receives a utility ui(st). A strategy of an agent in a multi-stage game maps

every finite history of the game to her actions set in the one shot game.

Multi-stage games are important in both game theory, and learning theory. From a

game theoretic view point they allow modeling the fact that when an agent takes some

action, there may be consequences for this beyond the immediate payoff. From a learning

perspective, repetition in games gives rise to a simple form of learning from past experience.

Regret Minimization

Regret minimization arises in the context of repeatedly playing a game against nature or

other agents. The external regret of an individual agent compares in retrospect, the agent’s

average utility to that of the best static procedure in hindsight.

To formally define external regret, consider Alice who interact repeatedly in a game

against an adversary. At every stage t = 1, 2, . . ., Alice chooses an action at from a set S of

K alternatives. The adversary chooses a cost `t(a) for every action a ∈ S. Alice’s external

regret at time T is defined as(
T∑

t=1

`t(at)

)
−min

a∈S

(
T∑

t=1

`t(a)

)
.

In a full information setting, Alice receives as feedback the complete loss vector (`t(a))a∈S ,

after choosing her action at. In a multi-armed bandit setting, Alice is revealed with her own

cost at time t, `t(at), but not with the entire cost vector.

In the full-information setting, the optimal regret bound is O(T log(K)), due to Freund

and Schapire [48].

In the context of multi-agent games, where utilities rather than costs are considered,

the external regret of an agent i ∈ N at a time T , is

max
ri∈Si

(
T∑

t=1

ui(ri, st
−i)

)
−

(
T∑

t=1

ui(st)

)
,

where st is the vector of actions played at time t.
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Online Concave Optimization

An online concave2 optimization problem, models an online decision making process with

the property that the structure of the reward, as a function of the decision variables is

concave. Let us concentrate on the case of a single agent. Formally, an online concave

programming problem, C, consists of a convex feasible set F ⊂ Rd and an infinite sequence

{f1, f2, . . .}, where each f τ : F → R is a concave function. A problem is said to be an

online linear optimization problem, if the cost functions are linear.

An online concave programming algorithm selects, at each time step t, a vector xt ∈ F ,

given a history . After xt is selected, the algorithm observes the payoff function f t(·), and

receives a payoff of f t(xt).

An algorithm for choosing a point in F at every time step is said to have no-external-

regret, if the difference between its average performance and that of the best single action

in hindsight, diminishes over time. Formally,

Definition 2.6. Let A be an online concave programming algorithm, then the regret of

algorithm A is defined by

RA(T ) = max
x

(
T∑

t=1

f t(x)

)
−

(
T∑

t=1

f t(xt)

)
.

An algorithm A has no external regret, if RA(T ) = o(T ).

The first efficient algorithm for a linear optimization problem is due to Hannan [52], and

later Kalai and Vempala [64]. It achieves a regret bound of O(
√
T log(d)), which essentially

the best possible.

For the general concave case, Zinkevich [103] provides a simple procedure that guarantees

a regret bound of O(
√
T ), when F is a closed, convex, bounded and non-empty set, and that

every f t is differentiable with a bounded first derivative. Hazan et al. [60], give algorithms

that guarantee an upper bound of O(log(T )) on the external regret, when f t are strictly

concave functions and twice differentiable.

2Such problems are better known as online convex optimization, with loss functions, rather than reward.
As we are more interested in modeling online decisions that results in rewards, we changed convex to concave.
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Multi-Armed Bandits

Regret minimization has also been studied in the multi-armed bandit setting, where at each

stage t, only the payoff f t(xt) is revealed instead of f t. Auer et al. [11] study a multi-armed

bandit problem with a finite number of actions. They present an algorithm that guarantees

that the external regret at time T , is at most O(
√
KT lnK), when the decision maker

has K actions to choose from, and supplement it with an almost matching lower bound of

Ω(
√
KT ) on the external regret of every algorithm.

Awerbuch and Kleinberg [13] have initiated the study of non-stochastic multi-armed

bandit problems in the context of online linear optimization problems. They provide an

algorithm with a regret bound of O(poly(d)T 2/3). Flaxman et al. [41] show how to obtain a

regret bound of O(T 3/4) in an online concave problem. Abernethy et al. [1] show an efficient

algorithm that archives a regret bound ofO(T 1/2) for the online linear optimization problem.

2.3 Competitive Analysis in Online Decision Problems

In an online decision problem, the items that compose of a sequential decision problem are

revealed sequentially, and a decision maker is required to make a decision after every piece

of information is revealed. These decisions will have an impact on the quality of her overall

performance.

In many situations a decision must be made in the absence of some important infor-

mation. For example, imagine a factory getting manufacturing orders along with a price

quote and must accept or reject every order on spot. If the factory is already committed

for doing a certain set of orders, he might not be able to accept an attractive offer with a

much higher price quote. But on the other hand, if the factory decides to reject an order,

for wanting to keep availability for better offers to come, it may be left with nothing, if new

orders fail to arrive.

One way to model uncertainty is the Bayesian approach, where uncertainty is modeled

as a prior probability distribution over the possible outcomes. A decision maker then

optimizes her expected utility. In a network setting, priors are often hard obtain, due to

the sometime chaotic nature of data transportation. Thus, in contrast with the Bayesian

approach, we take the competitive analysis approach (cf. [18]), where no prior is available

for the decision maker; actions must be made solely based on observations from past events.

The performance of an online algorithm is measured using its competitive ratio defined as
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the worst case ratio between the performance of the online algorithm, and that of an off-line

algorithm, which is given all the information in advance.

To formally define the notion of competitive ratio, we first define an optimization prob-

lem P to consists of an Input I, a set of feasible output solutions F (I), and for every

feasible output f ∈ F (I), a reward U(I, f). Given any legal input I, an algorithm ALG

for P computes a feasible output ALG[I] ∈ F (I). The reward associated with this feasible

output is denoted by ALG(I). An optimal algorithm OPT is such that for all legal inputs,

OPT(I) = max
o∈F (I)

U(I, o).

In an online problem the input is revealed in an online manner, and the output must

be produced online. An algorithm ALG is required to decide on the output immediately,

based only on the information revealed thus far, and on previous decisions.

Algorithm ALG is c-competitive, if there is a constant α such that for all finite input

sequences I,

ALG(I) ≥ c ·OPT(I) + α.
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Chapter 3

Strategic Protocols for Collision

Resolution

Ethernet buses and wireless communications are both examples of shared communication

media. Transmission is successful on such channels only if exactly one user accesses the

media. Should multiple users access the channel simultaneously, a collision is said to occur,

and all attempted transmissions fail. Contention resolution protocols are designed to address

the problem of collisions, and to ensure fair and efficient use of such channels.

One would like to have a distributed contention resolution protocol, where anonymous

users know little, if anything, about others. The celebrated Aloha protocol is an excellent

example of such a distributed contention resolution protocol. Since the introduction of the

Aloha protocol, much research has been devoted in deriving improved contention resolution

protocols, where the main emphasis has been the stability of the protocol at high loads.

(See [88] for an excellent treatment of the topic.)

Assume n agents at time zero, each with one packet to transmit. Agents that transmit

without collision on the channel are said to be successful. A successful agent departs and is

no longer in contention for the channel. If at every time slot, each of the k yet unsuccessful

agents transmits with probability 1/k, then the expected latency per agent is overall Θ(n),

and with high probability no agent will be unsuccessful after 10n time slots. For symmetric

protocols this is the socially optimal protocol in terms of minimizing the expected sum of

latencies, expected maximum, etc 1.

1More precisely, this protocol is the optimal history independent protocol, however, there exist protocols
that achieve better throughput based on the channel’s history (see [88]). As the 1/k transmission probability

31
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In this chapter we study contention resolution in the context of selfish user behavior.

In the problems we study, rational and selfish agents seek to minimize their own costs,

and have no compulsion to avoid harming others. One simple example of an agent’s cost

function is the latency cost, where the cost of a packet is the time delay between packet

creation and successful packet transmission. Unless stated explicitly otherwise, we consider

latency costs hereinafter.

Rational selfish agents with latency costs will subvert the socially optimal protocol given

above. Consider Alice who, starting at time zero, continuously transmits until successful.

If the other agents follow protocol and transmit with probability 1/n while Alice is still

unsuccessful, then the expected latency for Alice drops from Θ(n) to O(1).

One can view the problem of devising protocols for selfish agents as a problem in mech-

anism design. However, we stress that we only allow protocols that are self-enforceable and

do not involve external payments or incentives. In fact, we view protocol design here as

searching for “good” equilibria, with seemingly surprising results. Using the terminology

of [72], what we prove here is that the price of anarchy for contention resolution games is

infinite, whereas the price of stability2 for contention resolution games is O(1).

A priori, one might naturally suspect an impossibility result, that all agents will con-

tinuously transmit, and therefore that no success will ever occur. Many examples of such

selfish behavior have been shown in the game theory literature, this includes the prisoners

dilemma and the “tragedy of the commons” (see [53]), where agents need cooperation to

profit from a common resource.

In our setting, if the number of agents is at least three, then continuous transmission

by all agents is indeed in equilibrium. In this natural equilibrium no transmission is ever

successful. We call such an equilibrium a blocking equilibrium. However, there exist other

non-blocking equilibria, where — eventually — all agents succeed. To see why this is so,

consider two agents, Alice and Bob, each with one packet to send, and both seeking to

minimize latency cost (delay until packet transmission). If Alice chooses to be aggressive

and broadcast endlessly until successful transmission, the best response for Bob is to allow

Alice to transmit in the first time slot, following which Alice loses interest in competing

with Bob, and Bob now has full access to the channel without further interference.

We generalize the Alice and Bob example above to multiple agents, Alice, Bob, Carol,

attains expected linear delay, we use it as a benchmark and regard it as the socially optimal protocol.
2With one major caveat, that this only holds with high probability.
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. . ., and again — assume one packet per agent. A strategic agent, Bob, will somehow have

to balance the following profit/loss outcomes as influenced by his actions:

1. Immediate success, if Bob choose to transmit and none other did so, or

2. Delayed gratification, if Bob refrained from transmission and some other agent was

successful. Bob has gained because there are now less agents in contention for the

shared media, or

3. “Wasted” time slots: either collisions or no transmissions on the channel, neither Bob

nor any other agent is successful.

It may be illuminating to contrast our game with the repeated Prisoners Dilemma. In

the finite horizon repeated Prisoners Dilemma, defecting is always the right choice. In our

contention resolution setting this is not true. In a repeated game, the next game is exactly

the same as the current game irrespective of the outcome of the current game. In our

setting of a simultaneous play exhaustive form game, the game to be played next depends

on the outcome of the current game. Fortunately, this gives non-trivial and socially desirable

equilibria for various utility functions, even given fixed predetermined horizons.

Furthermore, it seems that the “folk theorems” [85] about cooperation and punishment

in repeated games are not directly applicable to our problem. In the folk theorems, a

misbehaving agent may gain momentarily, but will receive punishment soon thereafter.

In out setting, a defecting agent may succeed in attaining his ultimate goal via defection

(for example, hogging the transmission channel until successful transmission). Unlike a

repeated game, defectors who have concluded their affairs will not hang about to receive

punishment. This said, our efficient protocols in equilibrium do include the introduction of

fear from overhanging “global” disaster that induces what seems to be cooperation.

We deal with synchronous communications where transmissions are only possible in

discrete time slots. We assume that every agent has one packet to transmit. Additionally,

we deal with symmetric protocols, where all agents follow the same set of rules3. Our

3In applications such as mobile applications over broadcast channels, anonymity occurs naturally and may
even be a requirement. In such settings, it makes little sense to consider non-symmetric protocols where
the three agents Alice, Bob, and Carol, each play a different strategy depending on their own identity and
the identities of others with which they are playing. If we were to allow known (and unique) identities then
the contention resolution problem becomes somewhat uninteresting. One could use social rank to determine
priorities based upon identities, and this result is in equilibrium (possibly considered unfair by those of lower
social standing).
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primary interest is in latency costs as agent utilities, but we also study the effect of a

deadline.

We study the effect of time dependency on protocols. Time-independent protocols may

determine transmission probability using the current number of agents in contention (called

pending agents), but may not use the current time slot index. A time-dependent protocol

is not so restricted. For example, the socially optimal protocol (transmission probability

1/k for k pending agents) is a time independent protocol but is not in equilibrium.

We show that there is a unique time-independent non-blocking symmetric protocol in

equilibrium, in which all agents broadcast with probability pk ∈ Θ(1/
√
k) (again — k is the

number of pending agents). With such transmission probabilities, the expected duration

until all n agents succeed is approximately eΘ(
√

n) (which is dominated by the expected

latency of the first successful transmission). We deal with time independent protocols for

latency in Section 3.3.

We define a protocol to be efficient if the maximal packet latency is linear with high

probability. The socially optimal protocol (which sends with probability 1/k) is efficient

but is not in equilibria. Broadcasting with probability pk ∈ Θ(1/
√
k) is in equilibria but

is not efficient. Furthermore, our claims above imply that any symmetric protocol that

is simultaneously efficient and in equilibria must be time-dependent. Thus, we seek an

efficient time-dependent protocol in equilibrium for latency costs. This motivates our study

of deadline cost functions and suggests the notion of virtual deadlines, which we can use to

derive efficient protocols.

A deadline cost function would typically charge only those agents that have not been

successful prior to the deadline. E.g., a tax audit for those not filing by midnight. Perhaps

surprisingly, one sees dramatic behavioral changes in equilibria as a function of the time

left until the deadline. If the deadline is close by (say 2n time slots away), then the only

equilibria for selfish agents is to transmit with high probability (and thus the probability

that any agent will be successful is negligible). Given a deadline 15n time units away, then

— with very high probability — all n agents will succeed prior to the deadline. Deadline

cost functions can be used to model Quality of Service issues, e.g., MPEG packet delivery

past a deadline causes video breakup. Section 3.4 studies protocols for agents with deadline

cost functions (as well as agents with latency costs).

We seek equilibria4 where “ill behaved” latency cost agents behave more like “polite”

4We remark that our protocol is not only in equilibria but also subgame perfect.
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Timeτ τ +10 1 2

m

Figure 3.1: At the beginning of every time slot t ≥ 0 the agents choose whether to transmits
or be quiescent. Even if a transmission is successful, it still takes the message m one time
slot to be transmitted; if Alice successfully transmits at time slot τ , then her latency is
τ + 1, and her cost is Ψ(τ + 1).

deadline cost agents, for an appropriately chosen deadline. We stress again that we are

not introducing external payments or charges to introduce the deadline, and we are not

changing the latency cost assumption about the agents. Our protocol is “self policing” and

enforces a “virtual” deadline on the agents, of sufficiently great cost so that they transmit

with probability O(1/k).

3.1 Preliminaries

We consider the following contention resolution problem. Consider a set of n agents, each

of which has a single packet to transmit. Agents that have not yet successfully transmitted

their packet are called pending, initially all n agents are pending.

Time consists of discrete time slots. Agents that are pending at time slot t can either

‘Transmit’ or be ‘Quiescent’. If exactly one agent chooses to transmit at time slot t then

this agent is successful and ceases to be pending. If multiple agents choose to transmit at

time t then a collision occurs. In case of collision or if the channel is idle then the set of

pending agents remains unchanged. The number of agents at time zero, n, is known to all

agents, and the agents keep track of Kt — the number of pending agents at time t.

We study multiple agent access to a channel as a non-cooperative game in extensive

form and simultaneous play. The latency Ti for agent i ∈ {1, . . . , n} is a random variable

whose value is the time at which agent i is successful (or ∞), and whose distribution is

determined by the (possibly) mixed strategies of the agents. The transmission of a message

takes the duration of a time slot, thus an agent i that transmits successfully at time slot t,

has a latency Ti = t+ 1 (E.g., if agent Alice transmits at time t = 0, and she is successful,

then her latency TAlice = 1, due to the time it takes the message to be transmitted). The

cost to agent i is a function of the latency, Ψ(Ti), and is thus also a random variable.

Our primary interest is in the latency cost function for all agents, i.e., Ψ(t) = t. We
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also present results for deadline cost functions (e.g., Ψ(t) = 0 for t < D and Ψ(t) = M for

t ≥ D). Section 3.5 deals with exponentially increasing/ decreasing marginal cost functions

i.e., Ψ(t) =
∑t−1

j=0 δ
j , for some constant δ.

Definition 3.1. A strategy for agent Alice, q = 〈qk,t : 1 ≤ k ≤ n, 0 ≤ t〉, is interpreted as

follows: if Alice is one of k pending agents at time t (i.e., Kt = k), then Alice transmits

with probability qk,t.

A strategy for agent Alice is said to be time-independent if the transmission probabilities,

qk,t, are independent of the time, i.e., qk,t = qk,t′, for all 0 ≤ t, t′. A time-independent

strategy can thus be represented as a vector q = 〈q1, q2, . . . , qn〉, where qk is the transmission

probability given k pending agents, irrespective of the time5.

Definition 3.2. A protocol Q = 〈q(1), q(2), . . . , q(n)〉 is a list of strategies, one per agent,

where agent i, 1 ≤ i ≤ n has strategy q(i).

Fix a protocol Q. We define the expected cost of the protocol for agent i, as CQ
i =

E[Ψ(Ti)], where the expectation is taken over the probability distribution defined by Q. Let

Ti|k,t denote the random variable of the latency for agent i, conditioned on Kt = k, and on

agent i being one of the k pending agents. Let CQ
i|k,t = E[Ψ(Ti|k,t)], and define the expected

future cost FQ
i|k,t = CQ

i|k,t − Ψ(t) = E[Ψ(Ti|k,t)] − Ψ(t). (When clear from the context we

drop the superscript Q.)

Definition 3.3. Let Q = 〈q(1), . . . , q(n)〉 be a protocol. Let (s,Q−i) denote the protocol

where agents j 6= i use strategies q(j) and agent i uses strategy s. We say that strategy s is

a best response of agent i to Q−i, if the expected cost to i with s, given that other agents

j 6= i use q(j), is minimal. I.e., s is a best response to Q−i if for all strategies r,

C
(s,Q−i)
i ≤ C

(r,Q−i)
i .

We say that protocol Q is in equilibria if q(i) is a best response to Q−i for all agents i.

For one pending agent, the best response for the agent is to transmit deterministically.

I.e., for protocols Q in equilibrium, q1,t = 1, for all t ≥ 0. Consequently, Ti|1,t = t + 1 and

Ci|1,t = Ψ(t+ 1).

5For latency costs, classical Markov Decision Theory results [87] show that the best response to a set of
time-independent strategies will include some time-independent strategy.



3.2. CHARACTERIZATION OF SYMMETRIC PROTOCOLS IN EQUILIBRIA 37

Definition 3.4. A protocol Q is said to be symmetric if q(i) = q(j), for all i, j ∈ N . For

symmetric protocols one can use the notation Q = 〈q〉n rather than Q = 〈q(1), . . . , q(n)〉.
For the expected cost to an agent we use the notation CQ

k,t instead of CQ
i|k,t, as the index i is

irrelevant. Likewise, the cost of the protocol can be denoted by CQ in place of CQ
i|n,0.

For k ≥ 3, having all the agents continuously transmit (i.e., qk,t = 1) is a symmet-

ric, time-independent, protocol in equilibria. Such a protocol is also rather useless as no

successful transmissions ever occur6.

Definition 3.5. A protocol is called non-blocking if for all k ≥ 2, t ≥ 0, the transmission

probability qk,t < 1.

Note that the expected cost of the game for a time-independent, non-blocking protocol

in equilibria is always finite (for the latency cost).

Definition 3.6. Let Q = 〈q(1), . . . , q(n)〉 be a protocol. Q is said to be efficient if all agents

are successful within D = O(n) time slots, except possibly with exponentially negligible

probability (1/ exp(n)).

It does not follow from the definition of efficient protocols that the expected cost of

the game need be low. Of course, this depends on Ψ, but even for latency costs, efficient

protocols could have very high latency with some (exponentially small) probability and the

expected latency could also be high.

3.2 Characterization of Symmetric Protocols in Equilibria

In this section we analyze properties of symmetric protocols in equilibria, for general non-

negative cost functions. For any symmetric protocol, Q = 〈q〉n, where q = 〈qk,t : 1 ≤ k ≤
n, 0 ≤ t〉, the expected cost for any agent (e.g., Alice), conditioned on the event that k

agents, Alice amongst them, are pending at time t, is

Ck,t = qk,t(1− qk,t)k−1Ψ(t+ 1)

+ (k − 1)qk,t(1− qk,t)k−1Ck−1,t+1

+ (1− kqk,t(1− qk,t)k−1)Ck,t+1.

6As mentioned in the introduction, for two agents this is not an equilibrium, and q2,t < 1.
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Expression Definition
Ψ(t) The cost for an agent who leaves at time t.

I.e., successful transmits at time slot t− 1.
ψ(t) The marginal cost at time t, i.e., ψ(t) = Ψ(t)−Ψ(t− 1).
qk,t Transmission probability when k agents are pending at time t.
qk Transmission probability of a time-independent protocol

when k agents are pending.
q A strategy vector; a time independent strategy is a vector q = 〈q1, . . . , qk〉;

a time dependent strategy is a matrix q = {qk,t}1≤k≤n,0≤t.
qk,t A strategy vector equal to q except that qk,t = 1.
qk,t A strategy vector equal to q except that q

k,t
= 0.

Q A protocol, consists of n strategies. Q = 〈q(1), q(2), . . . , q(n)〉.
Q−i A vector of n− 1 strategies, omitting the i’th strategy

Q−i = 〈q(1), . . . , q(i−1), q(i+1), . . . , q(n)〉
αk,t The probability that none of k − 1 pending agents

transmit at time t.
βk,t The probability that exactly one of k − 1 pending agents

transmits at time t.
Ck,t The expected cost to one of k pending agents at time t.
Fk,t The expected future cost to one of k pending agents at

time t, i.e., Fk,t = Ck,t −Ψ(t).
Kt A random variable indicating the number of pending agents at time t.

Kt is distributed in accordance with the protocol Q in use.
Ti The latency of agent i, i.e., the time slot number at which i

successfully transmits + 1.

Table 3.1: Notation in use.
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The first term above is the contribution to the expected cost conditioned on Alice suc-

cessfully transmitting at time slot t. The second term is the contribution conditioned on

some other agent (not Alice) transmitting successfully. The last term is the contribution

to the expected cost when there is no successful transmission (either no agent attempts

transmission or multiple agents attempt transmission).

For an agent strategy q, the strategy q(k,t) (respectively, q(k,t)) is the same as q except

that it deterministically transmits (respectively, is quiescent) at time t if Kt = k, i.e.,

q(k,t) = q (respectively, q(k,t) = q) except that q(k,t)
k,t = 1 (respectively, q(k,t)

k,t = 0).

