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Abstract

We explore issues of dynamic supply and demand in ride sharing services such

as Lyft and Uber, where demand fluctuates over time and geographic location.

We seek to maximize social welfare which depends on taxicab locations, passenger

locations, passenger valuations for service, and the distances between taxicabs and

passengers. Our only means of control is to set surge prices, then taxicabs and

passengers maximize their utilities subject to these prices.

We study two related models: a continuous passenger-taxicab setting, similar to the

Wardrop model, and a discrete (atomic) passenger-taxicab setting. In the continuous

setting, every location is occupied by a set of infinitesimal strategic taxicabs and a

set of infinitesimal non-strategic passengers. In the discrete setting every location

is occupied by a set of strategic agents, taxicabs and passengers, passengers have

differing values for service.

Afterwards we expand the continuous model to a time-dependent setting and study

the corresponding online environment.

The utility for a strategic taxicab that drives from 𝑢 to 𝑣 and picks up a passenger

at 𝑣 is the surge price at 𝑣 minus the distance from 𝑢 to 𝑣. The utility for a strategic

passenger at 𝑣 that gets service is the value of the service to the passenger minus

the surge price at 𝑣.

Surge prices are in passenger-taxicab equilibrium if there exists a min cost flow that

moves taxicabs about such that (a) every taxicab follows a best response, (b) all

strategic passengers at 𝑣 with value above the surge price 𝑟𝑣 for 𝑣, are served and (c)

no strategic passengers with value below 𝑟𝑣 are served (non-strategic infinitesimal

passengers are always served).

This thesis computes surge prices such that resulting passenger-taxicab equilibrium



maximizes social welfare, and the computation of such surge prices is in poly time.

Moreover, it is a dominant strategy for passengers to reveal their true values.

We seek to maximize social welfare in the online environment, and derive tight

competitive ratio bounds to this end. Our online algorithms make use of the surge

prices computed over time and geographic location, inducing successive passenger-

taxicab equilibria.
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I Introduction

In the sharing economy1 individual self-interested suppliers compete for customers.

According to PWC, the sharing economy is projected to exceed 300 billion USD

within 8 years. Lyft and Uber are prime examples of such systems. According to

[16, 11] it is the users who gain the majority of the surplus from such systems, and

significantly so. Contrawise, many studies suggest negative societal issues in the

sharing economy (e.g., see [20, 12, 21, 3]).

Unlike salaried employees of livery firms, drivers for Uber (and other “gig” suppliers)

are free to decide when they are working and what calls/employment to accept.

E.g., drivers can refuse to accept a call if it is too far away. To increase supply (and

reduce demand) Uber introduced “surge pricing” which is a multiplier on the base

price when demand outstrips supply. The surge price can be different at different

locations.

In the past pricing schemes resulted in what was theorized to be negative work

elasticity [6]. In their work it is suggested that drivers impose upon themselves

“income targets”. This means that drivers will work until they reach their target

income for the day causing them to extend their hours in times of low payouts.

Recent studies suggest that this is false, surging prices in times of peak demand

seems to conjure positive work elasticity [8], allowing supply and demand to balance

more efficiently.

1 Also known as the “gig” economy.
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1.1 Network Model, Surge Pricing, Utility, and Passenger-Taxicab

Equilibria

Our goal is to maximize social welfare, defined as the sum of valuations of the users

serviced by taxicabs, minus the cost associated with providing such service. We do

so by setting surge prices (one per location), and let the system reach equilibrium.

Our surge pricing schemes have several additional features such as envy freeness.

We consider two related settings:

∙ A continuous setting where supply and demand consist of infinitesimal quanta,

supply and demand are modeled as fractional quantities at locations. This is

analogous to the non-atomic traffic model used in Wardrop equilibria [24].

– Here we assume that the taxicabs are strategic and respond to changing

surge prices whereas passengers are non-strategic so that demand is in-

sensitive to price (alternately, one may view these passengers as having

high value for service).

– The cost for a taxicab at location 𝑥 to serve a customer at location 𝑦 is

the distance from 𝑥 to 𝑦.

– Our goal here is to set a surge price 𝑟𝑥 at every location 𝑥 so as to

incentivize taxicabs to act in a way that maximizes social welfare, i.e.,

all possible demand is serviced while the sum of distances traversed is

minimized.

∙ A discrete setting where both taxicabs and passengers are strategic, and every

taxicab and passenger is associated with some location.

– In this setting both demand and supply may change as a function of the

surge price. Every passenger has a value for service and every taxicab has

a cost for service at a given location, e.g., the distance to the location.
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– Our goal here is to maximize social welfare (the sum of the values for the

served customers minus the sum of costs of the taxicabs to do so).

– At every location 𝑥, we set a surge price 𝑟𝑥, that incentivizes taxicabs to

serve passengers in a manner that maximizes social welfare.

– Moreover, maximizing social welfare is not only in equilibrium but also

envy free.

– Every passenger at 𝑥 whose value is strictly greater than 𝑟𝑥 is served, and

no passenger at 𝑥 with value strictly less than 𝑟𝑥 is served.

We define the utility for a taxicab at 𝑥 to serve a passenger at 𝑦 as the surge price

at 𝑦, 𝑟𝑦, minus the distance from 𝑥 to 𝑦. A passenger at 𝑥 with value 𝑣 has utility

𝑣 − 𝑟𝑥 to be served by a taxicab, and utility zero if she takes no taxicab. Clearly, a

passenger at 𝑥 with 𝑣 − 𝑟𝑥 < 0 will refuse to take a taxicab.

We introduce the notion of a passenger-taxicab equilibria, for both continuous and

discrete settings. A flow is a mapping from the current supply to some new supply.

A flow has an associated cost which is the sum over edges of the flow along the

edge times the length of the edge. A flow 𝑓 is said to be a min cost flow that maps

the current supply to the new supply if it achieves the minimal cost for moving the

current supply to the new supply (this cost is also called the min earthmover cost).

A passenger-taxicab equilibria consists of a vector of surge prices 𝑟 = ⟨𝑟𝑥⟩, where 𝑟𝑥

is the surge price at location 𝑥, current supply 𝑠 = ⟨𝑠𝑥⟩, new supply 𝑠′ = ⟨𝑠′𝑥⟩ and

demand 𝑑 = ⟨𝑑𝑥⟩, such that, for any min cost flow from 𝑠 to 𝑠′, every taxicab and

every passenger maximize their utility. I.e., no taxicab can improve its utility by

doing anything other than following the flow, every passenger at 𝑥 who has value

greater than 𝑟𝑥 is in 𝑑𝑥 and is served. Every passenger at 𝑥 who has value less than

𝑟𝑥 is not served.

The surge prices 𝑟𝑥 are poly time computable. In the continuous setting this is

polynomial in the number of locations, in the discrete setting this is polynomial in

the number of passengers and taxicabs.
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1.2 Maximizing Social Welfare in an Online Setting via Surge Pricing

We consider an online setting based on the continuous setting, where the time pro-

gresses in discrete time steps. In each time step the following occurs: First, a new

demand allocation appears. Second, the online algorithm determines a new supply.

Given an allocation of supply and demand, the demand served at a location is the

minimum between the supply and demand at the location. The social welfare is the

difference between the total demand served and the total movement cost, summed

over all locations and time steps. The main new crux of our model is that the on-

line algorithm (principal) can not impose a new supply allocation, but is limited to

setting surge prices. If flow 𝑓 is a flow equilibrium arising from these surge prices

— strategic suppliers follow flow 𝑓 . Our results on surge prices for flow equilibria

imply that the online algorithm has flexibility in selecting the desired supply.

Trivially, for any metric, a simple algorithm that randomizes the start setting and

doesn’t move achieves a Θ(1/𝑘) competitive ratio, where 𝑘 is the number of locations.

However, If the costs of moving from any location to any other location is 1, we give

an optimal competitive ratio of Θ(
√︀
1/𝑘). If the demand sequence has the property

that at any time and location the demand does not exceed 1/𝜌 (𝜌 ≥ 1), then we

show a tight competitive ratio bound of Θ(
√︀

𝜌/𝑘). For more general metric spaces

we show mainly negative results. Specifically, if all the distances are 1 + 𝜖 we show

that the competitive ratio is no better than (1 + 𝜖)2/(𝜖𝑘), which implies an optimal

competitive ratio of Θ(1/𝑘) for 𝜖 = Θ(1).

Another extension we consider is when the average difference between successive

demand vectors is bounded by 𝛿 (in total variation distance). In this case we show

that simply matching supply to the current demand gives a competitive ratio of

1 − 𝛿 and show that the competitive ratio can not be better than 1 − 𝛿/4 (in the

case that all the distances are 1).
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1.3 Related Work

It has been observed in taxicab services that a mismatch between supply and de-

mand, along with first-in-first-out scheduling of service calls, without restricting the

“call radius”, results in reduced efficiency and even market failure [1, 26]. This

happens because taxicabs are dispatched to pick up customers at great distance be-

cause no closer taxicab is currently available, more time is wasted traveling to pick

up clients, and the system performance degrades. Recent papers [9, 7] study how

changing surge prices over time allow one to avoid such issues. These papers do not

consider the issue of having geographically varying surge prices.

Assuming a stochastic passenger arrival rate, [2] uses a queue theoretic approach

to model driver incentives in the system. The paper considers a simplistic dynamic

pricing scheme, where there are two different pricing schemes for each node depend-

ing on the amount of drivers at said node. This model is compared to a simple flat

rate. Drivers are assumed to calculate their incentives over several rides. The paper

concludes that the dynamic pricing scheme can only achieve the welfare of the flat

rate. However, the dynamic pricing scheme allows for the manager to have more

room for error in calculating what the optimal rates are.

A central problem in handling a centralized taxi system involves routing empty

cars between regions . Within the centralized mechanism, [5] shows that, assuming

stochastic arrival of passengers, an optimal static strategy (i.e., one that does not

change it’s routing policy based on current shortages) can be calculated by solving

a linear programming problem.

Recently, and independently, a similar problem was studied in [18]. In their model,

selfish taxicabs seek to maximize revenue over time. There is no explicit cost for

travel, one loses opportunities by taking long drives. They derive prices in equilibria

that maximize the sum of passenger valuations, but ignore travel costs. In contrast,

we ignore the time dimension and focus on the passenger valuations and travel costs.

Competitive analysis of online algorithms [23, 22, 15] considers a worst case sequence
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of online events with respect to the ratio between the performance of an online

algorithm and the optimal performance. In a centralized setting, task systems, [4],

can be used to model a wide variety of online problems. Events are arbitrary vectors

of costs associated with different states of the system, and an online algorithm may

decide to switch states (at some additional cost). A strategic version of this problem,

for a single agent, was considered in [10] where a deterministic incentive compatible

mechanism was given. The competitive ratio for incentive compatible task system

mechanisms is 𝑂(1/𝑘) where 𝑘 is the number of states. We cannot use the incentive

compatible task system mechanisms from [10] for two reasons: (1) in our setting

there are a large number of strategic agents (many Uber drivers) split amongst a

variety of different [task system] states (locations) rather than one such agent in a

single state, and (2) the suppliers have both profits (payments) and loss (relocation).

Competitive analysis of the famous 𝑘-server problem [19] has largely driven the

field of online algorithms. A variant of the 𝑘-server problem is known as the 𝑘-

taxicab problem [13, 25]. Although the problem we consider herein and the 𝑘-

taxicab problem both seek efficient online algorithms, and despite the name, the

nature of the 𝑘-taxicab problem is quite different from the problem considered in

this thesis. In the 𝑘-taxicab problem a single request occurs at discrete time steps

and a centralized control routes taxicabs to pick up passengers, seeking to minimize

the distances traversed by taxis while empty of passengers. Taxicabs are not selfish

suppliers, and all requests must be satisfied. This is quite different from our setting

where both demand and supply are spread about geographically, there are many

strategic suppliers, and not all demand must be served.
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II Model and Notation

2.1 The Continuous Passenger-Taxicab Setting

We model the network as a finite metric space 𝐺 = (𝑉,𝐸), where ℓ𝑢,𝑣 ≥ 0 is the

distance between vertices 𝑢, 𝑣 ∈ 𝑉 . I.e., ℓ𝑢,𝑣 is the cost to a taxicab to switch

between vertices 𝑢 and 𝑣. Infinitesimally small taxicabs reside in the vertices 𝑉 .

