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1 Introduction
Reinforcement Learning (RL) learns to control a complex, unknown environment through interaction.
RL algorithms were highly successfully applied to various domains. Policy gradient methods optimize
directly a parameterized policy by computing gradients of the value function and updating the
parameters. Policy gradient methods have been highly successful in many applications areas (such
as playing GO [Silver et al. 2016] and robotics [Deisenroth et al. 2013]) and are among the most
effective methods in Reinforcement Learning.

The policy gradient theorem [Sutton et al. 1999] gives a method of computing the gradient as
a function of the observable quantities in the MDP. Using Monte-Carlo methods and Reinforce
Williams (1992) or actor-critic methodology give popular implementations of the policy gradient
methodology. However, those fundamental results do not derive convergence bounds or performance
guarantees.

Our starting point is the work of Agarwal et al. (2020b) which studies the number of gradient
steps required to reach an ϵ approximation of the optimal value function, assuming we receive exact
gradients. The main contribution of our work is to avoid the assumption of exact gradients, and
directly approximate the gradients from observations and in addition derive vanishing regret bounds.

More specifically, this work focuses on finite horizon Markov Decision Process (MDP) with
tabular policy parameterizations, i.e., there is a parameter per state-action pair. Our policy gradient
algorithms approximate the policy gradient using episodes sampled from the MDP, i.e., we do not
assume direct access to exact policy gradient.

We analyze the algorithms with respect to the regret, i.e., the difference between the expected
return of the optimal policy and the expected return of the policies chosen by the online algorithm
(which is running a policy gradient algorithm). We stress that our focus is on understanding the
performance of the widely used policy gradient methodology and not on deriving new algorithms
or new performance guarantees. (See the related work section for a variety of regret minimization
algorithms.)

We consider two parameterized policy classes (similar to Agarwal et al. (2020b)). The first, direct
parameterization, simply encodes the policy using a lookup table. The second, softmax, encodes a
weight per state-action, and selects an action using a softmax function of the weights. At a high
level, our algorithms work in phases, where during each phase they sample episodes using the current
policy, and at the end of the phase compute an approximation of the policy gradient and update the
policy.

In the direct parameterization for every state-action pair s, a the parameter θs,a is the probability
to choose action a in state s. In every phase we perform a policy gradient update of the parameters,
and project the new parameters to the policy simplex. For the direct parameterization we show a
regret bound of Õ(K
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In the softmax parameterization we use a variant of the natural policy gradient algorithm, where
for a parameter vector θ ∈ R|S|×|A|, the probability of choosing action a in state s is proportional to
exp(θs,a). In the softmax setting, in order to have efficient approximations of the policy gradient, we
need to make some assumption about the MDP:

• In the first setting we assume that with some probability λ > 0, the initial state of the MDP
is uniformly chosen and a random action is performed. After this, the algorithm follows the
current policy. The regret of the policy gradient with softmax parameterization in this setting
is bounded by Õ(H2|S| 13 |A| 13K 2

3λ− 1
3 ).

• In the second setting, where potentially λ = 0, we assume a reset for the initial state. Namely,
the algorithm can choose an initial state and action to start from. To ensure a “meaningful” regret
bound, the return of episodes not starting at state s0 are ignored in the regret analysis. The regret
of the softmax policy gradient algorithm in the this settings is bounded by Õ(H

9
4

√
|S| |A|K 3

4 ).

While our results apply to tabular policy parameterizations, we believe that they shade light on
the success of the policy gradient in general. Having a vanishing regret is a very stringent requirement,
which highlight the soundness on the policy gradient methodology.

1.1 Related Works
Regret minimization using the optimism in face of uncertainty principle: There is a vast
literature on regret minimization in RL for the tabular setting, that mostly builds on the optimism
in face of uncertainty principle.

Jaksch et al. (2010) Presents the UCRL2 algorithm, using the approach of optimism in the face
of uncertainty. That is, it defines a set of plausible MDPs given the observations so far, chooses
an optimistic MDP with respect to the set of models, and executes it. In the regret analysis they
use a notation of average reward, which means every episode instead of the random reward that
the agent received, they use the expected value of the reward given the MDP and the policy. They
define the diameter D of an MDP, which is the maximal path between any two states, and prove a
regret bound of Õ(DS

√
AK) after K steps assuming average reward, and show it is near optimal by

presenting a lower bound of Ω(
√
DSAK) for every online learning algorithm.

Bartlett and Tewari (2009) presents an algorithm called REGAL, which is inspired by the
UCRL2 algorithm. The algorithm obtains a Õ(cS

√
AK) regret bound in the larger class of weakly

communicating MDPs, where c is the bound on the span of the bias function.
Fruit et al. (2018) presents the SCAL algorithm, with a regret bound of Õ(c

√
ΓSAK), where

Γ ≤ S possible next states for every state, and c is the bound for the span of the optimal bias function
(Similar to the value of c in Bartlett and Tewari (2009)).

Abbasi-Yadkori et al. (2019) presents the POLITEX algorithm, using a model-free settings and
function approximation. They assume that the value function error after running a policy for τ time
steps scales as ϵ(τ) = ϵ0 + Õ(

√
d/τ), where ϵ0 is the worst-case approximation error and d is the

number of features in a compressed representation of the state-action space. They show a regret
bound of Õ(d1/2K3/4 + ϵ0K).

Regret minimization with finite horizon MDPs Osband et al. (2016) presents a randomized
least-squares value iteration (RLSVI) algorithm using linearly parameterized value functions. They
present a regret bound of Õ(

√
H3SAK, where H is the finite horizon.

Dann et al. (2017) presents a new framework for theoretically measuring the performance of RL
algorithms. To show the benefits of the new framework they present an algorithm called Uniform-PAC
with a regret bound of Õ(H2

√
SAK + S3A2), and simultaneously achieves the optimal regret and

PAC guarantees except for a factor of the horizon.
Azar et al. (2017) show that an optimistic modification to value iteration achieves a regret bound of

Õ(
√
HSAK) assuming K is large enough (K ≥ H3S3A) and SA ≥ H. They define Bernstein-based

"exploration bonuses" that use the empirical variance of the estimated values at the next states.
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Jin et al. (2018) addresses Model-free RL, and show that a Q-learning algorithm with UCB
exploration achieves a regret bound of Õ(

√
H3SAK).

Zanette and Brunskill (2019) presents an algorithm for finite horizon discrete MDPs which not
only conforms with the previously known state of the art regret bound of Õ(

√
HSAK), but also

provably obtains much tighter guarantees if the domain has a small variance of the the quality
function Q∗ distribution, or a small bound in the possible achievable reward.

Efroni et al. (2019) focus on model-based RL in the finite-state finite-horizon MDP, and establish
that exploring with greedy policies can achieve tight regret bound of Õ(

√
HSAK). Therefore,

full-planning in model-based RL can be avoided, and by doing so the computational complexity
decreases by a factor of S.

Cai et al. (2020) presents an Optimistic variant of the Proximal Policy Optimization (OPPO)
algorithm, which follows an "optimistic version" of the policy gradient direction. They assume that
the MDP is linear, i.e., that the transition dynamics are linear in a feature map, and show a regret
bound of Õ(

√
d2H3K), where d is the dimension of the feature map and H is the episode horizon.

Zhang et al. (2020) presents the Monotonic Value Propagation (MVP) algorithm, which relies on
a new Bernstein-type bonus. To handle long planning horizon problems, they present a regret bound
of Õ(

√
SAK + S2A), which has only logarithmic dependence on the horizon H. This regret bound

approaches the Ω(
√
SAK) lower bound of contextual bandits up to logarithmic terms.

Sample complexity: Works on sample complexity can be traced back to [Kearns and Singh 2002,
Brafman and Tennenholtz 2002, Kakade 2003]. Dann et al. (2019) presents an upper bounds for the
PAC model: Õ(SAH2

ϵ2 + S2AH3

ϵ ) while Dann and Brunskill (2015) gives a lower bound of Ω̃(SAH2

ϵ2 ).
Additional sample complexity bounds bounds appear in [Lattimore and Hutter 2012, Azar et al. 2012,
Dann et al. 2017].

Policy gradient in non-tabular setting: The work of Shen et al. (2019) gives a sample complexity
bound of O(ϵ−3) in the non-tabular case to reach a stationary point. Yang et al. (2020) presents a
second order stationary point with a sample complexity of Õ(ϵ−9/2), which is guaranteed to converge
to a local maxima.

Policy gradient in tabular setting: In the works of Kakade and Langford (2002) they assume
to have an ϵ-greedy policy chooser that chooses a next policy that maximizes the expected advantage
function of the new policy w.r.t. the previous policy. They prove a convergence bound of V (π∗)−
V (π) ≤ ϵ

(1−γ)2D∞ where D∞ is similar to our definition of D, and γ is the discounted return factor,
after O(ϵ−2) calls to the ϵ-greedy policy chooser.

Mei et al. (2020) shows that with a softmax parameterization, the policy gradient algorithm
converges to V ∗(ρ) − V πt(ρ) ≤ ϵ after O( |S|

ϵc(1−γ)6D∞∥ 1
µ∥∞) assuming ρ is some starting state

distribution, µ is the starting state distribution used by the RL algorithm, and c is defined as:
c = infs∈S.t≥1 πt(a ∗ (s)|s).

Cen et al. (2020) analyses the Natural Policy Gradient algorithm using entropy regularization
and show that Õ( |S||A|

(1−γ)8ϵ2 ) samples are needed to find an ϵ-optimal policy.
Shani et al. (2020) presents the Uniform Trust region policy optimization (TRPO) algorithm,

and shows that the algorithm finds an ϵ-optimal policy using the regularization constant λ given
Õ(A

5(1+λ log(A))S
(1−γ)4ϵ3λ ) samples. In Trust Region methods a sum of two terms is iteratively being minimized:

a linearization of the objective function and a proximity term which restricts two consecutive updates
to be ‘close’ to each other

As mentioned before, the work of Agarwal et al. (2020b) analyzes the sample complexity of policy
gradient in tabular setting for discounted return, assuming access to the true policy gradients. For the
direct parameterization, they bound the number of the gradient updates by O(D2

∞|S||A|(1−γ)−6ϵ−2),
where D∞ is similar to our definition of D, and γ is the discounted return factor. For the softmax
parameterization, they bound the number of gradient updates by O((1− γ)−2ϵ−1).
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We stress that our aim is not to improve the best regret bounds but to understand the performance
of the widely used policy gradient methods.
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2 Model
Markov Decision Process (MDP) are defined by M = (S, s0, A, P, r), where S is a finite set of states
and s0 ∈ S is the initial state, A is a finite set of actions, P is the transition probability function,
where P (s′|s, a) is the probability of reaching state s′ when we are in state s and performing action
a, and r is the expected reward, where r(s, a) ∈ [0, 1] is the expected reward of performing action a
in state s.

We consider the finite horizon return, which is the sum of the first H rewards. We assume,
w.l.o.g.,2 that the state space is levelled, i.e., the state space S is partitioned to H + 1 subsets
S0, . . . SH , where S0 = {s0}, SH = {sH} and we can move only between adjacent levels. Formally,
for any si ∈ Si and sj ∈ Sj , where j ̸= i+ 1 and for any action a we have that P (sj |si, a) = 0. In
addition, we assume w.l.o.g. that any state s is reachable from s0.

A policy is a mapping of states to a distribution over actions, i.e., π : S → ∆(A), where ∆(A) is the
set of distributions over A. An episode using a policy π is a sequence (s0, a0, r0, s1, . . . sH−1, aH−1, rH−1, sH),
where ai is sampled using π(·|si) and si+1 is sampled using P (·|si, ai), and ri = r(si, ai). The return
of an episode is

∑H−1
i=0 ri. We denote by Prπ[·] the probability distribution generated by sampling

using policy π and by Eπ the expectation w.r.t. Prπ.
Policy Parameterizations - We consider two different policy parameterizations:

Direct Parameterization: Policies are parameterized by θ ∈ [0, 1]|S|×|A|, and π(a|s; θ) = θs,a, where
for any state s we have

∑
a∈A θs,a = 1. A ρ-stochastic policy has θ ∈ [ρ, 1]|S|×|A|, i.e., for such

policies π we have π(a|s; θ) ≥ ρ. The set of ρ-stochastic policies is denoted by Πρ.
Softmax Parameterization: Policies are parameterized by θ ∈ R|S|×|A|, where

π(a|s; θ) = exp(θs,a)∑
a′∈A exp(θs,a′)

We will use interchangeably the notation π and θ to denote the policy.
We define the standard value functions for an MDP as follows. Given a policy π and a state

s ∈ S the value of V π(s) is the expected finite horizon return, when we start at state s and run until
we reach sH , i.e., for a state s ∈ Si we have

V π(s) = Eπ

 H∑
j=i

r(sj , aj)|si = s


where aj is sampled using π(·|sj) and sj+1 is sampled using P (·|sj , aj). Note that V π(s) ≤ H.

Given a policy π, and a state-action pair s, a, the value of Qπ(s, a) is the expected finite horizon
return, when we start at state s and perform action a, and follow the policy π until we reach sH , i.e.,
for a state s ∈ Si we have

Qπ(s, a) = Eπ

 H∑
j=i

r(sj , aj)|si = s, ai = a


where aj is sampled using π(·|sj) and sj+1 is sampled using P (·|sj , aj).

The advantage function for a policy π and a state-action pair s, a is the difference between the
V π(s) and Qπ(s, a), i.e., Aπ(s, a) = Qπ(s, a)− V π(s).

Let π∗ be the optimal policy, i.e., π∗ = argmaxπ V
π(s0), and denote V π∗

, Qπ∗
and Aπ∗

by V ∗,
Q∗ and A∗, respectively.

Definition 2.1 The regret of an algorithm, over K episodes, using policies π1, π2, . . . , πK , is:

Regret =

K∑
l=1

V ∗(s0)− V πl(s0)

2To avoid the assumption we can create an equivalent MDP, where there are H levels and each level includes all S
states. Every edge will be as in the original MDP, only the edges move from one level to the next. The new MDP will
be equivalent, and the number of states will increase by a multiplication of H
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Given a policy π we define the vector of occupancy measure dπ as follows. For a state s ∈ S we
have that dπs is the probability that we reach state s when we start from state s0 and generate an
episode using policy π, i.e., dπs = Prπ(st = s). Observe that for any policy π,

∑
s∈S dπs = H. For

a level i ∈ [H] the levelled occupancy measure dπ,is = Prπ(si = s), which is a distribution over the
states in level i, i.e., Si.

For an MDP M and a parameter ρ, we define the parameter Dρ = maxπ∈Πρ
maxs

dπ∗
s

dπ
s

.3

Notations: A function f : X → Y is β-smooth, for β ≥ 0, with respect to a norm ∥ · ∥ if for all
x1, x2 ∈ X we have ∥∇f(x1)−∇f(x2)∥ ≤ β∥x1 − x2∥.

For an integer n ≥ 1 let [n] = {0, . . . , n− 1}.
For a matrix A ∈ Rn×m, the Moore Penrose pseudo-inverse matrix is denoted by A†.