Given that Kt = k, the expected cost to Alice, playing strategy q(k,t), is

C
(q(k,t),Q−i)
i = αk,tΨ(t+ 1) + (1− αk,t)Ck,t+1,

where

αk,t = (1− qk,t)k−1 , (3.1)

is the probability that none of the other k− 1 pending agents transmit at time t. Similarly,

the expected cost to Alice when playing q(k,t) is

C
(q(k,t),Q−i)

i = βk,tCk−1,t+1 + (1− βk,t)Ck,t+1,

where

βk,t = (k − 1)qk,t(1− qk,t)k−2 (3.2)

is the probability that exactly one (other) pending agent transmits.

For protocols Q in equilibria, for any k, t such that 0 < qk,t < 1, it must be that all

three strategies, q, qk,t, and qk,t, are best responses to Q−i.7

We now argue that for symmetric protocols in equilibria, expected cost is monotonically

increasing in the number of pending agents and in time.

Lemma 3.7. Let Q = 〈q〉n be a symmetric protocol in equilibria. For all k ≤ n and all

t ≥ 0,

Ck,t ≤ Ck,t+1, Ck−1,t ≤ Ck,t, and Fk−1,t ≤ Fk,t.

Proof. Consider the case of k pending agents, one of which is agent i. Recall that in

equilibrium, each agent has the same expected cost for playing either q or q(k,t) or q(k,t).
7This follows since both Transmit and being Quiescent are in the support of q at time t with k pending

agents.
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Namely,

Ck,t = αk,tΨ(t+ 1) + (1− αk,t)Ck,t+1

= βk,tCk−1,t+1 + (1− βk,t)Ck,t+1,

where αk,t, βk,t are as defined in equations (3.1), and (3.2) respectively.

All agents pending at time t+ 1 will not have success prior to time t+ 2 and thus have

cost ≥ Ψ(t+ 2), i.e.,

Ck,t+1 ≥ Ψ(t+ 2) ≥ Ψ(t+ 1) .

This implies that,

Ck,t = αk,tΨ(t+ 1) + (1− αk,t)Ck,t+1 ≤ Ck,t+1 ,

establishing that Ck,t ≤ Ck,t+1.

By the fact that Ck,t ≤ Ck,t+1, we get that

Ck,t ≥ βk,tCk−1,t+1 + (1− βk,t)Ck,t

Hence,

βk,tCk,t ≥ βk,tCk−1,t+1 ≥ βk,tCk−1,t , (3.3)

where the second inequality in (3.3) follows since Ck−1,t+1 ≥ Ck−1,t. This establishes that

Ck−1,t ≤ Ck,t.

By definition of Fk,t:

Fk,t = Ck,t −Ψ(t) ≥ Ck−1,t −Ψ(t) = Fk−1,t ,

showing that Fk−1,t ≤ Fk,t.

The following lemma establishes a connection between the transmission probability qk,t,

and the ratio of future costs Fk−1,t+1/Fk,t+1.

Lemma 3.8. Let Q = 〈q〉n, be a symmetric protocol in equilibrium. For every number of
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pending agents 1 ≤ k ≤ n and for every time slot t ≥ 0, we have

either qk,t =
1

k − (k − 1)Fk−1,t+1

Fk,t+1

, or qk,t = 1 .

Proof. Consider Alice, one of k pending agents at time t. All agents but Alice follow strategy

q. For symmetric protocols, transmission probabilities qk,t are always strictly positive. If

qk,t = 1 then we are done. Otherwise, in equilibrium, all agents, including Alice, have the

same expected cost whether playing q, q(k,t) or q(k,t). I.e.,

Ck,t = αk,tΨ(t+ 1) + (1− αk,t)Ck,t+1 = βk,tCk−1,t+1 + (1− βk,t)Ck,t+1

Therefore,

αk,t(Ψ(t+ 1)− Ck,t+1) = βk,t(Ck−1,t+1 − Ck,t+1).

Substituting according to equations (3.1),and (3.2), we get that

(1− qk,t)k−1(Ψ(t+ 1)− Ck,t+1) = (k − 1)qk,t(1− qk,t)k−2(Ck−1,t+1 − Ck,t+1).

Since by assumption qk,t 6= 1, dividing by (1− qk,t)k−2 results in

(1− qk,t)(Ψ(t+ 1)− Ck,t+1) = (k − 1)qk,t(Ck−1,t+1 −Ψ(t+ 1) + Ψ(t+ 1)− Ck,t+1).

As Fk,t+1 = Ck,t+1 −Ψ(t+ 1) it follows that

(1− qk,t)Fk,t+1 = (k − 1)qk,t(Fk,t+1 − Fk−1,t+1),

and the claim follows.

Remark 3.9. In the proof of Lemma 3.8, we implicitly assume that Ck,t is finite. This

holds for any non-blocking protocol with respect to the latency cost function.

The following are immediate consequences of Lemma 3.8.

Corollary 3.10. If Q is a symmetric protocol in equilibrium then qk,t ≥ 1
k for every integer

1 ≤ k, 0 ≤ t.

Corollary 3.11. For any constant 0 ≤ c < 1, if Fk−1,t+1/Fk,t+1 < c, for all k ≤ n, 0 ≤ t,

then qk,t = Θ( 1
k ).
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This then implies that the expected latency and the expected maximal latency are both

Θ(n), given that n agents start at time zero.

3.3 Non-blocking protocols in equilibrium for latency cost

Recall that time-independent protocols are protocols in which qk,t = qk,t′ for t 6= t′. Thus,

for such protocols we can use the notation qk for transmission probability rather than qk,t.

When time-independent strategies are used for the latency cost function, the future cost

depends only on the number of pending agents, i.e., Fk,t = Fk,t′ for t 6= t′. We can therefore

use the notation Fk for future cost rather than Fk,t. We give the following characterization

of time-independent, non-blocking protocols, for agents with latency costs.

Theorem 3.12. There is a unique time-independent, symmetric, non-blocking protocol 〈q〉n

in equilibrium for latency cost, q = 〈q1, . . . , qn〉. Furthermore, qk ∈ Θ( 1√
k
), for 1 ≤ k ≤ n.

For the proof of Theorem 3.12 consider agent Alice, one of k pending agents at time

t. Assume Alice deviates from q and continuously transmits until successful. This pure

strategy is in the support of q, therefore it has an expected cost equal to that of q. As

Alice continuously transmits, no agent other than Alice can succeed while Alice is pending.

The probability that all agents but Alice are quiescent is denoted αk = (1− qk)k−1. Alice’s

latency is t+X, where X is geometrically distributed with parameter αk, from which follows

that the expected number of additional time slots until Alice succeeds E[X] = 1/αk, and

Fk =
1

(1− qk)k−1
. (3.4)

From Lemma 3.8 and equation (3.4) we have,

Fk−1 =
1

(1− qk)
k−1

(
1− 1− qk

(k − 1)qk

)
. (3.5)

Now, substituting k − 1 for k in equation (3.4), we have that Fk−1 = 1
(1−qk−1)k−2 .

Substituting this for the left hand side of equation (3.5) we get that

1
(1− qk−1)k−2

=
1

(1− qk)k−1

(
1− 1− qk

(k − 1)qk

)
. (3.6)

We first seek to prove inductively that qk is uniquely determined. For the base case,



3.3. NON-BLOCKING PROTOCOLS IN EQUILIBRIUM FOR LATENCY COST 43

k = 1, we have that q1 = 1 and F1,t = 1 for all t ≥ 0. Assume the inductive hypothesis for

k−1, k > 1, then the left hand side of equation (3.6) is some constant. The right hand side

of equation (3.6) is a continuous and monotonically increasing function of qk in the range

(0,1) taking values from −∞ to ∞. It follows that qk is uniquely determined.

The proof of the second part of the theorem goes by induction on k. We show how to

prove `k ≤ qk ≤ uk for general lower and upper bounds `k, uk.

To show that `k ≤ qk ≤ uk, for all k, it suffices to show that

1. If `k ≤ qk ≤ uk then 1
(1−`k)k−1 ≤ Fk ≤ 1

(1−uk)k−1 .

2. If 1
(1−`k−1)k−2 ≤ Fk−1 ≤ 1

(1−uk−1)k−2 then `k ≤ qk ≤ uk.

Proposition 3.13. If qk ≥ `k then Fk ≥ 1
(1−`k)k−1 . If qk ≤ uk then Fk ≤ 1

(1−uk)k−1 .

Proof. The claim follows directly from equation (3.4), since Fk is monotonically increasing

as a function of the transmission probability qk.

To show the second condition of the induction we fix k and study the following rational

function that stems from equation (3.5).

L(x) =
1

(1− x)k−1

[
1− 1− x

(k − 1)x

]
.

The function L(x) is monotonically increasing in the range [0, 1]. To see this note that

the derivative of L(x) is

L′(x) =
k − 1

(1− x)k
+

k − 2
(1− x)k−1

1
(k − 1)x

+
1

(1− x)k−2

1
(k − 1)x2

.

Consider the rational functions

R(x) = L(x)− 1

(1− `k−1)
k−2

,

R(x) = L(x)− 1

(1− uk−1)
k−2

.

Both R(x) and R(x) are monotonically increasing in the range [0, 1]. Therefore, if

R(`k) < 0 then

R(x) ≥ 0, x ∈ [0, 1] =⇒ x > `k.
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And similarly, if R(uk) > 0 then

R(x) ≤ 0, x ∈ [0, 1] =⇒ x < uk.

We set `k = 1√
k+1

and uk = 2√
k

and show that R(`k) < 0 and R(uk) > 0.

For the induction base we use the transmission probability at q2. To compute q2 we use

the equation Fk−1 =
(
1− 1−qk

(k−1)qk

)(
1

(1−qk)

)k−1
. The expected latency of a single agent is

F1 = 1. Therefore, for k = 2 this equality translates to 1 =
(
1− 1−q2

q2

)
(1 − q2)−1, which

has a unique solution q2 = 0.5(
√

5− 1) in the region [0, 1]. For the induction base we notice

that 1/(
√

2 + 1) < q2 < 1.5/
√

2.

Proposition 3.14. R(`k) < 0

Proof. By the monotonicity property of R, R(`k) < R(`k−1). Thus, it suffices to show that

R(`k−1) = R( 1√
k−1+1

) < 0.

R(
1√

k − 1 + 1
) =

1(
1− 1√

k−1+1

)k−1

[
1−

1− 1√
k−1+1

(k − 1) 1√
k−1+1

]
− 1

(1− 1√
k−1+1

)k−2

=
1(

1− 1√
k−1+1

)k−1

[
1− 1√

k − 1
−
(

1− 1√
k − 1 + 1

)]

=
1(

1− 1√
k−1+1

)k−1

[
− 1√

k − 1
+

1√
k − 1 + 1

]
< 0.

For the proof of the second part of Theorem 3.12 we need the following lemmata.

Claim 3.15. For every integer x > 0,
(
1 + 1

x

)x
< e <

(
1 + 1

x

)x+1

Proof. The left side of the inequality follows directly from the known inequality 1 + y < ey

for every real y, by replacing y with 1/x.

For the inequality on the right side we define the function h(x) = (1 + 1/x)x+1. Its first

derivative is

h′(x) =
1
x2

(1 +
1
x

)x(1 + x)(−1 + x log(1 +
1
x

)).
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Using the relation 1 + 1/x < e
1
x once more, we get that log(1 + 1

x) < 1
x , and therefore

x log(1 + 1
x) < 1. Consequently, the first derivative of h(x) is negative for x > 0, and h(x)

is decreasing in this region. Combining this with the known fact that limx↔∞ h(x) = e, we

get that h(x) > e for every x > 0.

Claim 3.16. For every integer k ≥ 1,

√
k −

√
k − 1 ≤ 1√

k
(
1
2

+
1
k
) (3.7)

√
k −

√
k − 1 ≤ 1

2
√
k − 1

. (3.8)

Proof. It follows from the arithmetic geometric mean theorem that

√
k − 1 +

1√
k
(
1
2

+
1
k
) =

1
2

(√
k − 1 +

1√
k

)
+

1
2

(√
k − 1 +

2
k
√
k
)
)

≥

√(√
k − 1 +

1√
k

)(√
k − 1 +

2
k
√
k
)
)

=

√
k − 1 +

√
k − 1√
k

+
2
k2

+
2
√
k − 1
k
√
k

≥

√
k − 1 +

√
k − 1√
k

+
2
√
k − 1
k
√
k

=

√
k − 1 +

√
k − 1(2 + k)

√
k

3

=

√
k − 1 +

√
(k − 1)(2 + k)

k2

√
2 + k

k

≥
√
k,

where the last inequality follows since (2 + k)(k − 1) ≥ k2 for every k > 1.

Proposition 3.17. R(uk) > 0

Proof. The value of R at the point uk is

R(uk) =
(

1
1− uk

)k−1(
1− 1− uk

(k − 1)uk

)
−
(

1
1− uk−1

)k−2

hence we need to show that
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(
1

1− uk−1

)k−2

<

(
1

1− uk

)k−1(
1− 1− uk

(k − 1)uk

)
,

which, after dividing both sides of this inequality by the right hand side, translates to(
1− uk

1− uk−1

)k−1

(1− uk−1)
(

1− 1− uk

(k − 1)uk

)−1

< 1

Assigning uk = c√
k
, we get that

(
1− c√

k

1− c√
k−1

)k−1(
1− c√

k − 1

)(
ck − c

ck −
√
k

)
< 1 (3.9)

We show the above holds for c = 3/2, for every k > 2. For the case k ≤ 270 we verify

inequality (3.9) manually8. For k > 270 we give an analytical proof.

Step I: For every 1 ≤ c < 2, and k ≥ 2(
1− c√

k − 1

)(
ck − c

ck −
√
k

)
< 1−

c− 1
c√
k
.

(
1− c√

k − 1

)(
ck − c

ck −
√
k

)
− 1 +

c− 1
c√
k

=
1 + c2(−2 + c(

√
k −

√
k − 1))

c
√
k(c

√
k − 1)

(a)

≤
1 + c2(−2 + c( 1

2
√

k−1
))

c
√
k(c

√
k − 1)

=
1 + c2(−2 + c( 1

2
√

k−1
))

c
√
k(c

√
k − 1)

(b)
< 0

The denominator of the last term is positive for every k > 1 and c ≥ 1. When 1 < c < 2,
c

2
√

k−1
< 2, for every k > 1, and therefore the nominator of the last term is negative. The

claim then follows.

Step II: In this step we provide an upper bound on the leftmost term in inequality

8A short computer program can verify that the statement holds for 2 < k < 270.
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(3.9):

(
1− c√

k

1− c√
k−1

)k−1

=

(
1 +

(
√
k −

√
k − 1)c√

k(
√
k − 1− c)

)k−1

<

(
1 +

c(1
2 + 1

k )
k(
√
k − 1− c)

)k−1

(3.10)

where the inequality follows from the bound
√
k −

√
k − 1 < 1

2
√

k
+ 1

k
√

k
(see Claim 3.16).

Step III: In this step we show that for c = 3/2, and every k > 270,

1 +
c(1

2 + 1
k )

k(
√
k − 1− c)

< 1 +
c− 1

c

k
√
k
. (3.11)

When c = 3/2, the difference between the left hand side and the right hand side in

inequality (3.11) evaluates to

1
6k2

(
−5

√
k +

9(2 + k)
2
√
k − 1− 3

)
.

We define f(k) = −5
√
k + 9(2+k)

2
√

k−1−3
, and

g(k) = −5
√
k − 1 +

9(3 + (
√
k − 1)2)

2
√
k − 1− 3

.

Clearly, g(k) > f(k). It is straightforward to verify that the function g() is decreasing in

the region k > 270, and that g(270) < 0. Therefore, f(k) < 0 for every k > 270, and thus,

the claim follows.

Step VI: For every k > 2,(
1 +

c− 1
c

k
√
k

)k−1

< 1

/(
1−

c− 1
c√
k

)

Consider the left hand side of the above inequality:
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(
1 +

c− 1
c

k
√
k

)k−1

(a)
< e

(k−1)(c− 1
c )

k
√

k (3.12)

(b)
< e

c− 1
c√
k (3.13)

(c)
< 1 +

c− 1
c√

k − (c− 1
c )

(3.14)

= 1

/(
1−

c− 1
c√
k

)
, (3.15)

where (a) follows from the inequality (1 + 1/x)x < e, for 0 < x. The Inequality (b) holds

since e
(c−1/c)√

k > 1, and (c) follow from Claim 3.15.

The claim follows from combining steps (I) to (IV).

In Figure 3.2 (on the left) we show the transmission probabilities of the time-independent

equilibrium, as they are numerically computed. The upper and lower curve correspond to

the upper bound uk = 3
2
√

k
, and the lower bound `k = 1√

k+1
, respectively. The third line,

which lies very close to the actual equilibrium transmission probabilities depicts the curve
√

2√
k+1

. Figure 3.2 (on the right) depicts the expected latency in this equilibrium as a function

of the number of pending agents.

We end this section by asserting that it follows from the upper bound in Theorem 3.12

that the expected latency of the time independent protocol is at most exp(O(
√
n)).

Corollary 3.18. The expected latency of an agent, when n agents are running the sym-

metric time independent protocol has an upper bound of exp(O(
√
n)), and a lower bound of

exp(
√
n− 1)

Proof. equation (3.4) constitutes the relation between the expected cost of a time-independent

protocol and αk (Fk has a geometric distribution with parameter αk. The expected cost of

an agent when all agents are using the time-independent protocol is

Cn,0 = Fn = 1/αn = 1/(1− qn)n−1, (3.16)

which is increasing in qn in the interval qn ∈ [0, 1].

Theorem 3.12 yields a lower bound and an upper bound on qn, for every n ≥ 2. From

the upper bound on qn, qn < 1.5/
√
k we gain an upper bound on the expected latency,
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Figure 3.2: (a) The transmission probabilities in equilibrium as a function of the number of
agents, of the unique non-blocking, time independent equilibrium, for agents with latency
cost (described by the blue dots). The transmission probability in equilibrium lies between
the curve uk = 1.5/(

√
k), and the curve `k = 1/(

√
k + 1). The middle curve depicts√

2/(
√
k + 1), and is seemingly very close to the actual transmission probabilities of this

equilibrium. (b) The expected latency in equilibrium as a function of the number of pending
agents.

Cn,0 ≤

((
1− 1.5√

n

)n−1
)−1

=

(1− 1.5√
n

)√
n

1.5

−(1.5
√

n−o(1))

= O(exp(1.5
√
n)).

From the lower bound on qn, 1/(
√
n+ 1) < qn we derive a lower bound on the expected

latency:

Cn,0 ≥

((
1− 1√

n+ 1

)n−1
)−1

=

((
1− 1√

n+ 1

)√n+1
)−(

√
n−1)

> exp(
√
n− 1),

where the last inequality follows from Claim 3.15.

3.4 Efficient Protocols in Equilibria

Given n agents at time zero, Theorem 3.12 implies that the expected latency for (the

unique) symmetric, time-independent, protocol in equilibria is exponential in n. Ergo, the

probability that even one agent will be successful within any polynomial time bound is



50 CHAPTER 3. STRATEGIC PROTOCOLS FOR COLLISION RESOLUTION

exponentially small.

In contrast, efficient protocols ensure that all n agents succeed in linear time except with

exponentially small probability. In this section we give a protocol for contention resolution,

which is simultaneously efficient, symmetric, and in equilibrium. Obviously, such a protocol

cannot be time-independent.

To achieve efficient protocols for agents with latency costs, we turn aside from latency

cost protocols to address strategic behavior under deadline cost functions.

We consider two related deadline cost functions, the first is a pure deadline, the 2nd is

a combination of latency costs plus a deadline.

ΨD(t) =

0 For 0 ≤ t < D;

1 Otherwise.

Or,

Ψ∗
D,M (t) =

t For 0 ≤ t < D;

M + t Otherwise.

Time slot D is referred to as the deadline.

Figure 3.3a shows the numerical solution of the symmetric protocol in equilibrium, for

the deadline cost function ΨD(·), where the number of agents is n = 20, and a deadline is

set at time D = 100. For a ΨD cost function, the equilibrium equations can be solved, as

the recursion base is known — at time D, the transmission probability is 1 for any number

of agents 1 ≤ k ≤ n. The solution is a matrix {qk,t}1≤k≤n×1≤t≤D, that gives a transmission

probability qk,t for any number of pending agents 1 ≤ k ≤ n, and time t ≤ D. To illustrate

it graphically we fix the number of agents at 20, and present the transmission probability of

20 pending agents as a function of the time t ∈ {1, . . . , D}. Figure 3.3b shows the expected

cost of a pending agent when overall 20 agents are pending, as a function of the time (which

equals the probability of a successful transmission prior to the deadline).

There seems to be a phase transition of the transmission probabilities approximately

at time t∗ = D − 3.5n. Prior to t∗ the transmission probability is very close to 1/20;

After t∗, the transmission probability rapidly increases to 1. Likewise, in 3.3b, prior to t∗,

the probability of failing to transmit before the deadline is almost 0; after t∗ the failure

probability arises to 1. Similar phenomena appear for other values of n.

Unfortunately, we are unable to prove this empirical observation. What we can show
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(a) Equilibrium Transmission Probability
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(b) Probability of Failing to Transmit Prior to the Deadline

Figure 3.3: This figure presents numerical solutions of the recursive equilibrium equations
for a game where agents have the deadline cost function; the deadline is set at time D = 100.
In (a) the transmission probability in equilibrium is demonstrated, for a fixed number of
pending agents k = 20 (i.e., the x-axis represents time, and the y-axis represents transmis-
sion probability in equilibrium when 20 agents are pending). In (b) the y-axis represents
the expected cost for a pending agent at time t, when overall 20 agents are pending. Notice
the threshold phenomenon in both Figures 3.3a and 3.3b — the transition between trans-
mission probability 1/k and 1 in (a), and accordingly the transition from success with high
probability to an almost sure failure, is very rapid.
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is that for time slots close to the deadline (say D − (1 + ε)n), the transmission probability

is arbitrarily close to one. We also show that the probability that even a single agent is

delayed until the deadline is negligible if the deadline is at least 15n time slots away. This

implies that agents transmit with probability O(1/k) during a large fraction of the time

slots t ∈ {D − 15n, . . . ,D}.

The main result of this section is the following theorem that says that for deadlines at

least 15n time slots away, there exist protocols in equilibria such that all agents succeed

before the deadline with high probability:

Theorem 3.19. For every time D, and number of agents D > n there exists a symmetric

protocol QD in equilibrium for the ΨD cost function, such that if the deadline D > 15n then

the probability that not all agents succeed prior to the deadline is negligible (1/eΘ(D)).

We begin with the simple case of 2 agents, Alice and Bob. After the deadline expires,

all strategies are in equilibrium as they have no effect on the cost.