Demand and supply are vectors in [0, 1]|𝑉 | that sum to one. Given demand 𝑑 and

current supply 𝑠, we incentivize strategic taxicabs so that current supply 𝑠 becomes

new supply 𝑠′ which services the demand 𝑑.

If the demand in vertex 𝑢 is 𝑑𝑢, and the new supply in vertex 𝑢 is 𝑠′𝑢, then the

minimum of the two is the actual demand served (in vertex 𝑢). Note that if the

two are not identical then there are either unhappy passengers (without service) or

unhappy taxicabs (with no passengers to service). Formally,

Definition 2.1.1. we define the demand served, as follows:

∙ The demand served in vertex 𝑢, ds(𝑠′𝑢, 𝑑𝑢), is the minimum of 𝑠′𝑢 and 𝑑𝑢, i.e.,

ds(𝑠′𝑢, 𝑑𝑢) = min(𝑠′𝑢, 𝑑𝑢).

∙ Given a demand vector 𝑑 and a supply vector 𝑠′, the total demand served is

ds(𝑠′, 𝑑) =
∑︀

𝑢∈𝑉 ds(𝑠′𝑢, 𝑑𝑢) =
∑︀

𝑢∈𝑉 min(𝑠′𝑢, 𝑑𝑢).

Switching supply from 𝑠 to 𝑠′ is implemented via a flow 𝑓 . A flow from 𝑠 to 𝑠′ is a

function 𝑓(𝑢, 𝑣) : 𝑉 × 𝑉 ↦→ R≥0 that has the following properties:

∙ For all 𝑢, 𝑣 ∈ 𝑉 , 𝑓(𝑢, 𝑣) ≥ 0.

∙ For all 𝑣 ∈ 𝑉 ,
∑︀

𝑢∈𝑉 𝑓(𝑢, 𝑣) = 𝑠′𝑣.
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∙ For all 𝑢 ∈ 𝑉 ,
∑︀

𝑣∈𝑉 𝑓(𝑢, 𝑣) = 𝑠𝑢.

We define the earthmover distance between supply vectors,

Definition 2.1.2. The cost of flow 𝑓 is em(𝑓) =
∑︀

𝑢,𝑣,∈𝑉 𝑓(𝑢, 𝑣)ℓ𝑢,𝑣. The earth-

mover distance from supply vector 𝑠 to supply vector 𝑠′ is

em(𝑠, 𝑠′) = min
flows 𝑓 from 𝑠 to 𝑠′

em(𝑓).

We assume that switching supply from 𝑠 to 𝑠′ is implemented via a flow 𝑓 of minimal

cost. Note that there may be multiple flows with the same minimal cost — see

Figures 3.2 and 3.3.

In order to incentivize our strategic taxicabs to move to a new supply vector, we

use surge pricing in vertices.

Definition 2.1.3. Surge pricing is a vector, 𝑟 ∈ R≥0, where 𝑟𝑣 is the payment to a

taxicab that serves demand in vertex 𝑣 ∈ 𝑉 .

We define the utility for an infinitesimal taxicab, given surge pricing 𝑟, as follows.

Definition 2.1.4. Given supply 𝑠, new supply 𝑠′, surge prices 𝑟, demand 𝑑, and a

min cost flow 𝑓 from 𝑠 to 𝑠′, the utility for a taxicab that switches from vertex 𝑢 to

vertex 𝑣 is

𝜇(𝑢 ↦→ 𝑣|𝑠′, 𝑟, 𝑑) = 𝑟𝑣 ·
(︂
ds(𝑠′𝑣, 𝑑𝑣)

𝑠′𝑣

)︂
− ℓ𝑢,𝑣.

To motivate the above definition of utility 𝜇(𝑢 ↦→ 𝑣|𝑠′, 𝑟, 𝑑), of switching from 𝑢 to

𝑣, consider the following:

∙ The probability of serving a passenger in vertex 𝑣 is ds(𝑠′𝑣 ,𝑑𝑣)
𝑠′𝑣

. This follows

since:

– If passengers outnumber taxicabs in vertex 𝑣 then any such taxicab will

surely serve a passenger.
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– Alternately, if taxicabs outnumber passengers in vertex 𝑣 then the choice

of which taxicabs serve passengers is a random subset of the taxicabs.

∙ The profit from serving a passenger in vertex 𝑣 is equal to the surge price for

that vertex, 𝑟𝑣.

∙ The cost of serving a passenger in vertex 𝑣, given that the taxicab was previ-

ously in vertex 𝑢, is ℓ𝑢,𝑣.

Finally, we define the notion of a passenger-taxicab equilibrium, where no infinites-

imal taxicab can benefit from deviations.

Definition 2.1.5. Given a demand vector 𝑑, current supply vectors 𝑠, and new

supply 𝑠′, we say that a surge pricing 𝑟 is in passenger-taxicab equilibrium, if for

every min cost flow 𝑓 from 𝑠 to 𝑠′, for every 𝑢, 𝑣 ∈ 𝑉 such that 𝑓(𝑢, 𝑣) > 0 we have

that

𝜇(𝑢 ↦→ 𝑣|𝑠′, 𝑟, 𝑑) = max
𝑤∈𝑉

𝜇(𝑢 ↦→ 𝑤|𝑠′, 𝑟, 𝑑). (2.1)

I.e., every infinitesimal taxicab is choosing a best response. Such a passenger-taxicab

equilibrium is said to induce supply 𝑠′.

Our goal in the continuous setting is to set surge prices so that the new supply 𝑠′ = 𝑑

is a passenger-taxicab equilibrium.

In this continuous setting we take demand 𝑑 to be insensitive to the surge prices.

In the next section we describe the discrete setting where both the demand and

the supply are sensitive to the prices. One could define a continuous passenger-

taxicab setting where every location has an associated density function for passenger

valuations. Then, we could convert this continuous setting to an instance of the

discrete passenger-taxicab setting with 1/𝜖 taxicabs/passengers. Under appropriate

conditions, this will give a good approximation to a continuous passenger-taxicab

setting where both demand and supply are sensitive to surge pricing.
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2.2 The Discrete Passenger-Taxicab Setting

As above, we model the network as a finite metric space 𝐺 = (𝑉,𝐸), and the cost

to a taxicab to switch between vertices 𝑢 and 𝑣 is the distance between them, ℓ𝑢,𝑣.

Unlike the continuous case, there is an integral number of taxicabs and passengers

at every vertex.

Let 𝐵 = {𝑏1, . . . , 𝑏𝑚} be a set of 𝑚 passengers and 𝑇 = {𝑡1, . . . , 𝑡𝑛} be a set of 𝑛

taxicabs. Every passenger 𝑏𝑖 ∈ 𝐵 has a value value(𝑏𝑖) ≥ 0 for service. A supply 𝑠

is a vector 𝑠 = ⟨𝑠𝑣⟩𝑣∈𝑉 where 𝑠𝑣 ⊆ 𝑇 for all 𝑣 ∈ 𝑉 , ∪𝑣∈𝑉 𝑠𝑣 = 𝑇 , and 𝑠𝑣 ∩ 𝑠𝑢 = ∅ for

all 𝑢, 𝑣 ∈ 𝑉 , 𝑢 ̸= 𝑣.

A profile 𝑃 is a partition of the passengers 𝐵, where for each 𝑢 ∈ 𝑉 the set 𝑃𝑢 ⊆ 𝐵

is the set of passengers at 𝑢. A demand is a function of a vertex and a surge price

at the vertex. We define the function 𝑑𝑣 as follows:

𝑑𝑣(𝑟𝑣) = {𝑏𝑖 ∈ 𝑃𝑣|value(𝑏𝑖) ≥ 𝑟𝑣}.

Ergo, 𝑑𝑣(𝑟𝑣) is the set of passengers at vertex 𝑣 that are interested in service given

that the price is 𝑟𝑣, i.e., those passengers whose value is at least 𝑟𝑣. Note that

𝑑𝑣(0) = 𝑃𝑣.

For ease of notation, we denote a collection of entities 𝑥𝑣 for each vertex 𝑣 ∈ 𝑉 , by

𝑥 = ⟨𝑥𝑣⟩𝑣∈𝑉 . For example, 𝑠 = ⟨𝑠𝑣⟩𝑣∈𝑉 , 𝑑 = ⟨𝑑𝑣⟩, and 𝑟 = ⟨𝑟𝑣⟩𝑣∈𝑉 .

Define a flow 𝑓 from supply 𝑠 to supply 𝑠′ as follows. The flow 𝑓(𝑥, 𝑦) : 𝑉 ×𝑉 ↦→ Z+

has the following properties:

∙ For all 𝑢, 𝑣 ∈ 𝑉 , 𝑓(𝑢, 𝑣) ∈ Z+.

∙ For all 𝑢 ∈ 𝑉 ,
∑︀

𝑣∈𝑉 𝑓(𝑢, 𝑣) = |𝑠𝑢|.

∙ For all 𝑣 ∈ 𝑉 ,
∑︀

𝑢∈𝑉 𝑓(𝑢, 𝑣) = |𝑠′𝑣|.
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The flow from a vertex 𝑢 is equal to the number of taxicabs at 𝑢 under supply 𝑠,

i.e., |𝑠𝑢|. The flow into a vertex 𝑣 is equal to the number of taxicabs at 𝑣 under

supply 𝑠′, i.e., |𝑠′𝑣|. The cost of a flow in the discrete setting is the same as the cost

of a flow in the continuous setting (Definition 2.1.2), i.e.,
∑︀

𝑢,𝑣∈𝑉 𝑓(𝑢, 𝑣)ℓ𝑢,𝑣.

We now define the demand served at a vertex 𝑢,

Definition 2.2.1. For a vertex 𝑣, given a supply 𝑠′𝑣, a surge price 𝑟𝑣, and a demand

𝑑𝑣(𝑟𝑣), we define the demand served, ds𝑣(𝑠
′
𝑣, 𝑑𝑣, 𝑟𝑣) ⊆ 𝑃𝑣, as follows:

∙ If |𝑑𝑣(𝑟𝑣)| ≤ |𝑠′𝑣| then ds𝑣(𝑠
′
𝑣, 𝑑𝑣, 𝑟𝑣) = 𝑑𝑣(𝑟𝑣).

∙ If |𝑠′𝑣| < |𝑑𝑣(𝑟𝑣)| then ds𝑣(𝑠
′
𝑣, 𝑑𝑣, 𝑟𝑣) is the set of the |𝑠′𝑣| highest valued pas-

sengers from 𝑑𝑣(𝑟𝑣), breaking ties arbitrarily.

Given demand functions 𝑑, surge prices 𝑟, and new supply 𝑠′, the total demand

served ds(𝑠′, 𝑑, 𝑟) and its value dsv(𝑠′, 𝑑, 𝑟) is given by

ds(𝑠′, 𝑑, 𝑟) = ∪𝑣∈𝑉 ds𝑣(𝑠
′
𝑣, 𝑑𝑣, 𝑟𝑣);

dsv(𝑠′, 𝑑, 𝑟) =
∑︁

𝑏𝑖∈ds(𝑠′,𝑑,𝑟)

value(𝑏𝑖).

Definition 2.2.2. The social welfare is the difference between the sum of the values

of the passengers served and the cost of the min cost flow, which is the sum of the

distances traveled by the taxis. Namely, for current supply 𝑠, new supply 𝑠′, demand

functions 𝑑, and surge prices 𝑟, the social welfare is

𝑆𝑊 (𝑠, 𝑠′, 𝑟, 𝑑) = dsv(𝑠′, 𝑑, 𝑟)− 𝑒𝑚(𝑠, 𝑠′). (2.2)

Remark: we did not define social welfare in the continuous passenger-taxicab setting

where the passengers are price insensitive. However, one can view the social welfare

in the price-insensitive demand setting as a special case of the responsive demand

setting when all passenger valuations are very high.