The indicator function I(·) equals 1 when the condition holds, and 0 otherwise.

3As discussed in Agarwal et al. (2020b), this parameter is essential to overcome some inherently hard to learn
MDPs, such as combination locks. The difference with D∞ in Agarwal et al. (2020a) is due to their discounted return,
and their requirement that the initial state distribution has full support

9



3 Direct parameterization
At a high level the policy gradient algorithm works as follows. It has N phases, and in each phase it
samples m episodes to estimate the policy gradient, and uses the policy gradient estimate to update the
parameters. Overall there are K = Nm episodes. In each phase t, using the m episodes, we compute
an estimator ∇θ

˜V πt(s0) and show that with high probability ∥ ˜∇θV πt(s0)−∇θV
πt

(s0)∥∞ ≤ ϵ.
In order to create an unbiased estimator for the policy gradient, we would need approximately

m = O(1/q2) episodes every phase, where q = mins∈S,a∈A πt(a|s). This bound would become
infeasible as πt becomes a near-deterministic policy, i.e., πt(a|s) ≈ 0. To overcome that, we consider
ρ-stochastic policies, which lower bound the probability of an action by ρ, and hence m = O(1/ρ2).
We stress that we do not assume that the optimal policy is ρ-stochastic.

In each phase t we compute an unbiased estimator for the gradient ∇θV
πt

(s0), which we denote

by ∇θ
˜V πt(s0). The estimator is composed by averaging m unbiased estimators, one for each episode

we run in phase t.
After we compute the estimator ∇θ

˜V πt(s0), we update the policy parameters to θt+1 = proxρ(θ
t+

η ˜∇θV πt(s0)) where proxρ(θ) : = argminθ′∈Πρ
{∥θ′ − θ∥22} is a projection operator to the class of

ρ-stochastic policies.
For the final regret bound, we optimize the regret with respect to ρ and ϵ. In the following we

elaborate on each component of the algorithm, and in the supplementary material we provide detailed
proofs.

3.1 Approximating the Gradient
We bound the number of episodes m needed to approximate the gradient ∇θV

π(s0), with error ϵ in
norm L∞, where ϵ is a parameter we will later optimize. The policy gradient theorem states:

Theorem 3.1 (Sutton et al. (1999)) For a policy π which is parameterized by the parameter θ:

∇θV
π(s) =

∑
s′∈S

Prπ[st = s′|s0 = s]
∑
a∈A

∇θπ(a|s′; θ)Qπ(s′, a) (1)

For ρ-stochastic policies, given a parameter θ ∈ Πρ the gradient ∇θπ(a|s; θ) is a unit vector that
equals 1 at the (s, a) coordinate, and 0 at all other coordinates. The following Lemma is well known
(see, e.g., Agarwal et al. (2020b)), and follows from the policy gradient theorem and the value of
∇θπ(a|s; θ). We give the proof for completeness.

Lemma 3.2 For a policy π and a state-action pair s, a, we have ∇θV
π(s0)s,a = dπsQ

π(s, a).

Consider m episodes, τ0, τ1, . . . , τm−1, sampled using a policy π ∈ Πρ. For each episode τi =

(si0, a
i
0, r

i
0, s

i
1, . . . s

i
H−1, a

i
H−1, r

i
H−1, s

i
H) we define a vector X⃗π(τi) which is an unbiased estimator of

the policy gradient. For a state s ∈ Sl (a state in level l) and an action a ∈ A the entry s, a in the
vector X⃗π(τ) is defined as:

X⃗π(τi)s,a =
1

π(a|s)

H∑
j=l

rijI(s
i
l = s, ail = a) (2)

Note that since the state space is leveled, no state can be reached twice in a single episode, therefore
this is an unbiased estimator for the return from s.

Given the m sampled episodes, τ0, τ1, . . . , τm−1, using the policy π, we define an estimate of the
policy gradient as:

˜∇θV π(s0) =
1

m
(X⃗π(τ0) + · · ·+ X⃗π(τm−1)) (3)

The next theorem gives a high probability bound on the deviation of the estimate from the true
gradient. It establishes the required number of episodes, m, as a function of the error, ϵ, and the
confidence, δ.
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Lemma 3.3 Fix ϵ > 0, δ > 0 and let m = H2|A||S|
ϵ2ρ2 log( 2|A||S|K

δ ). With probability at least 1− δ, for

all phases t ∈ [N ] we have, ∥ ˜∇θV πt(s0)−∇θV
πt

(s0)∥∞ ≤ ϵ.

3.2 Regret analysis
In the following section we sketch the analysis of the regret. We will assume that in each of the N
phases we approximate the gradient with error at most ϵ. We will derive a general regret bound as a
function of all our parameters, and then we will optimize over those parameters. The final regret
bound would be as follows.

Theorem 3.4 Let K be the total number of episodes, the number of phases be
N = K1/3(H|A|5|S| log( 2|A||S|K

δ ))−1/3 and the number of episodes in each phase be
m = K2/3(H|A|5|S| log( 2|A||S|K

δ ))1/3. For the parameters η = ( 23 |A|H3 + 1)−1 and ρ =
|S|2/3H1/2 log(

2|A||S|K
δ )1/6

|A|2/3K1/6 we have, with probability 1− δ, that the regret is bounded by:

Regret ≤ 9K
5
6DρH

7
6 |S| 23 |A| 43 log

1
6

(2|A||S|k
δ

)
Our proof strategy will be to show first that the difference between the value function of the

optimal policy and the current policy is bounded by the gradient of the current policy in some
direction (as in [Kakade and Langford (2002), Agarwal et al. (2020b)]). Note that z is an arbitrary
stochastic policy, and not limited to a ρ-stochastic policy.

Lemma 3.5 For any policy π,

V ∗(s0)− V π(s0) ≤
Dρ

H
max

z∈∆(A)|S|
(z − π)⊤∇θV

π(s0)

The above lemma bounds the regret of a policy π as a function of its gradient ∇θV
π(s0), using

an inner product with an arbitrary policy. In order to bound the inner product we first prove that
the value function is β-smooth (similar to Agarwal et al. (2020b)).

Lemma 3.6 The function V π(s0) is β = 1
3 |A|H3-smooth with respect to norm ∥ · ∥2. I.e, for all

π,π′ ∈ ∆(A)|S| we have,

∥∇θV
π(s0)−∇θV

π′
(s0)∥2 ≤ 1

3
|A|H3∥π − π′∥2 = β∥π − π′∥2 (4)

Next we introduce a notion of approximated gradient mapping which is defined as follows:

G̃η(πt) =
1

η

[
proxρ

(
πt + η ˜∇θV πt(s0)

)
− πt

]
, (5)

where πt is the policy used in phase t. We note that in the special case where πt + η∇θ
˜V πt(s0) ∈ Πρ,

i.e., proxρ(π
t + η∇θ

˜V πt(s0)) = πt + η∇θ
˜V πt(s0), then the approximated gradient mapping equals

the approximated policy gradient, i.e., G̃η(πt) = ∇θ
˜V πt(s0).

The following lemma bounds the term maxz∈∆(A)|S| ∇θV
π(s0)

⊤(z − π) as a function of the norm

of the approximated gradient mapping, i.e., ∥G̃η(π)∥2 and the smoothness parameter β.

Lemma 3.7 For a phase t, assuming ∥∇θV
πt

(s0)− ∇̃θV πt(s0)∥∞ ≤ ϵ, then

max
z∈∆(A)|S|

∇θV
πt+1

(s0)
⊤(z − πt+1) ≤ H2|A|2ρ+ 2

√
|S|
[
(ηβ + 1)∥G̃η(πt)∥2 +

√
|A||S|ϵ

]
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The regret is the sum of the difference between the expected return of the optimal policy and
policies selected in the algorithm. Lemmas 3.5, 3.6 and 3.7 bound the difference at any phase as a
function of the norm of the approximated gradient mapping. The next lemma bounds the sum of the
norms of the approximated gradient mapping, deriving an upper bound on the regret.

Lemma 3.8 Assuming for all phases t we have ∥∇θV
πt

(s0)− ∇̃θV πt(s0)∥∞ ≤ ϵ, then

N∑
t=1

η(1− (1 + β)η

2
)∥G̃η(πt)∥22 ≤ H +

1

2
|A||S|Nϵ2 (6)

To complete the proof of the regret, we set the parameters as follows. The smoothness is
β = 1

3 |A|H3, the learning rate is η = (2β + 1)−1, the minimal action probability is ρ =
√

|S|
|A|3N and

maximum error is ϵ =
√

H
|S||A|N . The regret bound of Theorem 3.4 follows by combining Lemmas

3.5, 3.6, 3.7 and 3.8 using the above parameters.
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4 Softmax parameterization
For the softmax parameterization we will need to be able to induce exploration. A similar issue was
in the direct parameterization, and there we imposed on the policies to be ρ-stochastic. Here we take
the approach of keeping the policy purely softmax (and not mixing it with the uniform distribution
over actions) but adding additional assumptions about the starting state distribution of the MDP or
the ability to manipulate the start state.

Computing the policy gradient The following two Lemmas are well known (see, e.g., Agarwal
et al. (2020b)), and we give the proof for completeness. Given the softmax function we can compute
the partial derivatives as follows:

Lemma 4.1 For a policy π, and two state-action pairs s, a, s′, a′, we have ∂ log π(a|s)
∂θs′,a′

= I(s =

s′)(I(a = a′)− π(a′|s))

We can relate the value of the policy gradient, for softmax parameterized policies, using the
advantage function and the occupancy measure, as follows:

Lemma 4.2 For a softmax policy π we have ∇θV
π(s0)s,a = dπsπ(a|s; θ)Aπ(s, a).

The above lemma shows that we only need to approximate the advantage function Aπ(·, ·) in
order to approximate the policy gradient ∇θV

π(s0). We do not need to approximate directly dπs but
rather we can sample states following the policy π and they will be distributed according to dπ.

It would seem we can easily use an episode sampled from the MDP as an unbiased estimator for
the policy gradient. In the works of Agarwal et al. (2020a), they present a gradient ascent algorithm
in the form θ(t+1) = θ(t) + η∇θV

πt

(s0), and conjecture it takes an exponential number of policy
gradient steps to converge, even with exact gradients. Therefore we use a variant of the Natural
Policy Gradient Ascent algorithm [Kakade 2001] presented by Agarwal et al. (2020a), which takes a
small number of phases to converge, assuming access to exact gradients.

An Approximated Natural Policy Gradient (NPG) algorithm The Approximated Natural
Policy Gradient algorithm is a variant of the Natural Policy Gradient Ascent algorithm presented by
Agarwal et al. (2020a). The approximated NPG algorithm step is defined by:

F (θ) = Es∼dπEa∼π(·|s)

[
∇θ log(π(a|s; θ)) (∇θ log(π(a|s; θ)))⊤

]
θ(t+1) = θ(t) + ηF (θ(t))† ˜∇θV πt(s0)

(7)

Where M† is the Moore-Penrose pseudo inverse matrix. The main insight is that an equivalent form
for the algorithm update is:

θ(t+1) = θ(t) +HηÃπt (8)

The following lemma shows that the two updates are equivalent.

Lemma 4.3 The algorithm step (7) and (8) are equivalent.

The proof is similar to the proof given by Agarwal et al. (2020a). We first define the loss function:

Lπ(w) =
∥∥∥Es∼dπEa∼π(·|s)∇θ log(π(a|s)

(
w⊤∇θ log(π(a|s))− Ãπ(s, a)

)∥∥∥
2

and show that for the vector w′ = Ãπt(·, ·) the loss function is Lπt

(w′) = 0. We show by a

property of the Moore-Penrose pseudo inverse matrix that w = 1
HF (θ(t))† ˜∇θV πt(s0) is also a global

minimizer. We then prove that the loss of both vectors is 0. This implies that the vectors w and w′

have the same values up to a value that’s independent of the action. Finally, by the definition of the
softmax parameterization, adding such value does not affect the policy, therefore the update given in
(7) is equivalent to the update given in (8).
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The Policy Gradient algorithm: a variant of NPG As before, we have N phases and in each
phase m episodes. The starting policy at phase 0 will be the uniform policy, where π(a|s) = 1

A for
every state-action pair s, a. At the end of each phase t, using the m episodes, we compute Ãπt , which
is an approximation to the advantage function Aπt

. (We later show how to compute Ãπt given the
m episodes.) Given the approximation Ãπt we update the parameters as defined in (8):

θ(t+1) = θ(t) +HηÃπt

Note that since any vector θ represents a valid policy, there is no need for a projection after the
update, unlike the case of direct parameterization.

We now show how to compute the approximation Ãπt to the advantage function using episodes
sampled using the MDP. We will do it in two cases, depending on the properties of the MDP.

4.1 MDP with random start state
In this section we will assume that the MDP is λ random start state. This implies that every episode
of the MDP, with probability 1 − λ starts at state s0, and with probability λ starts at a random
s ∈ S, performs a random action a ∈ A and continues by following the given policy π. (We can
encode the random action selection also in the policy, but it is simpler to consider it as part of the
random start state.)

Since the episode can start at an arbitrary level, we assume that from state sH any action has
zero reward, which will allow us to complete an episode of length H and have the return depend only
on the rewards in levels before level H.

Approximating the Advantage function: Recall that we are considering λ random start state
MDP, where with probability λ we start at a random state and perform a random action. In each
phase t we sample m episodes, and about λ

|S||A|m of the m episodes are starting at each state-action
pair s, a. The sum of the rewards observed in such an episode, which starts with (s, a), is an unbiased
estimator for Qπ(s, a). The average of those unbiased estimators sampled in a single phase is used as
the approximated Q-function and denoted by Q̃π(s, a).

Given the unbiased estimator Q̃π(s, a) we define the functions Ṽ π, Ãπ to be, for a state-action
pair (s, a), as follows:

Ṽ π(s) =
∑
a′∈A

π(a′|s)Q̃π(s, a′) and Ãπ(s, a) = Q̃π(s, a)− Ṽ π(s) (9)

Note that Ṽ π(s) and Ãπ(s, a) are unbiased estimators of V π(s) and Aπ(s, a), respectively.
The following lemma gives a high probability bound on the error of our estimate:

Lemma 4.4 Fix m ≥ 4H2|S||A|
ϵ2λ log( 2|A||S|K

δ ). With probability at least 1− δ, for every phase t we
have ∥Ãπt −Aπt∥∞ ≤ 2ϵ.

The above lemma bounds m with a dependency proportional to 1/ϵ2 and 1/λ. The 1/ϵ2 comes
from the requirement to approximate the advantage function to accuracy 2ϵ. The 1/λ dependency
comes from the requirement to sample each state-action pair enough times, and the probability is at
least λ (due to the λ random start state property).