Assume a symmetric protocol in equilibrium, and consider the transmission probability

q2,D−1 used by both of the 2 pending agents at time D − 1. We show that q2,D−1 = 1.

Corollary 3.10 implies that q2,D−1 ≥ 1/2 > 0. Assume that q2,D−1 < 1 — this says that

both transmitting and remaining quiescent are in the support of this mixed strategy in

equilibrium.

Consider the pure strategy in which Alice chooses to transmit deterministically at time

D− 1. The expected cost to Alice is then equal to the probability that Bob also chooses to

transmit, q2,D−1 < 1. If Alice chooses the pure strategy of remaining quiescent at time D−1

then she is doomed to reach the deadline and her cost is exactly 1. I.e., we have unequal

expected costs for two pure strategies in the support, contradicting that q2,D−1 < 1.

It follows that for every symmetric protocol in equilibrium q2,D−1 = 1. This can be

further generalized to whenever k agents are pending at one of the last k−1 time slots prior

to the deadline, qk,D−k+1 = qk,D−k+2 = · · · = qk,D−1 = 1. One can prove that

Lemma 3.20. Consider n agents with deadline cost function ΨD. Let 〈q〉n, be a symmetric

protocol in equilibrium for such agents, then, for all 0 ≤ t ≤ D and for any k > D − t we

have qk,t = 1.

Likewise, there exists a symmetric protocol in equilibrium for such agents, 〈q〉n, such

that for all 0 ≤ t < D for every k ≤ D − t we have qk,t < 1.
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Proof. The proof is by double induction, the outer induction is on the number of agents,

and the inner induction is on the number of time slots remaining until the deadline.

We’ve previously argued that q2,D−1 = 1 but the same argument also shows that

qk,D−1 = 1 for all k ≤ n.

The induction hypothesis for the outer induction is that for some k < n, and all t > D−k,
qk,t = 1. The inductive step is to prove that for all t > D − (k + 1), qk+1,t = 1. The base

case for the outer induction is that q2,D−1 = 1.

To prove the outer induction for k+1, we use an inner induction on the number of time

slots remaining until the deadline. The base for the inner induction is that qk+1,D−1 = 1.

The inner induction hypothesis is that qk+1,t = 1 for some t > D − (k + 1) + 1 = D − k.

Let Alice be one of these k + 1 pending agents that plays Quiescent at time t − 1. Even

if some agent other than Alice is successful at time t − 1, there will still be ≥ k pending

agents (including Alice) at time t. By the outer induction, Alice is doomed not to succeed

before the deadline, and thus qk+1,t−1 < 1 cannot be in equilibrium.

Lemma 3.20 implies that there is some probability p > 0 that all k pending agents at

time D − k will succeed before the deadline. We remark that given k pending agents at

time D − k, the probability of even one agent being successful before the deadline D is

negligible (super-exponentially small in k). In comparison, Theorem 3.19 says that given

k pending agents at time D − 15k, then all k agents will succeed before D, except with

negligible probability.

It is natural to consider the case of k = 2 pending agents:

Lemma 3.21. Symmetric protocols in equilibrium for the ΨD deadline cost function have

q2,t =

1/2 for 0 ≤ t ≤ D − 2,

1 otherwise.

Also, the expected cost C2,t = (1/2)D−t−1 for t ≤ D − 1.

Proof. For the deadline cost function ΨD the expected future cost of a single agent at time

t ≤ D − 1, F1,t = 0. However, the expected future cost for one of two pending agents can

never be 0 (Since 〈q〉2 is a symmetric protocol). It follows from Lemma 3.8 that for t ≤ D−2

we have

q2,t =
1

k − (k − 1)Fk−1,t+1

Fk,t+1

=
1

2− 0
F2,t+1

= 1/2.
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Fk,t Fk,t+1

Fk-1,t+1

ββββ
k,t < 0.3

1-ββββk,t < 0.8

(a) Good Edges

Fk-1,t+1

Fk,t
F

n,t /  F
n-1,t+1  < 2

(b) A Doubling Edge

Figure 3.4: (a) Edges of type “Good” with weight strictly less than 1. (b) An edge of type
“Doubling”; the weight at most 2.

For deadline cost function ΨD, the expected cost C2,t equals the probability of remaining

unsuccessful until the deadline, C2,t = (1/2)D−t−1.

For any deadline D and number of pending agents k we can give a recursive description

of the probabilities in equilibrium, qk,t, this gives an algorithm for the computation of

such qk,t, but we now turn to the asymptotic analysis of such equilibria. Obviously, for all

0 ≤ t < D, 2 ≤ k ≤ n, either Fk,t ≤ 2Fk−1,t or Fk,t > 2Fk−1,t. In the latter case, it follows

from Lemma 3.8 that

qk,t−1 =
1

k − (k − 1)Fk−1,t

Fk,t

<
1

k − (k − 1)/2
< 2/k.

We now describe a rooted tree, T = (V,E), with weights on the edges. For edge z,

w(z) is the weight of the edge (as illustrated in Figure 3.5). Vertices v ∈ V have labels

`(v) = (k, t) for some 1 ≤ k ≤ n, 0 ≤ t ≤ D. Not all the n(D + 1) possible labels need

appear on some vertex v ∈ V , and the same label may appear multiple times (`(v) = `(v′),

v 6= v′). The root vertex r is assigned the label `(r) = (n, 0), and is the only vertex so

labeled.

Given v ∈ V , with `(v) = (k, t), 2 ≤ k ≤ n, 0 ≤ t < D, we attach descendants to v as

follows (as illustrated in Figure 3.4):

• If Fk,t+1 ≤ 2Fk−1,t+1, then v has one descendant, x, with `(x) = (k − 1, t + 1).

Edge (v, x) is given weight w(v, x) = Fk,t/Fk−1,t+1. Note that w(v, x) ≤ 2, since

Fk,t ≤ Fk,t+1 ≤ 2Fk−1,t+1, where the first inequality follows Lemma 3.7. Such edges,

where v has a single descendant, are called doubling edges and the set of all such

edges is denoted by Ed.
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Root = (n,0)

(n,1) (n-1,1)

(n,2) (n-1,2) (n-1,2) (n-2,2)

(n,3) (n-1,3) (n-1,3) (n-2,3) (n-1,3) (n-2,3) (n-3,3)

Doubling edge

(n,D) (n-1,D) (1,D) (0,D)………………………

…
.

…
.

…
.

…
.

…
.

…
.

…
.

Good edge

Figure 3.5: An example of a tree formed as described in the analysis of Theorem 3.19.
Notice that multiple vertices may share the same label.

• Otherwise, v has two descendants, y, and x, where `(y) = (k − 1, t + 1) and `(x) =

(k, t+ 1). The weight w(v, y) = βk,t (See equation 3.2 to recall the definition of βkt),

and w(v, x) = 1− βk,t.

Notice that an edge e either connects a vertex labeled (k, t) with a vertex labeled (k −
1, t+ 1), or with a vertex (k, t+ 1).

Let L0 be the set of vertices v ∈ V with labels `(v) = (1, t), 0 ≤ t < D. Let L1 be the

set of vertices v ∈ V with labels `(v) = (k,D), 1 ≤ k ≤ n. The set L0 ∪ L1 is exactly the

set of leaves in T .

For any leaf v, where `(v) = (k, t), we define the real value c(v) = Ck,t. I.e., for

v ∈ L0, c(v) = 0 and for v ∈ L1, c(v) = 1. An internal vertex v with two descendants,

x, y, has c(v) = w(v, x)c(x) + w(v, y)c(y), an internal vertex v with one descendant, x, has

c(v) = w(v, x)c(x). It follows from the recursive construction of T and from the recursive

evaluation of the vertices cost c that c(r) = Cn,0.

For a leaf v in T let P (v) denote the set of edges along the path from the root r to v.
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One can rearrange the recursive summation for the value of c(r) as follows:

c(r) =
∑
v∈L0

c(v) ∏
g∈P (v)

w(g)

+
∑
v∈L1

c(v) ∏
g∈P (v)

w(g)


=

∑
v∈L1

 ∏
g∈P ′(v)

w(g)
∏

g∈P ′′(v)

w(g)

 ,

where P ′(v) = P (v) ∩ Ed and P ′′(v) = P (v) ∩ (E − Ed) = P (v)− P ′(v).

Next, we set an upper bound on the weight of an edge g ∈ E − Ed, of β defined as

β = max{βk,t, 1− βk,t} ≤ 1− 2
e2 , which is strictly less than 1.

Lemma 3.22. For all edges g ∈ E − Ed, w(g) ≤ β.

Proof. A vertex labeled (k, t) that has two descendants implies that qk,t <
2
k . The term

βk,t = (k − 1)qk,t(1− qk,t)k−2 as a function of qk,t is monotonically decreasing in the range

[ 1
k−1 , 1]. Hence, for k > 2,

2
e2
< (k − 1)

2
k

(
1− 2

k

)k−2

< βk,t < (k − 1)
1

k − 1

(
1− 1

k − 1

)k−2

≤ 1
2
.

The size of L1 is no more than
∑n

k=1

(
D
k

)
which is less than n

(
D
n

)
for a deadline D ≥ 2n.

The product of edges weights for edges in Ed is at most 2n, since there are at most n such

edges (this follows since a doubling edge decreases the first coordinate of the label by one,

and vertices with labels (1, t) are leaves). The product of edge weights for edges in E −Ed

along some path from r to v ∈ L1 decreases exponentially with the path length, which is at

least D − n.

It follows that ∏
g∈P (v)∩(E−Ed)

w(g) ≤ βD−n, and thus

c(r) ≤ n

(
D

n

)
2nβD−n.

For D = bn,
(
D
n

)
< (eb)n and therefore c(r) ≤ eΘ(n ln b)−nb ln(1/β) which is exponentially

decreasing in D = bn. The value c(r) is the probability that a specific agent will fail to

successfully transmit before the deadline. It follows that the probability that all n agents
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are successful prior to the deadline is at least 1− nCn,0. Setting b = 15 suffices to have the

cost c(r) diminishes in n when the deadline is set to bn.

Remark 3.23. The choice of the constant 2 in the analysis (i.e., vertex (k, t) has a single

descendant if Fk,t+1 ≤ 2Fk−1,t+1 and two descendants otherwise) was arbitrary. Optimizing,

we can reduce the requirement on the deadline in Theorem 3.19 from being at least 15n to

being at least 12.3n. This is done by changing the construction rule so that a vertex (k, t)

has a single descendant if Fk,t+1 < 3.4Fk−1,t+1 and two descendants otherwise.

An Efficient Protocol for Agents with Linear Latency Cost

We now describe an efficient protocol Q∗D,M , in equilibrium for latency cost agents. Our

algorithm “tricks” the agents into acting as if they have deadline costs Ψ∗
D=100n,M=exp(9n).

This is achieved as follows: any k ≥ 3 pending agents at time t = D transmit continuously

for M time slots, following which they revert to the time independent protocol for latency

cost (see Section 3.3, and the discussion at the end of this Section). Then, Theorem 3.19

applies and we can conclude that the protocol is not only in equilibrium but also efficient.

Effectively, this means that the utility function for the agents is no longer latency costs

but rather Ψ∗
D,M , where M is chosen to be very large, M = exp(O(n)).

Consequently, the future cost of this protocol for k ≥ 3 agents at time D, Fk,D, is

at least M . Precisely, it is M plus the expected delay of the time independent protocol

derived in Section 3.3, which is O(exp(1.5
√
n)) (from Corollary 3.18). Define vertices v

labeled (k,D), k ≥ 3, to be leaves of a tree with c(v) ≥ M (analogously to the set L1

above). Define vertices v labeled (1, j), j ≤ D, to be leaves with c(v) = j. Likewise,

vertices (1, D) and (2, D) are leaves with c(v) = O(1). Define the weights of the edges as

above, by construction, Cn,0 = c(r).

Theorem 3.24. Protocol Q∗D,M is in equilibrium for the Ψ∗
D,M cost function. If the deadline

D > 100n and M = exp(9n) then the probability that not all agents succeed prior to the

deadline is negligible (1/eΘ(D)).

The analysis of this protocol is closely related with the analysis of the protocol for the

pure deadline cost function ΨD — Intuitively, as M increases we expect Ψ∗
D,M to become

more and more “similar” to ΨD. Specifically, we set M = e9n. For this choice of M we

could still choose the factor b large enough, so that the second term in the sum of c(r)

(equation (3.17)), diminishes with n.
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Unlike the analysis for deadline cost function, where agents successful prior to the dead-

line had a cost 0, the first term of the left hand side in equation (3.17), does not nullify.

Nevertheless, we could still bound it from above by the number of distinct paths that lead

to a vertex in L0, times the value of such vertex, which cannot exceed D, times the weight

of the path, which cannot exceed 2n.

We get that for large enough b, c(r) << M , from which it follows that the probability

that an agent remains in the system at time D is negligible.

It is important to remark that the expected cost is not linear, rather - the protocol

completes in linear time with all but negligible probability.

Formally, let us set b = 100, and M = e9n. The cost of Cn,0 = c(r) consists of the cost

contributed by L0 leaves (with cost at most D), and that contributed by the L1 leaves (with

cost at least M). The contribution by the L0 leaves has an upper bound of e8n:

∑
v∈L0

c(v) ∏
g∈P (v)

w(g)

 ≤
∑
v∈L0

2nD

≤
D∑

m=n

(
m

n

)
2nD

≤ D

(
D

n

)
2nD

≤ D2(be)n2n

≤ (be)3n

= en log b+3

≤ e8n

The cost of a leaf in L1 is at most M plus the expected latency of the time independent

protocol for the linear cost, which is at most 2n. The contribution from the L1 leaves

diminishes with n, for our choice of b:

∑
v∈L1

c(v) ∏
g∈P (v)

w(g)

 < n(eb)n2nβ−nβbn(M + exp(1.5
√
n)))

≤ elog(b)(n+11)elog(β)bn

≤ e−n
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Discount Factor Transmission Probability Efficiency
0 < δ < 1 1− δ ≥ qk exp(O(n))
δ = 1 qk = Θ(1/

√
k) exp(O(

√
n))

1 < δ < 2, q2 = −1+
√

1+4δ
2δ Θ(1)

k = 2
1 < δ < 2, unknown unknown — if a protocol
k > 2 exists, it attains

linear expected latency
2 ≤ δ undetermined — the expected cost of undetermined

any protocol is ∞

Table 3.2: This table summarizes our results regarding time independent symmetric equi-
librium for cost functions of the form Ψ(t) =

∑t−1
τ=0 δ

t. The second column tells us the
transmission probability when there are k agents pending, and the third column is the ex-
pected latency of the protocol. For δ > 2, and any number of agents k ≥ 2, any protocol
yields an infinite expected cost. This does not fit our cost model, where an agent’s prefer-
ence order between protocols is based on their expected cost. For 1 < δ < 2 we can show
the existence of a protocol in equilibrium only for two agents.

In conclusion, we get that the expected cost for an agent in of the Ψ∗
D,M protocol is

O(e8n), which is significantly less than the expected cost for agents that are not successful

prior to the deadline (in which case the cost is greater than M). Thus, due to Markov

inequality, an agent is successful prior to D, with probability of at least c(r)/M < e−n.

3.5 Discounted Latency Cost

In Section 3.3 we analyzed the performance of the unique symmetric, time-independent

protocol in equilibrium for the linear latency cost function. In this section we show that

such a symmetric equilibrium in time-independent strategies exists for a broader class of

cost functions of the form Ψ(t) =
∑t

j=0 δ
j , where δ < 1 is a discount factor. Discounting is

common in the analysis of repeated games, and have the interpretation that the extra cost

of delaying another time slot diminishes over time.

For such cost functions it is convenient to consider a rent function ψ(t) for the marginal

cost at time slot t, i.e., ψ(t) = δt.

It turns out that δ = 1 is a critical point for the expected time it takes to resolve con-

tention in symmetric equilibrium. When δ < 1 the transmission probability in equilibrium

is bounded from below by a constant that depends only on δ and therefore the expected
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time for transmission is exponential in the number of agents. The case δ = 1 has already

been treated in Theorem 3.12, where we show that time independent protocols for linear

costs (i.e., δ = 1) have expected latency Θ(exp(
√
n)).

When δ < 1 the cost of an agent is bounded from above by a constant 1/(1 − δ), no

matter what protocol is in use, and even if her delay is infinite9. However, the expected

time until a successful transmission is exponential in the number of agents, due to a very

aggressive transmission rate. Intuitively, agents with decaying costs are aggressive in every

step as the rent of this step dominates the rest of the expected payments.

Theorem 3.25 characterizes the transmission probability in equilibrium for a whole range

of 0 < δ < 1.

Theorem 3.25. There exits a unique time-independent, symmetric, and non-blocking pro-

tocol 〈q〉n in equilibrium q = 〈q1, . . . , qn〉 for rent functions of the form δt, for 0 < δ < 1.

Furthermore, the transmission probability qk < 1− δ, 2 ≤ k ≤ n.

For the proof of Theorem 3.25 we use the fact that time is irrelevant in the description

of equilibrium in time-independent strategies, for such cost functions, as shown in Lemma

3.26.

Lemma 3.26. For a symmetric time-independent strategy q = 〈q1, . . . , qn〉, and a rent

function ψ(t) = δt,

Ck,t+1 = 1 + δCk,t ; Fk,t+1 = δFk,t

Proof. Consider a rent function δt, δ < 1. First, observe that for an exponential rent

function,

Ψ(t+ 1) =
t∑

τ=0

δτ = 1 +
t∑

τ=1

δτ = 1 + δΨ(t) .

Also, at every slot, the expected time until successful transmission T , for some pending agent

Alice, depends only on the number of pending agents. Recall that the random variable Tk,t

describes the time of a successful transmission when there are k agents pending at time t.

For time-independent strategies, the probability of a successful transmission in i time slots

depends only the number of pending agents, i.e.,

Pr[Tk,t = t+ i] = Pr[Tk,s = s+ i] .

9Simply because the sum of the geometric series 1 + δ + δ2 . . . < 1/(1− δ).
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This means that for every i,k,t, the random variable Tk,t+i has the same distribution as the

random variable (Tk,t + i),

Pr[(Tk,t+i) = t+M ] = Pr[Tk,t = t+M−i] = Pr[Tk,t+i = t+i+M−i] = Pr[Tk,t+i = t+M ] ,

and therefore,

Ck,t+1 = E[Ψ(Tk,t+1)] = E[Ψ(Tk,t + 1)] = E[1 + δΨ(Tk,t)] = 1 + δE[Ψ(Tk,t)] = 1 + δCk,t .

The future expected cost in slot t+ 1 with k pending agents can be written in terms of the

future expected cost in slot t with k pending agents,

Fk,t+1 = Ck,t+1 −Ψ(t+ 1) = 1 + δCk,t − (1 + δΨ(t)) = δFk,t .

Proof of Theorem 3.25. For the existence and uniqueness part of Theorem 3.25 we take a

similar approach to the one we used in the proof of Theorem 3.12. To compute Fk,t when

k ≥ 2 we consider agent Alice, one of k ≥ 2 pending agents at time t. Assume Alice deviates

from q and continuously transmits until successful. This pure strategy is in the support of

q, therefore it has an expected cost equal to that of q. As Alice continuously transmits, no

agent other than Alice can succeed while Alice is pending. Recall that αk = (1− qk)k−1 is

the probability Alice is successful in a slot 10.

Alice’s latency is geometrically distributed with parameter αk. Her actual cost is not

10the index t is dropped from αk,t, since the transmission probability is time independent.
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geometrically distributed, but can nevertheless has an explicit form:

Fk,t =

( ∞∑
τ=1

(1− αk)τ−1αkΨ(τ + t)

)
−Ψ(t) (3.17)

=
∞∑

τ=1

(1− αk)τ−1αk (Ψ(τ + t)−Ψ(t)) (3.18)

=
∞∑

τ=1

(1− αk)τ−1αk

τ+t−1∑
j=0

δj −
t−1∑
j=0

δj

 (3.19)

=
∞∑

τ=1

(1− αk)τ−1αkδ
t

τ−1∑
j=0

δj (3.20)

= αkδ
t
∞∑

τ=1

(1− αk)τ−1 δ
τ − 1
δ − 1

(3.21)

=
αkδ

t

δ − 1

( ∞∑
τ=1

(1− αk)τ−1δτ −
∞∑

τ=1

(1− αk)τ−1

)
(3.22)

=
αkδ

t

δ − 1

(
δ

1
1− δ(1− αk)

− 1
1− (1− αk)

)
(3.23)

= δt 1
1 + δ(αk − 1)

(3.24)

Notice that in passing from Line 3.22 to Line 3.23 we used the fact that both 0 < δ < 1,

and 0 < 1− αk < 1, to assert convergence of the corresponding infinite summations.

Combining equations (3.17-3.24), and equation (3.5) yields Fk,t as a function of qk:

Fk−1,t = δt 1
1 + δ((1− qk)k−1 − 1)

(1− 1− qk
(k − 1)qk

) (3.25)

We show now by induction on the number of pending agents that for every 0 < δ < 1,

a non-blocking time-independent protocol in equilibrium exists. For the induction base we

will show that 0 < q2 < 1. Recall that in equilibrium the transmission probability of a single

pending agent, at any time t, is 1. Accordingly, her future cost is F1,t = Ψ(t+1)−Ψ(t) = δt.

Together with the last equality, we have the following equation when k = 2, for every t ≥ 0:

δt = δt 1
1− δq2

(1− 1− q2
q2

). (3.26)

Equation (3.26) has a unique positive solution for q2, for every 0 < δ < 1, q2 = −1+
√

1+4δ
2δ .
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Thus, 0 < q2 < 1, i.e., strictly mixed transmission probability.

For the induction step assume that Fk−1,t is strictly smaller than 1/(1 − δ). Consider

the right hand side of equation (3.25), and let f denote the function

f(qk) = δt 1
1 + δ((1− qk)k−1 − 1)

(1− 1− qk
(k − 1)qk

),

which is continuous and increasing. For every 2 ≤ k, 0 < δ < 1 we have f(0) = 0, and

limqk→1 f(qk) = 1/(1− δ). Namely, qk = f−1(Fk−1,0) is well defined when Fk−1,t belongs to

the half open interval [0, 1
1−δ ).

We conclude that a symmetric, non-blocking, and time independent protocol exists, for

every 0 < δ < 1, and following the fact f−1 is well defined, it is also unique.

We now turn to show the lower bound on the transmission probabilities. We first bound

Fk,t, the expected additional cost at state (k, t), from above.