11



Like the definitions for utility and passenger-taxicab equilibria in the continuous

case, one can define them for the discrete case: The utility of a taxicab 𝑡𝑗 ∈ 𝑠𝑢

moving from 𝑢 to 𝑣, given new supply 𝑠′, surge prices 𝑟 and demand functions 𝑑, is

𝜇𝑡𝑗(𝑢 ↦→ 𝑣|𝑠′, 𝑟, 𝑑) = min(|𝑑𝑣(𝑟𝑣)|, |𝑠′𝑣|)
|𝑠′𝑣|

· 𝑟𝑣 − ℓ𝑢,𝑣.

Definition 2.2.3. Given demand 𝑑 , current supply 𝑠 and new supply 𝑠′, surge

prices 𝑟 are said to be in passenger-taxicab equilibrium if for every min cost flow 𝑓

from 𝑠 to 𝑠′ and for any 𝑢, 𝑣 such that 𝑓(𝑢, 𝑣) > 0 we have that

∙ Taxicabs are choosing a best response: 𝜇𝑡𝑗(𝑢 ↦→ 𝑣|𝑠′, 𝑟, 𝑑) = max𝑤∈𝑉 (𝜇𝑡𝑗(𝑢 ↦→

𝑤|𝑠′, 𝑟, 𝑑)).

∙ All passengers 𝑏 ∈ 𝐵 with value(𝑏) > 𝑟loc(𝑏) are served. No passengers 𝑏 ∈ 𝐵

with value(𝑏) < 𝑟loc(𝑏) are served.

2.3 Online Setting

In the online setting we inherit the continuous model setting, adding a function of

time. Time progresses in discrete time steps 1, 2, . . . , 𝑇 . At time 𝑡 the demand vector

𝑑𝑡 = (𝑑𝑡1, 𝑑
𝑡
2, . . . , 𝑑

𝑡
𝑘) associates each vertex 𝑣 ∈ 𝑉 with some demand 𝑑𝑡𝑣 ≥ 0, and

we assume that the total demand
∑︀

𝑖 𝑑
𝑡
𝑖 = 1. One should not think of a time step

as being instantaneous, but rather as a period of time during which the demands

remain steady.

Every time step 𝑡 also has an associated supply vector 𝑠𝑡 = (𝑠𝑡1, 𝑠
𝑡
2, . . . , 𝑠

𝑡
𝑘), where

𝑠𝑡𝑖 ≥ 0 and
∑︀

𝑖 𝑠
𝑡
𝑖 = 1 for all 𝑡. The supply at time 𝑡 is a “reshuffle” of the supply at

time 𝑡− 1, by having infintestimally small suppliers moving about the network. In

our model, the time required for suppliers to adjust supply from 𝑠𝑡−1 to 𝑠𝑡 is small

relative to the period of time during which demand 𝑑𝑡 is valid.

If the demand in vertex 𝑖 at time 𝑡 is 𝑑𝑡𝑖, and the supply in vertex 𝑖 at time 𝑡 is

𝑠𝑡𝑖, then the minimum of the two is the actual demand served (in vertex 𝑖 at time

12



𝑡). Note that if the two are not identical then there are either unhappy customers

(without service) or unhappy suppliers (with no customer to service). Formally, we

define the benefit derived during each time period, the demand served, as in the

continuous model.

We define the social welfare as follows:

Definition 2.3.1. Given a demand sequence 𝑑 = (𝑑1, . . . , 𝑑𝑇 ) and a supply sequence

𝑠 = (𝑠1, . . . , 𝑠𝑇 ) we define the social welfare

sw(𝑠, 𝑑) = ds(𝑠, 𝑑)− em(𝑠) =
𝑇∑︁
𝑡=1

ds(𝑠𝑡, 𝑑𝑡)−
𝑇∑︁
𝑡=2

em(𝑠𝑡−1, 𝑠𝑡).

An online algorithm for social welfare follows the following structure. At time 𝑡 =

1, 2, . . . , 𝑇 :

1. A new demand vector 𝑑𝑡 appears.

2. The online algorithm determines what the supply vector 𝑠𝑡 should be. (Indi-

rectly, by computing and posting surge prices so that the resulting passenger-

taxicab-equilibrium induces supply 𝑠𝑡).

The goal of the online algorithm is to maximize the social welfare as given in Defi-

nition 2.3.1: Compute a supply sequence 𝑠, so as to maximize sw(𝑠, 𝑑). The supply

vector 𝑠𝑡 is a function of the demand vectors 𝑑1, . . . , 𝑑𝑡 but not of any demand vec-

tor 𝑑𝜏 , for 𝜏 > 𝑡. Implicitly, we assume that the passenger-taxicab equilibrium is

attained quickly relative to the rate at which demand changes.

The competitive ratio of such an online algorithm, Alg, is the worst case ratio

between the numerator: the social welfare resulting from the demand sequence 𝑑

and the online supply Alg(𝑑), and the denominator: the optimal social welfare for

the same demand sequence, i.e.,

min
𝑑

sw(Alg(𝑑), 𝑑)

max𝑠 sw(𝑠, 𝑑)
.
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III The Continuous Passenger-Taxicab Setting

In this section we deal with the continuous passenger-taxicab setting. Given current

supply 𝑠, demand 𝑑 and new supply 𝑠′ = 𝑑, we show how to set surge prices 𝑟 such

that they are in passenger-taxicab equilibria. Moreover, for these 𝑠, 𝑑, and 𝑟, the

only possible 𝑠′ which results in a passenger-taxicab equilibria is 𝑠′ = 𝑑. (Similar

techniques give surge prices that induce [almost] arbitrary supply vectors, 𝑠, see

below).

Proof overview: Given some min cost flow 𝑓 * from supply 𝑠 to demand 𝑑, we con-

struct a unit demand market, with bidders and items. For every 𝑥, 𝑦 such that

𝑓 *(𝑥, 𝑦) > 0 we construct a bidder and an item. We also define bidder valuations

for all items. This unit demand market has Walrasian clearing prices that maximize

social welfare (Lemma 3.0.2). We show how we can convert the Walrasian prices on

items to surge pricing (Lemma 3.0.4).

We then show and that the resulting surge pricing has a passenger-taxicab equilib-

rium which induces supply equals demand (Lemma 3.0.5) and it is the case with all

all passenger-taxicab equilibria (Lemma 3.0.7). Lemma 3.0.6 shows that the incen-

tive requirements in Equation (2.1) also hold for any min cost flow 𝑓 ̸= 𝑓 *, from 𝑠

to 𝑑. This proves Theorem 3.0.8.

As a running example, consider the road network in Figure 3.1. Also, assume that

the supply vector 𝑠𝑡−1 = ⟨1
3
, 1
3
, 1
3
, 0, 0, 0⟩ and demand vector 𝑑𝑡 = ⟨0, 0, 1

8
, 3
8
, 3
8
, 1
8
⟩.

Two minimum cost flows are given in Figures 3.2 and 3.3. Both these flows have

cost 1.

Given a minimum cost flow 𝑓 *, we define a unit demand market setting as follows:

∙ Items 𝑀 𝑓*
, and unit demand bidders 𝐵𝑓*

, both of which are indexed by pairs
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𝑣1 𝑣2 𝑣3

𝑣4 𝑣5 𝑣6

1 1

1 1

2

2

1
2

3 2

1

2 3

2
1

Figure 3.1: Example road
network, with costs along
edges.

𝑣1 𝑣2 𝑣3

𝑣4 𝑣5 𝑣6

1
8

1
81

12

7
24

1
24

1
3

Figure 3.2: A min earth-
mover cost flow from supply
vector 𝑠𝑡−1 = ⟨13 ,

1
3 ,

1
3 , 0, 0, 0⟩

to demand vector 𝑑𝑡 =
⟨0, 0, 18 ,

3
8 ,

3
8 ,

1
8⟩.

𝑣1 𝑣2 𝑣3

𝑣4 𝑣5 𝑣6

1
8

1
81

24

1
24

1
3

1
3

Figure 3.3: Another min
earthmover cost flow
from from supply vec-
tor 𝑠𝑡−1 = ⟨13 ,

1
3 ,

1
3 , 0, 0, 0⟩

to demand vector
𝑑𝑡 = ⟨0, 0, 18 ,

3
8 ,

3
8 ,

1
8⟩.

𝑚14 𝑚24 𝑚25 𝑚33 𝑚35 𝑚36

𝑏14 3 3 2 2 2 1
𝑏24 2 2 3 3 3 2
𝑏25 2 2 3 3 3 2
𝑏33 1 1 2 4 2 3
𝑏35 1 1 2 4 2 3
𝑏36 1 1 2 4 2 3
𝑝𝑖𝑗 0 0 1 3 1 2

Figure 3.4: Item val-
uations for bidders
𝐵𝑓 = {𝑏14, 𝑏24, 𝑏25, 𝑏33, 𝑏35, 𝑏36},
items 𝑀𝑓 =
{𝑚14,𝑚24,𝑚25,𝑚33,𝑚35,𝑚36},
where 𝑓 is the min earth-
mover flow given in Figure
3.2. Note that in Figure
3.1 we have max𝑖𝑗(ℓ𝑖𝑗) = 3
and thus 𝐶 = 4. The last
row gives Walrasian market
clearing prices for items
𝑚𝑖𝑗. Note that 𝑝𝑖𝑗 = 𝑝𝑖𝑗′ for
all 𝑏𝑖𝑗 , 𝑏𝑖𝑗′ ∈ 𝐵𝑓 .
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of vertices, where

𝑀 𝑓*
= {𝑚𝑥𝑦|𝑥, 𝑦 ∈ 𝑉, 𝑓 *(𝑥, 𝑦) > 0} 𝐵𝑓*

= {𝑏𝑤𝑧|𝑤, 𝑧 ∈ 𝑉, 𝑓 *(𝑤, 𝑧) > 0}.

∙ We set the value of item 𝑚𝑥𝑦 ∈ 𝑀 𝑓*
to bidder 𝑏𝑤𝑧 ∈ 𝐵𝑓*

to be,

𝜁𝑏𝑤𝑧(𝑚𝑥𝑦) = 𝐶 − ℓ𝑤,𝑦, where 𝐶 = max
𝑖,𝑗

ℓ𝑖,𝑗 + 1.

∙ The utilities of bidders are unit demand and quasi-linear, i.e., the utility 𝜂𝑏𝑤𝑧

of bidder 𝑏𝑤𝑧 ∈ 𝐵𝑓*
for item set 𝑆 and price 𝑝 is

𝜂𝑏𝑤𝑧(𝑆) = max
𝑚𝑥𝑦∈𝑆

𝜁𝑏𝑤𝑧(𝑚𝑥𝑦)− 𝑝.

As an example, let 𝑓 * be the minimum cost flow of Figure 3.2. The market induced

by 𝑓 * is illustrated in Figure 3.4.

Given a flow 𝑓 *, bidders 𝐵𝑓*
and items 𝑀 𝑓*

we define the following weighted bipar-

tite graph 𝐺(𝐵𝑓*
,𝑀 𝑓*

, 𝐸), where between bidder 𝑏𝑤𝑧 ∈ 𝐵𝑓*
and item 𝑚𝑥𝑦 ∈ 𝑀 𝑓*

there is an edge of weight 𝐶 − ℓ𝑤,𝑦 ≥ 1.

Definition 3.0.1. Given a flow 𝑓 *, a matching between bidders 𝐵𝑓*
and items 𝑀 𝑓*

is a function 𝜋 : 𝐵𝑓* ↦→ 𝑀 𝑓* ∪ {∅}, where bidder 𝑏 ∈ 𝐵𝑓*
is matched to item

𝜋(𝑏) ∈ 𝑀 𝑓*
or unmatched (if 𝜋(𝑏) = ∅), such that no two bidders 𝑏1, 𝑏2 ∈ 𝐵𝑓*

are

matched to the same item 𝑚 ∈ 𝑀 𝑓*
.

As there is an edge between every bidder 𝑏𝑤𝑧 and every item 𝑚𝑥𝑦 with weight

𝐶 − ℓ𝑤,𝑦 ≥ 1, the maximum weight matching is a perfect matching between bidders

and items and the mapping 𝜋 never assigns ∅ to a bidder.