Regret Analysis: Define the notation V π(µ), where µ is the distribution over the starting states and
actions. If the MDP starts at state s0 (which happens with probability 1− λ), then V π(µ) = V π(s0)
and if the MDP starts at the state-action pair s, a, then V π(µ) = Qπ(s, a). Since we are using each
policy πt in phase t for m episodes, the regret is Regret = m(

∑N
t=1 V

∗(µ)− V πt

(µ)). The following
theorem bounds the regret in the softmax parameterization for a λ random start state MDP.
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Theorem 4.5 Let K be the total number of episodes, the number of phases be
N = K1/3(λ/4|S||A| log( 2|A||S|K

δ ))1/3 and the number of episodes in each phase be
m = K2/3(4|S||A| log( 2|A||S|K

δ )/λ)1/3. For η > log(|A|), with probability at least 1− δ, the regret of
the softmax policy gradient for a λ start state MDP is bounded by:

Regret ≤ 6H2

(
4|S||A| log( 2|A||S|K

δ )

λ

) 1
3

K
2
3

Our proof strategy for the regret borrows ideas from Agarwal et al. (2020b). For a policy π

and a state s ∈ S we define the function Z̃π(s) =
∑

a∈A π(a|s) exp(ηHÃt(s, a)) and show that

πt+1(a|s) = πt(a|s) exp(ηHÃt(s,a))

Z̃t(s)
. We then show that

∑N
t=1 Es∼π∗ log(Z̃πt(s)) ≤ ηH3(H + 2Nϵ)

where 2ϵ is the approximation error of the A-function. Namely, for every phase t ∈ [N ], and a
state-action pair s, a we have, ∥Ãπt −Aπt∥∞ ≤ 2ϵ. We then bound the regret as follows:

Regret ≤ m

(
2ϵN +

log(|A|)
Hη

+
1

H2η

N∑
t=1

Es∼π∗ log(Z̃πt(s))

)
. (10)

Setting ϵ = H
N and the rest of the algorithm parameters as specified in the theorem proves

Theorem 4.5.

4.2 Softmax parameterization with resets
In this section we remove the assumption that the MDP is λ start state. However, in order to allow
for efficient exploration, we assume that the algorithm can restart the MDP at any given state s
instead of s0 for the start of the episode. Allowing reset require modifying the definition of the regret.
The issue is that some high reward states might have a small probability to be reached by any policy
running in the MDP. To avoid this issue, every episode that the algorithm restarts the MDP at some
state s ̸= s0, the algorithm will have a 0 return for that episode. This incentives the algorithm to
minimize the number of resets.

The algorithm: As before the algorithm will work in N phases, and in each phase we will have m
episodes. During a phase the algorithm would split the m episodes to m1 reset episodes, where it
will select a random start state s ≠ s0 and action a, and m−m1 episodes where it will start from
the initial state s0.

In each phase t we will have a current policy πt. In the reset episodes, each state-action pair (s, a)
will be sampled approximately m1/(|S||A|) times as the initial state and action. After performing
action a in state s the current policy πt would be run for the remaining episode. In the remaining
m−m1 episodes the current policy πt would be run from the initial state s0.

Approximating the Advantage function: As discussed in section 4.1, the sum of the rewards
given in the m1 episodes sampled from restarting the MDP at (s, a), is an unbiased estimator
for Qπ(s, a). The average of those unbiased estimators sampled in a single phase is used as the
approximated Q-function and denoted by Q̃π(s, a). As before, given Q̃π(s, a) we define

Ṽ π(s) =
∑
a′∈A

π(a′|s)Q̃π(s, a′) and Ãπ(s, a) = Q̃π(s, a)− Ṽ π(s)

Note that Ṽ π(s) and Ãπ(s, a) are unbiased estimators of V π(s) and Aπ(s, a), respectively.
At the end of the phase, the parameters θt would be updated to θt+1, as in the approximated

NPG algorithm presented in (8). Namely,

θ(t+1) = θ(t) +HηÃππt

,
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The following lemma abound the error in the approximation Ãπt of Aπt

as a function of the
sample size m1.

Lemma 4.6 Fix m1 ≥ 2H2|S||A|
ϵ2 log( 2|A||S|K

δ ). With probability at least 1− δ, for every phase t we
have ∥Ãπt −Aπt∥∞ ≤ 2ϵ.

Regret Analysis: The regret analysis is similar to that of Section 4.1 and the regret bound is
summarized in the following theorem.

Theorem 4.7 Let K be the total number of episodes, the number of phases be
N = K1/4((4/3)H|S|2|A|2)−1/4(log(2|A||S|K/δ))−1/8, and the number of episodes in a phase be
m = K3/4((4/3)H|S|2|A|2)1/4(log(2|A||S|K/δ))1/8 and m1 = (3K/H)1/2 log( 2|A||S|K

δ )1/4. For η >
log(|A|), with probability 1− δ, the regret of the softmax policy gradient for an MDP with resets is
bounded by:

Regret ≤ 13H
9
4

√
|S||A|K 3

4

(
log(

2|A||S|K
δ

)

) 1
4

Every phase t, the m1 episodes which use resets for the regret analysis are assumed a return of 0.
The other m−m1 episodes receive a similar return as in section 4.1 (since the algorithm and the
advantage function approximation is the same). Therefore the regret bound as shown in (10) can be
applied here, with a slight change.

Regret ≤ m1NH + (m−m1)

(
2ϵN +

log(|A|)
Hη

+
1

H2η

N∑
t=1

Es∼π∗ log(Z̃πt(s))

)
.

We use the bound shown in section 4.1:

N∑
t=1

Es∼π∗ log(Z̃πt(s)) ≤ ηH3(H + 2Nϵ)

where 2ϵ is the approximation error of the A-function. Namely, for every phase t ∈ [N ], and a
state-action pair s, a we have, ∥Ãπt −Aπt∥∞ ≤ 2ϵ. Optimizing the algorithm parameters as specified
in the theorem proves Theorem 4.7.

4.3 Comparing the two softmax settings
The two settings presented above are two different methods to ensure sufficient exploration for the
agent.

In each algorithm update the parameters are updated by θ(t+1) = θ(t) +HηÃπt , as shown in (8).
The expected number of visits to every state-action pair depends on the MDP and can be very low.
Therefore, in order to achieve a sufficient approximation for the advantage function, we need to add
some assumptions either on the MDP itself, or on the agent. Both settings includes starting the
MDP at some state s in the middle of the episode, i.e., if s ∈ Si, the episode will be of length H − i.

In the first setting (Section 4.1) we make an assumption about the starting state distribution of
the MDP. Specifically, we assume that start state distribution gives some minimal probability for
each state, namely λ/|S|. This assumption guarantees sufficient exploration, since any state can be
an initial state, and no other modification to the algorithm is needed.

In the second setting (Section 4.1) introduce an assumption about the agent ability to resent the
initial state to any specific state. Since the agent controls the start state, it can improve the expected
payoff, compared to starting at s0. In order to negate this agent’s advantage, in the regret analysis,
any episode which the agent restarts not at s0 will have a payoff of 0 (for the regret analysis). Note
that the modified regret upper bounds the true regret.
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5 Conclusion and limitations
In this paper we analyzed two known tabular policy gradient algorithms in terms of regret. As
presented in Agarwal et al. (2020b) the algorithms had known convergence bounds given exact
gradient, and we did not aim to improve those bounds. Our goal was to purpose methods to
approximate the policy gradient using sampled episodes, and give a regret bound.

The first algorithm using the direct policy parameterization does converge according to Agarwal
et al. (2020b), yet the convergence rate is worse than most algorithms they presented. As expected,
the regret bound presented presented in our paper for the policy parameterization algorithm was far
from optimal. Yet the direct policy parameterization method allowed us to have sufficient exploration
to approximate the policy gradient. Therefore we were able to bound the regret of this algorithm
with no assumptions on the MDP.

The second algorithm using the softmax policy parameterization has a constant convergence rate
according to Agarwal et al. (2020b) which does not depend on the size of the state space at all. As
we need to approximate the policy gradient in every state-action pair parameter such result is not
possible for the regret bound of course, but the algorithm seems promising for a small regret bound.
As it turns out, to perform the algorithm step one needs to explore every state a sufficient number of
times, which might not be possible in every MDP. To overcome that and analyze the algorithm that
achieved such good convergence bounds by Agarwal et al. (2020b) we presented two different settings,
each with different assumptions on the MDP, to enable us to perform the sufficient exploration. We
still did not manage to reach the state of the art regret bounds (

√
K).
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A Proofs for section 3

Algorithm 1: Policy Gradient with direct parameterization
Input: MDP,K, δ;
θ = 1

|A| 1⃗ ; /* The dimension of the vector is |S||A| */

N = K1/3(H|A|5|S| log( 2|A||S|K
δ ))−1/3;

m = K2/3(H|A|5|S| log( 2|A||S|K
δ ))1/3;

η = ( 23 |A|H3 + 1)−1 ;

ρ =
|S|2/3H1/2 log(

2|A||S|K
δ )1/6

|A|2/3K1/6 ;
for n = 1, 2, . . . , N do

˜∇θV πθ (s0) = 0⃗;
for i = 1, 2, . . . ,m do

Run policy πθ on the MDP and get (si0, a
i
0, r

i
0, s

i
1, . . . , s

i
H−1, a

i
H−1, r

i
0, s

i
H);

for s, a ∈ S,A do
l =The level of s;

˜∇θV πθ (s0)s,a+ = 1
mθs,a

∑H
j=l r

i
jI(s

i
l = s, ail = a);

end
end

θ = proxρ(θ + η ˜∇θV πθ (s0)) ; /* The function proxρ is the projection function,
which is described in Section C.1 */

end

Using the definition of the occupancy measure dπ and the policy gradient theorem (1), we get:

∇θV
π(s0) = HEs′∼dπ

∑
a∈A

∇θπ(a|s′; θ)Qπ(s′, a) (11)

Observe that dπ is not a distribution as
∑

s∈S dπs = H. For simplicity we use the notation s ∼
dπ instead of s ∼ 1

H dπ. Given the parameter θ, the policy π is: π(a|s; θ) = θs,a in the direct
parameterization. Observe the gradient of the policy w.r.t. θ

∂πθ(a|s)
∂θs,a

= 1 and ∀(s′, a′) ̸= (s, a),
∂π(a|s; θ)
∂θs′,a′

= 0 (12)

Therefore ∇θπ(a|s; θ) is the unit vector that equals 1 at the (s, a) coordinate, and 0 at all other
coordinates.

Proof:[Of Lemma 3.2] Fix a policy π and a state-action pair s, a.

∇θV
π(s0)s,a = HEs′∼dπ

∑
a′∈A

∇θπ(a
′|s′; θ)s,aQπ(s′, a′)

= HEs′∼dπ

∑
a′∈A

Qπ(s′, a′)I(s = s′, a = a′)

= dπsQ(s, a)

Where the first step follows by (11) and the second step follows by (12). 2

Lemma A.1 For a policy π:
Eτ∼π[X⃗π(τ)] = ∇θV

π(s0)

Where X⃗π(τ) is the the vector defined by a trajectory as in (2)
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Proof: Fix a policy π, a ∈ A, k ∈ [H], s ∈ Sk

Eτ∼π[X⃗π(τ)]s,a = dπsπ(a|s)
1

π(a|s)
Eτ∼π[

H∑
j=k

r(sj , aj)I(sk = s, ak = a)]

= dπsQ(s, a)

= ∇θV
π(s0)s,a,

where the second step follows directly from the definition of the Q-function and the third step follows
by Lemma 3.2. 2

Lemma A.2 For ϵ > 0 and δ1 > 0, a state-action pair s, a, and a policy π ∈ Πρ, when sampling
m1 ≥ H2

ϵ2ρ2 log(
2
δ1
) trajectories τ1, τ2, . . . , τm1 using π, and averaging them to get an approximation of

the gradient ˜∇θV π(s0) as given in (3) we get:

P

( ∣∣∣∣( ˜∇θV πt(s0)−∇θV
π(s0)

)
s,a

∣∣∣∣ ≥ ϵ

)
≤ δ1 (13)

Proof: Fix ϵ > 0, δ1 > 0, a state-action pair (s, a), a policy π ∈ Πρ and trajectories τ1, τ2, . . . , τm1

sampled using π. As 1
π(a|s) ≤ 1

ρ , the value X⃗π(τi) which is defined in (2) is non-negative and

bounded by H
ρ . As the gradient ∇θV

π(s0) is non-negative the following bound holds: |(X⃗π(τ) −
∇θV

π(s0))s,a| ≤ H
ρ . Using Hoeffding concentration bound (Theorem C.15) completes the proof. 2

Define ϵ⃗t := ˜∇θV πt(s0)−∇θV
πt

(s0). The policy gradient algorithm can be written as:

πt+1
θ = proxρ(π

t
θ + η ˜∇θV πt(s0)) = proxρ(π

t
θ + η(∇θV

πt

(s0) + ϵ⃗t))

and with high probability we have ∥ϵ⃗t∥∞ ≤ ϵ

Proof: [of Lemma 3.3] Let δ1 = δ 1
|A||S|K , and m = H2|A||S|

ϵ2ρ2 log( 2|A||S|K
δ ). Using Lemma A.2

for a state-action pair (s, a) and a phase t ∈ [N ] after sampling H2

ϵ2ρ2 log(
2
δ1
) episodes we have∣∣∣∣( ˜∇θV πt(s0)−∇θV

πt

(s0)
)
s,a

∣∣∣∣ ≤ ϵ

with probability 1− δ1.
Using the union bound, sampling m trajectories at every phase t ∈ [N ], the bound ∥ ˜∇θV πt(s0)−

∇θV
πt

(s0)∥∞ ≤ ϵ will hold for all t ∈ [N ] with probability 1− |A||S|Nδ1 = 1− 1
mδ ≥ 1− δ. 2

In the definition of the occupancy measure dπ we assume the execution starts at s0. We expand
the definition of the occupancy measure to dπ,µ, where µ is a starting state distribution. Since the
episode can start at an arbitrary level, we assume that from state sH any action has zero reward,
which will allow us to complete an episode of length H and have the return depend only on the
rewards in levels before level H. We first prove the following Lemma (similar to [Kakade and Langford
(2002), Agarwal et al. (2020a)]).

Lemma A.3 For any two policies π, π′ and a starting state distribution µ,

V π(µ)− V π′
(µ) =

1

H

∑
s∈S,a∈A

dπ,µs π(a|s)Aπ′
(s, a)

Proof: Fix two policies π, π′. Let s′ be some starting state at level k (i.e., s′ ∈ Sk), such that
µs′ > 0. Define τ ∼ (π, s) to be an episode sampled using the policy π assuming the starting state is
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s.