Fk,t <
∞∑

τ=t+1

δτ−1 =
δt

1− δ
. (3.27)

Now, let us bound Fk,t from below. Consider a miraculous scenario, where there is a

successful broadcast on each of the next k slots. Let OPT denote the average future cost

on this scenario. Clearly, the true Fk,t, cannot be less than OPT.
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Fk,t ≥ OPT =
1
k

k−1∑
i=0

Ψ(i+ (t+ 1))−Ψ(t)

=
1
k

k−1∑
i=0

i+t∑
j=t

δj

=
1
k

k−1∑
i=0

δt
i∑

j=0

δj

=
δt

k

k−1∑
i=0

1− δi+1

1− δ

=
δt

k
· 1
1− δ

k−1∑
i=0

1− δi+1

=
δt

1− δ
− δt+1

k(1− δ)

k−1∑
i=0

δi

=
δt

1− δ
− δt+1

k(1− δ)
· 1− δk

1− δ

=
δt

1− δ
(1− 1

k
δ(

1− δk

1− δ
))

The last inequality combined with inequality (3.27), implies that, Fk−1,t

Fk,t
> 1− 1

k−1δ(
1−δk−1

1−δ ).

Using Lemma 3.8, we get that

qk =
1

k − (k − 1)Fk−1,t

Fk,t

>
1

k − (k − 1)(1− 1
k−1δ(

1−δk−1

1−δ ))
>

1
1 + δ

1−δ

= 1− δ ,

which settles the upper bound on qk for the case 0 < δ < 1.

Impatient Agents. A discounted factor, 0 < δ < 1 means that an agent values one unit

of time now, more than he would in the next period. If we choose δ > 1, then the cost

function would describe an impatient agent — the cost of waiting increases exponentially

with every step. How would such a cost function affect the equilibrium?

In the proof of existence and uniqueness of the symmetric, time-independent, non-

blocking equilibrium above, we did not explicitly use the fact that δ < 1. However, it has
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been implicitly when we treated Fk,t as finite. On the contrary, when δ > 1, the expected

cost need not be finite. In fact, for large enough δ, no protocol, in equilibrium or not, yields

a finite expected cost.

To show this, reconsider equation (3.17), which describes the expected cost of a protocol

with exponential rent function ψ(t) = δt. Notice that nothing changes in the developing

of equation (3.17) until line (3.24), except that the summation in line (3.17) need not

necessarily converge. To see this notice that in Line 3.22 the second summation converges

when αk < 1 (I.e., the protocol is non blocking), while the first summation converges if and

only if the term (1 − α)δ is strictly less than 1. Hence, the success probability αk must

satisfy αk < 1− 1/δ, i.e.,

Fk,t =
∞∑

τ=1

(1− αk)τ−1αkδ
t

τ−1∑
j=0

δj =

{
δt 1

1+δ(αk−1) αk > 1− 1/δ;

∞ otherwise.

For the special case of 2 agents, the above analysis yielded the closed form q2 =
−1+

√
1+4δ

2δ , and therefore, α2 = (1 − −1+
√

1+4δ
2δ ). Substituting 1 − 1/δ from this expres-

sion we get:

α2 − 1/(1− δ) =
−3 +

√
1 + 4δ

2δ
,

which is greater than 0 for every 1 < δ < 2. Thus, for 2 agents, we have extended the region

of δ in which a unique symmetric equilibrium exists, to 0 < δ < 2.

Our analysis in this chapter is based on a preference order derived by the utility function.

It does not tell us how what a user preference is in the case that two protocols have expected

cost that diverges to infinity. Notice that the sum in equation (3.17) diverges for every δ > 2;

the transmission probability in equilibrium is always greater than 1/k, and therefore the

success probability αk is at most (1− 1/k)k−1 < 1/2, for k ≥ 2.

In corollary 3.10 we show that the transmission probability in equilibrium qk is at least

1/k, and therefore αk is at most (1− 1/k)k−1 ≈ 1/e for large k. Therefore, in our analysis

of protocols for k agents, we can rule out δ such that δ > e/(e− 1).

In the next theorem we are able to derive some upper bound on the transmission prob-

ability, conditioned on having finite expected cost. However, the bound is not enough to

show that the cost is indeed finite.

Theorem 3.27. If there exists a symmetric time-independent, non-blocking equilibrium, in

which every agent has a finite expected cost, then the transmission probability in equilibrium
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is such that

qk <
1

k − 1
δ

(δ − 1)e
.

Proof. Recall the definitions of αk,t, βk,t (in equations (3.1), (3.2)). The time index t is

redundant in the description of αk,t, βk,t, since time independent strategies are considered.

Hence we will write αk, βk instead. The expected cost

Ck,t = αk ·Ψ(t+ 1) + βkCk−1,t+1 + (1− αk − βk)Ck,t+1. (3.28)

Using Lemma 3.26 we can remove the dependence on time in equation (3.28),

Ck,t = αk · (1 + δΨ(t)) + βk(1 + δCk−1,t) + (1− αk − βk)(1 + δCk,t).

Rearranging we get

(Ck,t −Ψ(t))(1− δ(1− (αk + βk)))− δt+1 = δβk(Ck−1,t −Ψ(t)) ,

and since δt > 0

(Ck,t −Ψ(t))(1− δ(1− (αk + βk))) > δβk(Ck−1,t −Ψ(t)) .

We replace expected cost with future expected cost and get that

Fk−1,t

Fk,t
=
Ck−1,t −Ψ(t)
Ck,t −Ψ(t)

<
(1− δ(1− (αk + βk)))

δβk
.

Replacing αk, βk as a function of qk, we get an upper bound on Fk−1,t

Fk,t
as a function of qk

and k.
Fk−1,t

Fk,t
<

1− δ(1− kqk(1− qk)k−1)
δ(k − 1)qk(1− qk)k−1

. (3.29)

Let g(q) = q(1 − q)k−1, and let f(x) = 1−δ(1−kx)
δ(k−1)x . The right hand side of inequality (3.29)

equals f(g(qk)). We show now an upper bound on f(g(q)) in the range q ∈ [0, 1]. Note that

argmaxq∈[0,1]g(q) = 1/k. Therefore, g(q) ≤ 1
k−1(1− 1

k )k < 1
e(k−1) , for every 0 ≤ q ≤ 1. For
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x < 1
e(k−1) ,

f(x) =
1− δ(1− kx)
δ(k − 1)x

=
k

k − 1
− δ − 1
δ(k − 1)x

<
k

k − 1
− δ − 1
δ(k − 1) 1

e(k−1)

<
k

k − 1
− e(δ − 1)

δ

Using Lemma 3.8, we get that

qk <
1

k − (k − 1)( k
k−1 −

e(δ−1)
δ )

=
1

k − 1
· δ

e(δ − 1)
,

Unfortunately, although Theorem 3.27 provides an asymptotically optimal bound on

the transmission probability, it does not tight enough to guarantee the convergence of the

expected cost. Theorem 3.27 does not guarantee that the transmission probability qk does

not get as high as 1
k−1 ·

δ
e(δ−1) . In this case, the success probability has an upper bound of

1− 1/δ, since

αk =
(

1− 1
k − 1

· δ

e(δ − 1)

)k−1

(3.30)

< e
− δ

(δ−1)e (3.31)
(a)

≤ 1
1 + δ

(δ−1)e

(3.32)

=
(δ − 1)e

(δ − 1)e+ δ
(3.33)

<
(δ − 1)e

(δ − 1)e+ δe
(3.34)

= 1− 1
δ
, (3.35)

where inequality (a) follows from the known relation e−x < 1/(1 + x), for every x 6= −1.

It remains open to show that either cost is finite, for some range of δ > 1, or that no such

equilibrium exists. If there is a range of δ > 1 where the cost of the symmetric equilibrium
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is finite, then Theorem 3.27 suggests that when agents have exponentially growing costs we

observe a phenomenon which resembles the altruism that characterized agents with deadline

— its better to cooperate now, since the future is very costly.

3.6 Future Research Directions

Natural directions for future research include the following:

(i) Give a protocol for latency costs with expected linear cost (not only with high prob-

ability). Alternately, prove that no such protocol exists.

(ii) Strategic behavior when the number of agents pending is unknown.

(iii) Allow packets to be inserted over time.

(iv) Other congestion functions, not only all or nothing. E.g., the outcome of a collision

is probabilistic and results in no packet being transmitted with probability p0, and

one random packet being successful with probability p1. Another example would be

where the probability of noise causing a packet to be dropped grows with the number

of conflicting transmissions.

(v) Consider more general networks, not only a single link.

Perhaps the most interesting direction for future research is to consider generalizations

of Wardrop equilibria, or other equilibrium notions from the field of congested networks.

Previous work on strategic behavior for multi-commodity flow implicitly assumes a steady

state where the (si, ti) flow for agent i has an associated “flow rate”, the number of gallons

per minute or the bandwidth.

Our work above suggests another parameter for study, the flow duration, i.e., agent i

requires flow from si to ti for a duration of di. E.g., the flow rate is the bandwidth required

to transmit MPEG, the flow duration is the length of the movie. In this setting, it may be

advisable to behave politely and allows others to transmit so as to get them out of the way.

E.g., it may be advisable to leave home at 10:00 AM so as to avoid rush hour traffic.



Chapter 4

Socially Concave Games

We study a general sub-class of concave games, which we call socially concave games.

We show that if each agent follows any no-external regret minimization procedure then

the dynamics converges in the sense that both the average action vector converges to a

Nash equilibrium and that the utility of each agent converges to her utility in that Nash

equilibrium.

We show that many natural games are socially concave games. Specifically, we show

that linear Cournot competition, linear resource allocation games, and atomic, splittable,

congestion games, with affine latencies, are all socially-concave games, and therefore our

convergence result applies to them. In addition, we show that a simple best response

dynamic might diverge for linear resource allocation games, and is known to diverge for

a linear Cournot competition, and for atomic, splittable congestion games. For the TCP

congestion games we show that “near” the equilibrium these games are socially-concave,

and using our general methodology we show convergence of specific regret minimization

dynamics.

In this chapter we will be studying no-external regret dynamics in a general subclass

of games. In a concave game the utility function of each agent is concave in her own

action. Rosen [89] showed that a Nash equilibrium in pure strategies always exists in

such games. We concentrate on a sub-class of concave games, which we call socially concave

games. We show that many interesting games are socially-concave. including linear Cournot

competition [77], linear resource allocation games [63], and atomic, splittable routing games

with affine costs [23, 54, 92].1 In Chapter 5 we show that a class of congestion avoidance

1In a linear Cournot competition multiple firms compete by setting their production levels, and the price

69
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Expression Definition
Γ A general game.

ΓC ,ΓR Linear Cournot game; Linear resource allocation.
ΓTD,ΓRED Congestion avoidance games with

Tail-Drop policy, and RED policy respectively.
N The set of agents.
Ri An upper bound on the regret of agent i at time t.
Si The strategy space of agent i.
S The product of all agents’ strategy spaces.
ui(·) The utility function of agent i.

xτ = (xτ
1 , . . . , x

τ
n) The action profile played at time τ of the repeated game.

x̂t The average action profile at time t, i.e., x̂t = 1/t
∑t

τ=1 x
τ .

BRi(x) The best response of agent i to when the other agents play
action profile x−i.

λ = (λ1, . . . , λn) Positive weights on the agents utilities, such that
∑

i∈N λiui

is a concave function. By definition 4.1, λ exists in every
socially concave game.

Table 4.1: Notation in use.

games [65] are socially-concave “near” their equilibrium.

We derive a general convergence result, showing that if each agent follows a no-external

regret procedure, then the dynamics, in any socially-concave game reaches an equilibrium.

The convergence is both of the average action vector, and the average utility of the individual

agents. On the other hand, we show that a best response dynamics might diverge for linear

resource allocation games, and for atomic routing games, and it is known to diverge for

linear Cournot competition [96].

For the TCP congestion avoidance setting we study two different games, depending

on how the network handles overflow. The first is related to router’s tail-drop policies,

was proposed in [65], and studied in the context of competitive online algorithms [65, 10].

We also study a game motivated by router’s policy of Random Early Discard (RED) [42].

In both cases, although the games are not socially-concave, we show that gradient based

no-external regret procedures (such as [103]) guarantee the desired convergence.
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4.1 Preliminaries

In this chapter we consider a one stage concave game Γ = {N, {Si}i∈N , {ui}i∈N}
We assume that the strategy space Si is a closed, convex and bounded action set and

that Si ⊂ Rmi for some mi ∈ N. Also, we assume that the utility functions ui are twice

differentiable and bounded from above by 1.

In his seminal paper, Rosen [89] considered the class of concave games, where every

agent’s utility function ui is concave in her own action si ∈ Si. In this chapter we consider

a closely related class we denote socially concave games, which we now define.

Definition 4.1. A game is socially concave if the following holds:

A1 There exists a strict convex combination of the utility functions which is a concave

function. Formally, there exists an n-tuple (λi)i∈N , λi > 0, and
∑

i∈N λi = 1, such

that g(x) =
∑

i∈N λiui(x) is a concave function of x in the domain S =
∏

i∈N Si.

A2 The utility function of each agent i, is convex in the actions of the other agents,

i.e., for every si ∈ Si the function ui(si, x−i) is convex in x−i in the domain S−i =∏
j∈N,j 6=i Sj.

For a socially concave game Γ, we denote by λ(Γ), the set of all vectors λ for which

property A1 holds. Next, we show that the class of socially concave games is a sub-class of

concave games.

Lemma 4.2. Let Γ = {N, {Si}i∈N , {ui}i∈N} be a socially concave game. If the set Si is

compact for every i ∈ N , then Γ is a concave game.

Proof. Fix an agent i ∈ N and a vector x−i ∈ S−i. The function ui can be written as

ui(xi, x−i) =
1
λi

∑
j∈N

λjuj(xi, x−i) +
∑

j∈N,j 6=i

λj(−1)uj(xi, x−i)

 .

Following property (A1), the first term inside the parenthesis is a concave function of x and

therefore also a concave function of xi. Following property (A2), for every j ∈ N, j 6= i the

function −uj is concave in x−j , and therefore also concave in xi, as i belongs to the set of

indices −j. Accordingly, the second term inside the parenthesis is also a concave function

of xi. The claim then follows.

is a linear function of the overall production level. In a linear resource allocation game where the agent
receive a share of the resource (e.g., bandwidth or a market share), as a function of their investment.
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Rosen [89] showed that every concave game has a Nash equilibrium point in S. Therefore,

a Nash equilibrium exists in every socially concave game with compact strategy sets.

4.2 Main Result

We show that for the class of socially concave games, no-external regret behavior leads to

a Nash equilibrium. For every t, let x̂t be the average of the n-tuples of strategies played

up to time t, that is x̂t = 1
t

∑t
τ=1 x

τ . Let ût denote the average utility vector up to time t,

that is, for every agent i, ût
i = 1

t

∑t
τ=1 ui(xτ ).

Theorem 4.3 (Main Theorem). Let Γ = (N, (Si)i∈N , (ui)i∈N ) be an n-agents socially

concave game, and let λ ∈ λ(Γ), λ = (λi)i∈N , be the constants of property A1 in the

definition of socially concave games. If every agent i plays according to a procedure with

external regret bound Ri(t), then at time t,

(i) The average strategy vector x̂t is an εt-Nash equilibrium, where εt = 1
λmin

∑
j∈N

λjRj(t)
t

and λmin = minj∈N λj.

(ii) The average utility of agent i is close to her utility at x̂t, the average vector of strate-

gies. Formally,

|ût
i − ui(x̂t)| ≤ 1

λi

∑
j∈N

λjRj(t)
t

.

Proof. The proof follows six steps:

Step I: By definition of regret minimization algorithms, for any period {1, . . . , t}, each

agent i ∈ N has low regret to any action si ∈ Si. Specifically, we can apply it to the best

response action to x̂t
−i = 1

t

∑t
τ=1 x−i, denoted BRi(x̂t

−i) ∈ Si. Therefore,

ût
i =

1
t

t∑
τ=1

ui(xτ ) ≥ max
si∈Si

1
t

t∑
τ=1

ui

(
si, x

τ
−i

)
−Ri(t) ≥

1
t

t∑
τ=1

ui

(
BRi(x̂t

−i), x
τ
−i

)
−Ri(t)

t
. (4.1)

Step II: Fix an action yi ∈ Si of agent i. Property (A2) states that ui(yi, x−i) is convex

in its second argument x−i, which implies,

1
t

t∑
τ=1

ui(yi, x
τ
−i) ≥ ui(yi,

1
t

t∑
τ=1

xτ
−i) = ui(yi, x̂

t
−i). (4.2)
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Step III: By definition of best response, for every n-tuple of strategies y ∈ S,

ui(BRi(y−i), y−i) ≥ ui(y). (4.3)

Step IV: Property (A1) states that for some λ = (λi)i∈N , g(x) =
∑

i∈N λiui(x) is

concave. By the concavity of g(x) we have that,

∑
i∈N

λiui(x̂t) =
∑
i∈N

λiui

(
1
t

t∑
τ=1

xτ

)
≥
∑
i∈N

λi

t∑
τ=1

1
t
ui(xτ ) =

∑
i∈N

λiû
t
i. (4.4)

Step V: Combining inequalities (4.1)—(4.4) we get the following chain of inequalities:

∑
i∈N

λiû
t
i =

∑
i∈N

λi

(
1
t

t∑
τ=1

ui(xτ )

)
(a)
≥

∑
i∈N

λi

(
1
t

t∑
τ=1

ui

(
BRi(x̂t

−i), x
τ
−i

)
− Ri(t)

t

)
(b)
≥

∑
i∈N

λi

(
ui(BRi(x̂t

−i), x̂
t
−i)−

Ri(t)
t

)
(c)
≥

∑
i∈N

λi

(
ui(x̂t)− Ri(t)

t

)
(d)
≥

∑
i∈N

λi

(
1
t

t∑
τ=1

ui(xτ )

)
−
∑
i∈N

λi
Ri(t)
t

,

where (a) follows from (4.1), (b) follows from (4.2) with yi = BRi(x̂t
−i), (c) follows from

(4.3) with y = x̂t, and (d) follows from (4.4).

The above inequalities imply that∣∣∣∣∣∑
i∈N

λiui(x̂t)−
∑
i∈N

λiui(BRi(x̂t
−i), x̂

t
−i)

∣∣∣∣∣ ≤∑
i∈N

λi
Ri(t)
t

,

since given any set of ai’s such that a1 ≥ a2 ≥ a3 ≥ a4 ≥ a5 we have that |a3−a2| ≤ |a1−a5|.
Hence, ∑

i∈N

λiui(x̂t) ≥
∑
i∈N

λiui(BRi(x̂t
−i), x̂

t
−i)−

∑
i∈N

λi
Ri(t)
t

. (4.5)
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By definition, for every i, ui(x̂t) ≤ ui(BRi(x̂t
−i), x̂

t
−i). Therefore, For every j ∈ N ,

∑
i6=j

λiui(x̂t) ≤
∑
i6=j

λiui(BRi(x̂t
−i), x̂

t
−i).

Combining this with (4.5) we get that for every j ∈ N ,

λjuj(x̂t) ≥ λjuj(BRj(x̂t
−j), x̂

t
−j)−

∑
i∈N

λiRi(t)
t

.

Thus x̂t is an εt-Nash equilibrium for εt = 1
λmin

∑
i∈N λi

Ri(t)
t .

Step VI: Similar to Step V, from inequalities (4.1), (4.2) and (4.3),

ût
i =

(
1
t

t∑
τ=1

ui(xτ )

)
(a)
≥

1
t

t∑
τ=1

ui

(
BR(x̂t

−i), x
τ
−i

)
− Ri(t)

t

(b)
≥ ui(BRi(x̂t

−i), x̂
t
−i)−

Ri(t)
t

(c)
≥ ui(x̂t)− Ri(t)

t

where (a) follows from (4.1), (b) follows from (4.2), and (c) follows from (4.3). Therefore,

it follows that the average utility of agent i, ût
i, is at least her utility when the average

strategy vector is played, ui(x̂t), minus her own average regret,

ût
i ≥ ui(x̂t)− Ri(t)

t
. (4.6)

From inequality (4.4) we have that
∑

i∈N λiui(x̂t) ≥
∑

i∈N λiû
t
i. Therefore,

ût
i − ui(x̂t) ≤ 1

λi

∑
j 6=i|j∈N

λj

(
uj(x̂t)− ût

j

)
≤ 1
λi

∑
j 6=i|j∈N

λj
Rj(t)
t

≤ 1
λi

∑
j∈N

λj
Rj(t)
t

, (4.7)

where the second inequality follows from (4.6).

Combining inequalities (4.6), and (4.7), we bound the difference between agent’s i av-

erage utility and its utility at x̂t, i.e.,

|ût
i − ui(x̂t)| ≤ 1

λi

∑
j∈N

λj
Rj(t)
t

.
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The following are immediate consequences of Theorem 4.3. First, if every agent employs

a no-regret algorithm, then the average strategy vector converges to a Nash equilibrium, and

the average utility of each agent converges to her utility at that Nash equilibrium. Also, if

every agent employs the generalized infinitesimal gradient ascent algorithm [103], which has

regret O(
√
t), then after t steps the average strategy vector is an O(n/

√
t)-Nash equilibrium

and the average utility of each agent differs from her utility at that Nash equilibrium by at

most O(n/
√
t), assuming that λmin is bounded away from zero and that the utility’s values

are in the range [0, 1].

A natural question to be asked is whether a stronger convergence result holds, where

the daily action profile converges to Nash equilibrium, and not only the average action

profile. Unfortunately the answer is negative. If the only requirement regarding the learning

algorithm is that it guarantees no external-regret, then there exists pathological no-regret

algorithms for which the daily actions profile does not converge, but rather oscillate between

several work points.

Theorem 4.4. When each agent employs some no external-regret algorithm, the daily ac-

tion profile need not necessarily converge.

Proof. We give a proof in Section 4.5.2, based on a routing game defined there.

4.3 Cournot Competition

Cournot competition [29] is a fundamental economic model used to describe competition

between firms. The model considers multiple firms (oligopoly), which produce the same

good. The main interaction between the firms is due to their influence on the good market

price. Specifically, each firm decides on its production level (the quantity it produces from

the good), and incurs an associated cost (which depends on the quantity, and may be

different for different firms). The revenue of a firm is the product of its quantity and the

market price, where market price depends on the aggregate quantity produced by all firms.

Let us first define formally a Cournot competition.

Definition 4.5. A Cournot competition is a game ΓC = (N, (Si)i∈N , (ci)i∈N , p, (ui)i∈N ),

where N is the set of firms, Si = R+ is the quantity firm i decides to produce, ci : Si → R+
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is the cost of firm i to produce a quantity qi, and p : S → R+ is the price of the good

(where p(s) is a function of the aggregate quantity s =
∑

i∈N si), and ui : S → R is firm

i utility such that ui(s) = sip(s) − ci(si). A linear Cournot competition is a Cournot

competition where p(s) = a − b(
∑

i∈N si), where a and b are some positive constants and

the cost function ci are convex.