Lemma 3.0.2. The matching 𝑔 where 𝑔(𝑏𝑤𝑧) = 𝑚𝑤𝑧, maximizes social welfare. In

addition, there exist Walrasian prices for which 𝑔 is a competitive market equilib-

rium.
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𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6
𝑟𝑡𝑖 1 1 1 4 3 2

Figure 3.5: Surge prices re-
sulting in a flow-equilibrium
with 𝑠𝑡 = 𝑑𝑡. These surge
price for 𝑣𝑗 is 𝐶−𝑝𝑖𝑗 if there
exists some bidder 𝑏𝑖𝑗 ∈ 𝐵𝑓

and 1 otherwise. The Wal-
rasian prices 𝑝𝑖𝑗 appear in
Figure 3.4.

Proof. The proof is via contradiction. Assume there exists some matching 𝑔 : 𝐵𝑓* ↦→

𝑀 𝑓*
with strictly greater social welfare than the matching 𝑔. For a bidder 𝑏 ∈ 𝐵𝑓*

,

define ℎ̃(𝑏) = 𝑧, iff 𝑔(𝑏) = 𝑚𝑤𝑧 for some 𝑤 ∈ 𝑉 , and ℎ(𝑏) = 𝑧, iff 𝑔(𝑏) = 𝑚𝑤𝑧 for some

𝑤 ∈ 𝑉 . Note that ℎ(𝑏𝑤𝑢) = 𝑢 so for a given 𝑤 and 𝑧 we have |{𝑢|ℎ(𝑏𝑤𝑢) = 𝑧}| = 1

if 𝑓(𝑤, 𝑧) > 0 and zero otherwise.

Choose 𝜖 to be the minimum non-zero flow in 𝑓 *, i.e., 𝜖 = min{𝑓 *(𝑤, 𝑧)|𝑓 *(𝑤, 𝑧) >

0}. We now define a flow 𝑓 ′, which is a slight perturbation of flow 𝑓 *. In flow 𝑓 ′,

the flow from 𝑤 to 𝑧 is:

𝑓 ′(𝑤, 𝑧) = 𝑓 *(𝑤, 𝑧) + 𝜖
(︁⃒⃒⃒{︁

𝑢|ℎ̃(𝑏𝑤𝑢) = 𝑧
}︁⃒⃒⃒

− |{𝑢|ℎ(𝑏𝑤𝑢) = 𝑧}|
)︁
.

We first prove that 𝑓 ′ is a valid flow, and later we show that it has a lower cost than

𝑓 *, in contradiction to the minimality of 𝑓 *.

Lemma 3.0.3. Flow 𝑓 ′ is a valid flow from supply vector 𝑠𝑡−1 to demand vector 𝑑𝑡.

Proof. Consider the requirements that 𝑓 ′ be a valid flow:

∙ For all 𝑥, 𝑦 ∈ 𝑉 , 𝑓 ′(𝑥, 𝑦) ≥ 0 : By definition of 𝑓 ′ if 𝑓 *(𝑤, 𝑧) = 0 then 𝑓 ′(𝑤, 𝑧) ≥

0 and if 𝑓 *(𝑤, 𝑧) > 0 then 𝑓 ′(𝑤, 𝑧) ≥ 𝑓 *(𝑤, 𝑧)−min{𝑓 *(𝑤, 𝑧)|𝑓(𝑤, 𝑧) > 0} ≥ 0.

∙ For all 𝑥 ∈ 𝑉 ,
∑︀

𝑦 𝑓
′(𝑥, 𝑦) = 𝑠𝑡−1

𝑥 : By definition of 𝑓 * we have
∑︀

𝑦 𝑓
*(𝑥, 𝑦) =
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𝑠𝑡−1
𝑥 . Thus,

∑︁
𝑦

𝑓 ′(𝑥, 𝑦) =
∑︁
𝑦

(︂
𝑓 *(𝑥, 𝑦) +

(︀⃒⃒⃒{︁
𝑢|ℎ̃(𝑏𝑥𝑢) = 𝑦

}︁⃒⃒⃒
− |{𝑢|ℎ(𝑏𝑥𝑢) = 𝑦}|

)︀
· 𝜖
)︂

= 𝑠𝑡−1
𝑥 +

(︃∑︁
𝑦

⃒⃒⃒{︁
𝑢|ℎ̃(𝑏𝑥𝑢) = 𝑦

}︁⃒⃒⃒
−
∑︁
𝑦

|{𝑢|ℎ(𝑏𝑥𝑢) = 𝑦}|

)︃
· 𝜖

= 𝑠𝑡−1
𝑥 +

(︀⃒⃒{︀
𝑢|𝑏𝑥𝑢 ∈ 𝐵𝑓

}︀⃒⃒
−
⃒⃒{︀
𝑢|𝑏𝑥𝑢 ∈ 𝐵𝑓

}︀⃒⃒)︀
· 𝜖

= 𝑠𝑡−1
𝑥 .

∙ For all 𝑦 ∈ 𝑉 ,
∑︀

𝑥 𝑓
′(𝑥, 𝑦) = 𝑑𝑡𝑦 : By definition of 𝑓 * we have

∑︀
𝑥 𝑓

*(𝑥, 𝑦) = 𝑑𝑡𝑦.

Thus,

∑︁
𝑥

𝑓 ′(𝑥, 𝑦) =
∑︁
𝑥

(︂
𝑓 *(𝑥, 𝑦) +

(︀⃒⃒⃒{︁
𝑢|ℎ̃(𝑏𝑢𝑦) = 𝑥

}︁⃒⃒⃒
− |{𝑢|ℎ(𝑏𝑢𝑦) = 𝑥}|

)︀
· 𝜖
)︂

= 𝑑𝑡𝑦 +

(︃∑︁
𝑥

⃒⃒⃒{︁
𝑢|ℎ̃(𝑏𝑢𝑦) = 𝑥

}︁⃒⃒⃒
−
∑︁
𝑥

|{𝑢|ℎ(𝑏𝑢𝑦) = 𝑥}|

)︃
· 𝜖

= 𝑑𝑡𝑦 +
(︀⃒⃒{︀

𝑢|𝑏𝑢𝑦 ∈ 𝐵𝑓
}︀⃒⃒

−
⃒⃒{︀
𝑢|𝑏𝑢𝑦 ∈ 𝐵𝑓

}︀⃒⃒)︀
· 𝜖

= 𝑑𝑡𝑦.

From the fact that 𝑔 has a higher social welfare we get,

∑︁
𝑤,𝑧:𝑏𝑤𝑧∈𝐵𝑓*

𝜁𝑏𝑤𝑧(𝑔(𝑏𝑤𝑧)) >
∑︁

𝑤,𝑧:𝑏𝑤𝑧∈𝐵𝑓*

𝜁𝑏𝑤𝑧(𝑔(𝑏𝑤𝑧)) .

Using the definition of the valuations we have,

∑︁
𝑤,𝑧:𝑏𝑤𝑧∈𝐵𝑓*

𝐶 − ℓ𝑤,ℎ̃(𝑏𝑤𝑧)
>

∑︁
𝑤,𝑧:𝑏𝑤𝑧∈𝐵𝑓*

𝐶 − ℓ𝑤,ℎ(𝑏𝑤𝑧) .

This implies that

∑︁
𝑤,𝑧:𝑏𝑤𝑧∈𝐵𝑓*

ℓ𝑤,ℎ(𝑏𝑤𝑧) >
∑︁

𝑤,𝑧:𝑏𝑤𝑧∈𝐵𝑓*

ℓ𝑤,ℎ̃(𝑏𝑤𝑧)
.
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Using this last inequality, it follows that the cost of 𝑓 * (Definition 2.1.2) satisfies

em(𝑓 *) =
∑︁
𝑥,𝑦

𝑓 *(𝑥, 𝑦) · ℓ𝑥,𝑦

>
∑︁
𝑥,𝑦

𝑓 *(𝑥, 𝑦) · ℓ𝑥,𝑦 +

⎛⎝ ∑︁
𝑤,𝑧:𝑏𝑤𝑧∈𝐵𝑓

ℓ𝑤,ℎ̃(𝑏𝑤𝑧)
−

∑︁
𝑤,𝑧:𝑏𝑤𝑧∈𝐵𝑓

ℓ𝑤,ℎ(𝑏𝑤𝑧)

⎞⎠ · 𝜖 = em(𝑓 ′),

which contradicts the fact that flow 𝑓 * is a minimum cost flow.

The fact that there exist Walrasian prices for 𝑔 that are in competitive market

equilibrium follows from [14]. This concludes the proof of Lemma 3.0.2.

Let the Walrasian price of 𝑚𝑥𝑦 be 𝑝𝑥𝑦 as guaranteed by the lemma above. We first

show that any two prices which correspond to the same vertex must have the same

price.

Lemma 3.0.4. For any two items 𝑚𝑥𝑦 and 𝑚𝑥′𝑦 we have 𝑝𝑥𝑦 = 𝑝𝑥′𝑦.

Proof. For contradiction assume that 𝑝𝑥𝑦 > 𝑝𝑥′𝑦. Let 𝑏𝑤𝑧 be the bidder assigned

𝑚𝑥𝑦. Thus, for item 𝑚𝑥𝑦 bidder 𝑏𝑤𝑧 has utility 𝜂𝑏𝑤𝑧(𝑚𝑥𝑦) = 𝐶 − ℓ𝑤,𝑦 − 𝑝𝑥𝑦 <

𝐶 − ℓ𝑤,𝑦 − 𝑝𝑥′𝑦 = 𝜂𝑏𝑤𝑧(𝑚𝑥′𝑦) which implies that 𝑚𝑥𝑦 is not in the demand set for

bidder 𝑏𝑤𝑧. A contradiction to the fact that 𝑝 are Walrasian prices.

For any 𝑦 ∈ 𝑉 such that there exist items of the form 𝑚𝑥𝑦 for some 𝑥 ∈ 𝑉 , let

𝑝𝑦 denote the Walrasian price for such items (By Lemma 3.0.4 all those Walrasian

prices are identical). If no items of the form 𝑚𝑥𝑦 exist, this implies that demand at

vertex 𝑦, 𝑑𝑡𝑦 = 0, and we can set 𝑝𝑦 = 0. Define surge prices, 𝑟𝑡𝑦 = 𝐶 − 𝑝𝑦, for all

𝑦 ∈ 𝑉 .

Lemma 3.0.5. Given current supply 𝑠𝑡−1 and demand 𝑑𝑡, surge prices 𝑟𝑡𝑦 = 𝐶− 𝑝𝑦,

new support 𝑠′ = 𝑑, and 𝑥, 𝑦, 𝑤 ∈ 𝑉 such that 𝑓 *(𝑥, 𝑦) > 0 then

𝜇𝑡(𝑥 → 𝑦|𝑠′, 𝑟, 𝑑) ≥ 𝜇𝑡(𝑥 → 𝑤|𝑠′, 𝑟, 𝑑).
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Proof. Let 𝑥, 𝑦 be such that 𝑓 *(𝑥, 𝑦) > 0.Then,

𝜇𝑡(𝑥 → 𝑦|𝑠′, 𝑟, 𝑑) = 𝑟𝑡𝑦 ·min

(︂
1,

𝑑𝑡𝑦
𝑠𝑡𝑦

)︂
− ℓ𝑥,𝑦 (3.1)

= 𝑟𝑡𝑦 − ℓ𝑥,𝑦 (3.2)

= 𝐶 − 𝑝𝑦 − ℓ𝑥,𝑦 (3.3)

= 𝜂𝑏𝑥𝑦(𝑚𝑥𝑦) (3.4)

≥ 𝜂𝑏𝑥𝑦(𝑚𝑧𝑤) ∀𝑚𝑧𝑤 ∈ 𝑀 𝑓* ⇔ ∀𝑚𝑧𝑤 : 𝑠′𝑤 > 0 (3.5)

= 𝐶 − 𝑝𝑤 − ℓ𝑥,𝑤 (3.6)

= 𝑟𝑡𝑤 − ℓ𝑥,𝑤 (3.7)

≥ 𝑟𝑡𝑤 ·min

(︂
1,

𝑑𝑡𝑤
𝑠𝑡𝑤

)︂
− ℓ𝑥,𝑤 (3.8)

= 𝜇𝑡(𝑥 → 𝑤|𝑠′, 𝑟, 𝑑) (3.9)

Equations (3.1),(3.9) follow from the definition of the utility in the continuous

passenger-taxicab setting, definition 2.1.4.