V π(s′)− V π′
(s′) = Eτ∼(π,s′)

[H−1∑
i=k

r(si, ai)
]
− V π′

(s′)

= Eτ∼(π,s′)

[(H−1∑
i=k

r(si, ai)

)
+

(
H−1∑
i=k

V π′
(si)

)
−

(
H−1∑
i=k

V π′
(si)

)]
− V π′

(s′)

= Eτ∼(π,s′)

[(H−1∑
i=k

r(si, ai)

)
+

(
H−1∑
i=k+1

V π′
(si)

)
−

(
H−1∑
i=k

V π′
(si)

)]

= Eτ∼(π,s′)

[(H−1∑
i=k

r(si, ai)

)
+

(
H−2∑
i=k

V π′
(si+1)

)
−

(
H−1∑
i=k

V π′
(si)

)]
= Eτ∼(π,s′)

[(H−1∑
i=k

r(si, ai)

)
+

(
H−1∑
i=k

V π′
(si+1)

)
−

(
H−1∑
i=k

V π′
(si)

)]
= Eτ∼(π,s′)

[
H−1∑
i=k

(
r(si, ai) + V π′

(si+1)− V π′
(si)
)]

= Eτ∼(π,s′)

[H−1∑
i=k

(
Qπ′

(si, ai)− V π′
(si)
) ]

= Eτ∼(π,s′)

[H−1∑
i=k

Aπ′
(si, ai)

]
=

1

H

∑
s∈S,a∈A

dπ,s
′

s π(a|s)Aπ′
(s, a)

The fifth equality follows by the fact that V π′
(sH) = 0 as sH is the end of the MDP, the seventh

equality follows by the fact that si+1 is sampled with the distribution P (·|si, ai), and since for all
state-action pair s, a it follows that: Qπ′

(s, a) = r(s, a) + Es′∼P (·|si,ai)[V
π′
(s′)]. The eighth equality

follows directly from the definition of the Aπ(s, a) function.
As the above is correct for all starting states s′, observe:

V π(µ)− V π′
(µ) =

∑
s′∈S

µs′

(
V π(s′)− V π′

(s′)
)

=
∑
s′∈S

µs′

 1

H

∑
s∈S,a∈A

dπ,s
′

s π(a|s)Aπ′
(s, a)


=

1

H

∑
s∈S,a∈A

π(a|s)Aπ′
(s, a)

∑
s′∈S

µs′d
π,s′

s

=
1

H

∑
s∈S,a∈A

dπ,µs π(a|s)Aπ′
(s, a)

Where the last transition holds since )
∑

s′∈S µs′d
π,s′

s is exactly the definition of dπ,µs . 2

Lemma A.4 For a policy π and a state s ∈ S,∑
a∈A

π(a|s)Aπ(s, a) = 0
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Proof: Fix a policy π and a state s ∈ S.∑
a∈A

π(a|s)Aπ(s, a) =
∑
a∈A

π(a|s)(Qπ(s, a)− V π(s))

=

(∑
a∈A

π(a|s)Qπ(s, a)

)
−

(∑
a∈A

π(a|s)V π(s)

)
= Ea∼π(·|s)

[
Qπ(s, a)

]
− V π(s)

∑
a∈A

π(a|s)

= V π(s)− V π(s)

= 0

Where the third transition holds since V π(s) does not depend on a, and the fourth transition holds
since

∑
a∈A π(a|s) = 1. 2

Proof:[Of Lemma 3.5] Fix a policy π ∈ Πρ.

V ∗(s0)− V π(s0) =
1

H

∑
s∈S,a∈A

dπ
∗

s π∗(a|s)Aπ(s, a)

≤ Dρ

H

∑
s∈S,a∈A

dπsπ
∗(a|s)Aπ(s, a)

≤ Dρ

H
max

π′∈∆(A)|S|

∑
s∈S,a∈A

dπsπ
′(a|s)Aπ(s, a)

=
Dρ

H
max

π′∈∆(A)|S|

∑
s∈S

dπs
∑
a∈A

π′(a|s)Aπ(s, a)

=
Dρ

H
max

π′∈∆(A)|S|

∑
s∈S

dπs
∑
a∈A

(π′(a|s)− π(a|s))Aπ(s, a)

=
Dρ

H
max

π′∈∆(A)|S|

∑
s∈S

dπs
∑
a∈A

(π′(a|s)− π(a|s))Qπ(s, a)

− Dρ

H
max

π′∈∆(A)|S|

∑
s∈S

dπs
∑
a∈A

(π′(a|s)− π(a|s))V π(s)

=
Dρ

H
max

π′∈∆(A)|S|

∑
s∈S

dπs
∑
a∈A

(π′(a|s)− π(a|s))Qπ(s, a)

=
Dρ

H
max

π′∈∆(A)|S|

∑
s∈S,a∈A

dπs (π
′(a|s)− π(a|s))Qπ(s, a)

=
Dρ

H
max

π′∈∆(A)|S|
(π′ − π)⊤∇θV

π(s0),

where the first step follows by Lemma A.3, the fifth step follows by Lemma A.4, since the lemma shows
that for a state s ∈ S,

∑
a∈A π(a|s)Aπ(s, a) = 0, the seventh step follows by

∑
a∈A(π

′(a|s)−π(a|s)) =
0 and since V π(s) does not depend on a, and the last step follows by Lemma 3.2, since the lemma
shows that for a state-action pair s, a, ∇θV

π(s0)s,a = dπsQ
π(s, a). 2

The proof of Lemma 3.6 is in section C.4.
Define ϵ⃗t = ˜∇θV πt(s0)−∇θV

πt

(s0), and note that ∥ϵt∥∞ ≤ ϵ with high probability.

Lemma A.5 The set Πρ = {θ ∈ [0, 1]S×A : θs,a ≥ ρ,
∑

a∈A(θs,a) = 1} is convex.

Proof: Let there be x, y ∈ Πρ and λ ∈ [0, 1]. Define z = λx+ (1− λ)y. For s ∈ S, a ∈ A we have
zs,a = λxs,a+(1−λ)ys,a. As x, y ∈ Πρ we can see that zs,a ≥ λρ+(1−λ)ρ = ρ, zs,a ≤ λ+(1−λ) = 1
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and
∑

a′∈A zs,a′ =
∑

a′∈A λxs,a′ +(1−λ)ys,a′ = λ
∑

a′∈A xs,a′ +(1−λ)
∑

a′∈A ys,a′ = λ+(1−λ) = 1,
therefore we can infer that z ∈ Πρ, which completes the proof that Πρ is convex. 2

Proof:[Of Lemma 3.7] Fix a phase t and the gradient step size η. Let πt be the policy at phase

t and let the policy at phase t+ 1 be: πt+1 = proxρ(π
t + η ˜∇θV πt(s0)).

Since πt+1 = proxρ(π
t + η ˜∇θV πt(s0)) and Lemma A.5, Lemma C.5 gives us:

∀z ∈ Πρ, (π
t + η(∇θV

πt

(s0) + ϵ⃗t)− πt+1)⊤(z − πt+1) ≤ 0

Define u = ∇θV
πt+1

(s0)−∇θV
πt

(s0)− ϵ⃗t − 1
η (π

t − πt+1). Reorganizing that we get:

∀z ∈ Πρ, (η∇θV
πt+1

(s0)− ηu)⊤(z − πt+1) ≤ 0

Which is equivalent to:

∀z ∈ Πρ,∇θV
πt+1

(s0)
⊤(z − πt+1) ≤ u⊤(z − πt+1)

We upper bound u⊤(z − πt+1). As z, πt+1 ∈ ∆(A)|S| we have that ∥z − πt+1∥2 ≤ 2
√

|S|, which
means that u⊤(z − πt+1) ≤ 2

√
|S|∥u∥2. That implies that:

∀z ∈ Πρ,∇θV
πt+1

(s0)
⊤(z − πt+1) ≤ 2

√
|S|∥u∥2

We upper bound ∥u∥2:

∥u∥2 = ∥∇θV
πt+1

(s0)−∇θV
πt

(s0)− ϵ⃗t −
1

η
(πt − πt+1)∥2

≤ β∥πt+1 − πt∥2 +
√
|A||S|ϵ+ 1

η
∥πt+1 − πt∥2

= (ηβ + 1)∥G̃η(πt)∥2 +
√

|A||S|ϵ,

where the second step follows by the fact that V π(s0) is β-Smooth with respect to norm ∥ · ∥2 (as
shown in Lemma 3.6), and the last step follows by the definition of the gradient mapping (5).

This gives us:

∀z ∈ Πρ,∇θV
πt+1

(s0)
⊤(z − πt+1) ≤ 2

√
|S|
[
(ηβ + 1)∥G̃η(πt)∥2 +

√
|A||S|ϵ

]
(14)

Note that for any z′ ∈ ∆(A)|S| there exists z+ such that (z′ + z+) ∈ Πρ and ∥z+∥∞ ≤ |A|ρ. Lemma
3.2 gives us that for a state-action pair s, a, ∇θV

π(s0)s,a = dπsQ
π(s, a). We see that:

∥∇θV
π(s0)∥1 =

∑
s∈S,a∈A

|∇θV
π(s0)s,a|

=
∑
s∈S

dπs
∑
a∈A

Qπ(s, a)

≤
∑
s∈S

dπs |A|H

= |A|H2.

Observe that for all z′ ∈ ∆(A)|S|:

∇θV
πt+1

(s0)
⊤(z′ − πt+1) = ∇θV

πt+1

(s0)
⊤((−z+) + (z′ + z+ − πt+1))

≤ ∥∇θV
πt+1

(s0)∥1∥z+∥∞ +∇θV
πt+1

(s0)
⊤(z′ + z+ − πt+1)

≤ H2|A|2ρ+∇θV
πt+1

(s0)
⊤(z′ + z+ − πt+1)

≤ H2|A|2ρ+ 2
√
|S|
[
(ηβ + 1)∥G̃η(πt)∥2 +

√
|A||S|ϵ

]
,
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where the third transition follows by ∥∇θV
π(s0)∥1 ≤ |A|H2 and ∥z+∥∞ ≤ |A|ρ, and the last transition

follows by (14), as (z′ + z+) ∈ Πρ. 2

Proof:[Of Lemma 3.8] Fix a phase t, the gradient step size η, the policy πt+1 which is chosen

as: πt+1 = proxρ(π
t + η ˜∇θV πt(s0)). Since V π(s0) is β-smooth with respect to norm ∥ · ∥2 (as shown

in Lemma 3.6) and Lemma A.5, Lemma C.6 gives:

V πt+1

(s0) ≥ V πt

(s0) +∇θV
πt

(s0)
⊤ · (πt+1 − πt)− β

2
∥πt+1 − πt∥22. (15)

Since πt+1 = proxρ(π
t + η∇θV

πt

(s0) + ηϵ⃗t) and πt ∈ Πρ and Lemma A.5, Lemma C.5 gives:

(πt + η∇θV
πt

(s0) + ηϵ⃗t − πt+1)⊤ · (πt − πt+1) ≤ 0

After some rearranging the above is equivalent to:

∇θV
πt

(s0)
⊤ · (πt+1 − πt) ≥ ϵ⃗t

⊤ · (πt − πt+1) +
1

η
∥πt+1 − πt∥22 (16)

Combining (16) and (15) gives us:

V πt+1

(s0)− V πt

(s0) ≥ ϵ⃗t
⊤ · (πt − πt+1) +

1

η
∥πt+1 − πt∥22 −

β

2
∥πt+1 − πt∥22

As the above is correct for all t ∈ [N ], we sum over the the episodes, and have:

V πN

(s0)− V π0

(s0) ≥
N∑
t=1

ϵ⃗t
⊤ · (πt − πt+1) +

N∑
t=1

1

η
(1− ηβ

2
)∥πt+1 − πt∥22

Using the gradient mapping definition (5) and the fact that V πN

(s0)− V π0

(s0) ≤ H, we have:

N∑
t=1

η(1− βη

2
)∥G̃η(πt)∥22 +

N∑
t=1

ϵ⃗t
⊤ · (πt − πt+1) ≤ H

As for any two vectors (x+ y)⊤(x+ y) = x⊤x+ 2x⊤y + y⊤y, observe:

N∑
t=1

ϵ⃗t
⊤ · (πt − πt+1) =

1

2

N∑
t=1

(∥ϵ⃗t + πt − πt+1∥22 − ∥ϵ⃗t∥22 − ∥πt − πt+1∥22)

≥ 1

2

N∑
t=1

(−∥ϵ⃗t∥22 − ∥πt − πt+1∥22)

≥ −1

2

N∑
t=1

η2∥G̃η(πt)∥22 −
1

2
|A||S|Nϵ2

Where the second transition holds since a norm is non-negative. This gives us:

H ≥
N∑
t=1

η(1− βη

2
)∥G̃η(πt)∥22 +

N∑
t=1

ϵ⃗t
⊤ · (πt − πt+1)

≥
N∑
t=1

η(1− (β + 1)η

2
)∥G̃η(πt)∥22 −

1

2
|A||S|Nϵ2.

Rearranging the above completes the proof. 2
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Proof:[of Theorem 3.4] We show a bound on the regret with probability 1− δ:

Regret = m

N∑
t=1

V ∗(s0)− V πt

(s0)

≤ m

H

N∑
t=1

Dρ max
π′∈∆(A)|S|

(π′ − πt)⊤∇θV
πt

(s0)

≤ m

H
Dρ

N−1∑
t=1

(
H2|A|2ρ+ 2

√
|S|
[
(ηβ + 1)∥G̃η(πt)∥2 +

√
|A||S|ϵ

])
=

m

H
Dρ

(
H2|A|2ρN + 2Nϵ

√
|A||S|+

+ 2
√
|S|
√

1

1− 1
2 (β + 1)η

1 + ηβ
√
η

N∑
t=1

√
η
(
1− 1

2
(β + 1)η

)
∥G̃η(π)∥2

)

≤ m

H
Dρ

(
H2|A|2ρN + 2Nϵ

√
|A||S|

+ 2
√
|S|
√

1

1− 1
2 (β + 1)η

1 + ηβ
√
η

√
N

√√√√ N∑
t=1

η
(
1− 1

2
(β + 1)η

)
∥G̃η(πt)∥22

)

≤ m

H
Dρ

(
H2|A|2ρN + 2Nϵ

√
|A||S|+

+ 2
√
|S|
√

1

1− 1
2 (β + 1)η

1 + ηβ
√
η

√
N

√
H +

1

2
|A||S|Nϵ2

)
,

where the second step follows by Lemma 3.5, the third step follows by Lemma 3.7, the fifth step
using Cauchy-Schwarz’s inequality and the sixth step follow by Lemma 3.8.