A well known result by Cournot (cf. [49, pp. 11]), is that if two firms participate in

linear Cournot competition, and both play simultaneously the best response dynamics, then

their joint play converges to equilibrium. Theocharis [96] showed that the best response

dynamics fails to converge in linear Cournot competition, whenever there are four or more

firms participating.

We show that in a linear Cournot competition, if each firm bases its production level

on a no-external regret algorithm, then the firms’ average utilities and quantities produced

converges to the unique Nash Eequilibrium of the linear Cournot competition.

Lemma 4.6. A linear Cournot competition is a socially concave game.

Proof. To show that property A1 holds, consider the aggregate utility:

g(s) =
∑
i∈N

ui(s) =
∑
i∈N

si(a− b(
∑
j∈N

sj))−
∑
i∈N

ci(si),

which is concave in s, hence Assumption (A1) in Definition 4.1 holds. Since ui(si, s−i) =

a−b(
∑

j∈N sj)−ci(si) is a linear function in s−i it is also convex in s−i, hence, Assumption

(A2) in Definition 4.1 holds as well.

Since a linear Cournot competition is a socially concave game, Theorem 4.3 implies the

convergence of the no-external regret dynamics.

Theorem 4.7. In a linear Cournot competition, if each firm i ∈ N employs a procedure

with no external regret, then the average production level of every firm converges to its

production level in a Nash equilibrium, and the average utility of each firm converges to its

utility in that Nash equilibrium.

Remark: We can show convergence for a larger class of Cournot competition. Namely,

consider the case that the cost functions ci are convex, xp(x) is concave, and p(x) is convex,

where x =
∑

i∈N si. Since p(x) is convex, it implies that ui(s) is convex in s−i, and this
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satisfies Assumption (A2) in Definition 4.1. Since the function g(s) =
∑

i∈N sip(x)−ci(si) =

xp(x) −
∑

i∈N ci(si) is concave, property (A1) in Definition 4.1 holds. Therefore, this is a

socially concave game, and Theorem 4.3 guarantee the convergence.

4.4 Linear Resource Allocation Games

In a resource allocation game [51, 63] n users share a communication link of capacity C > 0

(we assume without loss of generality C = 1). Let di denote the rate allocated to user i.

We assume that user i receives a value ϕi(di) if the allocated rate is di; we assume that this

value is measured in monetary units.

Each user i submits a “bid” wi to the network from a bid space Si = [0, 1]. The network

accepts these submitted bids and determines the share of capacity each user is allocated,

according to an allocation function M : Sn → [0, C]n, mapping the bids to a feasible

allocation (i.e., for any w ∈ S we have
∑

i∈N Mi(s) ≤ 1 and Mi(w) ≥ 0 for every i). This

makes the model a game ΓR between the n users, ΓR = (N, (Si)i∈N , (ui)i∈N ,M, (ϕi)i∈N ),

where user i utility function is ui(w) = ϕi(Mi(w))− wi and ϕi is its value function.

Hajek and Gopalakrishnan [51] studied resource allocation games with the proportional

allocation function

Mi(w) =


wiP

j∈N wj

∑
j∈N wj > 0

0 otherwise,

and showed that when the value function ϕi, of each user i is concave, a unique Nash

equilibrium of the ΓR exists.

We will concentrate on the following sub-class of resource allocation games.

Definition 4.8. A linear resource allocation game is a resource allocation game

ΓR = (N, (Si)i∈N , (ui)i∈N ,M, (ϕi)i∈N ) such that ϕi(di) = αidi and the allocation mecha-

nism is proportional.

Theorem 4.9. In a linear resource allocation game, if every agent employs a procedure with

no external regret, then the average action of the agents will converge to a Nash equilibrium,

and the average utility of each agent will converge to her utility in that Nash equilibrium.

Theorem 4.9 follows immediately from Theorem 4.3, once we establish in the following

lemma that a linear resource allocation game is a socially concave game.

Lemma 4.10. A linear resource allocation game is socially concave game.
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Proof. In a linear resource allocation game, the utility of agent i is

ui(w) = ϕi(w)− wi = αiMi(w)− wi =

 αi
wiP

j∈N wj
− wi

∑
j∈N wj > 0

0 otherwise,

To show property (A1) in Definition 4.1 holds, set λi =
1

αiP
j∈N

1
αj

, and consider the

function

g(w) =
∑
i∈N

λiui(w) =


1P

j∈N
1

αj

(
1−

∑
i∈N

wi
αi

) ∑
j∈N wj > 0

0 otherwise

Notice that g is a linear function in the half open interval (0, 1]n, and therefore for every

two points w1, w2, and µ ∈ [0, 1],

g(µw1 + (1− µ)w2) = µg(w1) + (1− µ)w2,

and for every w 6= 0,

g(µw + (1− µ)0) = g(µw) = µ(g(w) + (1− µ)g(0),

and therefore, by definition, g is concave in the entire set S.

To show property (A2) in Definition 4.1 holds, we need to show that for every fixed wi,

ui(wi, w−i), as a function of w−i is a convex. When wi = 0 we have that ui(wi, w−i) = 0,

for all w−i ∈ S−i, which a convex function.

For wi > 0, note that f(w−i) = u(wi, w−i)+wi = wi
wi+
P

j∈N,j 6=i wj
is convex iff u(wi, w−i)

is convex in w−i. For a fixed wi > 0, the function f can be written as a composition of two

functions

f(x) = `(h(x)),

where

h(x) =
n−1∑
i=1

xi, x ∈ Rn−1
+ , and `(y) =

wi

wi + y
, y ∈ R+.

The function h is linear and, the function `(y) is convex, as the inverse of a positive linear

function. We therefore obtain that f is convex as a composition of a convex function h over
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a linear function ` ( cf. [19, pp. 87]), and thus u(wi, w−i) is convex in x−i.

4.4.1 Divergence of the best response dynamics in resource allocation

games

In the best response dynamics, every agent optimizes her decision for the next step assuming

all other agents will play the same as they did in the previous step. Namely, at time t, agent

i plays xt = BRi(xt−1
−i ). Clearly, for this dynamics, if the joint vector of actions converges,

then it must be that it converges to a Nash equilibrium. However, unlike the no regret

dynamics, we show that the best response dynamics is not guaranteed to converge.

Consider an n-agent linear resource allocation game with γ = 1, where all n agents have

identical utility for resource ϕi(di) = di. Namely, the utility of agent i, in terms of her bid

and the bids of the other agents is,

ui(x) =
xi∑

j∈N xj
− xi.

The best response of agent i ∈ N to x−i ∈ S−i is max(0,
√∑

j 6= xj −
∑

j 6= xj) ∈ Si.

Theorem 4.11. Consider a linear allocation game with identical utilities ϕi(si) = si. For

n ≥ 4, the best response dynamics does not necessarily converge.

Proof. In equilibrium, each agent bids xNE
i = n−1

n2 . Consider the dynamics where initially

all agents bid equally x0 6= n−1
n2 . Due to the symmetry, the best response dynamics would

keep the bids of the agents equal. Let xt be the bids of the agents time t (they are all

identical), then

xt+1 =
√

(n− 1)xt − (n− 1)xt (4.8)

Let εt be the difference between the agents bids at time t and the equilibrium, i.e., εt =

xt − n−1
n2 . By substituting xt by n−1

n2 + εt in equation 4.8 we get

n− 1
n2

+ εt+1 =

√
(n− 1)(

n− 1
n2

+ εt)− (n− 1)(
n− 1
n2

+ εt) (4.9)

We will show that the sequence |εt| does not converge to zero. We can describe εt+1 as a
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function of εt,

εt+1 =

√(
n− 1
n

)2

+ εt(n− 1)−
(
n− 1
n

)2

− n− 1
n2

− εt(n− 1)

=

√(
n− 1
n

)2

+ εt(n− 1)−

√(
n− 1
n

)2

− εt(n− 1)

=
εt(n− 1)√(

n−1
n

)2 + εt(n− 1) +
√(

n−1
n

)2 − εt(n− 1)

= εt(n− 1)

 1√(
n−1

n

)2 + εt(n− 1) +
√(

n−1
n

)2 − 1

 .

For εt ∈ [0, 3n−1
n2 ] we have that

εt+1 ≤ εt(n− 1)

(
1

3n−1
n

− 1

)
= εt

3− 2n
3

,

and for n ≥ 4 we have εt+1 ≤ −(5/3)εt < 0.

For εt ∈ [−(7/16)n−1
n2 , 0] we have that

εt+1 ≥ εt(n− 1)

(
1

(7/4)n−1
n

− 1

)
= εt

7− 4n
7

,

and for n ≥ 4 we have εt+1 ≥ −(9/7)εt > 0. This implies that |εt| does not converge to

zero.

4.5 Atomic, Splittable Routing Games

Atomic routing games model agents behavior in a congested network, each of which wishes

to route her traffic from a source to a destination, while minimizing her own latency.

An instance of an atomic, splittable routing game, is a triple (G, r, c), where G is a

directed graph with (not necessarily distinct) source vertices {s1, . . . , sn}, and sink vertices

{t1, . . . , tn}; r is a vector indexed by source-sink pairs, where agent i must route ri units of

traffic from si to ti; and c is a vector of cost functions, one for each edge of G. It is standard

to assume that each cost function ce is non-negative, non-decreasing and semi-convex, i.e.,



4.5. ATOMIC, SPLITTABLE ROUTING GAMES 81

the weighted cost of a flow f , through an edge e, fce(f) is convex (see [91]).

In order for such a game to become socially concave, we will need to further assume that

ce is concave, for every e ∈ E. The class of cost functions for which the above requirements

hold includes among others, the class of affine cost functions, and more generally, every cost

function of the form ce(fe) = fγ
e for 0 ≤ γ ≤ 1.

For an instance (G, r, c), a feasible flow comprises n non-negative vectors f1, . . . , fn,

where f i is defined on the si − ti paths Pi of G and satisfies
∑

P∈Pi
fP = ri. For a flow

f , fe =
∑n

i=1

∑
P∈Pi|e∈P fP denotes the total flow on edge e. The cost cP (f) of a path P

with respect to a flow f is the sum
∑

e∈P ce(fe) of the costs of its edges. The cost Ci(f)

to agent i is defined by
∑

P∈Pi
cP (f)f i

P , or equivalently,
∑

e∈E ce(fe)f i
e, where f i

e is defined

by
∑

P∈Pi|e∈P fP .

A flow f is at Nash equilibrium if for each i, f i minimizes Ci(f) when the other flows

{f j}j 6= i are held fixed.

Lemma 4.12. An atomic, splittable routing game (G, r, c), with cost functions that are both

concave, and semi-convex, is a socially concave game.

Proof. To show property (A1) holds, we need to show that
∑

i∈N Ci(f) =
∑

e∈E ce(fe)fe is

a convex function2. The function ce(fe)fe is convex by assumption, thus,
∑

i∈N Ci(f) is a

convex function of f .

To show property (A2) holds we need to show that Ci(f i, f−i) is a concave function in

its second argument. (I.e., the utility −Ci(f) is convex in f−i ). Let fi be a fixed feasible

si − ti flow of rate ri. The cost for agent i as a function of the other flows is

Ci(f i, f−i) =
∑

P∈Pi

cP (f)fP =
∑
e∈E

ce(f i
e +

∑
j 6=i

f j
e )f i

e.

Where, for every edge e ∈ E, the function g : f−i → R, defined by g(f−i) = ce(f i
e +∑

j 6=i f
j
e )f i

e is a concave function in f−i, as a composition of a concave function ce, with an

affine transformation. Thus, Ci(fi, f−i) is a concave function in its second argument as the

sum of concave functions.

Theorem 4.13. In an atomic, splittable, routing game, with cost functions that are both

concave, and semi-convex, if every agent employs a procedure with no external regret, then
2Notice that when cost(disutility) is considered instead of utility, we need to replace convex with concave

in property (A1), and concave with convex in property (A2).
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the daily average flow vector of the agents will converge to a Nash equilibrium, and the

average cost of each agent will converge to its cost in that Nash equilibrium.

Remark 4.14. In the previous examples for socially concave games (Cournot oligopoly, and

resource allocation games), attaining no-regret could be done relatively straight forward, e.g.,

by using simple gradient based methods[103]. While it is possible to employ such methods in

a direct way in the context of routing problems, the complexity of such an algorithm would

be O(Pi), which could grow exponentially in the size of the graph G. Fortunately, efficient

no-regret algorithms for online routing exist [64, 61]. Moreover, some of them guarantee

no-regret even in the multi-armed bandit model [13, 1], where the feedback an agent receives

after every time step consists only of her own cost at that step, and not of the entire loads

in the network (see Section 2.2 in Chapter 2).

4.5.1 The best response dynamics in atomic, splittable, routing games

In this section we show that generally, the simultaneous best-responds dynamics need not

converge in a splittable routing game. For this matter we exhibit a simple example of a

splittable routing game with n ≥ 3 agents.

Consider a routing game played over a graph G, with 2 parallel edges. That is, there

are two vertices in the graph, s, and t, which serve as a source and destination for n ≥ 3

agents; there are two directed edges e1, e2, with end points at s, and t, and in the direction

of t. The latency function of both edges is linear, that is, c(x) = x; each agent i has a rate

ri = 1.

This game has a unique Nash equilibrium in which every agent splits his load equally

between the two edges. To show this assume that every agent but some fixed agent i ∈ N ,

indeed splits her flow equally between the two edges. Let fi,1 denote the flow of agent

i through one edge (the strategy space of an agent is the one dimension simplex since

fi,2 = 1− fi,1). The cost for i as a function of fi is

Ci(fi, f−i) = fi,1

(
n− 1

2
+ fi,1

)
+ (1− fi,1)

(
n− 1

2
+ 1− fi,1

)
,

which attains its minimum at fi,1 = 1/2.

On the other hand, consider a situation where at some stage, every agent routes her

total flow through the same edge e1. In this case, the cost of an agent i as a function of his
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ts

e1

e2

ce2
(f) = f

ce1
(f) = f

Figure 4.1: When two players with one unit of flow each play an atomic splittable routing
game on this graph instance, alternating between e1, and e2 results in a sequence with
no-external regret.

flow through e1 would be

Ci(fi, f−i) = fi,1(n+ fi,1) + (1− fi,1)(1− fi,1),

which attains its minimum at fi,1 = 0, when n ≥ 3. Namely, her best response is to route

her complete flow on the unoccupied edge e2. Of course, this means that the actions of

the agents would oscillate between sending their complete flow through e1, and sending the

complete flow through e2 indefinitely.

Notice that the average cost of an agent converges to n, and not to her Nash equilibrium

cost which is n/2.

4.5.2 Non-Convergence of the daily action profile

We now provide an example of a 2 agents socially concave game, in which both agents act

in accordance with a no external regret algorithm, and yet their daily action profile does

not converge to a point.

Consider an atomic splittable routing game, played on G defined above. Suppose there

are 2 agents, Alice and Bob, each with one unit of flow to transfer from s to t. Alice employs

the following algorithm: on the first day, Alice sends her flow through the edge e1. Then,

while Bob is never sending any flow on the same edges as she does, she is sending her flow

on e2 on even days and e1 on odd days. Once Bob is sending even a tiny fraction of flow on

the edge as she is, she starts running the no regret algorithm of Kalai and Vempala from

[64]. Suppose further that Bob runs a similar algorithm, only that Bob initially sends his

flow on e2.

In the resulting sequence, Alice always routes through e1 on odd days, and through e2
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on even days, and Bob does the opposite. It is easy to see that Both Alice, and Bob have

no-external regret. Indeed, Alice’s average cost in the resulting sequence is 1. In contrast,

if Alice where to play any fixed daily action, her average cost would increase.

To see this let f∗ = (f∗1 , f
∗
2 ) be a fixed flow, where f∗1 is the fraction of flow Alice routes

through e1, and f∗2 = 1− f∗1 is the fraction of flow she routes through e2. Her average cost

for playing f∗ on every day would be

1
2

(f∗1 f
∗
1 + (1− f∗1 )(1 + 1− f∗1 )) +

1
2

(f∗1 (1 + f∗1 ) + (1− f∗1 )(1− f∗1 )) = 2(f∗1
2 − f∗1 ) +

3
2

≥ 5
4
,

where the inequality follows from the fact that f∗1
2 − f∗1 ≥ −1/4, for every f∗1 ∈ [0, 1].

The fact that Bob has no-external regret follows from a similar argument. We note that

Alice, and Bob average action profile converges to the Nash equilibrium of the game, and

that their average cost converges to the costs at this Nash Equilibrium. Nevertheless, the

daily action profile does not converge.

4.6 A Sufficient Condition for the Uniqueness of Equilibrium

in Socially Concave Games

In this section we show a sufficient condition for the uniqueness of equilibrium in socially

concave games. It was already mentioned that the existence of an equilibrium in socially

concave games is guaranteed due to Rosen [89], but generally, a socially concave game may

admit multiple equilibria points. For example, the set of zero-sum games is trivially con-

tained in the set of socially concave games, and zero-sum games usually consist of multiple

equilibria.

In contrast, we now show, that if either property (A1) holds with strict concavity, or

property (A2) holds with strict convexity, then the equilibrium is unique.

Theorem 4.15. Let Γ = {N, {Si}i∈N , {ui}i∈N} be a socially concave game. If each utility

function ui is differentiable, the sets Si are compact for every i ∈ N , and either property

(A1) holds with strict concavity, or property (A2) holds with strict convexity, then a Nash

equilibrium is unique.
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Rosen[89] shows that for a concave game in which the utility functions satisfy an ad-

ditional concavity requirement, he calls diagonal strict concavity, the Nash equilibrium

point is unique. To explain what diagonal strict concavity means, we define a function

σ :
∏

i∈N Si × Rn
+ → R to be a non-negative sum of the agents’ utility functions, weighted

by λ ∈ Rn
+: σ(s, λ) =

∑
i∈N λiui(s). For each fixed λ ∈ Rn

+ a related mapping g(s, λ) in

terms of the gradients ∇iui(s) is defined by

g(s, λ) =


λ1∇1u1(s)

λ2∇2u2(s)
...

λn∇nun(s)

 . (4.10)

Definition 4.16 (Diagonal strict concavity from [89]). The function σ will be called diago-

nally strictly concave for a joint strategy space S, and a fixed λ ∈ Rn
+ such that λi ≥ 0, for

every 1 ≤ i ≤ n, if for every two distinct strategy profiles, s0, s1 ∈ S, we have

(s1 − s0)T g(s0, λ) + (s0 − s1)T g(s1, λ) > 0

We next show a sufficient condition for which σ, defined over the utility functions of a

socially concave game is diagonally strictly concave.

Lemma 4.17. Consider a socially concave game Γ = {N, {Si}i∈N , {ui}i∈N}. If for every

i ∈ N , the utility function ui is differentiable, and the set Si is compact, and in addition,

either property (A1) holds with strict concavity, or property (A2) holds with strict convexity,

then the function σ is diagonally strictly concave.

Proof. Let us denote by ∇f(s) the gradient with respect to s of a real function f , and let

us denote by ∇if(s) the gradient with respect to si of f(s). Let sT ∈ R1×n denote the

transpose of a vector s ∈ Rn×1.

For every differentiable concave function f , and every s1, s0 in the domain S of f , the

gradient inequality holds (see [19]):

f(s1) ≤ f(s0) + (s1 − s0)T∇f(s0), (4.11)

with strict inequality in case f is strictly concave. Equivalently

f(s0) ≤ f(s1) + (s0 − s1)T∇f(s1). (4.12)



86 CHAPTER 4. SOCIALLY CONCAVE GAMES

Summing inequalities (4.11) and (4.12) we obtain

0 ≤ (s1 − s0)T∇f(s0) + (s0 − s1)T∇f(s1), (4.13)

with strict inequality in case that f is strictly concave. Similarly, for a convex function f

0 ≥ (s1 − s0)T∇f(s0) + (s0 − s1)T∇f(s1). (4.14)

Assume first that property (A1) holds with strict concavity, i.e., there exists λ > 0 such

that the function
∑

i∈N λiui(s) is strictly concave in the domain s ∈ S. By inequality (4.13)

we have that

0 < (s1 − s0)T
(
∇1σ(s0, λ),∇2σ(s0, λ), · · · ,∇nσ(s0, λ)

)
+ (4.15)

(s0 − s1)T
(
∇1σ(s1, λ),∇2σ(s1, λ), · · · ,∇nσ(s1, λ)

)
, (4.16)

where ∇iσ(s0, λ) is the gradient of σ with respect to si, at the point (s0, λ).

By replacing ∇jσ(s, λ) =
∑

i∈N ∇jλiui(s) we obtain
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0 <
∑
i∈N

(s1 − s0)T


λ1∇1ui(s0)

λ2∇2ui(s0)
...

λn∇nui(s0)

+ (s0 − s1)T


λ1∇1ui(s1)

λ2∇2ui(s1)
...

λn∇nui(s1)



 (4.17)

=
∑
i∈N


(s1 − s0)T



λ1∇1ui(s0)

λ2∇2ui(s0)
...

λi−1∇i−1ui(s0)

0

λi+1∇i+1ui(s0)
...

λn∇nui(s0)


+ (s0 − s1)T



λ1∇1ui(s1)

λ2∇2ui(s1)
...

λi−1∇i−1ui(s1)

0

λi+1∇i+1ui(s1)
...

λn∇nui(s1)




(4.18)

+

(s1 − s0)T


λ1∇1u1(s0)

λ2∇2u2(s0)
...

λn∇nun(s0)

+ (s0 − s1)T


λ1∇1u1(s1)

λ2∇2u2(s1)
...

λn∇nun(s1)



 (4.19)

For every i ∈ N , the term inside the parenthesis in line (4.18) is non-positive, as follows

from the fact ui is convex in its parameter s−i (property (A2)), and inequality (4.14). Con-

sequently, the term in line (4.19) must be positive, and therefore diagonal strict concavity

holds.

For the second case, we assume that property (A2) holds with strict convexity. In this

case, the strict inequality in line 4.15 is replaced with a non-strict inequality sign, however,

the term inside the parenthesis in line (4.18) becomes strictly negative. Again, it follows

that the term in line (4.19) must be positive, and diagonal strict concavity follows.

In Sections 4.3, to 4.5 several examples of socially concave games are given. In every

one of these classes, either property A1 holds with strict concavity (for atomic splittable

routing games, and Cournot oligopoly), or property A2 holds with strict convexity (resource

allocation). Therefore, we can assert that equilibrium in the atomic splittable games, and
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the Cournot oligopoly game is unique3. We note however, that uniqueness of equilibrium in

these games is already known (see [51] for the uniqueness of Nash equilibrium in resource

allocation games, [77] for Cournot oligopoly, and [6] for atomic splittable routing).