Equations (3.2),(3.8) follows from considering the passenger-taxicab equilibrium

where 𝑠𝑡 = 𝑑𝑡 resulting in
𝑑𝑡𝑦
𝑠𝑡𝑦

= 1 for all 𝑦.

Equations (3.3),(3.7) follow from the definition of the surge prices.

Equations (3.4),(3.6) follow from the definition of the utility in the market setting.

Equation (3.5) follows from the market equilibrium.

So, we have that

𝜇𝑡(𝑥 → 𝑦|𝑠′, 𝑟, 𝑑) ≥ 𝜇𝑡(𝑥 → 𝑤|𝑠′, 𝑟, 𝑑) ∀𝑤 : 𝑠′𝑤 > 0.

It remains to consider 𝜇𝑡(𝑥 → 𝑤|𝑠′, 𝑟, 𝑑) for 𝑤 such that 𝑠′𝑤 = 0. In this case the

surge price at 𝑤 is zero, so the utility 𝜇𝑡(𝑥 → 𝑤|𝑠′, 𝑟, 𝑑) ≤ 0.

The following lemma shows that the incentive requirements of Equation (2.1) hold,

not only for the flow 𝑓 *, but also for any min cost flow from 𝑠 to 𝑑.

Lemma 3.0.6. Fix current supply 𝑠𝑡−1 and demand 𝑑𝑡, surge prices 𝑟𝑡𝑦 = 𝐶 − 𝑝𝑦,
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and new support 𝑠′ = 𝑑. Let 𝑓 ′ be an arbitrary min cost flow from 𝑠 to 𝑠′ = 𝑑, then,

for any 𝑥, 𝑦, 𝑤 ∈ 𝑉 such that 𝑓 ′(𝑥, 𝑦) > 0 we have that

𝜇𝑡(𝑥 → 𝑦|𝑠′, 𝑟, 𝑑) ≥ 𝜇𝑡(𝑥 → 𝑤|𝑠′, 𝑟, 𝑑).

Proof. Define

Γ(𝑓) =
∑︁
𝑢∈𝑉

∑︁
𝑣∈𝑉

𝑓(𝑢, 𝑣) · (𝑟𝑣 − ℓ𝑢,𝑣) =
∑︁
𝑣∈𝑉

𝑠′𝑣 · 𝑟𝑣 − em(𝑠, 𝑠′).

As 𝑓 ′ and 𝑓 * are both min cost flows from 𝑠 to 𝑠′ we have that Γ(𝑓 *) = Γ(𝑓 ′).

For contradiction assume there exist some 𝑢, 𝑣 such that 𝑓 ′(𝑢, 𝑣) > 0 and 𝜇(𝑢 ↦→

𝑣|𝑠′, 𝑟, 𝑑) < max𝑤∈𝑉 𝜇(𝑢 ↦→ 𝑤|𝑠′, 𝑟, 𝑑).

Γ(𝑓 *) =
∑︁
𝑢∈𝑉

∑︁
𝑣∈𝑉

𝑓 *(𝑢, 𝑣) · (𝑟𝑣 − ℓ𝑢,𝑣) (3.10)

=
∑︁
𝑢∈𝑉

∑︁
𝑣∈𝑉

𝑓 *(𝑢, 𝑣) ·max
𝑣∈𝑉

(𝑟𝑣 − ℓ𝑢,𝑣) (3.11)

=
∑︁
𝑢∈𝑉

𝑠𝑢 ·max
𝑣∈𝑉

(𝑟𝑣 − ℓ𝑢,𝑣) (3.12)

=
∑︁
𝑢∈𝑉

∑︁
𝑣∈𝑉

𝑓 ′(𝑢, 𝑣) ·max
𝑣∈𝑉

(𝑟𝑣 − ℓ𝑢,𝑣) (3.13)

>
∑︁
𝑢∈𝑉

∑︁
𝑣∈𝑉

𝑓 ′(𝑢, 𝑣) · (𝑟𝑣 − ℓ𝑢,𝑣) = Γ(𝑓 ′) . (3.14)

Eq. (3.10) follows from the definition of Γ. Eq. (3.11) follows from Lemma 3.0.5.

Eq. (3.12) and (3.13) follows from the definition of a flow, since for any flow 𝑓 from

𝑠 we have that 𝑠𝑢 =
∑︀

𝑣∈𝑉 𝑓(𝑢, 𝑣). Eq. (3.14) holds since we assumed, for con-

tradiction, that there exist some 𝑢, 𝑣 such that 𝑓 ′(𝑢, 𝑣) > 0 and 𝜇(𝑢 ↦→ 𝑣|𝑠′, 𝑟, 𝑑) <

max𝑤∈𝑉 𝜇(𝑢 ↦→ 𝑤|𝑠′, 𝑟, 𝑑). Hence, we reached a contradiction to the assumption that

𝑓 ′ is a min cost flow.

If follows from the Lemma above that computing surge prices 𝑟 via flow 𝑓 * ensures

that taxicab routing using any other min cost flow 𝑓 ′ is also a best response under

surge prices 𝑟.
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Next we show that all relevant passenger-taxicab equilibria all have new supply

𝑠𝑡 = 𝑑𝑡.

Lemma 3.0.7. Given current supply 𝑠, demand 𝑑, and surge prices 𝑟𝑡𝑦 = 𝐶 − 𝑝𝑦,

all passenger-taxicab equilibria induce 𝑠𝑡 = 𝑑.

Proof. Let 𝑓 be a min cost flow from 𝑠 to 𝑑. For contradiction, assume that that there

exists some 𝑠 ̸= 𝑑 such that 𝑠, 𝑠′ = 𝑠, 𝑑, 𝑟 are in a passenger-taxicab equilibrium.

Let 𝑓 ′ be some min cost flow from 𝑠 to 𝑠.

Consider 𝐻 =
{︀
𝑦|
∑︀

𝑥 𝑓
′(𝑥, 𝑦) > 𝑑𝑡𝑦

}︀
(i.e., the set of all vertices for which the flow

𝑓 ′ results in strictly more supply than demand). Since 𝑠′ ̸= 𝑑 and they both sum

to 1, we have that 𝐻 ̸= ∅. Let 𝐻 ′ = {𝑥|∃𝑦 ∈ 𝐻 s.t. 𝑓 ′(𝑥, 𝑦) > 0} (i.e., the set of all

vertices from which supply flows to 𝐻). As 𝐻 ̸= ∅ it follows that 𝐻 ′ ̸= ∅.

We claim that there exists some 𝑤 ∈ 𝐻 ′, 𝑦 ̸∈ 𝐻, such that 𝑓(𝑤, 𝑦) > 0. For

contradiction assume that all the flow in 𝑓 from vertices in 𝐻 ′ is to vertices in 𝐻.

By definition of flows:
∑︀

𝑦∈𝑉 𝑓(𝑥, 𝑦) = 𝑠𝑡−1
𝑥 =

∑︀
𝑦∈𝑉 𝑓 ′(𝑥, 𝑦). We now have,

∑︁
𝑥∈𝐻′

∑︁
𝑦∈𝑉

𝑓(𝑥, 𝑦) =
∑︁
𝑥∈𝐻′

∑︁
𝑦∈𝐻

𝑓(𝑥, 𝑦)

=
∑︁
𝑥∈𝐻′

∑︁
𝑦∈𝐻

𝑓 ′(𝑥, 𝑦)

=
∑︁
𝑦∈𝐻

∑︁
𝑥∈𝐻′

𝑓 ′(𝑥, 𝑦)

>
∑︁
𝑦∈𝐻

𝑑𝑡𝑦

=
∑︁
𝑥∈𝐻′

∑︁
𝑦∈𝐻

𝑓(𝑥, 𝑦),

which is a contradiction.

This implies that there exist 𝑤 ∈ 𝐻 ′, 𝑥 ̸∈ 𝐻 such that 𝑓(𝑤, 𝑥) > 0. Since 𝑤 ∈ 𝐻 ′

there also exists some 𝑦 ∈ 𝐻 such that 𝑓 ′(𝑤, 𝑦) > 0.

We have shown that 𝑠, 𝑠′ = 𝑑, 𝑑, 𝑟 is in passenger-taxicab equilibrium, this implies

that

𝜇𝑡(𝑤 ↦→ 𝑥|𝑠′, 𝑟, 𝑑) = 𝑟𝑡𝑥 − ℓ𝑤,𝑥 ≥ 𝑟𝑡𝑦 − ℓ𝑤,𝑦 = 𝜇𝑡(𝑤 ↦→ 𝑦|𝑠′, 𝑟, 𝑑).

22



Since 𝑦 ∈ 𝐻 we have we have that
∑︀

𝑢 𝑓
′(𝑢, 𝑦) > 𝑑𝑡𝑦 resulting in the utility

𝜇𝑡(𝑤 ↦→ 𝑦|𝑠′, 𝑟, 𝑑) =
(︀
𝑟𝑡𝑦 − ℓ𝑤,𝑦

)︀
·min

(︂
1,

𝑑𝑡𝑦
𝑠𝑡𝑦

)︂
< 𝑟𝑡𝑦−ℓ𝑤,𝑦 ≤ 𝑟𝑡𝑥−ℓ𝑤,𝑥 = 𝜇𝑡(𝑤 ↦→ 𝑥|𝑠′, 𝑟, 𝑑),

where 𝑥 ̸∈ 𝐻 implies the last equality. This is in contradiction to the 𝑠, 𝑠′ = 𝑠, 𝑑, 𝑟

being a passenger-taxicab equilibrium.

Theorem 3.0.8 follows from Lemma 3.0.5, Lemma 3.0.6, and Lemma 3.0.7.

Theorem 3.0.8. Given distances ℓ𝑖,𝑗 and an arbitrary supply vector, 𝑠𝑡−1 = ⟨𝑠𝑡−1
1 , . . . , 𝑠𝑡−1

𝑘 ⟩.

Let the demand vector be 𝑑𝑡 = ⟨𝑑𝑡1, . . . , 𝑑𝑡𝑘⟩. Then, there exists a surge price vector

𝑟𝑡 = ⟨𝑟𝑡1, . . . , 𝑟𝑡𝑘⟩ that results in a passenger-texicab equilibrium which induces a sup-

ply 𝑠𝑡 = 𝑑𝑡. Moreover, any passenger-taxicab equilibrium of 𝑟𝑡 induces supply 𝑠𝑡 = 𝑑𝑡,

and the surge prices 𝑟𝑡 can be computed in polynomial time.

We can extend the result from equating supply and demand to modifying the supply

vector 𝑠𝑡−1 to any supply 𝑠𝑡, with the restriction that if 𝑠𝑡𝑖 > 0 then 𝑑𝑡𝑖 > 0. The

new surge prices are computed as follows. First we compute, as before, the surge

prices 𝑟𝑡 from 𝑠𝑡−1 to 𝑑𝑡. Then, we set 𝑟𝑡𝑖 = max{1, 𝑠𝑡𝑖
𝑑𝑡𝑖
}𝑟𝑡𝑖 and the resulting surge

prices are 𝑟𝑡. In a similar way we can establish,

Theorem 3.0.9. Let 𝑑𝑡 = ⟨𝑑𝑡1, . . . , 𝑑𝑡𝑘⟩ and let 𝛼 = ⟨𝛼1, . . . , 𝛼𝑘⟩ be the target supply

vector, subject to the restriction that if 𝛼𝑖 > 0 then 𝑑𝑡𝑖 > 0. Then there exist surge

prices 𝑟𝑡 for which some passenger-taxicab equilibrium induces supply 𝛼.
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IV The Discrete Passenger-Taxicab Setting

In this section we consider a more realistic scenario where both demand and supply

are sensitive to the surge pricing. All else being equal, higher surge prices mean less

demand and more supply.

We define social welfare to be the sum of valuations of passengers served minus the

sum of the distances traversed by the taxicabs to serve these passengers (Definition

2.2.2). Given current supply 𝑠 and a passenger profile 𝑃 , we give an algorithm for

computing surge prices 𝑟 that creates a passenger-taxicab equilibrium that maxi-

mizes social welfare.