The value of η affects the value:
√

1
1− 1

2 (β+1)η
1+ηβ√

η . We minimize that value by choosing η = 1
2β+1 .

since β = 1
3 |A|H3 we get:

√
1

1− 1
2 (β+1)η

1+ηβ√
η =

√
2|A|H3 + 2 ≤ 2

√
|A|H 3

2 .
The regret is therefore upper bounded by:

Regret ≤ m

H
Dρ

(
H2|A|2ρN + 2Nϵ

√
|A||S|+ 4

√
|S||A|H2

√
N +

4√
2
|S||A|H 3

2Nϵ

)
≤ m

H
Dρ

(
H2|A|2ρN + 4|S||A|H 3

2Nϵ+ 4
√
|S||A|H2

√
N
)

= KDρ

(
H|A|2ρ+ 4|S||A|

√
Hϵ+ 4

√
|S||A|H 1√

N

)
Where the third transition holds since K = mN . It’s clear that to minimize the Regret bound,

we choose ϵ =
√

H
|S||A|N and ρ =

√
|S|

|A|3N .
For simplicity, we define a new parameter ϵ1 and find the optimal ratio between m and N to get

the average regret below ϵ1:

1

K
Regret ≤ Dρ9H

√
|S||A| 1√

N
≤ ϵ1, (17)

which occurs when:

N ≥ 81H2|A||S|D2
ρ

1

ϵ21
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Namely, we perform N = 81H2|A||S|D2
ρ

1
ϵ21

gradient steps. In each gradient step m = H2|A||S|
ϵ2ρ2 log( 2|A||S|K

δ )

samples are sampled. Since ϵ is chosen as ϵ =
√

H
|A||S|N , and ρ is chosen as ρ =

√
|S|

|A|3N the total

number of episodes taken every policy gradient step is m = N2H|A|5|S| log( 2|A||S|K
δ ). Observe that

the above is equivalent to K = N3H|A|5|S| log( 2|A||S|K
δ ), which means that:

N = K
1
3 (

1

H|A|5|S| log( 2|A||S|K
δ )

)
1
3

and since m = K
N the value of m is:

m = K
2
3 (H|A|5|S| log(2|A||S|K

δ
))

1
3

The final regret is bounded by:

Regret ≤ Dρ9H
√
|S||A| K√

N

≤ 9K
5
6DρH

7
6 |S| 23 |A| 43 log

1
6 (

2|A||S|k
δ

)

2

For completeness we show that Dρ is well defined.

Lemma A.6 For a state s ∈ S and a policy π ∈ Πρ in the direct parameterization, the occupancy
measure is positive. Namely, dπs > 0.

Proof: Fix a state s ∈ S, and let j be the level where the state s is. Namely, s ∈ Sj . From
the assumption that all states are reachable from s0, there exists sj−1 and an action aj−1 such that
P (s|sj−1, aj−1) > 0. Doing the same for every i ∈ [j] we can generate an episode from s0 to s:
s0, a0, r0, s1, ..., sj−1, aj−1, rj−1, sj , where s = sj , such that for every i ∈ [j − 1], P (si|si−1, ai−1) > 0.
It is clear that:

dπs = Prπ(sj = s) ≥ Πj−1
i=0π(ai|si)P (si+1|si, ai) ≥ ρjΠj−1

i=0P (si+1|si, ai) > 0

Where the third step holds due to π ∈ Πρ and the fourth step follows by P (si|si−1, ai−1) > 0 for all
i ∈ [1, j] as stated above. 2
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B Proofs for section 4

Algorithm 2: Policy Gradient with softmax parameterization - with random start state
Input: MDP,K, δ, λ;
θ = 1

|A| 1⃗ ; /* The dimension of the vector is |S||A| */

N = K1/3(λ/4|S||A| log( 2|A||S|K
δ ))1/3 ;

m = K2/3(4|S||A| log( 2|A||S|K
δ )/λ)1/3 ;

η = log(|A|) ;
for t = 1, 2, . . . , N do

Q̃t = 0⃗;
Ṽ t = 0⃗;
Ãt = 0⃗;
for i = 1, 2, . . . ,m do

Run policy πθ on the MDP and get (si0, a
i
0, r

i
0, s

i
1, . . . , s

i
H−1, a

i
H−1, r

i
0, s

i
H);

for s, a ∈ S,A do
l =The level of s;
Q̃t+ = 1

m

∑H
j=l r

i
jI(s

i
l = s, ail = a);

end
end
for s ∈ S do

for a ∈ A do
Ṽ t

s+ = πθ(a|s)Q̃θ
s,a

end
for a ∈ A do

Ãt
s,a = Q̃t

s,a − Ṽ t
s

end
end
θ = θ + ηÃt

end

Proof:[Of Lemma 4.1] Fix a policy π, and two state-action pairs s, a, s′, a′.
If s ̸= s′, π(a|s) does not depend on θs′,a′ , so ∂ log π(a|s)

∂θs′,a′
= 0.

If s′ = s, and a′ ̸= a,

∂ log π(a|s)
∂θs′,a′

= −π(a′|s)

If s′ = s, and a′ = a,

∂ log π(a|s)
∂θs′,a

= 1− π(a|s)

2

Lemma B.1 For a policy π and a state-action pair s, a,

Ea′∼π(·|s;θ) [∇θ log(π(a
′|s; θ)]s,a = 0
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Algorithm 3: Policy Gradient with softmax parameterization - with resets
Input: MDP,K, δ;
θ = 1

|A| 1⃗ ; /* The dimension of the vector is |S||A| */

N = K1/4((4/3)H|S|2|A|2)−1/4(log(2|A||S|K/δ))−1/8 ;
m = K3/4((4/3)H|S|2|A|2)1/4(log(2|A||S|K/δ))1/8 ;
m1 = (3K/H)1/2 log( 2|A||S|K

δ )1/4;
η = log(|A|) ;
for t = 1, 2, . . . , N do

Q̃t = 0⃗;
Ṽ t = 0⃗;
Ãt = 0⃗;
for i = 1, 2, . . . ,m do

if i ≤ m1 then
Run policy πθ on the MDP starting from a random state and choosing a random
first action, and get (si0, a

i
0, r

i
0, s

i
1, . . . , s

i
H−1, a

i
H−1, r

i
0, s

i
H);

for s, a ∈ S,A do
l =The level of s;
Q̃t+ = 1

m1

∑H
j=l r

i
jI(s

i
l = s, ail = a);

end
else

Run policy πθ on the MDP starting from s0
end

end
for s ∈ S do

for a ∈ A do
Ṽ t

s+ = πθ(a|s)Q̃θ
s,a

end
for a ∈ A do

Ãt
s,a = Q̃t

s,a − Ṽ t
s

end
end
θ = θ + ηÃt

end

Proof: Fix a policy π and a state-action pair s, a,

Ea′∼π(·|s;θ) [∇θ log(π(a
′|s; θ))]s,a =

∑
a′∈A

π(a′|s; θ)(I(a = a′)− π(a|s; θ))

= π(a|s; θ)−
∑
a′∈A

π(a′|s; θ)π(a|s; θ)

= π(a|s; θ)− π(a|s; θ)
∑
a′∈A

π(a′|s; θ)

= π(a|s; θ)− π(a|s; θ)
= 0

2

Lemma B.2 For a policy πθ,

∇θV
π(s0) = HEs∼dπEa∼π(·|s;θ) [∇θ log(π(a|s; θ)Aπ(s, a)]
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Proof: The policy gradient theorem (1) states that:

∇θV
π(s0) = HEs∼dπEa∼π(·|s;θ) [∇θ log(π(a|s; θ))Qπ(s, a)] (18)

We have that:

∇θV
π(s0) = HEs∼dπEa∼π(·|s;θ) [∇θ log(π(a|s; θ)Qπ(s, a)]

= HEs∼dπEa∼π(·|s;θ) [∇θ log(π(a|s; θ)Qπ(s, a)−∇θ log(π(a|s; θ)V π(s))]

= HEs∼dπEa∼π(·|s;θ) [∇θ log(π(a|s; θ)(Qπ(s, a)− V π(s))]

= HEs∼dπEa∼π(·|s;θ) [∇θ log(π(a|s; θ)Aπ(s, a))] ,

where the second transition follows by Lemma B.1 since Ea∼π(·|s;θ) [∇θ log(π(a|s; θ)] is the 0 vector.
2

Proof:[Of Lemma 4.2] Fix a policy π and a state-action pair s, a.

∇θV
π(s0)s,a = HEs′∼dπEa′∼π(·|s;θ) [∇θ log(π(a

′|s′; θ)s,aAπ(s′, a′))]

= HEs′∼dπ

∑
a′∈A

π(a′|s′; θ)∇θ log(π(a
′|s′; θ)s,aAπ(s′, a′))

= dπs
∑
a′∈A

π(a′|s; θ)∇θ log(π(a
′|s; θ))s,aAπ(s, a′))

= dπs
∑
a′∈A

π(a′|s; θ)(I(a = a′)− π(a|s))Aπ(s, a′)

= dπsπ(a|s; θ)Aπ(s, a)− dπs
∑
a′∈A

π(a′|s; θ)π(a|s)Aπ(s, a′)

= dπsπ(a|s; θ)Aπ(s, a)− dπsπ(a|s; θ)
∑
a′∈A

π(a′|s; θ)Aπ(s, a′)

= dπsπ(a|s; θ)Aπ(s, a),

where the first transition follows by Lemma B.2, the fourth transition follows by Lemma 4.1 and the
last transition follows by Lemma A.4 which does not depend on the parameterization. 2

Lemma B.3 For a policy π and a state s ∈ S,∑
a∈A

π(a|s)Ãπ(s, a) = 0

Proof: Fix a policy π and a state s ∈ S.∑
a∈A

π(a|s)Ãπ(s, a) =
∑
a∈A

π(a|s)(Q̃π(s, a)− Ṽ π(s))

=
∑
a∈A

π(a|s)Q̃π(s, a)−
∑
a∈A

π(a|s)Ṽ π(s)

=
∑
a∈A

π(a|s)Q̃π(s, a)− Ṽ π(s)
∑
a∈A

π(a|s)

=
∑
a∈A

π(a|s)Q̃π(s, a)− Ṽ π(s)

= Ṽ π(s)− Ṽ π(s)

= 0,

where the first transition follows by the definition of Ãπ as in (9), the third step holds since Ṽ π(s) does
not depend on a, the fourth step follows by the fact that π(·|s) is a distribution, i.e.,

∑
a∈A π(a|s) = 1,

and the fifth step follows by the definition of Ṽ π(s) as in (9). 2
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Definition B.4 Define the approximated policy gradient as:

∇̃θV π(s0) =
∑
s,a

dπsπ(a|s; θ)∇θ log(π(a|s; θ))Ãπ(s, a) (19)

The same as in Lemma 4.2, we get that for every state-action pair s, a and policy π:

∇̃θV π(s0)s,a = dπsπ(a|s; θ)Ãπ(s, a) (20)

Proof:[Of Lemma 4.3] Consider the loss function:

Lθ(w) =
∥∥∥Es∼dπEa∼π(·|s;θ)∇θ log(π(a|s; θ)

(
w⊤∇θ log(π(a|s; θ))− Ãπ(s, a)

)∥∥∥
2

Let w′ = Ãπ(·, ·). Observe that for a state-action pair s, a:

∇θ log(π(a|s))⊤w′ − Ãπ(s, a) =
∑
a′∈A

(I(a = a′)− π(a′|s))Ãπ(s, a′)− Ãπ(s, a)

= Ãπ(s, a)−
∑
a′∈A

π(a′|s)Ãπ(s, a′)− Ãπ(s, a)

= 0,

(21)

where the last transition follows by Lemma B.3. Therefore Lθ(w′) = 0. Reorganizing the loss function,
we get that:

Lθ(w) =
∥∥∥F (θ)w − Es∼dπEa∼π(·|s;θ)∇θ log(π(a|s; θ))Ãπ(s, a)

∥∥∥
2

Since Lθ(w′) = 0, we know that w′ is a global minimizer of Lθ, and that Lθ(w) = 0. Consider the
vector w∗

θ which satisfies the following:

F (θ)w∗
θ = Es∼dπEa∼π(·|s;θ)∇θ log(π(a|s; θ))Ãπ(s, a).

Recall that the Moore Penrose inverse of a matrix A satisfies A†b = argminx:Ax=b ∥x∥2 (see Section
C.4). Therefore

w∗
θ = F (θ)†Es∼dπEa∼π(·|s;θ)

[
∇θ log(π(a|s; θ))Ãπ(s, a)

]
(22)

is a global minimizer of Lθ(w). By the definition of the approximated gradient (19), We get that:

w∗
θ =

1

H
F (θ)†∇̃θV π(s0).

Note that the loss function is a norm of a vector, therefore as Lθ(w∗
θ) = 0, every coordinate in the

vector is 0. Consider the s, a coordinate:

0 =
1

H
dπs
∑
a′∈A

π(a′|s)(I(a′ = a)− π(a|s))
(
w⊤∇θ log(π(a

′|s; θ))− Ãπ(s, a′)
)

=
1

H
dπsπ(a|s)

[(
w⊤∇θ log(π(a|s; θ))− Ãπ(s, a)

)
−
∑
a′∈A

π(a′|s)
(
w⊤∇θ log(π(a

′|s; θ))− Ãπ(s, a′)
)]

Define the function B(s, a, w) = w⊤∇θ log(π(a|s; θ))− Ãπ(s, a). The above implies that B(s, a, w) =∑
a′∈A π(a′|s)B(s, a′, w). Therefore, B is independent on a, i.e., we can view B as a function of s
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and w: B(s, w). Define the vector v as v = w∗
θ − w′

θ. For a state-action pair s, a, consider B(s, w∗
θ):

B(s, w∗
θ) = B(s, a, w∗

θ)

= ∇θ log(π(a|s; θ))⊤w∗
θ − Ãπ(s, a)

= ∇θ log(π(a|s; θ))⊤(w′
θ + v)− Ãπ(s, a)

= ∇θ log(π(a|s; θ))⊤v

= vs,a −
∑
a′∈A

π(a′|s)vs,a′ ,

where the fourth transition follows by (21). Therefore,

vs,a =
∑
a′∈A

π(a′|s)vs,a′ +B(s, w∗
θ)

This implies that vs,a is independent of a, therefore we can view v as a vector that depends on the
state alone: vs, yet it is still a |S||A| dimensional vector. Observe that for all state-action pair s, a
the algorithm step (7) is equivalent to (8) up to a value that does not depend on the action a:

θ(t+1)
s,a = θ(t)s,a + η

[
F (θ(t))†∇̃θV πt(s0)

]
s,a

= θ(t)s,a + ηHw∗
θ(t),s,a

= θ(t)s,a + ηHw′
θ(t),s,a + ηHvs

= θ(t)s,a + ηHÃπt(s, a) + ηHvs

Where the second step follows by (22), the third step holds since v = w∗
θ − w′

θ, and the forth step
follows by the definition of w′

θ. Observe the effect of vs on the policy:

π(t+1)(a|s) = exp(θ
(t)
s,a + ηHÃπt(s, a) + ηHvs)∑

a′∈A exp(θ
(t)
s,a′ + ηHÃπt(s, a′) + ηHvs)

=
exp(θ

(t)
s,a + ηHÃπt(s, a))∑

a′∈A exp(θ
(t)
s,a′ + ηHÃπt(s, a′))

.