Corollary 4.18. A unique Nash equilibrium exists in any of the following games

(i) Linear Cournot oligopoly.

(ii) Atomic splittable routing, with costs that are simultaneously semi-convex, and concave.

3For the resource allocation game in Section 4.4 the function we gave in order to show property A1 holds
was not twice differentiable at the origin, and therefore Rosen’s uniqueness result does not follow.



Chapter 5

Strategic Protocols for Congestion

Avoidance

In the previous chapter we have introduced the class of socially concave games, and showed

a general convergence property of no-regret dynamics when played over games in this class.

In this chapter we continue to investigate no-regret dynamics in the context of analyzing

protocols for congestion avoidance.

5.1 Congestion Avoidance Games

In this section we present an application of Theorem 4.3 in the design of protocols for con-

gestion control. We consider multiple connections sharing a network path, with a common

bottleneck. Time is divided into successive rounds, i.e., time is discrete and events happen

only at time t = 1, 2, 3, . . .. It is assumed that all connections have the same round trip

time. At the start of a round each connection transmits a window of packets and at the

end of a round each connection receives a feedback with the number of packets that were

actually delivered. Pending data is always available for sending at every source.

Each connection is associated with a single selfish agent. An agent benefits from deliv-

ering packets, and suffers a penalty for dropped packets, due to retransmission delays and

overhead. We view the actions of the agents as the ‘load’ they introduce (or alternatively,

the bandwidth they consume). Let xt
i denote the load imposed by the i’th agent at time t,

and denote by bti her actual load i.e., the fraction of packets that were not dropped. Agent

i utility is bti−αi(xt
i− bti), namely, αi is a parameter that reflects i’s cost for losing a packet
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(or more precisely, one ‘unit’ of bandwidth).

The shared bottleneck is controlled by a router with finite capacity C assumed to be 1

unit of bandwidth. The router receives packets from each connection and decides to forward

or discard each packet 1. Different scheduling policies would share the capacity in different

ways. And generally, a scheduling policy maps transmission rate vectors x = (xi)i∈N ∈ Rn
+

to feasible bandwidth allocations {b |
∑

i bi ≤ C = 1}. Clearly, no mechanism can assign

more than the link capacity, but some mechanisms might be more restrictive. We consider

several scheduling policies:

1. Tail drop (TD). Load is accepted while the channel is not full; packets are dropped

when the total transmission exceeds the capacity.

2. Random early discard (RED). Packets are randomly dropped with a dropping proba-

bility that increases with the offered load.

The policies, TD and RED, to be formally defined in later sections, when combined with

a vector α = (αi)i∈N , admits a game ΓTD,ΓRED, respectively. Unfortunately, none of these

games is socially concave, and therefore Theorem 4.3 cannot be applied directly. Luckily,

in a region near the Nash equilibrium of every such game, these games becomes a socially

concave game. We use this fact, to show that the generalized infinitesimal gradient ascent

(GIGA) procedure attains the convergence properties guaranteed for socially concave games

in Theorem 4.3.

Definition 5.1 (GIGA). For agent i with a utility function ui, and strategy space Si, GIGA

sets i’s action at time t, xt
i in the following method:

yt
i = xt−1

i + ηt
∂

∂xi
ui(xt−1) ; xt

i = π(Si, y
t
i)

where π(Si, y
t
i) is the projection of yt

i into the set Si,2 and ηt is a learning rate where we

assume that: (i) ηt is non-increasing in t, i.e., ηt ≥ ηt+1, (ii) ηt vanishes, i.e., for every

ε > 0 there is a time tε such that ηtε < ε, and (iii) that the sum of ηt diverges, i.e., for any

1No queueing is assumed in our model. The technical difficulty with introducing a queue in our model
is that a queue is essentially a state, and this will be a miss-match to both the repeated nature of the game
and the regret minimization.

2In our setting the projection only means that if yt
i < 0 then we set xt

i = 0.
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ρ there is at time tρ, such that
∑tρ

τ=1 ητ > ρ.3

Theorem 5.2 (From [103]). If ηt = t−1/2, the regret of the Greedy Projection algorithm is

R(T ) ≤ ‖Si‖
√
T

2
+
(√

T − 1
2
‖∇ui‖2

)
,

where ‖Si‖ = maxx1,x2∈Si ‖x1 − x2‖, and ‖∇ui‖ = maxxi∈Si,t∈{1,2,...} ‖∇ui(x, xt
−i)‖.

Since ‖Si‖ for every i is a constant, and ‖∇u(·, x−i)‖ is a constant for x−i ∈ S−i, we

have that the regret bounds of GIGA are O(
√
T ).

Assuming that an agent learns her own utility as a feedback in each of the games ΓTD

and ΓRED, it is possible for her to compute her own gradient ∂
∂xi
ui(xt), at time t, and

calculate her next action in the GIGA procedure accordingly4.

To show convergence of the GIGA algorithm to Nash equilibrium, we observe that for

both games ΓTD,ΓRED, a subset of the agents joint strategy space S′ ⊂ S, exists, such that

a game restrained to S′, is a socially concave game. We then show that if the agents are

playing GIGA for a sufficiently long period, then their joint action profile is in the set S′, for

all subsequent steps. Since GIGA guarantees no-regret, we are then able to use Theorem

4.3 to show the convergence result.

5.2 Tail Drop

When a router employs a tail drop policy, packets are accepted as long as the overall load

does not exceed the link capacity. This is modeled as follows. Define S(x) =
∑

i∈N xi to

be the sum of all transmissions levels. While S(x) ≤ 1, every agent gets her transmission

rate, xi. But, when S(x) > 1 agent i gets only a share of the capacity, proportional to her

transmission rate. This implies the following utility function:

uTD
i (x) =

 xi S(x) ≤ 1
xi
S(x) − αi

(
xi − xi

S(x)

)
S(x) > 1

Let αmin = minj∈N αj ; αmax = maxj∈N αj . We assume that the penalty per packet loss

3In case that the derivative ∂
∂xi

ui(x
t−1) is not continuous we define it to be the limit of the derivatives

x′ < x, which are always well defined in our setting.
4In [65], a weaker feedback model is assumed, where after each step an agent receives a binary feedback,

that tells him whether a congestion occurred or not.
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parameters of the agents are bounded as follows, 3
n−1 ≤ αmin ≤ αmax ≤ 1. We also assume

that a single agent load never exceeds the channel capacity, i.e., xi ∈ [0, 1].

One can verify that the game ΓTD = (N, ([0, 1])i∈N , (uTD
i )i∈N ) is not a socially concave

game. However, a slight modification of ΓTD results in a socially concave game, ΓTD′. The

game ΓTD′ consists of the same set of agents and the same strategy space as the game ΓTD.

However, the utility function of an agent i is modified to

qi(x) =
xi

S(x)
− αi

(
xi −

xi

S(x)

)
.

Lemma 5.3. The game ΓTD′ = (N, ([0, 1])i∈N , (qi)i∈N ), is a socially concave game.

Proof. The utility function qi is equivalent to a utility function of a resource allocation

game, with proportional allocation mechanism, i.e., c = 1. Hence, the same arguments

made in the proof of Lemma 4.10 show that ΓTD′ is a socially concave game.

Theorem 4.3 does not apply to ΓTD, as it is not a socially concave game. Even so, using

the fact that the game ΓTD′ is a socially concave game, we can show that the GIGA dynamics

(i.e., when all agents act according to the GIGA procedure), attains similar convergence

properties as general no-regret dynamics in socially concave games.

Theorem 5.4. Assuming there are at least n ≥ 4 agents in the game, if every agent in a

tail-drop game ΓTD plays according to the GIGA procedure, then the average strategy vector

will converge to a Nash equilibrium and the average utility of each agent will converge to

her utility at that Nash equilibrium.

Furthermore, if every agent runs GIGA with ηt = 1/
√
t, then at every time t > t∗, where

t∗ = O(n4),

(i) The average profile of actions will be an ε-Nash equilibrium, where ε = O( 1√
t
)

(ii) The average utility of each agent will differ from her utility at that Nash equilibrium

by at most O( 1√
t
).

The main step in the proof of Theorem 5.4 is to show that after sufficient number of

time steps the agents total offered load is always greater than the channel capacity.

Lemma 5.5. Assuming there are at least n ≥ 4 agents in the game, if every agent in a

tail-drop game ΓTD plays according to the GIGA procedure, then there exists a time t∗ such

that S(xt) > 1 for every t > t∗. Furthermore, if the learning rate ηt = 1√
t
, then t∗ = O(n4).
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Proof. Let ∆t
i(x) = ∂

∂xi
uTD

i (xt−1) and let ∆(x) =
∑

i∈N ∆i(x). The proof proceeds in a

number of steps.

Step I: If x is such that 0 ≤ S(x) < 1 + ε, where ε = (1 − 2
n+1)αmin − 2

n+1 , then

∆(x) > 1.

First notice that following our assumption that αmin ≥ 3/(n− 1),

ε = (1− 2
n+ 1

)αmin −
2

n+ 1
> (1− 2

n+ 1
)

3
n− 1

− 2
n+ 1

=
1

n+ 1
> 0.

Now, if S(x) ≤ 1 then ∆(x) = n and the claim follows. Otherwise, 1 < S(x) < 1 + ε,

and in this case,

∆(x) =
∑
i∈N

(
(1 + αi)

S(x)− xi

(S(x))2
− αi

)
(5.1)

≥
∑
i∈N

(
(1 + αmin)

S(x)− xi

(S(x))2
− 1
)

(5.2)

=
(1 + αmin)(n− 1)

S(x)
− n (5.3)

>
(1 + αmin)(n− 1)

(1 + αmin)n−1
n+1

− n (5.4)

= 1 . (5.5)

Thus, for every x such that 0 ≤ S(x) < 1 + ε, we have ∆(x) > 1.

Step II: For every time t there exists a time t′ > t such that S(xt′) ≥ 1 + ε.

By definition S(xt) ≥ 0 for every xt. In step I we show that ∆(x) > 1 when 0 ≤ S(x) <

1 + ε. Now, combining with the fact that the learning rate is such that
∑t

τ=t′ ητ → ∞ as

t→∞, the claim follows.

Step III: There exists a time t̄ such that ηt∆(xt) > −ε for every t > t̄.

Notice that ∆(xt) is bounded from below:

∆(xt) =
∑

i

(
(1 + αi)

S(xt)− xt
i

(S(xt))2
− αi

)
> −

∑
i

αi ≥ −n,

where the last inequality follows our assumption that αi ≤ 1, for every i ∈ N . By our
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assumption on the learning rate there exists at time t̄ such that ηt̄ ≤ ε/n, and the claim

follows.

Step IV: If t1 > t̄ and S(xt1) > 1 then S(xt) > 1 for every t > t1.

The proof is by induction on t. For the induction base t = t1, the claim holds trivially.

Assume the induction hypothesis holds for some t > t1. If S(xt) ∈ (1, 1 + ε] then ∆(xt) > 0

and

S(xt+1) = S(xt) + ∆(xt)ηt ≥ S(xt) > 1,

Otherwise, S(xt) > 1 + ε, but then ηt∆(xt) > −ε and

S(xt+1) = S(xt) + ∆(xt)ηt ≥ S(xt)− ε > 1.

and the claim follows.

Step V: There exists a time t∗ such that S(xt) > 1 for every t > t∗.

It follows from step III that after time t̄, ∆(xt) > −ε for every t > t̄. From step II it

follows that there exists a time t∗ > t̄ such that S(xt∗) ≥ 1 + ε. From step IV, it follows

that for every t > t∗, S(xt) > 1.

Step VI: If ηt = 1/
√
t then there exists t∗ = O(n4), such that S(xt) > 1 for every

t > t∗.

If ηt = 1√
t
, then ηt∆(xt) > −ε for every t > t̄ where t̄ = (n/ε)2, and

n

ε
=

n
n−1
n+1αmin − 2

n+1

(5.6)

≤ n
3

n+1 −
2

n+1

(5.7)

= n(n+ 1) (5.8)

< 2n2 (5.9)

Hence, t̄ < 4n4. Note that if αmin = Ω(1) then ε = Ω(1) and t̄ = O(n2).

Now, if S(xt̄) > 1, then S(xt) > 1 for every t > t̄, as it follows from step IV. If not, then

set t∗ = t̄ + 4n2. If S(xt) > 1 for some t̄ < t ≤ t∗ then we are done. Otherwise, we have

that ∆(S(xt)) = n for every such t. In this case
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S(xt∗) = S(xt̄) +
t∗−1∑
t=t̄

1√
t
∆(xt) ≥ 0 + 4n2 1√

4n4 + 4n2
n > 2,

since n ≥ 4. But, this is in contradiction to the assumption that S(xt) ≤ 1 for t̄ < t ≤ t∗.

Thus, at some time t′ < t∗ = O(n4), S(xt′) > 1 and therefore, following Step IV, for every

t > t∗, S(xt) > 1.

Proof of Theorem 5.4. By Lemma 5.5 there exists time t∗, such that S(xt) > 1, for every

t > t∗. Using Lemma 5.3, we obtain that from t∗ on, the agents are a posteriori playing the

socially concave game ΓTD′.

The regret of agent i at a time t > t∗ is at most

Ri(t) = O(
√
t− t∗) +O(t∗) = O(t∗ +

√
t),

where the first term is the regret accumulated after t∗ and O(t∗) is an upper bound on

the difference between the utility from the best fixed transmission rate (+1) and the worst

possible loss (-1).

Thus, following Theorem 4.3, we conclude that at time t > t∗, the average strategy

profile is an O(n/
√
t)-Nash equilibrium, and that the average utility of each agent differs

by at most O(n/
√
t) from her utility in that ε-Nash equilibrium.

5.3 RED Policy

In random early discard the router drops packets as a function of the queue size. Since we

do not have a queue size in our models, we model this by dropping fraction of the rate at

each time step as a function of the offered load S(x).

Assume that the router drops packets at a rate of βS(x). This implies that user i

would have an effective bandwidth of xi(1 − βS(x)), and the total effective bandwidth is

S(x)(1−βS(x)). Since the capacity of the link is C = 1 we need that S(x)(1−βS(x)) ≤ 1,

which always holds for β ≥ 1/4 (also, we can not dropping more than S(x) units of rate, so

β ≤ 1).
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In this case, for β ≥ 1/4 we derive the RED utility function,

uRED
i (x) =

{
xi(1− βS(x))− αiβxiS(x) S(x) ≤ 1/β

−αixi S(x) > 1/β
(5.10)

Notice that uRED
i (1/β, x−i) > uRED

i (xi, x−i), for every xi >
1
β , x−i ∈ Rn−1

+ , since
∂

∂xi
uRED(x) < 0 for every such x. We therefore set an agent’s strategy space to [0, 1

β ]. The

game associated with the RED policy will be denoted by ΓRED = (N, ([0, 1
β ])i∈N , (uRED

i )i∈N ])

Theorem 5.6. If every agent in a ΓRED game plays according to the GIGA procedure, then

the average strategy vector will converge to a Nash equilibrium, and the average utility of

each agent will converge to her utility at that Nash equilibrium.

(i) The average profile of actions will be an ε-Nash equilibrium, where ε = O
(

1√
t

)
(ii) The average utility of each agent will differ from her utility at that Nash equilibrium

by at most O
(

1√
t

)
.

Furthermore, if every agent runs GIGA with ηt = 1/
√
t, then at every time t > t∗, where

t∗ = O

((
n

αmin

)2
)

and αmin = mini∈N αi,

The game ΓRED is not necessarily a socially concave game (e.g., the utility of an

agent is generally not concave). However, the utility function in ΓRED could be modi-

fied as follows to get a socially concave game. We define a new game denoted ΓRED′ =

(N, ([0, 1])i∈N , (qRED
i )i∈N ), where

qRED
i (x) = xi(1− βS(x))− αiβxiS(x).

Lemma 5.7. The game ΓRED′ is a socially concave game.

Proof. Fix xi, and consider the function

f(z) = xi(1− β(xi + z))− αiβxi(xi + z).

The function f is linear in z and consequently, qRED
i (x) is linear in x−i, as a composition

of two linear functions.
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Now, consider the function g defined as the sum of all agents utilities,

g(x) =
∑
i∈N

qRED
i (x) =

∑
i∈N

xi −
∑
i∈N

β(1 + αi)xiS(x) = S(x)− S2(x)
∑
i∈N

β(1 + αi).

The function g can be composed as g(x) = h(S(x)), where h(z) = z − z2
∑

i∈N β(1 + αi).

Hence, g is a concave function as composition of a concave function with a linear function.

Thus, ΓRED′ is socially concave, as both properties (A1) and (A2) of Definition 4.1 hold.

Lemma 5.8. If every agent in a ΓRED game, plays according to the GIGA procedure, then

there exists a time t∗ such that for every t > t∗, S(xt) < 1/β. Furthermore, if the learning

rate ηt = 1√
t
, then t∗ = O(( n

αmin
)2).

Proof. Let ∆t
i(x) = ∂

∂xi
uRED

i (xt−1) and let ∆(x) =
∑

i∈N ∆i(x). The proof proceeds in a

number of steps.

Step I: If x is such that 1
β(αmin+1) ≤ S(x) < 1

β , then ∆(x) ≤ −1.

If S(x) ≤ 1/β then

∂

∂xi
uRED

i (xt) = 1− (β + αiβ)
∑
j 6=i

xj − 2(β + αiβ)xi = 1− (β + αiβ)(S(x) + xi)

and

∆(x) = n−
∑
i∈N

(β + αiβ)(S(x) + xi) (5.11)

≤ n− (n+ 1)β(1 + αmin)S(x) (5.12)

≤ n− (n+ 1)β(1 + αmin)
1

β(αmin + 1)
(5.13)

= −1. (5.14)

Step II: For every time t there exists a time t′ > t such that S(xt′) ≤ 1/β.

For x such that S(x) > 1/β, we have ∂
∂xi
uRED

i (xt) = −αi, and ∆(x) =
∑

i∈N −αi < 0.

Combining with the fact that the learning rate is such that
∑t

τ=t′ ητ → ∞ as t → ∞, the

claim follows.
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Step III: There exists a time t̄ such that ηt∆(xt) < ε for every t > t̄, where ε =
1
β −

1
β(αmin+1) .

If xt is such that S(xt) > 1
β then ∆(xt) < 0, as we showed in Step II. Otherwise, as

observed clearly in equation (5.11), ∆(xt) < n. By our assumption on the learning rate

there exists at time t̄ such that ηt̄ ≤ ε/n, and the claim follows.

Step IV: If t1 > t̄ and S(xt1) < 1/β then S(xt) < 1/β for every t > t1.

The proof is by induction on t. For the induction base t = t1, the claim holds trivially.

Assume the induction hypothesis holds for some t > t1. If S(xt) ∈ [ 1
β(1+αmin) ,

1
β ] then

∆(xt) < −1 and

S(xt+1) = S(xt) + ∆(xt)ηt ≤ S(xt) <
1
β
,

Otherwise, S(xt) < 1
β(1+αmin) , but then ηt∆(xt) < ε and

S(xt+1) = S(xt) + ∆(xt)ηt <
1

β(1 + αmin)
+
(

1
β
− 1
β(1 + αmin)

)
=

1
β
.

and the claim follows.

Step V: There exists a time t∗ such that S(xt) > 1 for every t > t∗.

It follows from step III that ∆(xt) < ε, for every t > t̄. From step II it follows that

there exists a time t∗ > t̄ such that S(xt∗) < 1
β . And, from step IV, it follows that for every

t > t∗, S(xt) < 1
β . This completes the proof of the first part of the claim.

Step VI: If ηt = 1/
√
t then there exists t∗ = O(n2( 1

αmin
)2), such that S(xt) > 1 for

every t > t∗.

Since ηt = 1√
t
, then ηt∆(xt) < ε for every t > t̄ where

t̄ = (n/ε)2 (5.15)

=

(
n

1
β −

1
β(1+αmin)

)2

(5.16)

=
(

n

αmin
β(1 + αmin)

)2

(5.17)

Now, if S(xt̄) < 1/β, then S(xt) < 1/β for every t > t̄, as it follows from step IV. If not,

then set t∗ = 64(n/ε)2 +1. If S(xt) < 1/β for some t̄ < t ≤ t∗ then we are done. Otherwise,
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we have that ∆(S(xt)) < −n · αmin for every such t. Recall that no agent ever transmits

with a rate greater than 1
β , hence at time t̄, S(xt̄) ≤ n

β ≤ 4n. Therefore,

S(xt∗) = S(xt̄) +
t∗−1∑
t=t̄

1√
t
∆(xt) (5.18)

≤ 4n+ (
t∗−1∑
t=t̄

1√
t
)(−nαmin) (5.19)

≤ 4n+ (
t∗−1∑
t=t̄

1√
t∗ − 1

)(−nαmin) (5.20)

= 4n− (t∗ − t̄)(nαmin)
1√
t∗

(5.21)

= 4n− 63(n/ε)2(nαmin)
1

8(n/ε)
(5.22)

= 4n− 63
8
n2(1 + αmin)β (5.23)

= 4n− 63
32
n2(1 + αmin) (5.24)

(a)
≤

1
8

(5.25)

<
1
β
, (5.26)

where (a) holds for every n ≥ 2, which is our case. But, this is in contradiction to the

assumption that S(xt) ≥ 1
β for every t̄ < t ≤ t∗. Thus, at some time t, t̄ < t ≤ t∗,

S(xt) ≤ 1
β and therefore, following Step IV, for every t > t∗, S(xt) > 1. This completes the

proof of the second part of the claim.

Proof of Theorem 5.6. From Lemma 5.8 we learn that after some time t∗, the profile of

actions is such that S(xt) ≤ 1
β , for every t > t∗. It follows Lemma 5.7, that from t∗ on, the

agents are a posteriori playing the socially concave game, ΓTD′.

The regret of agent i at a time t > t∗ is at most

Ri(t) = O(
√
t− t∗) +O(t∗) = O(t∗ +

√
t),

where the first term is the regret accumulated after t∗ and O(t∗) is an upper bound on

the difference between the utility from the best fixed transmission rate (+1) and the worst



100 CHAPTER 5. STRATEGIC PROTOCOLS FOR CONGESTION AVOIDANCE

possible loss (-1).

Thus, following Theorem 4.3, we conclude that at time t > t∗, the average strategy

profile is an O(n/
√
t)-Nash equilibrium, and that the average utility of each agent differs

by at most O(n/
√
t) from her utility in such an equilibrium.



Chapter 6

Strategic Protocols for Queue

Management

In this chapter we deal with latency issues arising in the context of network devices such as

switches and routers. Given multiple streams of incoming packets which are to be merged

and sent along the same outgoing link, limited bandwidth on the outgoing link may result

in packet delay and/or packet loss.

We consider the online problem of active queue management. In our problem the input

consists of an online sequence of packets arriving over time to a non-preemptive FIFO queue.