The location of a passenger 𝑏𝑖 and taxi 𝑡𝑗 is denoted by loc(𝑏𝑖) and loc(𝑡𝑗) respectively

(i.e., 𝑏𝑖 ∈ 𝑃loc(𝑏𝑖) 𝑡𝑗 ∈ 𝑠(loc(𝑡𝑗))). For brevity, we use the notation ℓ𝑖,𝑗 = ℓloc(𝑏𝑖),loc(𝑡𝑗).

4.1 Maximizing Social Welfare

As in the continuous case, we reduce the problem of computing surge prices to

computing market clearing prices in a unit demand market. Given a set of passengers

𝐵 and taxicabs 𝑇 , we construct a unit demand market 𝑀(𝐵, 𝑇 ), where 𝐵 is the set

of buyers and 𝑇 is the set of items. For the unit demand market, 𝑀(𝐵, 𝑇 ), we set

the value of buyer 𝑏𝑖 ∈ 𝐵 for item 𝑡𝑗 ∈ 𝑇 to be 𝜁𝑏𝑖(𝑡𝑗) = value(𝑏𝑖)− ℓ𝑖,𝑗.

Let the allocation where item 𝑡𝑗 is given to buyer(𝑡𝑗) = 𝑏𝑖 be a social welfare max-

imizing allocation in the unit demand market 𝑀(𝐵, 𝑇 ). Also, let buyer(𝑡𝑗) = ∅ if

item 𝑡𝑗 is unallocated.

This social welfare maximizing allocation in 𝑀(𝐵, 𝑇 ) translates into a flow 𝑓 * for

the discrete passenger-taxicab problem where 𝑡𝑗 moves from loc(𝑡𝑗) to loc(𝑏𝑖) if
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buyer(𝑡𝑗) = 𝑏𝑖. Ergo,

𝑓 *(𝑢, 𝑣) =

⎧⎪⎨⎪⎩ |{(𝑖, 𝑗)|𝑏𝑖 ∈ 𝑃𝑣, 𝑡𝑗 ∈ 𝑠𝑢, buyer(𝑡𝑗) = 𝑏𝑖}| if 𝑢 ̸= 𝑣,

|{(𝑖, 𝑗)|𝑏𝑖 ∈ 𝑃𝑣, 𝑡𝑗 ∈ 𝑠𝑢, buyer(𝑡𝑗) = 𝑏𝑖}|+ |{𝑗|𝑡𝑗 ∈ 𝑠𝑢, buyer(𝑡𝑗) = ∅}|, if 𝑢 = 𝑣.

Let 𝑠′ be such that 𝑠′𝑣 =
∑︀

𝑢 𝑓
*(𝑢, 𝑣) for all 𝑣 ∈ 𝑉 . We say that the new supply 𝑠′

is induced by 𝑓 *. We now show that

Lemma 4.1.1. The flow 𝑓 * is a min cost flow from 𝑠 to 𝑠′.

Proof. Assume that 𝑓 ′ is a flow from 𝑠 to 𝑠′ of strictly lower cost. As 𝑓 ′ is an integral

flow it can be decomposed into a union of unit flows. This can be interpreted as

an alternative allocation in the 𝑀(𝐵, 𝑇 ) unit demand market, with strictly higher

social welfare. This is in contradiction to our construction.

Choose the minimal Walrasian prices to clear the unit demand market 𝑀(𝐵, 𝑇 ).

Such prices are also VCG prices [17]. Let the Walrasian price for item 𝑡𝑗 be 𝑝𝑡𝑗 .

We now define surge prices 𝑟𝑣, 𝑣 ∈ 𝑉 , for the discrete passenger-taxicab problem.

Specifically, for all 𝑣 ∈ 𝑉 , set

𝑟𝑣 = min
𝑡𝑗∈𝑇

(ℓloc(𝑡𝑗),𝑣 + 𝑝𝑡𝑗). (4.1)

Lemma 4.1.2. Assigning 𝑡𝑗 to serve passenger buyer(𝑡𝑗) is a social welfare maxi-

mizing allocation.

Proof. First, we show that for any allocation of taxicabs to passengers in the taxicab-

passenger setting there exists an allocation of items to buyers in the unit demand

market 𝑀(𝐵, 𝑇 ) such that the social welfare is the same. Then, we show that for the

allocation of items to buyers that maximizes the social welfare in the unit demand

market there exists an allocation of taxicabs to passengers with the same social

welfare.
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Fix an allocation of passengers to taxicabs, i.e., Φ : 𝐵 → 𝑇 ∪ {∅} is a matching.

Given the matching Φ we define an allocation Π : 𝐵 → 𝑇 ∪ {∅} in the unit demand

market where Φ(𝑏) = Π(𝑏) for all 𝑏 ∈ 𝐵.

The social welfare of Φ in the taxicab-passenger setting is
∑︀

𝑏∈𝐵(value(𝑏)−ℓloc(𝑏),loc(Φ(𝑏)))𝐼Φ(𝑏)̸=∅.

Similarly, the social welfare of Π in the unit demand market setting is
∑︀

𝑏∈𝐵 𝜁𝑏(Π(𝑏)) =∑︀
𝑏∈𝐵(value(𝑏) − ℓloc(𝑏),loc(Π(𝑏)))𝐼Π(𝑏)̸=∅. Since Φ(𝑏) = Π(𝑏) it follows that any allo-

cation in the taxicab-passenger setting has a corresponding allocation in the unit

demand market with the same social welfare.

We now show that an allocation in the unit demand market that maximizes social

welfare has a corresponding allocation in the passenger-taxicab setting that also

maximizes social welfare. Denote the maximal allocation in the unit demand market

by Πmax : 𝐵 → 𝑇∪{∅}. Define the corresponding matching of passengers to taxicabs

by Φmax : 𝐵 → 𝑇 ∪ {∅}, where Φmax(𝑏) = Πmax(𝑏) for all 𝑏 ∈ 𝐵 (Φmax is a matching

since Πmax is a valid allocation in a unit demand market).

Moreover, we need to show that higher valued passengers have priority over lower

valued passengers at the same location. I.e., we need to show that for any two

passengers, 𝑏1, 𝑏2 ∈ 𝐵, such that loc(𝑏1) = loc(𝑏2) and Φmax(𝑏1) ̸= ∅, Φmax(𝑏2) = ∅

we have that value(𝑏1) ≥ value(𝑏2).

Contrariwise, assume for some 𝑏1, 𝑏2 ∈ 𝐵 we have that loc(𝑏1) = loc(𝑏2), Φmax(𝑏1) ̸=

∅, Φmax(𝑏2) = ∅, but value(𝑏1) < value(𝑏2). Define in the unit demand market then

Π′ : 𝐵 → 𝑇 ∪ {∅} such that Π′(𝑏1) = ∅, Π′(𝑏2) = Φmax(𝑏1) and Π′(𝑏) = Πmax(𝑏) for

all 𝑏 /∈ {𝑏1, 𝑏2}.

We now show that the social welfare under Π is strictly greater than the social

26



welfare under Π′:

∑︁
𝑏∈𝐵

(𝜁𝑏(Π
′(𝑏))) =

∑︁
𝑏∈𝐵,𝑏 ̸=𝑏1,𝑏2

(𝜁𝑏(Π
′(𝑏))) + 𝜁𝑏2(Φmax(𝑏1))

=
∑︁

𝑏∈𝐵,𝑏 ̸=𝑏1,𝑏2

(𝜁𝑏(Πmax(𝑏))) + value(𝑏2)− dist(loc(𝑏2), loc(Φmax(𝑏1)))

>
∑︁

𝑏∈𝐵,𝑏 ̸=𝑏1,𝑏2

(𝜁𝑏(Πmax(𝑏))) + value(𝑏1)− dist(loc(𝑏1), loc(Φmax(𝑏1)))

=
∑︁
𝑏∈𝐵

(𝜁𝑏(Πmax(𝑏))).

Thus, Π′ has strictly higher social welfare than Πmax in unit demand setting in

contradiction to Πmax maximizing social welfare. Thus, Φmax is a valid allocation in

the taxicab-passenger setting which maximizes the social welfare.

Lemma 4.1.3. For any passenger 𝑏𝑖 such that 𝑏𝑖 = buyer(𝑡𝑗) we have that

ℓ𝑖,𝑗 + 𝑝𝑡𝑗 = min
𝑡𝑧∈𝑇

(ℓ𝑖,𝑧 + 𝑝𝑡𝑧) = 𝑟loc(𝑏𝑖).

Proof. Since 𝑏𝑖 = buyer(𝑡𝑗), and 𝑝 are Walrasian prices, we have that buyer 𝑏𝑖

maximizes its utility 𝜂𝑏𝑖 . Ergo,

𝜂𝑏𝑖(𝑡𝑗) = max
𝑡𝑥∈𝑇

(𝜂𝑏𝑖(𝑡𝑥))

= max
𝑡𝑥∈𝑇

(value(𝑏𝑖)− ℓ𝑖,𝑥 − 𝑝𝑡𝑥)

= value(𝑏𝑖)−min
𝑡𝑥∈𝑇

(ℓ𝑖,𝑥 + 𝑝𝑡𝑥)

= value(𝑏𝑖)− 𝑟loc(𝑏𝑖).

As

𝜂𝑏𝑖(𝑡𝑗) = value(𝑏𝑖)− ℓ𝑖,𝑗 − 𝑝𝑡𝑗 = value(𝑏𝑖)− 𝑟loc(𝑏𝑖)

it follows that

ℓ𝑖,𝑗 + 𝑝𝑡𝑗 = min
𝑡𝑥∈𝑇

(ℓ𝑖,𝑥 + 𝑝𝑡𝑥).
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Lemma 4.1.4. Any passenger 𝑏𝑖 that is not served is not interested in being served

(or is indifferent), i.e., then value(𝑏𝑖) ≤ 𝑟loc(𝑏𝑖). Any passenger 𝑏𝑖 that is served has

value(𝑏𝑖) ≥ 𝑟loc(𝑏𝑖).

Proof. Let 𝑏𝑖 be some buyer allocated no item in the social welfare maximizing

allocation for 𝑀(𝐵, 𝑇 ), then it must be that max𝑡𝑥∈𝑇 𝜂𝑏𝑖(𝑡𝑥) ≤ 0. It follows that

max
𝑡𝑥∈𝑇

(value(𝑏𝑖)− ℓ𝑖,𝑥 − 𝑝𝑡𝑥) ≤ 0,

and thus

value(𝑏𝑖) ≤ min
𝑡𝑥∈𝑇

(ℓ𝑖,𝑥 + 𝑝𝑡𝑥) = 𝑟loc(𝑏𝑖).

Consider some buyer 𝑏𝑖 that was allocated an item, 𝑡𝑗, in the social welfare maxi-

mizing allocation for 𝑀(𝐵, 𝑇 ). It follows that max𝑡𝑥∈𝑇 𝜂𝑏𝑖(𝑡𝑥) ≥ 0. Thus,

max
𝑡𝑥∈𝑇

(value(𝑏𝑖)− ℓ𝑖,𝑥 − 𝑝𝑡𝑥) ≥ 0,

and

value(𝑏𝑖) ≥ min
𝑡𝑥∈𝑇

(ℓ𝑖,𝑥 + 𝑝𝑡𝑥) = 𝑟loc(𝑏𝑖).

Lemma 4.1.5. For supply 𝑠, demand 𝑑, surge prices 𝑟, and new supply 𝑠′ as defined

above. A taxicab 𝑡𝑗 that serves passenger buyer(𝑡𝑗) is doing a best response.