This implies that the value of v is irrelevant for the algorithm, therefore the algorithm step (7) is
equivalent to algorithm step (8). 2

Proof:[Of Lemma 4.4] Let m = H2|S||A|
ϵ2λ log( 2|S||A|K

δ ) be the number of episodes sampled
every phase. At phase t of the algorithm, for every state-action pair s, a, let ms,a be the number
of episodes where the MDP restarted at state s and action a. Note that ms,a is a random number,
and E[ms,a] =

λ
|S||A|m = H2 1

ϵ2 log(
2|S||A|K

δ ). We will use both Chernoff and Hoeffding concentration
bound (Theorem C.15,C.16). We use Chernoff concentration bound to get a lower bound (with some
probability) on ms,a, and Hoeffding concentration bound on the approximation of the Q-function
assuming the bound on ms,a holds. Let τ1, τ2, . . . , τms,a be the episodes sampled by starting at state
s, taking action a and following the policy πt, and let r1, r2, . . . , rms,a

be the corresponding sum of
the rewards. Define

Q̃(t)(s, a) =
1

ms,a

ms,a∑
i=1

ri

By the Chernoff concentration bound, for some state-action pair s, a, to assure that

ms,a >
H2

2ϵ2
log(

2|S||A|K
δ

) (23)
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with probability 1− 1
2|S||A|K δ, we would need that 1

2|S||A|K δ = e−(
1
2 )

2
λm 1

|S||A|
1
2 which is equivalent

to:
m ≥ 8|S||A| 1

λ
log(

2|S||A|K
δ

), (24)

Note that the requirement of the Lemma (m ≥ H2|S||A|
ϵ2λ log( 2|A||S|K

δ ) fulfills condition (24)
assuming that H2 1

ϵ2 ≥ 8.
We presented a lower bound for the random number ms,a for every state-action pair s, a (23), we

can now show a bound for |Q̃π(s, a)−Qπ(s, a)| given a lower bound on the number of episodes ms,a.
For every i, E[ri] = Qπt

(s, a), and 0 ≤ ri ≤ H, therefore we use Hoeffding concentration bound again
to show that for ϵ > 0, a state action pair s, a and a policy π, with probability at least 1− 1

2|S||A|K δ,
we have that:

|Q̃π(s, a)−Qπ(s, a)| ≤ ϵ (25)

using the lower bound of ms,a (23). Using (23) and (25) and the union bound, with probability 1− δ

for every phase t and state-action pair s, a, ms,a ≥ H2 1
2ϵ2 log(

2|S||A|K
δ ) and ∥Q̃π −Qπ∥∞ ≤ ϵ.

can now bound the advantage function using the bound on the Q-function:

|Aπ(s, a)− Ãπ(s, a)| = |Qπ(s, a)− V π(s)− Q̃π(s, a) + Ṽ π(s)|

≤ |Qπ(s, a)− Q̃π(s, a)|+ |V π(s, a)− Ṽ π(s)|

≤ ϵ+ |
∑
a′∈A

π(a′|s)(Qπ(s, a′)− Q̃π(s, a′)|

≤ ϵ+
∑
a′∈A

π(a′|s)ϵ

= 2ϵ

Where the first transition follows by the definition of Aπ(s, a) and Ãπ(s, a), and the third transition
follows by (25). Therefore, for every phase t,

∥Aπ − Ãπ)∥∞ ≤ 2ϵ (26)

2

Define for a phase t and a state-action pair s, a:

ϵt,s,a = Aπt

(s, a)− Ãπt(s, a) (27)

By Lemma 4.4, with high probability, we have

|ϵt,s,a| ≤ 2ϵ. (28)

Definition B.5 For a policy π and a state s ∈ S, define the function Zπ(s):

Z̃π(s) =
∑
a∈A

π(a|s)exp(ηHÃt(s, a))

To simplify the notation - we write Zt instead of Zπt during phase t.

Lemma B.6 For a phase t, a state-action pair s, a, and the policy gradient update (8)

πt+1(a|s) = πt(a|s)exp(ηHÃt(s, a))

Z̃t(s)
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Proof:Fix a phase t, and a state-action pair s, a:

πt+1(a|s) =
exp(θt+1

s,a )∑
a′∈A exp(θt+1

s,a )

=
exp(θts,a + ηHÃt(s, a))∑

a′∈A exp(θts,a′ + ηHÃt(s, a′))

=
exp(θts,a)exp(ηHÃt(s, a))∑

a′∈A

[
πt(a|s)exp(ηHÃt(s, a′))

∑
a′′∈A exp(θts,a′′)

]
=

exp(θts,a)exp(ηHÃt(s, a))∑
a′′∈A exp(θts,a′′)

∑
a′∈A

[
πt(a|s)exp(ηHÃt(s, a′))

]
= π(a|s) exp(ηHÃt(s, a))∑

a′∈A

[
πt(a|s)exp(ηHÃt(s, a′))

]
= π(a|s)exp(ηHÃt(s, a))

Z̃t(s)

2

Lemma B.7 For a policy π and a state s,

log(Z̃π(s)) ≥ 0

Proof: Fix a policy π and a state s,

log(Z̃π(s)) = log

(∑
a∈A

π(a|s)exp(ηHÃt(s, a))

)
≥
∑
a∈A

π(a|s) log
(
exp(ηHÃt(s, a))

)
=
∑
a∈A

π(a|s)ηHÃt(s, a)

= 0,

where the second transition follows by Jensen’s inequality, (log() is a concave function and
∑

a∈A π(a|s) =
1), and the last transition follows by Lemma B.3. 2

Lemma B.8
1

ηH2

T∑
t=1

∑
s∈S

d∗s log(Z̃t(s)) ≤ H2 + 2HTϵ (29)

Proof:From Lemma A.3 we have that for every distribution µ:

V π(µ)− V π′
(µ) =

1

H

∑
s∈S,a∈A

dπ,µs π(a|s)Aπ′
(s, a)

Recall the notation dπ,µ which equals the steady state distribution of the states assuming the starting
state is distributed according to µ, and the episodes are run according to the policy π. Consider the
distribution d∗ = dπ

∗
,

V πt+1

(d∗)− V πt

(d∗) =
1

H

∑
s∈S

dπ
t+1,d∗

s

∑
a∈A

πt+1(a|s)Aπt

(s, a)
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=
1

H

∑
s∈S

dπ
t+1,d∗

s

∑
a∈A

πt+1(a|s)ϵt,s,a +
1

H

∑
s∈S

dπ
t+1,d∗

s

∑
a∈A

πt+1(a|s)Ãπt(s, a)

≥ −2ϵ+
1

H2η

∑
s∈S

dπ
t+1,d∗

s

∑
a∈A

πt+1(a|s) log

(
πt+1(a|s)Z̃t(s)

πt(a|s)

)

= −2ϵ+
1

H2η

∑
s∈S

dπ
t+1,d∗

s

∑
a∈A

KL(πt+1(·|s), πt(·|s))

+
1

H2η

∑
s∈S

dπ
t+1,d∗

s

∑
a∈A

πt+1(a|s) log(Z̃t(s))

≥ −2ϵ+
1

H2η

∑
s∈S

dπ
t+1,d∗

s

∑
a∈A

πt+1(a|s) log(Z̃t(s))

≥ −2ϵ+
1

H2η

∑
s∈S

dπ
t+1,d∗

s log(Z̃t(s)),

where the first transition follows by Lemma A.3, the second transition follows by Lemma B.6 and
(28), the third transition follows by the definition of KL (46), the fourth transition holds since
KL(·, ·) is non-negative by Lemma C.13, and the fifth transition holds since log(Z̃t(s)) does not
depend on a, and

∑
a∈A πt+1(a|s) = 1. When we sum over the phases, we get:

V πN

(d∗)− V π0

(d∗) ≥ −2Nϵ+
1

ηH2

N∑
t=1

∑
s∈S

dπ
t+1,d∗

s log(Z̃t(s))

Observe that dπ
t+1,d∗

s ≥ 1
H d∗, therefor:

V πN

(d∗)− V π0

(d∗) ≥ −2Nϵ+
1

ηH3

N∑
t=1

∑
s∈S

d∗s log(Z̃t(s))

The fact that V πN

(d∗)− V π0

(d∗) ≤ H finishes the proof. 2

Lemma B.9 Assuming the algorithm is run for N phases, and in each phase the advantage function
is approximated with the approximation error: 2ϵ, i.e., ∥Aπt − Ãπt∥∞ ≤ 2ϵ, then:

N∑
t=1

V ∗(µ)− V t(µ) ≤ 3H(H +Nϵ).

Proof: Fix a phase t,

V ∗(µ)− V t(µ) =
1

H

∑
s∈S

dπ
∗

s

∑
a∈A

π∗(a|s)Aπt

(s, a)

≤ 2ϵ+
1

H2η

∑
s∈S

dπ
∗

s

∑
a∈A

π∗(a|s) log

(
πt+1(a|s)Z̃t(s)

πt(a|s)

)

= 2ϵ+
1

H2η

∑
s∈S

dπ
∗

s

∑
a∈A

π∗(a|s) log

(
π∗(a|s)πt+1(a|s)Z̃t(s)

πt(a|s)π∗(a|s)

)

= 2ϵ+
1

H2η

∑
s∈S

dπ
∗

s

(
KL(π∗(·|s), πt(·|s))−KL(π∗(·|s), πt+1(·|s)) +

∑
a∈A

π∗(a|s) log Z̃t(s)

)

= 2ϵ+
1

H2η

∑
s∈S

dπ
∗

s

(
KL(π∗(·|s), πt(·|s))−KL(π∗(·|s), πt+1(·|s)) + log Z̃t(s)

)
,
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where the first transition holds since |Aπt

(s, a)− Ãπt(s, a)| ≤ 2ϵ. When we sum over the phases, we
have:

N∑
t=1

V ∗(µ)− V t(µ) ≤ 2ϵN +
1

H2η

N∑
t=1

∑
s∈S

dπ
∗

s

(
KL(π∗(·|s), πt(·|s))−KL(π∗(·|s), πt+1(·|s)) + log Z̃t(s)

)

= 2ϵN +
1

H2η

∑
s∈S

dπ
∗

s

(
KL(π∗(·|s), π1(·|s))−KL(π∗(·|s), πN+1(·|s)) +

N∑
t=1

log Z̃t(s)

)

≤ 2ϵN +
1

H2η

∑
s∈S

dπ
∗

s

(
KL(π∗(·|s), π1(·|s)) +

N∑
t=1

log Z̃t(s)

)

≤ 2ϵN +
1

H2η

∑
s∈S

dπ
∗

s

(
log(|A|) +

N∑
t=1

log Z̃t(s)

)

= 2ϵN +
log(|A|)
Hη

+
1

H2η

∑
s∈S

dπ
∗

s

N∑
t=1

log Z̃t(s)

≤ 2ϵN +
log(|A|)
Hη

+H2 + 2HNϵ

≤ H2 + 2(H + 1)Nϵ+
log(|A|)
Hη

,

where the third transition follows by Lemma C.13, the fourth transition follows by Lemma C.14
assuming the starting policy is the uniform policy as states in the algorithm description, the sixth
transition follows by Lemma B.8. Assuming the step size is large enough: η ≥ 1

H log(|A|), we have
that log(|A|)

Hη ≤ H2 which completes the proof. 2

Note that the above lemma applies to both settings of the softmax parameterization.
Proof:[Of Theorem 4.5] Using Lemma B.9, observe the regret:

Regret = m

N∑
t=1

V ∗(µ)− V t(µ) ≤ 3mH(H +Nϵ)

To minimize the regret, we optimize ϵ to ϵ = H
N . From Lemma 4.4:

m =
4H2|S||A|

ϵ2λ
log(

2|A||S|K
δ

) =
4N2|S||A|

λ
log(

2|A||S|K
δ

)

Multiplying both sides by N gives:

K = mN =
4N3|S||A|

λ
log(

2|A||S|K
δ

).

This implies

N = K
1
3

(
λ

4|S||A| log( 2|A||S|K
δ )

) 1
3

,

and

m =
K

N
= K

2
3

(
4|S||A| log( 2|A||S|K

δ )

λ

) 1
3

2

Proof:[Of Lemma 4.6] Let m1 = 2H2|S||A|
ϵ2 log( 2|A||S|K

δ ) be the number of episodes sampled by
restarting the algorithm at some state s ̸= s0 every phase. At phase t of the algorithm, for every
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state-action pair s, a, let τ1, τ2, . . . , τ m1
|S||A|

be the trajectories sampled by starting at state s, taking
action a and then following the policy πt. Let r1, r2, . . . , r m1

|S||A|
be their corresponding sum of the

rewards. Define

Q̃(t)(s, a) =
|S||A|
m1

m1
|S||A|∑
i=1

(ri)

Observe that for every i, E[ri] = Q(t)(s, a), and 0 ≤ ri ≤ H, therefore we use Hoeffding concentration
bound (Theorem C.15) to show that for ϵ > 0, a state action pair s, a and a policy π, with probability
at least 1− 1

|S||A|K δ, we get the following approximation of the gradient

|Q̃π(s, a)−Qπ(s, a)| ≤ ϵ, (30)

Using the union bound we get that with probability 1 − δ, for every phase t the following bound
hold: ∥Q̃π −Qπt∥∞ ≤ ϵ.

We define the approximated value function Ṽ π and the approximated advantage function Ãπ

using the approximated Q-function just as before. For a state-action pair s, a:

Ṽ π(s) =
∑
a′∈A

π(a′|s)Q̃π(s, a′) and Ãπ(s, a) = Q̃π(s, a)− Ṽ π(s)

And similar to (26) we get that
∥Ãπ −Aπ∥∞ ≤ 2ϵ.

2

Proof:[Of Theorem 4.7] As in Lemma B.9:

N∑
t=1

V ∗(s0)− V t(s0) ≤ 3H(H +Nϵ)

Observe the regret:

Regret =

N∑
t=1

m1H +m2(V
∗(s0)− V t(s0)) ≤ Hm1N + 3(m−m1)H(H +Nϵ)

To minimize the regret we take ϵ = H
N . As m1 is defined using ϵ in Lemma 4.6, we see that:

Regret ≤ H2m1
1

ϵ
+ 6(m−m1)H

2

= 2H3

√
2|S||A| log(2|A||S|K

δ
)m

3
2
1 + 6(m−m1)H

2

≤ 2H3

√
2|S||A| log(2|A||S|K

δ
)m

3
2
1 + 6mH2,

where the second transition follows by Lemma 4.6 as ϵ =
√

2H2|S||A|
m1

log( 2|A||S|K
δ ). We optimize m1

to be:

m1 =

(
4.5

H2|S||A| log( 2|A||S|K
δ )

) 1
3

m
2
3 (31)
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Note the value of m as a function of N . Since we optimized ϵ to be ϵ = H
N and m1 in (31), we get

that:

m = m
3
2
1

√
2

9
H2|S||A| log(2|A||S|K

δ
)

=

(
2H2|S||A|

ϵ2

) 3
2
√

2

9
H2|S||A| log(2|A||S|K

δ
)

=

(
N

H

)3
4

3
H4|S|2|A|2

√
log(

2|A||S|K
δ

)

=
4

3
H|S|2|A|2

√
log(

2|A||S|K
δ

)N3

Multiplying both sides by N gives us:

K = Nm =
4

3
H|S|2|A|2

√
log(

2|A||S|K
δ

)N4

This implies

N = K
1
4

 3

4H|S|2|A|2
√

log( 2|A||S|K
δ )

 1
4

,

and

m =
K

N
= K

3
4

(
4

3
H|S|2|A|2

√
log(

2|A||S|K
δ

)

) 1
4

Which yields the final regret bound:

Regret ≤ 12mH2

≤ 12K
3
4

(
4

3
H9|S|2|A|2

√
log(

2|A||S|K
δ

)

) 1
4

2
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C Additional Proofs

C.1 The projection algorithm w.r.t. the euclidean norm

We show how to implement the projection operation for the set Πρ = {z ∈ [0, 1]d :
∑d−1

i=0 zi = 1,∀i ∈
[d] zi ≥ ρ}. We assume that ρ ≤ 1

d , otherwise Πρ would be the empty set. Given a vector y ∈ Rd,
we would like to compute its projection to Πρ, i.e., θ∗ = argminz∈Πρ

∥z − y∥2. For simplicity and
w.l.o.g., we assume that y0 ≤ y1, . . . ≤ yd−1.