Any packet placed in the queue will eventually be sent, and packets are sent in order of

arrival.

We consider queuing models where the actual benefit derived from sending a packet

degrades over time. The goal is to model transmission of packets bearing time-dependent

data such as audio, video, and more general latency sensitive applications. The latency of a

packet is a major parameter in the assessment of its true utility (e.g., TCP, where delayed

messages may result in a reduction of the overall transmission protocol throughput).

In the bounded delay model [69] incoming packets have step function describing the

value loss, past the deadline the packet is useless, prior to the deadline it has lost no

value. Unfortunately, online queue policies for FIFO queues and heterogenous packets with

deadlines result in unbounded competitive ratios. Quite likely, this is why only non-FIFO

queue regimes have been studied for service with deadlines.

In this chapter we show that online policies for FIFO queues are much better if one

assumes more gradual value loss, (constant competitive ratio vs. unbounded ratios). So,

101
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the question arises, which is the more relevant model? One obvious reason in support of the

gradual loss of value lies within human nature — people are generally not entirely oblivious

to the time “wasted” while waiting for service, even if such service is eventually given.

Consider the example of streaming video, there is an inherent deadline imposed by the

timestamp within an MPEG video packet. However, such packets will typically proceed

through a large network with multiple routers along the transmission path. Thus, although

there is a true deadline, this deadline is only relevant with regard to the entire transmission

path taken, not in the context of any specific router. Furthermore, taking no value loss prior

to the deadline may imply that the packet will indeed pass through (some) of the routers,

but will be discarded further down the line. A reasonable rule of thumb could be to assume

that value is lost over time, and this may produce much better overall performance.

We consider several versions of this problem. The simplest case is that of homogenous

packets, where all packets have the same intrinsic value upon arrival, and packets lose value

linearly over time. Our results also hold for “growing impatience” rather than linear value

loss, i.e., the longer the packet is in the system, the more value is lost per time unit. In

particular, this includes commonly considered “soft real time restrictions” such as quadratic

or exponential value loss (in terms of delay).

We next deal with the more general case of heterogenous packets, where different packets

may have different intrinsic values upon arrival, bounding the competitive ratio to be some

constant 4.23 ≤ c < 8.

Last, we consider a much more general model where packets not only differ in their

value for service, but also in the way they value time. This model also generalized the

bounded delay model, and thus, a FIFO policy would yield an unbounded competitive

ratio. To come up with positive results, we give more power to the queue manager, and

allow non-preemptive queue management, and discard the FIFO requirement.

Our results include:

1. For homogenous packets (equal valued) we give a lower bound of φ on the competitive

ratio (even for randomized algorithms).

2. For heterogenous packets and linear value loss:

(a) We give a simple threshold queue policy, “doubling threshold”, with a competi-

tive ratio of at most 8.



6.1. PRELIMINARIES 103

(b) We observe that this problem has an O(n log n) time optimal offline algorithm

(improving upon the obvious matching based approach).

(c) We show a lower bound of 4.23 on the competitive ratio of any deterministic

online algorithm.

3. For heterogeneity of time loss factors, we show that the greedy algorithm attains a

competitive ratio of 2, in a very general time-loss model. For the special case of

heterogenous value, and heterogenous but constant loss per a unit of delay, we give a

randomized algorithm with a competitive ratio e/(e− 1) ≈ 1.58.

4. Finally, we relate the issue of the online competitive ratio to an online mechanism

design problem for packets generated by selfish agents. In this case there is little

reason to trust the “intrinsic value” claimed by the owner. We reinterpret our online

algorithms as yielding an incentive compatible online pricing scheme for heterogenous

packets, that guarantees a constant fraction of the optimal social welfare (defined as

the sum of agent utilities).

6.1 Preliminaries

We consider a single, non-preemptive, queue of packets. Time is partitioned into unit length

time slots, integrally aligned. Packets arrive over time at non-integral times. Multiple

packets may arrive during a single time slot, but every packet has its own unique arrival

time. At the end of every time slot, and should the queue be non-empty, one (and exactly

one) packet is extracted from the queue and transmitted.

A packet p is identified by its value, denoted val(p) and its (distinct, non-integer) time of

arrival, denoted arrive(p). A packet is either rejected or inserted into the queue. A packet

placed in the queue must eventually be transmitted, at the end of some time slot, which we

call send(p). The delay a packet experiences is the number of full time slots between arrival

and transmission times of the packet, i.e., delay(p) = bsend(p)− arrive(p)c.
The delay of a packet is equal to the number of packets in the queue when it arrived

(which does not include itself):

delay(p) = buffer size at time arrive(p)

= bsend(p)− arrive(p)c.
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Expression Definition
p A single packet
σ An event sequence; consists of arrival events, at arbitrary

non integral times, and a send event at each time t ∈ {1, 2, . . .}.
val(p) The value of packet p.

arrive(p) The time of packet p arrival.
send(p) The time packet p is sent, in case it is sent.
delay(p) The delay of packet p, rounded down delay(p) = bsend(p)− arrive(p)c.

benefit(p) The benefit of a packet p; If p is sent then
benefit(p) = val(p)− delay(p), otherwise, benefit(p) = 0

ON A threshold algorithm.
DT Algorithm doubling thresholds.
π(σ) The benefit of an online algorithm π on an events sequence σ.
B(t) The buffer size at time t.
ψ(t) A potential function.
R The homogenous value.
φ The golden ratio; φ ≈ 1.618;φ3 ≈ 4.23.

Table 6.1: Notation in use.

In general, the loss of value of a packet is some function of the packet delay. In particular,

linear loss means loss proportional to the delay, we will generally assume linear loss to mean a

constant of one, but our results can be easily extended to other constants of proportionality.

This means that the utility or benefit collected from sending a packet p, denoted benefit(p)

is

benefit(p) = val(p)− delay(p).

The adversary determines the timing of packet arrivals and the value associated with

the packet. Packets are transmitted from the head of the FIFO queue at integral times.

We do not explicitly assume a restriction on the capacity of the queue. However, one may

assume without loss of generality that no packet will be inserted into the queue if the delay

is such that the loss is greater than the initial value.

An online queue policy specifies, for every incoming packet, as to whether to enqueue

the packet or to reject it. For an online policy, the decision to accept or reject a packet

may not depend on future events. An offline queue policy does the same but has prior

knowledge of the entire event sequence in advance. The benefit of a queue policy on a given

event sequence is the sum of the benefits of the packets that it transmits.

A memoryless queue policy determines whether to accept or reject an incoming packet
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R

Time

Queue size

R+1

Total Benefit

#sent packets
0 1 2 3 4 5 6 7

Figure 6.1: This figure depicts a snapshot of buffer sizes at send events, that is a snapshot
of the algorithms buffer prior to send events at time t = 1, 2, . . .. The area between the
buffers’ snapshot and the line R+ 1, captures the overall benefit from this schedule.

based only upon the current contents of the buffer, the delay that these packets have

had, and the value of the incoming packet. A special case of memoryless policies, called

threshold policies, determine if to accept or reject while only considering the number of

packets currently in the buffer, and the value of the incoming packet.

Let B(t) denote the number of packets in the queue at time t. If a packet p arrives at

time t, B(t) is the number of packets in the queue, not counting p, (irrespective of whether

p is to be accepted or not). Similarly, let B∗(t) denote the number of packets in the queue

of the optimal (offline) schedule.

As there may be several different optimal schedules (giving the maximal benefit), we fix

a specific optimal policy, OPT, defined in Section 6.6.

6.2 Homogenous Packets

In this section we consider only sequences of homogenous packets, all having the same value

R > 0. We begin with an observation regarding the relation between the sequence of buffers

size at send events, for a particular schedule, and the benefit of that schedule.

Observation 6.1. The benefit of a policy from a finite event sequence of homogenous
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packets with value R is

∣∣{i ∈ N|i ≤ tmax and B(i) > 0}
∣∣ ·R−

∑
i∈{1,...,tmax}

(B(i)− 1), (6.1)

where tmax is the transmission time of the last packet transmitted (i.e., the transmission

time of the last packet accepted from the sequence).

Figure 6.1 a snapshot of the buffer state of some schedule are illustrated, together with

the benefit of that schedule.

In Section 6.2.1 we present a deterministic algorithm (queue policy) with a competitive

ratio of φ ≈ 1.618. In Section 6.2.2 we show that φ is a lower bound on the competitive ratio

of all online algorithms, even for randomized algorithms against an oblivious adversary.

6.2.1 An optimal online algorithm

Our online policy for homogenous packets is a threshold policy.

As a motivating example, consider the following: Let B be the current size of the online

buffer, consider the 2B-threshold policy, in which a packet is accepted if its value is greater

or equal to twice the delay i.e., its benefit is at least 2B. Alternately, as all packets have

value R in the homogenous case, accept a packet only if the current size of the buffer is

no more than bR/2c. It can be argued that the competitive ratio is close to 4. A 2B-

threshold policy accepts about half the number of packets accepted by an optimal policy

(no optimal policy would ever have more than R packets in its queue, otherwise packets with

0 or negative benefit would be queued). For every packet accepted, the 2B-threshold policy

collects a benefit of at least dR/2e, which is at least half the maximum benefit collected by

OPT from any packet. We next show a more refined analysis of the competitive ratio.

Theorem 6.2. Let B be the current size of the queue. The competitive ratio of the (Bφ2)-

threshold algorithm is at most φ+ ε(R), where ε(R) = O(1/R).

In our proof we use ON to denote the (Bφ2)-threshold policy while OPT denotes the

optimal offline. We first perform a simple relaxation on the event sequence, defined as

follows: After ON’s buffer is emptied, there are no more packet arrival events until OPT’s

buffer is emptied as well. We derive the following claim for such restricted event sequences:

Lemma 6.3. For any queue policy, limiting the event sequences to be restricted event

sequences does not decrease the competitive ratio.
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Proof. We consider an arbitrary event sequence σ which does not meet the “restricted”

criteria, i.e., there is some time t0 at which ON’s queue is empty and the next packet arrival

is at time t1 such that the OPT queue is non-empty, B∗(t1) > 0.

We change event sequence σ to σ′ by adding B∗(t0) send events following time t0, and

delaying all other events in σ by an extra B∗(t0) time units. The purpose of the additional

send events is to empty OPT’s buffer. We show that the ratio between OPT’s benefit and

the benefit for ON on σ is no smaller than the same ratio on σ′.

ON’s decisions remain unchanged, since the additional send events are scheduled when

ON’s queue is empty. On the other hand, the optimal offline benefit cannot decrease.

Keeping the same schedule produces a benefit of at least OPT(σ), as the queue size at every

send event does not increase comparing to the original. Therefore OPT(σ′) ≥ OPT(σ) and

the claim follows.

Once both ON and OPT have empty buffers, they are both back at their initial state.

Thus, it suffices to prove an upper bound on the competitive ratio by restricting attention

to those restricted event sequences that have no arriving packets after ON empties its buffer

for the first time. We assume that the sequence begins with at least one arrive event before

the first send event. In the remainder of this section we restrict attention to such event

sequences.

Thus, for our event sequences, the online algorithm sends one packet at every send event

until its queue is empty.

We now prove Theorem 6.2. We define a potential function that measures the difference

between twice the benefit of ON, and the benefit of OPT. We show inductively that the

potential function is always non-negative.

We define the functions f : R+ 7→ Z+ and v : R+ 7→ Z+ as follows:

f(t) =
∣∣{i ∈ N|i < t and B(i) > 0}

∣∣ ·R−
∑

i∈{1,...,btc}

(B(i)− 1),

v(t) =
B(t)∑
j=1

R− (j − 1).

Consider an event sequence where the last packet arrival event is at time tlast, it follows

from Observation 6.1 and the definition of f and v above that for any t > tlast the total
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benefit of the queue policy on the event sequence is equal to f(t)+v(t). Similarly, we define

the functions f∗(·), and v∗(·), where the function B∗(·) replaces the function B(·). It then

follows that when both ON and OPT buffers are empty then f(t) and f∗(t) are respectively

equal to the benefit of ON and OPT on the event sequence, and both v(·) and v∗(·) are

zero.

Claim 6.4. If B(t) > 0 then φ · f(t) ≥ f∗(t).

Proof. Obviously f∗(t) ≤ btc ·R. If B(t) > 0 then for every t′ < t we have B(t′) > 0, since

the online buffer empties only once. Hence,
∣∣{i ∈ N|t > i and B(i) > 0}

∣∣ = btc. Also, ON’s

queue length never exceeds (1− 1/φ)R. Therefore,

f(t) ≥ btc ·R− btc(1− 1/φ)R ≥ 1/φ · f∗(t) .

We now define a potential function ψ : R+ 7→ Z as follows:

ψ(t) = (φ+ ε(R)) (f(t) + v(t))− (f∗(t) + v∗(t)) .

Proving that ψ(t) ≥ 0 for all t ≥ 0 concludes the proof of Theorem 6.2: Note that the

functions f(·), v(·), and B(·) (and similarly, f∗(·), v∗(·), and B∗(·)), change only when events

occur. We now use the notation that for the i’th event in the event sequence, occurring at

time t, we write f(i) to indicate the value of f just after the queue policy responded to the

event (instead of f(t + ε), for an arbitrary small ε). (Similarly, we use notation B(i), v(i),

and f∗(i), etc.).

Following Lemma 6.3 we consider only restricted sequences. We prove ψ(t) ≥ 0 for all

t by induction on the number of events. The basis of the induction is at time 0 before any

event occurs. Both queues are empty and the claim trivially holds. Assume the claim holds

for i− 1 events, and consider the i’th event.

Assume the ith event is a send event. The value f(i) = f(i − 1) + R − (B(i − 1) − 1).

The queue size decreases by 1, hence, v(B(i)) = v(B(i− 1))− (R− (B(i− 1)− 1)), and we

get that f(i) + v(i) = f(i − 1) + v(i − 1). Similarly, f∗(i) + v∗(i) = f∗(i − 1) + v∗(i − 1),

and therefore ψ(i) = ψ(i− 1).

Assume the ith event is packet arrival. The function f changes only after send events,

hence f(i) = f(i− 1), and f∗(i) = f∗(i− 1). We consider now 4 relevant cases:
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(i) Both OPT and ON accept the packet,

(ii) ON accepts and OPT rejects, and

(iii) ON rejects and OPT accepts.

(iv) A packet which both ON and OPT reject does not affect the potential function and

can be ignored.

In case (i), B(i) = B(i− 1) + 1 and B∗(i) = B∗(i− 1) + 1. When a packet is accepted,

the queue size after packet acceptance is at most (1− 1/φ)R + 1, hence, v(i) = v(i− 1) +

R − (B(i + 1) − 1) ≥ v(i − 1) + R/φ. OPT’s queue size is at least 1 after the packet is

accepted, so v∗(i) = v∗(i− 1) +R− (B∗(i+ 1)− 1) ≤ v∗(i) +R. Consequently,

ψ(i)− ψ(i− 1) ≥ φ (v(i)− v(i− 1))− (v∗(i)− v∗(i− 1))

≥ 0.

In case (ii), ON’s queue size increases by 1, hence, v(i) > v(i − 1), while OPT’s queue

size does not change, so v∗(i) = v∗(i− 1). Again, ψ(i) > ψ(i− 1).

In case (iii), in which a packet is rejected by ON must have occurred prior to the first

time ON’s queue is emptied and therefore, by Claim 6.4

φf(i) ≥ f∗(i). (6.2)

Additionally, we can tell that B(i) = B(i− 1) = b(1− 1/φ)Rc+ 1 since ON just rejected a

packet. OPT’s queue size B∗(i) ≤ R. Thus,

v(i) = R+ (R− 1) + · · ·+ (R− b(1− 1/φ)Rc)

= 1/2(b R
φ2
c+ 1)(2R− b R

φ2
c)

≥ 1/2(
R

φ2
− 1 + 1)(2R−R/φ2)

=
R2

2φ

On the other hand, v∗(i) ≤ R+ (R− 1) + · · ·+ (R− bRc) ≤ 1/2(R+ 1)2.
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Setting ε(R) = φ(2/R+ 1/R2) we get that

(φ+ ε(R))v(i) ≥ 1/2(R+ 1)2 ≥ v∗(i). (6.3)

Combining equations (6.2), and (6.3) we get that ψ(i) ≥ ψ(i−1). We conclude that ψ(i) ≥ 0

after every event i. This completes the proof of Theorem 6.2.

6.2.2 Lower bound

The following theorem shows that any online algorithm for homogenous packets has a

competitive ratio of at least φ ≈ 1.618 and thus the (Bφ2)-threshold algorithm achieves the

best competitive ratio possible.

Theorem 6.5. The competitive ratio of any online algorithm (deterministic or random-

ized) is at least φ ≈ 1.618.

Proof. We derive the proof for a deterministic online algorithm and at the end sketch the

extensions for the randomized case.

Let π be an online policy for queue management. We construct an input sequence σ(π)

in the following way. We first set a threshold at αR where α = 1/φ2. At each time slot

R packets arrive until the first send event after which π’s queue size is (1/φ2)R = αR or

below. Subsequently, no further packets arrive. Let t0 denote the time of the send event at

which this occurs.1

The optimal schedule accepts one packet in every slot before slot number t0. In the last

slot the optimal schedule accepts all R packets. The optimal benefit for this sequence is

therefore:

OPT(σ(π)) = t0 ·R+R(R+ 1)/2 .

We give an upper bound on the benefit of any policy π on event sequence σ(π) using

1Notice that t0 may be infinite if π’s queue size never gets below αR. In such a case we can take t0 to be
arbitrarily large, and a similar argument would derive the lower bound.
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Observation 6.1,

π(σ(π))
(a)

≤ t0R− t0αR+ αR ·R− αR

2
(αR− 1)

= t0 ·R(1− α) +
αR

2
(2R− αR+ 1)

< t0 ·R(1− α) +
αR

2
(2(R+ 1)− α(R+ 1))

= (1− α)t0R+ α(2− α)R(R+ 1)/2 ,

where (a) follows from Observation 6.1.

Since α = 1/φ2, we have 1− α = α(2− α) and so,

π(σ(π)) ≤ (1− α) (t0R+R(R+ 1)/2)

= (1− α)OPT(σ(π)).

The competitive ratio of every deterministic online algorithm is therefore at least 1/(1−α) =

φ.

For an online randomized algorithm we use a similar construction, however now the

value B(t) is a random variable. We now define t0 to be the first time t when E[B(t)] is

less than αR. The analysis of the optimum remains the same, while for the analysis of the

randomized online we have a dependence on various values of B(t).

In each time slot earlier than t0 the expected queue size is at least αR and therefore the

expected benefit is at most (1− α)R.

E[π(σ(π))] ≤ t0R− t0αR+ E[B(t0) ·R− B(t0)
2

(B(t0)− 1)]

= t0 ·R(1− α) + E[B(t0)] ·R− 1
2
(E[B2(t0)]− E[B(t0)])

< t0 ·R(1− α) + E[B(t0)] ·R− 1
2
(E2[B(t0)]− E[B(t0)])

< t0 ·R(1− α) + αR ·R− 1
2
((αR)2 − αR)

< (1− α)t0R+ α(2− α)R(R+ 1)/2.

The first inequality follows since E[B(t)] ≥ αR for t < t0 and the second inequality

follows since E[B2(t0)] > E2[B(t0)].

Combining Theorem 6.5, and Theorem 6.2, derives a tight bound on the competitive
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ratio of the (1/φ2)R-threshold algorithm.

Corollary 6.6. The competitive ratio of the (1/φ2)R-threshold algorithm is exactly φ.

6.3 Heterogenous Packets

In this section we consider event sequences where every packet may have a different intrinsic

value. The first policy we present, doubling threshold (DT ) is a dynamic threshold policy:

when the queue size is B, packets are accepted if their value is at least 2B. I.e., if the packet

benefit is at least the queue size at the time of arrival.

We first restrict the set of event sequences, defined as follows: If DT accepts a packet p,

then we reduce val(p) to 2B(arrive(p)). I.e. the value of p is reduced to the lowest possible

value for which p is still accepted by DT. We derive the following claim for such restricted

inputs.

Lemma 6.7. The competitive ratio attainable on restricted event sequences is equal to the

competitive ratio on arbitrary event sequences.

Proof. Consider any event sequence σ. We compose a modified sequence σ′, where the value

of every packet p which is accepted by DT, is reduced in σ′ to 2B(arrive(p)). Algorithm

DT admits the same set of packets in σ, and in σ′. The benefit of OPT(σ′), is at least

OPT(σ)+ (DT(σ)−DT(sigma′)), since the optimal schedule for σ would yield at least this

benefit for σ′. Thus, the ratio between

OPT(σ′)
DT(σ′)

≥ OPT(σ)− (DT(σ)−DT(σ′))
DT(σ)− (DT(σ)−DT(σ′)

≥ OPT(σ)
DT(σ)

,

where the last inequality follows since OPT(σ) ≥ DT(σ).

Now, using Lemma 6.7 we show that the competitive ratio of algorithm DT is at most

8.

Theorem 6.8. The competitive ratio of algorithm DT is at most 8.

We regard each packet accepted by DT as two half packets. The idea behind this proof

is to map every packet accepted by OPT to ‘half’ a packet accepted by DT. We use a greedy

mapping rule: an incoming packet accepted by OPT is mapped to the first “available” half

packet in DT’s queue, according to the FIFO sending order. A half packet is available if



6.3. HETEROGENOUS PACKETS 113

and only if no packet enqueued by OPT is mapped to it, otherwise it is unavailable . If p

is mapped to one of the half packets that comprise packet q, we say p is associated with q.

We next show that a packet enqueued by OPT cannot be transmitted by OPT before the

packet with which it is associated with is transmitted by DT.

Lemma 6.9. Let p be a packet in OPT’s queue and let q be a packet in DT’s queue with

which p is associated. Then send(p) ≥ send(q).

Proof. We prove the claim by induction on the number of packets accepted by OPT. The

first packet p in a sequence is accepted by DT (the size of the buffer is 0 at this time, so

every packet with positive value must be accepted). OPT also accepts a packet during this

slot (otherwise it is not optimal). The first packet accepted by OPT, q, is associated with

p (it may be the same packet). Both p and q are first in a FIFO buffer and are scheduled

to be transmitted at the next send event, therefore send(p) = send(q).

Assume the induction hypothesis for i−1 packets and consider the i’th packet p, accepted

by OPT. Let B∗ denote the length of OPT’s queue just prior to p being enqueued. By the

induction hypothesis, there are at most B∗ unavailable half packets in DT’s queue, so there

are at most bB∗/2c packets scheduled to be sent before the first available packet q. Hence,

send(p) ≥ send(q).

We now argue that this mapping process is well defined, i.e., it cannot be that a packet

enqueued in OPT’s queue has no available packet in DT’s queue — the mapping never runs

a deficit of half packets.