Proof. Consider the following cases:

1. Item 𝑡𝑗 is not allocated, i.e., buyer(𝑡𝑗) = ∅. It follows that the Walrasian

pricing for item 𝑡𝑗 is zero: 𝑝𝑡𝑗 = 0. Now, for any 𝑤 ∈ 𝑉 we have that

𝑟𝑤 = min
𝑡𝑥∈𝑇

(ℓ𝑤,loc(𝑡𝑥) + 𝑝𝑡𝑥) ≤ ℓ𝑤,loc(𝑡𝑗) + 𝑝𝑡𝑗 = ℓ𝑤,loc(𝑡𝑗),

hence, 𝑟𝑤 − ℓ𝑤,loc(𝑡𝑗) ≤ 0. Ergo, not serving any passenger is a best response

for 𝑡𝑗.
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2. Item 𝑡𝑗 is allocated to some buyer 𝑏𝑖. From Lemma 4.1.3 we know that ℓ𝑖,𝑗 +

𝑝𝑡𝑗 = min𝑡𝑥∈𝑇 (ℓ𝑖,𝑥+ 𝑝𝑡𝑥) = 𝑟loc(𝑏𝑖) and thus 𝑡𝑗 gains a utility of 𝑝𝑡𝑗 from serving

𝑏𝑖. If taxicab 𝑡𝑗 could serve a passenger at location 𝑤 ∈ 𝑉 , it will gain a utility

of

𝑟𝑤 − ℓ𝑤,loc(𝑡𝑗) = min
𝑡𝑥∈𝑇

(ℓ𝑤,loc(𝑡𝑥) + 𝑝𝑡𝑥)− ℓ𝑤,loc(𝑡𝑗) ≤ ℓ𝑤,loc(𝑡𝑗) + 𝑝𝑡𝑗 − ℓ𝑤,loc(𝑡𝑗) = 𝑝𝑡𝑗 .

Implying that serving passenger 𝑏𝑖 is a best response for taxicab 𝑡𝑗.

Lemma 4.1.6. It is a dominant strategy for the passengers to reveal their true

valuations given that surge prices are computed via the algorithm above.

Proof. The utilities of the bidders for the minimal Walrasian prices in a unit demand

market coincide with VCG payments [17]. This implies that buyers truthfully reveal

their valuations for the items. In our setting the utility for a passenger 𝑏𝑖 is exactly

equal to the utility for the corresponding bidder 𝑏𝑖. Ergo, misreporting passenger

valuation implies misreporting bidder valuations. As misreporting item valuations

in the unit demand market setting cannot benefit buyers (and thus passengers) we

conclude it is a dominant strategy for passengers to report true valuations.

To summarize, our main result in this section, Theorem 4.1.7, follows from Lemma

4.1.2, Lemma 4.1.4, Lemma 4.1.5, and Lemma 4.1.6.

Theorem 4.1.7. For any Profile 𝑃 and supply 𝑠 there exist surge prices 𝑟, demand

𝑑(𝑟) and new supply 𝑠′ such that

∙ Supply 𝑠, new supply 𝑠′, demand 𝑑(𝑟), and surge prices 𝑟 are in passenger-

taxicab equilibrium.

∙ 𝑠′ is social welfare maximizing with respect to supply 𝑠, profile 𝑃 , and demand

𝑑.
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∙ The surge prices 𝑟 can be computed in polynomial time.

∙ It is a dominant strategy for passengers to report their true valuations to the

surge-price computation.
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V Optimal Competitive Online Algorithms for Social

Welfare

In this section we give online algorithms that determine supply (using surge prices)

so as to maximize social welfare as given in Definition 2.3.1. I.e., striking a balance

between maximizing the quality of service vs. the costs associated with shifting

resources about.

The results1 in this section can be obtained by online algorithms that set the supply

to be one of the following:

1. Set supply at time 𝑡 equal demand at time 𝑡, i.e., set 𝑠𝑡 = 𝑑𝑡.

2. Set supply at time 𝑡 equal to the supply at time 𝑡− 1, i.e., set 𝑠𝑡 = 𝑠𝑡−1.

It follows from Theorem 3.0.8 that using appropriate surge prices we can determine

that 𝑠𝑡 = 𝑑𝑡 as the unique passenger-taxicab equilibrium. It is easy to leave the

supply unchanged by choosing 𝑟𝑡𝑖 = 1 for all 𝑖. It follows that the resulting passenger-

taxicab equilibrium has no positive flow from 𝑖 to 𝑗 ̸= 𝑖, as ℓ𝑖𝑗 ≥ 1 for all 𝑗 ̸= 𝑖 —

ergo 𝑠𝑡 = 𝑠𝑡−1.

Given a demand sequence 𝑑 we define 𝜌 as the inverse of the maximum demand at

any vertex and time, i.e., 1/𝜌 = max𝑖,𝑡 𝑑
𝑡
𝑖. Note that 𝜌 ≤ 𝑘 since at any time 𝑡 there

is a vertex 𝑖 such that 𝑑𝑡𝑖 ≥ 1/𝑘. Moreover, 𝜌 ≥ 1 since 𝑑𝑡𝑖 ≤ 1, for any time 𝑡 and

vertex 𝑖.

Consider the following online algorithms:

1 These are randomized online algorithms. Alternately, one could give deterministic online al-
gorithms with the same guarantees by using the passenger-taxicab equilibria and surge prices
derived from Theorem 3.0.9, with the disadvantages that the equilibria is no longer unique and
that this requires some additional technical assumptions.
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rand(𝑝) — With probability 𝑝 set surge prices such that supply equals demand at

all vertices. I.e., at time 𝑡 = 1 set 𝑠1 = 𝑑1; for all 𝑡 > 1 with probability 𝑝 set

𝑠𝑡 = 𝑑𝑡 and with probability 1− 𝑝 set 𝑠𝑡 = 𝑠𝑡−1.

stay — Split the supply equally over all vertices. I.e., at time 𝑡 = 1 set 𝑠1 =

⟨ 1
𝑘
, 1
𝑘
, . . . , 1

𝑘
⟩ and for all 𝑡 > 1 set 𝑠𝑡 = 𝑠𝑡−1.

match — Always set supply equal demand, i.e., set 𝑠𝑡 = 𝑑𝑡 for all 𝑡 ≥ 1 . Note that

match and rand(1) are identical.

composite(𝑝) — Toss a fair coin, if heads run stay otherwise run rand(𝑝). The ex-

pected social welfare of composite(𝑝) satisfies E[composite(𝑝)] = E[stay]/2+

E[rand(𝑝)]/2.

In different scenarios different algorithms are useful. We later discuss how to switch

between different online algorithms in changing circumstances, varying over time.

Like many other online problems, we first show that the optimal solution can be

assumed to be “lazy”, never move supply about unnecessarily (Section 5.1). Section

5.2 gives our main technical result. In this setting the cost of moving from one

vertex to another always equals 1, i.e., ℓ𝑖𝑗 = 1 for 𝑖 ̸= 𝑗. In this scenario we show

that composite(
√︀
1/𝑘) achieves [an optimal] Θ(1/

√
𝑘) fraction of the optimal social

welfare. More generally, the competitive ratio improves as a function of the maximal

demand in a single vertex (a 1/𝜌 fraction of the total demand) — in this setting

composite(
√︀

𝜌/𝑘) achieves [an optimal] Θ(
√︀
𝜌/𝑘) fraction of the optimal social

welfare. The positive result appears in Theorem 5.2, whereas optimality follows

from Lemma 5.3.1.

In Section 5.4 we consider several other scenarios:

∙ Clearly, even for completely arbitrary costs ℓ𝑖𝑗 (to move supply from 𝑖 to 𝑗),

algorithm stay is trivially 𝜌/𝑘 competitive. In Section 5.4.1 we prove that

this cannot be improved. This shows that it is critical that ℓ𝑖𝑗 = 1 to obtain

a non-trivial bound, without other assumptions on the input sequence.
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∙ In Section 5.4.2 we consider inputs where the total drift (average total variation

distance between successive demand vectors) is small. In such settings the

match algorithm approaches the optimal social welfare, for sufficiently small

drift. Moreover, essentially the same bounds are tight.

5.1 The Optimal Supply Sequence is Lazy

We define lazy sequences and show that without loss of generality the optimal supply

sequence is a lazy sequence. We have two types of “non-lazy” actions: increasing

supply in a location with supply greater than demand (over supply), or reducing

supply in a location while creating over demand. Both actions can be avoided,

without loss in social welfare. We start by defining a lazy sequence.

Definition 5.1.1. A supply sequence is lazy if for any time 𝑡 and any 𝑢, 𝑣 ∈ 𝑉, 𝑢 ̸= 𝑣

such that 𝑓 𝑡(𝑢, 𝑣) > 0 then both (1) 𝑠𝑡𝑣 ≤ 𝑑𝑡𝑣 and (2) 𝑠𝑡−1
𝑢 > 𝑑𝑡𝑢.

We show that for any supply sequence there exists a lazy supply sequence whose

social welfare is at least the social welfare of the original sequence.

Lemma 5.1.2. Fix a demand sequence 𝑑. Given an arbitrary supply sequence 𝑠,

there exists a lazy supply sequence 𝑠 such that sw(𝑠) ≥ sw(𝑠).

Proof. For contradiction, assume there is a sequence 𝑠 for which for any lazy se-

quence 𝑠 we have sw(𝑠) > sw(𝑠). Note that essentially we are saying that there is

an optimal sequence 𝑠 for which no lazy sequence has the same social welfare. This

implies that for any optimal sequence 𝑠 there is a time 𝑡 such that 𝑓 𝑡(𝑢, 𝑣) > 0 and

either (1) 𝑠𝑡𝑣 > 𝑑𝑡𝑣 or (2) 𝑠𝑡−1
𝑢 < 𝑑𝑡𝑢. Out of all the optimal sequences, consider the

optimal sequence 𝑠 with the largest such time 𝑡 and largest pair (𝑢, 𝑣) (given some

full order on the pairs 𝑉 × 𝑉 ).

We create a new flow 𝑓 depending on the type of violation. Assume that we have

𝑓 𝑡(𝑢, 𝑣) > 0 and 𝑠𝑡𝑣 > 𝑑𝑡𝑣. At time 𝑡 set 𝑓 𝑡(𝑢, 𝑣) = 𝑓 𝑡(𝑢, 𝑣) − 𝜖 and 𝑓 𝑡(𝑢, 𝑢) =
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𝑓 𝑡(𝑢, 𝑢)+𝜖, where 𝜖 = min{𝑠𝑡𝑣−𝑑𝑡𝑣, 𝑓
𝑡(𝑢, 𝑣)}. The rest of the flow remains unchanged,

i.e., 𝑓 𝑡(𝑢′, 𝑣′) = 𝑓 𝑡(𝑢′, 𝑣′) for (𝑢′, 𝑣′) ̸= (𝑢, 𝑣) or (𝑢′, 𝑣′) ̸= (𝑢, 𝑢).

At time 𝑡 + 1 we adjust the flow to correspond to the original supply. Namely,

for all 𝑤 ∈ 𝑉 such that 𝑓 𝑡+1(𝑣, 𝑤) > 0, we set 𝑓 𝑡+1(𝑣, 𝑤) = 𝑓 𝑡+1(𝑣, 𝑤) 𝑠
𝑡
𝑣−𝜖
𝑠𝑡𝑣

and

𝑓 𝑡+1(𝑢,𝑤) = 𝑓 𝑡+1(𝑢,𝑤) + 𝑓 𝑡+1(𝑣, 𝑤) 𝜖
𝑠𝑡𝑣
, and all the remaining flows remain un-

changed. It is straightforward to verify that 𝑓 is a valid flow, and we set 𝑠𝑡+1
𝑣 =

𝑠𝑡+1
𝑣 =

∑︀
𝑢 𝑓

𝑡+1(𝑢, 𝑣).

Note that the only influence on the social welfare are in times 𝑡 and 𝑡+1. Comparing

the movement cost of 𝑠 to 𝑠, at time 𝑡 it decreased by 𝜖 and in time 𝑡+ 1 increased

by at most 𝜖. The demand served in 𝑠 and 𝑠 at time 𝑡 and 𝑡+1 in unchanged (since

the 𝜖 flow that was modified did not serve any demand in time 𝑡 and at time 𝑡 + 1

the supplies are identical). This implies that the social welfare of 𝑠 is at least that

of 𝑠. Therefore we have a contradiction to our selection of 𝑡 and (𝑢, 𝑣).

The case that we have 𝑓 𝑡(𝑢, 𝑣) > 0 and 𝑠𝑡−1
𝑢 < 𝑑𝑡𝑢 is similar and omitted.