For each m ∈ [d] define xm as follows, xm
i = ρ for i ≤ m− 1 and xm

i = yi − λm for i ≥ m, where
λm = 1

d−m

(∑
i≥m(yi) +mρ− 1

)
. Let

θ = argmin
m:xm∈Πρ

∥xm − y∥2. (32)

We show that there exists at least one value m for which xm ∈ Πρ and that θ = θ∗ = argminz∈Πρ
∥z−

y∥2

Lemma C.1 Let θ∗ = argminz∈Πρ
∥z − y∥22, we have that:

∀i, θ∗i ≤ θ∗i+1

Proof: Assume for contradiction that there exists k < j such that θ∗k > θ∗j . Define a vector
z which equals the average of θ∗k and θ∗j in the k and j coordinates, and equals θ∗ in every other
coordinate, i.e., zk = zj =

1
2 (θ

∗
k + θ∗j ) and zi = θ∗i for i ̸∈ {j, k}. Clearly, z ∈ Πρ. It follows that that:

d−1∑
i=0

(θ∗i − yi)
2 −

d−1∑
i=0

(zi − yi)
2 = (θ∗k − yk)

2 + (θ∗j − yj)
2 − (

θ∗k + θ∗j
2

− yk)
2 − (

θ∗k + θ∗j
2

− yj)
2

= θ∗2k − 2θ∗kyk + θ∗2j − 2θ∗j yj −
1

2
θ2∗k − 1

2
θ2∗j − θ∗j θ

∗
k + (yk + yj)(θ

∗
k + θ∗j )

=
1

2
θ∗2k − θ∗kθ

∗
j +

1

2
θ∗2j − θ∗kyk − θ∗j yj + θ∗kyj + θ∗j yk

=
1

2
(θ∗k − θ∗j )

2 + (θ∗k − θ∗j )(yj − yk)

≥ 1

2
(θ∗k − θ∗j )

2

> 0

where we use the fact that yj ≥ yk and θ∗k > θ∗j . This contradicts to the optimality of θ∗. 2

Lemma C.2 Let 0 ≤ m ≤ d− 1 be the number of values in θ∗ which are ρ. Then xm ∈ Πρ

Proof: First we show that
∑d−1

i=0 xm
i = 1:

d−1∑
i=0

xm
i = mρ+

∑
i≥m

yi − (d−m)λm = mρ+
∑
i≥m

yi −
∑
i≥m

yi −mρ+ 1 = 1

Assume by contradiction that there exists j such that xm
j < ρ. Clearly j ≥ m, since xm

i = ρ for
i ≤ m − 1. If m+ 1 = d then xm = (ρ, . . . , ρ, 1 − ρ(d − 1)) ∈ Πρ, and 1 − ρ(d − 1) ≥ ρ because of
the assumption ρ ≤ 1

d as stated above. We can now assume that m+ 1 < d. For i ≥ m, we have
xm
i ≤ xm

i+1 since xm
i = yi − λm ≤ yi+1 − λm = xm

i+1. Since we assume that j ≥ m and xm
j < ρ, we

have that ym − λm ≤ yj + λm = xm
j < ρ. Consider the expression (|A| −m)(ρ+ λm − ym) which is
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strictly positive. We have,

0 < (d−m)(ρ+ λm − ym) = (d−m)ρ+ (d−m)λm − (d−m)ym

= (d−m)ρ+
∑
i≥m

yi +mρ− 1− (d−m)ym

≤ dρ− 1 + yd−1 − ym +

d−2∑
i=m

yi − ym

≤ dρ− 1 + yd − ym

Where the second transition follows by the definition of λm = 1
d−m (

∑
i≥m yi +mρ− 1). This implies

that yd−1 > 1− dρ+ ym.
By Lemma C.1, since the values are non-decreasing in θ∗ we have that θ∗1 = · · · = θ∗m = ρ.
We define z′ which equals θ∗ except that we reduce the m coordinate to ρ and increase the

d− 1 coordinate accordingly, i.e., look at z′, where z′m = ρ, z′d−1 = θ∗d−1 + θ∗m − ρ, and z′i = θ∗i for
i ̸∈ {m, d− 1}. Clearly

∑d−1
i=0 z′i = 1 and z′i ≥ ρ so z′ ∈ Πρ.

Define α = θ∗m − ρ > 0 and look at:

d−1∑
i=0

(θ∗i − yi)
2 −

d−1∑
i=0

(z′i − yi)
2 = (ρ+ α− ym)2 + (θ∗d−1 − yd−1)

2 − (ρ− ym)2 − (θ∗d−1 + α− yd−1)
2

= 2ρα− 2αym − 2αθ∗d−1 + 2αyd−1

= 2α(ρ− ym − θ∗d−1 + yd−1)

> 2α(ρ− ym − θ∗d−1 + 1− dρ+ ym)

= 2α(ρ− θ∗d−1 + 1− dρ)

= 2α(1− (d− 1)ρ− θ∗d−1)

= 2α(
∑
i

θ∗i − (d− 1)ρ− θ∗d)

= 2α(
∑

i<d−1

θ∗i − (d− 1)ρ) ≥ 0

which implies that ∥θ∗ − y∥2 > ∥z′ − y∥2, contradicting the optimality of θ∗. 2

Theorem C.3
θ∗ = argmin

m:xm∈Πρ

∥xm − y∥2

Proof: First, by Lemma C.2, we have that there exists m such that xm ∈ Πρ where m is the
number of coordiantes of value ρ in θ∗. We will show that θ∗ = xm.

Second, by Lemma C.1 we have that the coordinates of θ∗ are non-decreasing, i.e., θ∗i ≤ θ∗i+1

Assume for contradiction that θ∗ ≠ xm. Since xm, θ∗ ∈ Πρ and xm ̸= θ∗ there exists k ̸= j such
that θ∗k = xm

k + a and θ∗j = xm
j + b where ab < 0 and |a| < |b|. Consider z which is equal to θ∗ in all

the coordinates except k where we subtract a and coordinate j where we add a. We first show that
z ∈ Πρ. It’s clear that zk = θ∗k − a = xm

k and zj = θ∗j + a = xm
j + a+ b. It is clear that

∑d
i=1 zi = 1.

As zk = xm
k it is clear that zk ∈ [ρ, 1]. If b is negative then θ∗j = zj − a < zj < zj − (b + a) = xm

j

then it is clear that zj ∈ [ρ, 1] (since both xm
j , θ∗j are in the valid range), and if b is positive then

xm
j < xm

j + a+ b = zj < zj − a = θ∗j then it is clear that zj ∈ [ρ, 1]. This gives us that z ∈ Πρ.
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We now consider the difference in the norms
d−1∑
i=0

(θ∗i − yi)
2 −

d−1∑
i=0

(zi − yi)
2 = (θ∗j − yj)

2 + (θ∗k − yk)
2 − (θ∗j + a− yj)

2 − (θ∗k − a− yk)
2

= (yj − λm + b− yj)
2 + (yk − λm + a− yk)

2

− (yj − λm + b+ a− yj)
2 − (yk − λm + a− a− yk)

2

= (b− λm)2 + (a− λm)2 − (a+ b− λm)2 − λ2
m

= −2ab > 0

Which is a contradiction to the optimality of θ∗. 2

This gives us that among x0, x1, . . . , xd−1 is the optimal solution. Which means that in order to find
the projection for the vector y, we need to calculate x0, x1, . . . , xd−1, remove the vectors who are not
in Πρ, and take the one that minimizes ∥xi − y∥2.

C.2 Definitions
Definition C.4 For a matrix A ∈ Rn×m, the Moore Penrose inverse matrix is A†, which follows
the following properties:

1. AA†A = A 2. A†AA† = A† (33)

3. (A†A)⊤ = A†A 4. (AA†)⊤ = AA† (34)

5. A†b = argmin
x, Ax=b

∥x∥2 (35)

Where 3, 4 only holds when the values of A are real.

C.3 General vector proofs
Lemma C.5 for x ∈ Rn and y = argminz∈C ∥z − x∥22 assuming C is convex, we have:

max
z∈C

(x− y)⊤(z − y) ≤ 0

Proof: Let there be z ∈ C, t ∈ (0, 1] and define zt := tz + (1 − t)y. As C is convex it is clear
that zt ∈ C. We observe:

∥x− y∥22 − ∥x− zt∥22 = ∥x− y∥22 − ∥(x− y) + (y − zt)∥22
= ∥x− y∥22 −

[
∥x− y∥22 + ∥y − zt∥22 + 2(x− y)⊤(y − zt)

]
= −∥y − zt∥22 + 2(x− y)⊤(zt − y)

= 2t(x− y)⊤(z − y)− t2∥y − z∥22

Where the last equality follows by: zt − y = tz + (1 − t)y − y = tz − ty = t(z − y). because
y = argminz∈C ∥z − x∥22, we get: ∥x− y∥22 − ∥x− zt∥22 ≤ 0 so:

2t(x− y)⊤(z − y) ≤ t2∥y − z∥22

Dividing by 2t gives:

(x− y)⊤(z − y) ≤ t

2
∥y − z∥22

As this is true for every t ∈ (0, 1], we get the the wanted inequality. 2

Lemma C.6 Let f : Rn −→ R be a β-smooth function with respect to norm ∥ · ∥2, where dom(f) is a
convex set. then for every x, y ∈ dom(f):

f(y) ≥ f(x) +∇f(x)⊤(y − x)− β

2
∥y − x∥22 (36)
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Proof: Fix x, y ∈ dom(f). By the fundamental theorem of calculus,

f(y)− f(x) =

∫ 1

0

∇f(x+ t(y − x))⊤(y − x)dt

Therefore:

f(y)− f(x) = ∇f(x)⊤(y − x) +

∫ 1

0

(∇f(x+ t(y − x))−∇f(x))⊤(y − x)dt

Since ∇f(x)⊤(y − x) does not depend on t. Taking the absolute value of the above:

|f(y)− f(x)−∇f(x)⊤(y − x)| =|
∫ 1

0

(∇f(x+ t(y − x))−∇f(x))⊤(y − x)dt|

≤
∫ 1

0

|(∇f(x+ t(y − x))−∇f(x))⊤(y − x)|dt

≤
∫ 1

0

∥(∇f(x+ t(y − x))−∇f(x)∥2∥y − x∥2dt

≤
∫ 1

0

β∥x+ t(y − x)− x∥2∥y − x∥2dt

=

∫ 1

0

tβ∥y − x∥22dt =
β

2
∥y − x∥22

Where the third step holds due to the fact that for vectors x1, x2 we have |x1
⊤x2| ≤ ∥x1∥2∥x2∥2.

Since f(x) +∇f(x)⊤(y − x)− f(y) ≤ |f(y)− f(x)−∇f(x)⊤(y − x)| and the above we get:

f(x) +∇f(x)⊤(y − x)− f(y) ≤ β

2
∥y − x∥22

Reorganizing that finishes the proof. 2

Lemma C.7 For a matrix M ∈ Rn×m, a vector x ∈ Rn, and a number L > 0, assume that∑n
i=1

∑m
j=1(Mi,j)

2 ≤ L, then we get:

∥Mx∥22 ≤ L∥x∥22

Proof: Observe:

∥Mx∥22 =

m∑
i=1

(Mix)
2

≤
m∑
i=1

∥Mi∥22∥x∥22

= ∥x∥22
m∑
i=1

∥Mi∥22

= ∥x∥22
m∑
i=1

n∑
j=1

(Mi,j)
2

≤ L∥x∥22

Where Mi is the i-th column in the matrix M . The second step follows by Cauchy-Schwarz’s
inequality. The last step follows by the assumption

∑n
i=1

∑m
j=1(Mi,j)

2 ≤ L. 2
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C.4 Smoothness proofs
Lemma C.8 For a policy π ∈ ∆(A)|S| and a vector u ∈ R|S||A| such that for all states s ∈ S,
∥u·,s∥2 = 1, we get: ∣∣u⊤∇2V π(s0)u

∣∣ ≤ 1

3
H3|A|

Where ∇2 is the Hessian matrix, where for two state-action pairs: s, a and s′, a′, ∇2V π(s0)(s,a),(s′,a′) =
∂∂V π(s0)

∂θs,a∂θs′,a′
.

Proof: Fix θ ∈ ∆(A)|S| and let π be the policy which is parameterized by θ. Let u ∈ [0, 1]|S||A|

be such that for every state s ∈ S, ∥u·,s∥2 = 1. For a scalar α let πα = π + αu. For a state s ∈ S:

∑
a∈A

∣∣∣∣∣dπα(a|s)
dα

∣∣∣∣
α=0

∣∣∣∣∣ = ∑
a∈A

|us,a| ≤
√
|A|

and for all actions a ∈ A:

d2πα(a|s)
(dα)2

∣∣∣∣
α=0

= 0

Define the state-action transition matrix under π as follows:

[P̃ (α)](s,a)−>(s′,a′) = πα(a
′|s′)P (s′|s, a).