Lemma 6.10. Every packet enqueued by OPT has an available half packet in DT’s queue

at the time of its arrival.

Proof. Consider a packet p accepted at time t by OPT. If p is accepted by both OPT and

DT then both halves of p are available. Otherwise, p is accepted by OPT and rejected

by DT. Its value is val(p) < 2B(t) and consequently OPT’s queue size before accepting p,

B∗(t) < 2B(t), as buffer lengths are integral B∗(t) ≤ 2B(t) − 1. Thus, of the 2B(t) half

packets in the DT queue, at most 2B(t) − 1 of them are unavailable and there remains at

least one available half packet.

Mapping each packet of OPT to a half of a packet in the DT queue is, in and of itself,

insufficient to guarantee a constant competitive ratio. We could be associating two packets
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of large benefit with a packet of small benefit. To overcome this issue, part of the benefit

from a packet p enqueued by DT is distributed to all packets currently in the DT queue at

time arrive(p). Instead of benefit, we now consider “credit”, where the credit of a packet

is sum of all benefits distributed to it. Clearly, the total benefit equals the sum of all the

credits given to packets.

More precisely, when a packet p is accepted by DT, and arrive(p) = t, then val(p) =

2B(t), and benefit(p) = B(t). We “redistribute” some of p’s benefit as credit given to other

packets. A packet p keeps only half its credit (1/2 · B(arrive(p))) and the rest is equally

distributed among the B(arrive(p)) packets that are already waiting in the queue, so that

each gets an extra 1/2 unit of credit.

Lemma 6.11. At a time t, the credit of a packet in DT’s buffer, is at least 1/2 ·B(t).

Proof. Consider a packet p in DT’s FIFO queue at position i. When it entered, the queue

size was at least i, so it has an initial credit of at least 1/2 · i. Also, half a credit point was

given to p from each of the B(t) − i packets on top of p queued afterwards. Overall, its

credit is at least 1/2 ·B(t).

To conclude the proof that the competitive ratio of DT is ≤ 8, consider a packet r,

accepted by DT, and denote its credit by credit(r). At most two packets p, q are associated

with r. Packet r credit at time arrive(p) is at least B(arrive(p))/2, while the value of p,

val(p) ≤ 2B(arrive(p)), by assumption on the event sequences. Likewise, packet r credit at

time arrive(q) is at least B(arrive(q))/2 and val(q) ≤ 2B(arrive(q)). Hence,

credit(r) = max
(
B(arrive(p))/2, B(arrive(q))/2

)
≥ (val(p) + val(q))/8.

I.e., the credit of a packet is at least 1/8th of the sum of values of the packets associated

with it and so equal to at least 1/8th of their benefit. Comparing the sum over packets

accepted by DT and over packets accepted by OPT, completes the proof.

Next we derive a lower bound of 4.23 on the competitive ratio of any deterministic

algorithm.
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Lemma 6.12. let β be some positive real constant, and define the sequence of real values

b0, b1, . . ., as follows: b0 = 1, and for all i ≥ 1:

bi = min

x ∈ R+ |
bxc∑
j=0

(x− j) = β

i−1∑
j=0

(bj − j)

 . (6.4)

Then, if there exists some ` such that b`−` < 0 then no deterministic competitive algorithm

can achieve a competitive ratio of ≤ β.

Proof. Consider a sequence of packet arrivals, all of which arrive within the first time slot,

and of values equal to the bi sequence. The sequence has the property that any online

algorithm must accept these packets so as to have a competitive ratio of less than β. If the

packet valued bj is not accepted then the adversary can pack the buffer with packets of this

value. However, if bj − j < 0 then the online algorithm is only losing value by accepting

this bj valued packet.

Theorem 6.13. The competitive ratio of any deterministic online algorithm for heteroge-

nous packets is at least 4.23.

Proof. To prove a lower bound of 4.23 on the competitive ratio of any algorithm for het-

erogenous packets, we make use of Lemma 6.12, and try to find the largest β for which

there exists an ` such that b` − ` < 0 holds. Solving the recurrence with β = 4.23 gives

b1807 < 1807.

Remark 6.14. In a subsequent work Feldman [38] shows analytically that a sequence {bi}0≤i

satisfying condition (6.4) in Theorem 6.12 a lower bound of β exists for every β < φ3 ≈ 4.23.

6.4 Preemptive Queue

In this section we consider a preemptive queue policy that enables the queue manager to

discard packets after they have been accepted. Further more we do not require that the

packets are sent according to their FIFO order; packets can be sent in arbitrary order. In

addition we continue not to impose any limit on the buffer size.

In this section, in contrast to previous sections, an online scheduling algorithm simply

selects at every send event the packet to be sent.
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The fact that the online algorithm does not have to decide whether to accept or reject

a packet immediately after its arrival, gives it additional strength. For the heterogeneous

packets model we have discussed earlier, this is all that an online algorithm needs to guar-

antee a competitive ratio of 1. As we show in Section 6.6, the greedy algorithm that sends

at every time step the packet with the current most value attains the optimal offline per-

formance.

Allowing preemption and arbitrary sending order, allows us to handle much more diffi-

cult value model, where packet have time-loss heterogeneously. This means that the value

lost for delaying one unit of time, can be much more general.

As in previous sections we assume that packets arrive online, and that the value gained

by sending a packet p consists of an initial intrinsic value val(p), from which a penalty for

the delay is subtracted, only now, the penalty may be any decreasing function c : N → R+

of delay(p). We denote this gain by val(p, t) = val(p)− c(delay(p)) the value of a packet p

if it is sent at time t. We assume that valp,t ≥ 0 for all t ∈ N, t ≥ arrive(p). For ease of

notation we set v(p, t) = 0 for all t ∈ N, t < arrive(p), i.e., a packet has no value prior to its

arrival. We emphasis that although this change in notation, an online scheduling algorithm

still has no knowledge regarding the future stream of incoming packets.

This packet value model generalizes both the bounded delay model [69], and the model

discussed in Sections 6.1 to 6.3 . Notice that in the non-preemptive, FIFO model, the com-

petitive ratio of every online scheduling algorithm is unbounded even in the heterogenous

linear loss model.

The simplest algorithm for preemptive queue management is the greedy algorithm, that

always sends the packet with the current largest benefit for service, i.e., the packet that

would be benefiting the most if it was to be sent at the next send event. We show that

greedy already suffices to guarantee a competitive ratio of 2 for the most general value

model with value time loss heterogeneity

Theorem 6.15. The competitive ratio of GREEDY is 2.

Proof. To show an upper bound of 2 on the competitive ratio of the greedy algorithm we use

a primal-dual approach, which demonstrated as an effective tool for the analysis of online

algorithms by Buchbinder and Naor [21].

We first write the offline problem of finding the optimal schedule as a linear program

(LP). We denote by n the overall number of packet arrivals, and by m, the first time slot,
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at which the value of all packets reduces to 0. We introduce a variable Xi,t for every packet

1 ≤ i ≤ n, and every time slot 1 ≤ t ≤ m, indicating whether packet i is scheduled to time

t.
(LP) : Maximize

∑
Xi,tval(i, t)

subject to
∑

tXi,t ≤ 1 ∀i ∈ {1, . . . n},∑
iXi,t ≤ 1 ∀t ∈ {1, . . .m},

Xi,t ≥ 0 ∀i ∈ {1, . . . n}, t ∈ {1, . . .m}.

. (6.5)

The dual of (LP), denoted (DUAL) is

(DUAL) : Minimize
∑n

i=1 Yi +
∑m

t=1 Zt

subject to Yi + Zt ≥ val(i, t) ∀i ∈ {1, . . . n}, t ∈ {1, . . .m}
Yi ≥ 0, ∀i ∈ {1, . . . n}
Zt ≥ 0 ∀t ∈ {1, . . .m}

. (6.6)

We rephrase the greedy algorithm in terms of (LP), and (DUAL). We initially set all

variables to be 0. At each time t ∈ {1, 2, . . . ,m} the greedy algorithm schedules the packet

with the highest current value val(i, t), that was not previously scheduled i.e.,

i ∈ argmaxj|Xj,t′=0∀t′≤t{val(j, t)}.

If i is not uniquely defined, then the algorithm sets i to an arbitrary element in the set

argmaxj|Xj,t′=0∀t′{val(j, t)}. The variable Xi,t is then set to 1. This assignment is clearly

a feasible solution of (LP). It also increases the objective function of (LP) by val(i, t). In

addition, we assign val(i, t) to the dual variables Yi and Zt. Thus, the objective function of

(DUAL) is at most twice of that of the (LP).

When the algorithm terminates, the assignment of the Z and Y variables make a feasible

solution for (DUAL): for every 1 ≤ i ≤ n, and 1 ≤ t ≤ m, consider the constraint Yi +Zt ≥
wi,t. Either

(i) packet i is scheduled at time t′ ≤ t, in this case Yi = val(i, t′) ≥ val(i, t) or,

(ii) packet i is not scheduled on or before time t, in this case, if val(i, t) = 0, then the

constraint is trivially satisfied. Otherwise, by definition of the greedy algorithm, there

must be a different packet j which is scheduled time t, with value val(j, t) ≥ val(i, t).

In this case, Zt = val(j, t), and the constraint is again satisfied.
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From the weak duality theorem we know that any feasible value of the dual program

serves as an upper bound on the value of the primal program. It follows then, that the

assignment x is a 2-approximation of an optimal assignment.

The greedy algorithm generalizes the greedy algorithm in the bounded delay model,

presented by Kesselman et al. [69]. They show that there exists an arrival sequence for

which greedy attains a competitive ratio of 2, and therefore our analysis above is tight.

A special case is when the time loss functions are linear with the delay, i.e., val(p, t) =

val(p)− cp · delay(p), where cp is p’s loss per unit of time.

We next show that in the case of heterogenous linear loss function, the competitive ratio

can be improved to e/(e − 1) using randomization. We present algorithm “Randomized

Greatest Loss First”(RGLF) — every time the algorithm sends a packet it selects from the

packet which will suffer the highest loss, from the set of packets with a value that exceeds

a certain threshold, chosen randomly. Algorithm RGLF and its analysis are inspired by the

RMIX algorithm presented and analyzed by Chin et al.[25].

Algorithm RGLF: At every time t algorithm RGLF selects randomly and uniformly a value

x in the interval [−1, 0]. Let Xt denote the content of RGLF buffer at time t, i.e., every

packet that has strictly positive value at time t, and that was not sent previously. Let h

denote the packet in Xt with the current highest value val(h, t) = maxj∈Xt{val(j, t)}. The

algorithm selects the packet with the greatest loss factor, from the set of packets with value

at least exwh,t. If several packets have a value that exceeds the threshold, and their loss

factor is identical to the highest loss factor, then RGLF selects the one with the current

lowest value.

The analysis of RGLF uses a potential function, that maps buffer configurations2 to

the real numbers. We use the following lemma from [25], regarding the analysis of online

scheduling algorithm.

Lemma 6.16. [from [25]] Let A be an online algorithm for scheduling online packets and

let ψ be a potential function such that a configuration with no pending packets is mapped to

0. If ψ satisfies at each step

β∆A ≥ ∆OPT + ∆ψ, (6.7)

2A configuration at event E consists of the content of the online algorithm buffer, and the content of the
optimal schedule buffer after the last event that precedes E and before E.
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where ∆ψ represents the change in the potential, and ∆A,∆OPT represent the A’s, and

OPT’s change in gain in this step. Then A is β-competitive.

To show this lemma we sum the ∆OPT,∆A, over all events. Notice that because of

linearity of expectation, the same argument holds for randomized algorithms for which the

expected change in the algorithm E[∆ψ], satisfies condition 6.7.

Theorem 6.17. The competitive ratio of algorithm RGLF is at most e/(e− 1).

Proof. The proof follows the line of proof of the competitive ratio of algorithms RMix,

introduced in [25] by Chin et al. .

At a given time step t, let Y,X denote the buffers of optimal schedule and the online

algorithm respectively. We define the potential function

ψ =
∑

j∈Y \X

val(j, t).

By Lemma 6.16, it suffices to show that at a time step t at which OPT schedules a

packet j, E[ e
e−1val(f, t)−∆ψ] > val(j, t), where f is a random variable denoting the packet

selected by RGLF.

For the entire proof we fix a time slot t. Arrival event do not change the potential

function, since every arriving packet immediately joints X. Expiration of packets also does

not affect the potential, since no expired packet every belongs to Y .

In case that j ∈ Y \X. The potential increases by at most the value of f at the next

time slot that is val(f, t + 1) = val(f, t) − cf , and decreases by val(j, t). Thus, ∆ψ ≤
val(f, t)− val(j, t), and therefore

E[
e

e− 1
val(f, t)−∆ψ] ≥ E[

1
e− 1

val(f, t) + val(j, t)] ≥ val(j, t),

and we are done

Otherwise, suppose that j ∈ Y ∩ X. In this case we can immediately tell that ∆ψ ≤
val(f, t)− c(f) < valf, t, as packet j ∈ X is not part of the sum in the potential.

In case that val(j, t) ≥ exval(h, t), then j would have been sent by RGLF, if c(j) ≥ c(i)

for every i ∈ X. We can assume without loss of generality, that if cj = cf then OPT

schedules f at time t, i.e., f = j, otherwise, we could modify OPT to replace the send order

of f and j. This is possible since f was selected to be the packet with the lowest current
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value over all packets i with cf = ci. Therefore, changing the order is possible, because if f

is scheduled by OPT for later then t, then so could be j. Therefore, either

(i) f = j. In this case f will not belong to Y in the next step, or,

(ii) f 6= j. In which case we can assume without loss of generality that cf > cj , which

again means that f does not belong to Y , as it will not be sent by OPT (otherwise,

OPT could gain by switching the order between f and j).

Thus, ∆ψ = 0. As a result,

E[
e

e− 1
val(f, t)−∆ψ] =

1
e− 1

E[val(f, t)] + E[val(f, t)−∆ψ]

≥
∫ 0

−1
exval(h, t)dx+

∫ log
val(j,t)
val(h,t)

−1
(val(f, t)− 0) dx

+
∫ 0

log
val(j,t)
val(h,t)

(val(f, t)−∆ψ) dx

≥ 1
e− 1

(
1− 1

e

)
val(h, t) +

∫ log
val(j,t)
val(h,t)

−1
exval(h, t)dx

=
1
e
val(h, t) +

(
val(j, t)
val(h, t)

− e−1

)
val(h, t)

= val(j, t)

This completes the proof.

Last we show that unlike the case of homogenous time loss, when time-loss is heteroge-

nous, the competitive ratio of every algorithm is bounded away from 1, even if preemption

is allowed and the FIFO order need not be kept.

Claim 6.18. The competitive ratio of every deterministic online algorithm is at least
√

6/2 ≈ 1.224. The competitive ratio of every algorithm (deterministic or randomized)

is at least 1.101.

Proof. We construct a sequence σ for a deterministic online algorithm ON. The sequence σ

begins with two arrivals at the first time slot of packet p with val(p) = 2 and c(p) = 1, and

packet q with val(q) = c(q) =
√

6−1. If at the first send event ON sends p then the sequence

ends. In this case the competitive ratio is OPT(σ)/ON(σ) =
√

6/2. If ON sends q, then σ

has an additional arrival of packet r at the second time slot, with val(r) = c(r) = 1. In this
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case OPT(σ)ON(σ) = 3/
√

6 =
√

6/2. Thus, the competitive ratio of every deterministic

online algorithm ON is at least
√

6/2.

A lower bound of 1.10 on every (possibly randomized) algorithm, can be derived from

the same construction combined with Yao’s principle[18].

6.5 Regulating Selfish Packets

We now point to a connection between our work and Naor’s model [81], and state our results

in terms of social welfare given selfish customers. If incoming packets are regarded as selfish

decision makers, then the simple threshold policy is a dominating strategy. Customers join

the queue if and only if its length is less than their value. In the worst case, the stream is

such that the queue size is always slightly less than the value of the incoming packet, and

hence, the profit for a customer is always 0. From the perspective of [81], Theorem 6.5 can

be interpreted as a proposition to levy a toll of 1/φ ·R at the entry point of a queue. This

ensures a 1/φ approximation of the optimal social welfare. Theorem 6.5 tells us no other

online payment scheme can achieve a better guarantee in the worst case.

In the case of heterogenous customers, the value of a packet can be regarded as its type,

and the problem of levying tolls can be seen as a mechanism design issue. Theorem 6.8

can be interpreted as a payment mechanism, where the price for a customer to enter the

queue equals the queue size on his arrival. Clearly, this mechanism is truthful. Moreover,

customers make no bid, only decide on whether to join the queue or to balk. It follows from

the competitive ratio of 8 for DT that this mechanism guarantees an approximation ratio

of 8 on the optimal social welfare, in the worst case.

Revenue Maximization. In this chapter we consider a “social welfare” viewpoint, as our

goal is to maximize the aggregated gain of individuals. To enforce social welfare joining

policies we suggested that tolls should be levied on customers accepting service. When

the queue manager charges a fee for the service given, a natural question is what policy/

pricing scheme would maximize the manager’s revenue? Naor [81] consider this question

in his stochastic model with homogeneous customers, and shows that the fee charged by a

profit maximizing queue manager is higher than the optimal social welfare maximizing fee.

In the corresponding online setting (homogeneous packets; FIFO queue) we could charge

an admission fee of R/φ, to impose our threshold strategy. Alternatively, the queue manager

could charges at time t the minimum between R−B(t), and R/φ. This would extract the
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entire value from accepted packets, and would guarantee a competitive ratio of φ on the

revenue of the manager, which following Theorem 6.5, is the best possible.

This pricing scheme is based on the fact that the owner knows that true value R of every

packet. The question of designing an optimal revenue maximizing pricing scheme becomes

much more challengeable in the heterogeneous value model, and remains open.

6.6 An Optimal Offline Algorithm

In this section we describe efficient offline algorithms for maximizing the sum of packet

benefits (alternately, in the context of utilities and selfish agents, “maximizing the social

welfare given the true agent utilities”). We describe algorithms for heterogenous packets.

Ergo, they are trivially applicable in case of homogenous packets as well. We observe that

the offline problem can be solved via bipartite matching in O(n3) time complexity, where n

is the number of arriving packets in the event sequence. We also show a greedy algorithm

that also gives the optimal sum of benefits, and requires only O(n log n) time complexity.

A natural approach to solving the offline problem of maximizing benefit from heteroge-

nous packets is to use weighted bipartite matching. One could introduce a vertex for every

packet and every time slot. Add edges from packets p to time slots t > arrive(p), of weight

val(p) − bt − arrive(p)c. Now, compute a maximal weighted matching. Packets that are

matched to time slots will be accepted by the queue policy, packets that are not matched

will be rejected. We could interpret an edge matching packet p to time slot t as though

this means that packet p is to be transmitted at time t and this implies some arbitrary

non-preemptive queue regime. Fortunately, it follows from Observation 6.20 that using the

FIFO queue regime will result in the same benefit3.

Given an event sequence, a transmission schedule is a mapping, m, from the arriving

packets of the event sequence to the integers ≥ 1 or the special symbol ∅, such that

1. If packet p is mapped to m(p) 6= ∅ then arrive(p) < m(p), this can be interpreted as

saying that packet p is to be transmitted at time slot m(p). We interpret m(p) = ∅
as indicating that packet p is rejected.

2. No two packets are mapped to the same integer.

3We remark that this bipartite matching approach can be used for much more general latency sensitivity
scenarios, but then Observation 6.20 may become inapplicable.
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Given an event sequence σ, we define the total benefit of the transmission schedule m

to be
∑

p∈S benefit(p), where S is the set of all packets p in σ such that m(p) 6= ∅. Recall

that if m(p) 6= ∅ then benefit(p) = val(p) − bm(p) − arrive(p)c. Given an event sequence

σ, a queue policy π, and a queue regime R, the pair (π,R) jointly determines a unique

transmission schedule m : σ 7→ Z+ ∪ {∅}4.

Observation 6.19. Given an event sequence σ, and a transmission schedule m, choose

any two packets, p and q, such that m(p) 6= ∅ and m(q) 6= ∅, and such that the arrival

times of both p and q are prior to the earlier transmission (i.e., max(arrive(p), arrive(q)) <

min(m(p),m(q))). Now, define a new transmission schedule m′ = m, except in that m′(p) =

m(q) and m′(q) = m(p). (I.e., m′ switches the transmission times of packets p and q). Then,

the total benefit from transmission schedules m and m′ is the same.

Given an event sequence σ and a transmission schedule m, let m′ be another transmis-

sion schedule reachable from m by successive applications of transmission time swaps as

described in Observation 6.19. Let π be a queue policy that determines m (in conjunction

with some queue regime R). Note that if some packet p has negative benefit in schedule m′

(i.e., benefit(p) = val(p)− bm′(p)− arrive(p)c < 0), then the queue policy π is clearly non

optimal, since π would have benefited by rejecting packet p.

To derive an optimal offline policy for non preemptive FIFO queues, we start by allow-

ing preemptive and arbitrary queue regimes. The following observation states that while

preemption may add considerable strength to online algorithms, it does not impact the

optimal (offline) solution. It also states that the queue regime is irrelevant in the context

of non-preemptive queue regimes.

Observation 6.20. 1. The maximal total benefit is the same irrespective of whether the

queue regime allows preemption or not.

2. For non-preemptive queue regimes, the total benefit from an event sequence depends

only on the admission policy and not on queue regime.

We consider the following algorithm, GREEDY, which defines both the queue policy

and regime: initially, GREEDY accepts every incoming packet. On a send event, GREEDY

transmits the packet that currently possesses the highest benefit (ties are broken arbitrarily),

and preempts packets with negative or zero benefit.
4Likewise, given an event sequence σ and a transmission schedule m : σ 7→ Z+∪{∅}, there exist (possibly

many) pairs of (queue policy,queue regime) that determine m.
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Theorem 6.21. For any event sequence σ, GREEDY(σ) = OPT(σ), GREEDY has O(n log n)

time complexity, where n is the number of arriving packets in σ.

GREEDY defines both a queue policy and a queue regime, the queue regime used by

GREEDY is not FIFO. However, it follows from Observation 6.20 that we could define a

queue policy , OPT, that accepts the same packets eventually transmitted by GREEDY,

along with any non-preemptive queue regime, and achieve maximal benefit.

6.7 Future Research Directions

We outline a few directions for a future research:

(i) We conjecture that the competitive ratio of deterministic algorithms for heterogeneous

packets is φ3 ≈ 4.23.

(ii) Although randomness did not help in the homogenous case, it seems possible that

randomized algorithms can beat the deterministic lower bound of φ3 for heterogeneous

packets.

(iii) A major goal would be to control a queue with intrinsic packet values and heterogenous

value loss functions.
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