It’s clear to see that for all n ≥ 1 the vector P̃ (0)n1⃗ consists of only non-negative values. This implies
that for an arbitrary vector x, a state-action pair s, a and a number n ≥ 1,∣∣∣∣∣

[
P̃ (α)n

∣∣∣∣
α=0

x

]
s,a

∣∣∣∣∣ ≤ ∥x∥∞
∣∣∣∣[P̃ (α)n1⃗

]
s,a

∣∣∣∣ , (37)

For a state-action pair s, a,

P̃ (α)

∣∣∣∣
α=0

1⃗s,a =
∑

s′∈S,a′∈A

π(a′|s′)P (s′|s, a)

=
∑
s′∈S

P (s′|s, a)
∑
a′∈A

π(a′|s′)

=
∑
s′∈S

P (s′|s, a)

= 1

Combining that with (37) gives us that for a vector x, a state-action pair s, a and a number n ≥ 1:∣∣∣∣∣
[
P̃ (α)n

∣∣∣∣
α=0

x

]
s,a

∣∣∣∣∣ ≤ ∥x∥∞

Which can also be written as: ∥∥∥∥P̃ (α)n
∣∣∣∣
α=0

x

∥∥∥∥
∞

≤ ∥x∥∞ (38)

Consider the first derivative of P̃ (α) at α = 0. For an arbitrary vector x, and a state-action pair s, a:[
dP̃ (α)

dα

∣∣∣∣
α=0

x

]
s,a

=
∑

s′∈S,a′∈A

dπα(a
′|s′)

dα

∣∣∣∣
α=0

P (s′|s, a)xa′,s′ .
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We bound the absolute value of the above:∣∣∣∣∣∣
[
dP̃ (α)

dα

∣∣∣∣
α=0

x

]
s,a

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

s′∈S,a′∈A

dπα(a
′|s′)

dα

∣∣∣∣
α=0

P (s′|s, a)xa′,s′

∣∣∣∣∣∣
≤

∑
s′∈S,a′∈A

∣∣∣∣dπα(a
′|s′)

dα

∣∣∣∣
α=0

∣∣∣∣P (s′|s, a)|xa′,s′ |

≤
∑
s′∈S

P (s′|s, a)∥x∥∞
∑
a∈A

∣∣∣∣dπα(a
′|s′)

dα

∣∣∣∣
≤
∑
s′∈S

P (s′|s, a)∥x∥∞
√
|A|

=
√
|A|∥x∥∞

∑
s′∈S

P (s′|s, a)

=
√
|A|∥x∥∞

Which can also be written as: ∥∥∥∥∥dP̃ (α)

dα

∣∣∣∣
α=0

x

∥∥∥∥∥
∞

≤
√
|A|∥x∥∞ (39)

When differentiating P̃ (α) twice w.r.t. α at α = 0, we get for an arbitrary vector x:∣∣∣∣∣∣
[
d2P̃ (α)

(dα)2

∣∣∣∣
α=0

x

]
s,a

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

s′∈S,a′∈A

d2πα(a
′|s′)

(dα)2

∣∣∣∣
α=0

P (s′|s, a)xa′,s′

∣∣∣∣∣∣ (40)

≤
∑

s′∈S,a′∈A

∣∣∣∣d2πα(a
′|s′)

(dα)2

∣∣∣∣
α=0

∣∣∣∣P (s′|s, a)|xa′,s′ | (41)

≤
∑

s′∈S,a′∈A

∣∣∣∣d2πα(a
′|s′)

(dα)2

∣∣∣∣
α=0

∣∣∣∣P (s′|s, a)∥x∥∞ (42)

=
∑
s′∈S

P (s′|s, a)∥x∥∞
∑
a′∈A

∣∣∣∣d2πα(a
′|s′)

(dα)2

∣∣∣∣
α=0

∣∣∣∣ (43)

= 0 (44)

For some action a ∈ A, let Qα(s0, a) be the corresponding Q-function for the policy πα at state
s0 and action a. Observe that Qα(s0, a) can be written as:

Qα(s0, a) = e⊤s0,a

H−1∑
n=0

P̃ (α)nr

Where r is the reward vector. Observe the absolute value of the first derivative of Qα(s0, a) w.r.t.
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α at α = 0: ∣∣∣∣dQα(s0, a)

dα

∣∣∣∣
α=0

∣∣∣∣ =
∣∣∣∣∣e⊤s0,a

H−1∑
n=0

n−1∑
k=0

P̃ (0)k
dP̃ (α)

dα

∣∣∣∣
α=0

P̃ (0)n−1−kr

∣∣∣∣∣
≤

H−1∑
n=0

n−1∑
k=0

∣∣∣∣∣e⊤s0,aP̃ (0)k
dP̃ (α)

dα

∣∣∣∣
α=0

P̃ (0)n−1−kr

∣∣∣∣∣
≤

H−1∑
n=0

n−1∑
k=0

√
|A|∥r∥∞

≤
H−1∑
n=0

n−1∑
k=0

√
|A|

=
1

2
H(H − 1)

√
|A|

Where the third step follows by (39) and (38).
observe the absolute value of the second derivative of Qα(s0, a) w.r.t. α at α = 0:∣∣∣∣d2Qα(s0, a)

(dα)2

∣∣∣∣
α=0

∣∣∣∣ =
∣∣∣∣∣e⊤s0,a

H−1∑
n=0

n−1∑
k=0

(
k−1∑
l=0

P̃ (0)l
dP̃ (α)

dα

∣∣∣∣
α=0

P̃ (0)k−1−l dP̃ (α)

dα

∣∣∣∣
α=0

P̃ (0)n−1−kr

)

+

(
P̃ (0)k

d2P̃ (α)

(dα)2

∣∣∣∣
α=0

P̃ (0)n−1−kr

)

+

(
n−1−k−1∑

l=0

P̃ (0)k
dP̃ (α)

dα

∣∣∣∣
α=0

P̃ (0)l
dP̃ (α)

dα

∣∣∣∣
α=0

P̃ (0)n−1−k−1−lr

)∣∣∣∣∣
≤

H−1∑
n=0

n−1∑
k=0

(
k−1∑
l=0

∣∣∣∣∣e⊤s0,aP̃ (0)l
dP̃ (α)

dα

∣∣∣∣
α=0

P̃ (0)k−1−l dP̃ (α)

dα

∣∣∣∣
α=0

P̃ (0)n−1−kr

∣∣∣∣∣
)

+

(∣∣∣∣∣e⊤s0,aP̃ (0)k
d2P̃ (α)

(dα)2

∣∣∣∣
α=0

P̃ (0)n−1−kr

∣∣∣∣∣
)

+

(
n−1−k−1∑

l=0

∣∣∣∣∣e⊤s0,aP̃ (0)k
dP̃ (α)

dα

∣∣∣∣
α=0

P̃ (0)l
dP̃ (α)

dα

∣∣∣∣
α=0

P̃ (0)n−1−k−1−lr

∣∣∣∣∣
)

≤
H−1∑
n=0

n−1∑
k=0

(
k−1∑
l=0

|A|∥r∥∞

)
+

(
n−1−k−1∑

l=0

|A|∥r∥∞

)

≤ 1

3
|A|H(H − 1)(H − 2)

Where the third step follows by (39), (38) and (40).
Consider the identity:

Ṽ (α) =
∑
a∈A

πα(a|s0)Qα(s0, a)

By differentiating Ṽ (α) twice w.r.t. α we get:

d2Ṽ (α)

(dα)2
=
∑
a∈A

d2πα(a|s0)
(dα)2

Qα(s0, a) + 2
∑
a∈A

dπα(a|s0)
dα

dQα(s0, a)

dα
+
∑
a∈A

πα(a|s0)
d2Qα(s0, a)

(dα)2
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Hence,∣∣∣∣∣d2Ṽ (α)

(dα)2

∣∣∣∣
α=0

∣∣∣∣∣ ≤ ∑
a∈A

∣∣∣∣d2πα(a|s0)
(dα)2

∣∣∣∣
α=0

∣∣∣∣ |Qπ(s0, a)|

+ 2
∑
a∈A

∣∣∣∣dπα(a|s0)
dα

∣∣∣∣
α=0

∣∣∣∣ ∣∣∣∣dQα(s0, a)

dα

∣∣∣∣
α=0

∣∣∣∣
+
∑
a∈A

|π(a|s0)|
∣∣∣∣d2Qα(s0, a)

(dα)2

∣∣∣∣
α=0

∣∣∣∣
≤ 0 + 2

1

2
H(H − 1)

√
|A|
∑
a∈A

∣∣∣∣dπα(a|s0)
dα

∣∣∣∣
α=0

∣∣∣∣+ 1

3
|A|H(H − 1)(H − 2)

∑
a∈A

|π(a|s0)|

= H(H − 1)|A|+ 1

3
|A|H(H − 1)(H − 2)

=
1

3
H(H − 1)(H + 1)|A|

≤ 1

3
H3|A|

Observe the first derivative of Ṽ (α) w.r.t. α:

dṼ (α)

dα
=

∑
s∈S,a∈A

∂V πα

∂θs,a

∂πα

∂θs,a

=
∑

s∈S,a∈A

∂V πα(s0)

∂θs,a
us,a

Observe The second derivative of Ṽ (α) w.r.t. α:

d2Ṽ (α)

(dα)
=

d

dα

dṼ (α)

dα

=
d

dα

∑
s∈S,a∈A

∂V πα(s0)

∂θs,a
us,a

=
∑

s′∈S,a′∈A

∑
s∈S,a∈A

∂∂V πα

∂θs,a∂θs′,a′
us,aus′,a′

= u⊤∇2V παu

Combining that and the fact that
∣∣∣∣d2Ṽ (α)

(dα)2

∣∣∣∣
α=0

∣∣∣∣ ≤ 1
3H

3|A| completes the proof.
2

Lemma C.9 Let A ∈ Rn×n be a symmetric matrix, and L > 0, such that for all eigenvalues λ of A,
|λ| ≤ L. Then,

max
∥x∥2=1

∥Ax∥2 ≤ L

Proof: Fix a symmetric matrix A ∈ Rn×n. As A is symmetric, it has |S||A| eigenvectors
v1, v2, . . . , v|S||A|, which form an orthonormal basis. Namely, for all i ≠ j, v⊤i vj = 0, and for
all vector x there exists α1, . . . , α|S||A| such that x =

∑|S||A|
i=1 αivi. Let λ1, λ2, . . . , λ|S||A| be their

corresponding eigenvalue, and assume that for all i, |λi| ≤ L. Let x∗ = argmax∥x∥2=1 ∥Ax∥2, and let
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α1, α2, . . . , α|S||A| be it’s representation with the eigenvectors. Namely, x∗ =
∑|S||A|

i=1 αivi. See that

max
∥x∥2=1

∥Ax∥2 = ∥Ax∗∥2

= ∥A
|S||A|∑
i=1

αivi∥2

= ∥
|S||A|∑
i=1

αiAvi∥2

= ∥
|S||A|∑
i=1

αiλivi∥2

≤
|S||A|
max
i=1

|λi|∥
|S||A|∑
i=1

αivi∥2

≤ L∥x∗∥2
= L

Where the first transition follows by the definition of x∗, the fourth transition holds since vi is an
eigenvector, the sixth transition follows by the assumption that the largest absolute value of the
eigenvalues is bounded by L, and the seventh transition follows since x∗ was chosen with a constraint
of ∥x∗∥2 = 1. 2

Lemma C.10 For a policy π,

max
∥x∥2=1

|∇θV
π(s0)x| ≤

1

3
|A|H3

Proof: Fix a policy π ∈ ∆(A)|S|. Let λ be the eigenvalue of the hessian matrix ∇2
θV

π(s0) whose
absolute value is the largest, and let v be it’s corresponding eigenvector. Let u = 1

∥v∥2
v,

|u⊤∇θV
π(s0)u| =

1

∥v∥22
|v⊤∇θV

π(s0)v|

=
1

∥v∥22
|v⊤λv|

= |λ| 1

∥v∥22
|v⊤v|

= |λ| 1

∥v∥22
∥v∥22

= |λ|

Using Lemma C.8, we get that

|λ| ≤ 1

3
|A|H3

Using Lemma C.9, we get that:

max
∥x∥2=1

|∇θV
π(s0)x| ≤

1

3
|A|H3

2

Lemma C.11 The function V π(s0) is 1
3 |A|H3-smooth with respect to norm ∥ · ∥2. i.e, For all

π,π′ ∈ ∆(A)|S|

∥∇θV
π(s0)−∇θV

π′
(s0)∥2 ≤ 1

3
|A|H3∥π − π′∥2 (45)
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Proof: Fix policies π, π′. For a parameter t ∈ [0, 1], define the function:

g(t) = ∇θV
π+t(π′−π)(s0)

It’s clear that

g′(t) = ∇2
θV

π+t(π′−π)(s0)(π
′ − π)

Observe that ∥g(1) − g(0)∥2 =
∥∥∥∇θV

π′
(s0)−∇θV

π(s0)
∥∥∥
2
. Using the fundamental theorem of

calculus, we get that:∥∥∥∇θV
π′
(s0)−∇θV

π(s0)
∥∥∥
2
= ∥g(1)− g(0)∥2

= ∥
∫ 1

0

g′(t)dt∥2

= ∥
∫ 1

0

∇2
θV

π+t(π′−π)(s0)(π
′ − π)dt∥2

≤
∫ 1

0

∥∇2
θV

π+t(π′−π)(s0)(π
′ − π)∥2dt

=

∫ 1

0

∥∥∥∥∇2
θV

π+t(π′−π)(s0)
∥(π′ − π)∥2
∥(π′ − π)∥2

(π′ − π)

∥∥∥∥
2

dt

=

∫ 1

0

∥∥∥∥∇2
θV

π+t(π′−π)(s0)
1

∥(π′ − π)∥2
(π′ − π)

∥∥∥∥
2

∥(π′ − π)∥2 dt

≤
∫ 1

0

max
∥x∥2=1

∥∥∥∇2
θV

π+t(π′−π)(s0)x
∥∥∥
2
∥(π′ − π)∥2 dt

≤
∫ 1

0

1

3
|A|H3∥(π′ − π)∥2dt

=
1

3
|A|H3∥(π′ − π)∥2

∫ 1

0

1dt

=
1

3
|A|H3∥(π′ − π)∥2

Where the eighth step follows by Lemma C.10. 2

C.5 Kullback–Leibler divergence
Definition C.12 For two non-zero distributions x, y ∈ Rn, where for all i, xi > 0, yi > 0 and∑n

i=1 xi = 1,
∑n

i=1 yi = 1, define the Kullback–Leibler divergence KL(x, y) as:

KL(x, y) =

n∑
i=1

xi log(
xi

yi
) (46)

Lemma C.13 For all non-zero distributions x, y ∈ Rn

KL(x, y) ≥ 0
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Proof: Fix all non-zero distributions x, y

KL(x, y) =

n∑
i=1

xi log(
xi

yi
)

= −
n∑

i=1

xi log(
xi

yi
)

≥ −
n∑

i=1

xi

(
yi
xi

− 1

)

= −
n∑

i=1

yi +

n∑
i=1

xi

= −1 + 1

= 0

Where the third transition holds since for all c, log(c) ≤ c− 1, and the fourth transition holds since
x, y are distributions. 2

Lemma C.14 For a non-zero distribution x ∈ Rn, let y = 1
n 1⃗, then:

KL(x, y) ≤ log(n)

Proof: Fix a non-zero distribution x ∈ Rn, let y = 1
n 1⃗, then:

KL(x, y) =

n∑
i=1

xi log(
xi

yi
)

=

n∑
i=1

xi log(nxi)

=

n∑
i=1

xi log(nxi)

= log(n)

n∑
i=1

xi +

n∑
i=1

xi log(xi)

= log(n) +

n∑
i=1

xi log(xi)

≤ log(n)

2

C.6 Concentration bounds
Theorem C.15 Hoeffding Theorem - Let X0, X1, . . . , Xd−1 be d independent random variables such
that for every i ∈ [d], a ≤ Xi ≤ b. Let X̄ = 1

d

∑d−1
i=0 Xi. Then with probability 1 − δ we get that

|E[X̄]− X̄| ≤ ϵ assuming

d ≥ (b− a)2

2ϵ2
log(

2

δ
)

Theorem C.16 Generalized Chernoff bound - Let X0, X1 . . . , Xd−1 be independent random variables
with Xi ∈ {0, 1} and Pr[Xi = 1] = p, for i = 0, . . . , d− 1. Set X :=

∑n−1
i=1 Xi and µ = pd. Then, for

any δ ∈ (0, 1), we have

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2
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