We derive the following immediate corollary.

Corollary 5.1.3. Without loss of generality the optimal supply sequence is lazy.

5.2 Online Algorithms for Social Welfare Maximization when ℓ𝑖𝑗 = 1

We now analyse the lazy optimal supply sequence. We first introduce some notation.

Given an optimal lazy supply sequence 𝑠, define ℎ𝑡
𝑖 = min{𝑠𝑡−1

𝑖 , 𝑑𝑡𝑖}. Let 𝑛 ≥ 0 be

an integer parameter, and define2

𝑧𝑡𝑖 = max{0, ℎ𝑡
𝑖 − 𝑔𝑡𝑖}, where 𝑔𝑡𝑖 = max

𝜏∈[max(1,𝑡−𝑛),𝑡−1]
𝑑𝜏𝑖 .

Note that the definitions depend on 𝑠, but we use a fixed optimal lazy sequence 𝑠.

Note too that 𝑛 is yet undetermined.

2 For notational convenience we define 𝑑𝑡𝑖 = 0 and 𝑠𝑡𝑖 = 𝑠1𝑖 for all 𝑡 ≤ 0.
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Lemma 5.2.1. Fix a demand sequence 𝑑 and an optimal lazy supply sequence 𝑠 for

𝑑. The resulting social welfare

opt = sw(𝑠, 𝑑) =
∑︁
𝑡,𝑖

ℎ𝑡
𝑖 ≤

∑︁
𝑡,𝑖

𝑧𝑡𝑖 +
∑︁
𝑡,𝑖

𝑔𝑡𝑖 .

Proof. Note that when ℓ𝑖𝑗 = 1 for all 𝑖, 𝑗 we get that em(𝑠) =
∑︀

𝑡
1
2
‖𝑠𝑡 − 𝑠𝑡−1‖1.

This means that for an optimal lazy sequence we have

opt = sw(𝑠, 𝑑) = ds(𝑠, 𝑑)− em(𝑠) =
∑︁
𝑡

∑︁
𝑖

min(𝑠𝑡𝑖, 𝑑
𝑡
𝑖)−

∑︁
𝑡

∑︁
𝑖:𝑠𝑡𝑖≥𝑠𝑡−1

𝑖

(︀
𝑠𝑡𝑖 − 𝑠𝑡−1

𝑖

)︀
.

First consider 𝑠𝑡𝑖 > 𝑠𝑡−1
𝑖 . Since the sequence is lazy and 𝑠𝑡𝑖 > 𝑠𝑡−1

𝑖 this implies that

𝑠𝑡𝑖 ≤ 𝑑𝑡𝑖. Hence, min(𝑠𝑡𝑖, 𝑑
𝑡
𝑖) = 𝑠𝑡𝑖 and min(𝑠𝑡−1

𝑖 , 𝑑𝑡𝑖) = 𝑠𝑡−1
𝑖 . It follows that the identity

min(𝑠𝑡𝑖, 𝑑
𝑡
𝑖)− (𝑠𝑡𝑖 − 𝑠𝑡−1

𝑖 ) = min(𝑠𝑡−1
𝑖 , 𝑑𝑡𝑖) holds.

Next consider 𝑠𝑡𝑖 < 𝑠𝑡−1
𝑖 . Since the sequence is lazy and 𝑠𝑡𝑖 < 𝑠𝑡−1

𝑖 implies that

𝑠𝑡𝑖 ≥ 𝑑𝑡𝑖 and that min(𝑠𝑡𝑖, 𝑑
𝑡
𝑖) = 𝑑𝑡𝑖 = min(𝑠𝑡−1

𝑖 , 𝑑𝑡𝑖). It follows yet again that the

identity min(𝑠𝑡𝑖, 𝑑
𝑡
𝑖) = min(𝑠𝑡−1

𝑖 , 𝑑𝑡𝑖) holds.

Combining both identities we have

opt = sw(𝑠, 𝑑) =
∑︁
𝑡

∑︁
𝑖

min(𝑠𝑡−1
𝑖 , 𝑑𝑡𝑖) =

∑︁
𝑡

∑︁
𝑖

ℎ𝑡
𝑖,

by the definition of ℎ𝑡
𝑖. Since, ℎ

𝑡
𝑖 ≤ 𝑧𝑡𝑖 + 𝑔𝑡𝑖 the lemma follows.

Our next goal is to bound the sum of 𝑧𝑡𝑖 and relate it to the social welfare of the

algorithm stay. We first prove the following properties of the optimal lazy supply

sequence.

Lemma 5.2.2. Fix an optimal lazy sequence 𝑠 and a parameter 𝑛 ≥ 1. If for some

𝑖, 𝑡 we have 𝑠𝑡−1
𝑖 ≥ max𝜏∈[𝑡−𝑛,𝑡) 𝑑

𝜏
𝑖 then we have min𝜏∈[𝑡−𝑛,𝑡) 𝑠

𝜏
𝑖 ≥ 𝑠𝑡−1

𝑖 .

Proof. For contradiction assume there exists some maximal 𝜏 ∈ [𝑡− 𝑛, 𝑡) such that

𝑠𝜏𝑖 < 𝑠𝑡−1
𝑖 . Then, 𝜏 ̸= 𝑡− 1 and thus 𝜏 + 1 ∈ [𝑡− 𝑛+ 1, 𝑡) which by the assumption
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of the lemma implies that 𝑠𝑡−1
𝑖 ≥ 𝑑𝜏+1

𝑖 . Also, because this is the maximal such 𝜏 we

have that 𝑠𝜏+1
𝑖 ≥ 𝑠𝑡−1

𝑖 . Thus, we have 𝑠𝜏𝑖 < 𝑠𝜏+1
𝑖 and 𝑑𝜏+1

𝑖 < 𝑠𝜏+1
𝑖 . This contradicts

the assumption that 𝑠 is an optimal lazy sequence, since there is a flow to 𝑖 at time

𝜏 + 1 which strictly exceeds the demand.

We derive the following immediate corollary:

Corollary 5.2.3. Fix an optimal lazy sequence 𝑠 and a parameter 𝑛 ≥ 1. If for

some 𝑖, 𝑡 we have 𝑠𝑡−1
𝑖 ≥ max𝜏∈[𝑡−𝑛,𝑡) 𝑑

𝜏
𝑖 then for any 𝜏 ∈ [𝑡 − 𝑛 + 1, 𝑡) we have

𝑠𝜏−1
𝑖 ≥ 𝑠𝜏𝑖 .

Proof. From Lemma 5.2.2, for any 𝜏 ∈ [𝑡−𝑛, 𝑡) we have that 𝑠𝜏𝑖 ≥ 𝑠𝑡−1
𝑖 ≥ max𝜏 ′∈[𝑡−𝑛,𝑡) 𝑑

𝜏 ′
𝑖 .

Therefore, 𝑠𝜏𝑖 ≥ max𝜏 ′∈[𝜏−𝑛′,𝜏) 𝑑
𝜏 ′
𝑖 , where 𝑛′ = 𝜏 − (𝑡 − 𝑛) > 0. Now applying

Lemma 5.2.2 again we obtain the corollary.

Lemma 5.2.4. Fix an optimal lazy sequence 𝑠 and a parameter 𝑛 ≥ 1. Then,∑︀
𝑖

∑︀
𝜏∈[𝑡−𝑛,𝑡) 𝑧

𝜏
𝑖 ≤ 1.

Proof. Clearly we care only about 𝑧𝜏𝑖 > 0. Fix a location 𝑖 and let 𝜏1, . . . , 𝜏𝑚 be all

the times 𝜏 ∈ [𝑡− 𝑛, 𝑡) for which 𝑧𝜏𝑖 > 0. Clearly,
∑︀

𝜏∈[𝑡−𝑛,𝑡) 𝑧
𝜏
𝑖 =

∑︀𝑚
𝑗=1 𝑧

𝜏𝑗
𝑖 .

First, if 𝑠𝑡−1
𝑖 ≤ max𝜏∈[𝑡−𝑛,𝑡) 𝑑

𝜏
𝑖 = 𝑔𝑡𝑖 , since ℎ𝑡

𝑖 ≤ 𝑠𝑡−1
𝑖 then 𝑧𝑡𝑖 = 0. Therefore, at

any time 𝜏𝑗 we have 𝑠
𝜏𝑗−1
𝑖 > max𝜏∈[𝑡−𝑛,𝑡) 𝑑

𝜏
𝑖 , which implies that we can apply Corol-

lary 5.2.3 at the times 𝜏𝑗.

We claim that 𝑠
𝜏𝑗−1
𝑖 > 𝑑

𝜏𝑗
𝑖 for 1 ≤ 𝑗 ≤ 𝑚 − 1. For contradiction assume that

𝑠
𝜏𝑗−1
𝑖 ≤ 𝑑

𝜏𝑗
𝑖 . We have

ℎ𝜏𝑚
𝑖 ≤ 𝑠𝜏𝑚−1

𝑖 ≤ 𝑠
𝜏𝑗−1
𝑖 ≤ 𝑑

𝜏𝑗
𝑖 ≤ 𝑔𝜏𝑚𝑖 ,

where the first inequality is from the definition of ℎ, the second follows from Corol-

lary 5.2.3, the third from our assumption, and the fourth from the definition of 𝑔.

This implies that 𝑧𝜏𝑚𝑖 = max{0, ℎ𝜏𝑚
𝑖 −𝑔𝜏𝑚𝑖 } = 0. In contradiction to our construction

that 𝑧𝜏𝑚𝑖 > 0. Therefore, 𝑠
𝜏𝑗−1
𝑖 > 𝑑

𝜏𝑗
𝑖 , which implies that ℎ

𝜏𝑗
𝑖 = 𝑑

𝜏𝑗
𝑖 .

3

3 This applies only to 𝑗 ≤ 𝑚− 1 since 𝑔𝜏𝑚𝑖 does not include 𝑑𝜏𝑚𝑖 but does include all previous 𝑑
𝜏𝑗
𝑖 .
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Since 𝑧
𝜏𝑗
𝑖 > 0, we have that 𝑧

𝜏𝑗
𝑖 = ℎ

𝜏𝑗
𝑖 −𝑔

𝜏𝑗
𝑖 . We showed that ℎ

𝜏𝑗
𝑖 = 𝑑

𝜏𝑗
𝑖 and 𝑔

𝜏𝑗
𝑖 ≥ 𝑑

𝜏𝑗−1

𝑖 ,

hence, 𝑧
𝜏𝑗
𝑖 ≤ 𝑑

𝜏𝑗
𝑖 − 𝑑

𝜏𝑗−1

𝑖 , for 2 ≤ 𝑗 ≤ 𝑚− 1.

Summing over all 𝜏𝑗 we have

∑︁
𝜏∈[𝑡−𝑛,𝑡)

𝑧𝜏𝑖 =
𝑚∑︁
𝑗=1

𝑧
𝜏𝑗
𝑖

= 𝑧𝜏𝑚𝑖 + 𝑧𝜏1𝑖 +
𝑚−1∑︁
𝑗=2

𝑧
𝜏𝑗
𝑖

≤ 𝑧𝜏𝑚𝑖 + 𝑧𝜏1𝑖 +
𝑚−1∑︁
𝑗=2

𝑑
𝜏𝑗
𝑖 − 𝑑

𝜏𝑗−1

𝑖

≤ 𝑧𝜏𝑚𝑖 + 𝑧𝜏1𝑖 + 𝑑
𝜏𝑚−1

𝑖 − 𝑑𝜏1𝑖

≤ ℎ𝜏𝑚
𝑖 − (𝑔𝜏𝑚𝑖 − 𝑑

𝜏𝑚−1

𝑖 ) + (ℎ𝜏1
𝑖 − 𝑔𝜏1𝑖 − 𝑑𝜏1𝑖 )

≤ ℎ𝜏𝑚
𝑖

For the last inequality note that 𝑔𝜏𝑚𝑖 ≥ 𝑑
𝜏𝑚−1

𝑖 and that ℎ𝜏1
𝑖 ≤ 𝑑𝜏1𝑖 .

Summing over all locations 𝑖 we have

∑︁
𝑖

∑︁
𝜏∈[𝑡−𝑛,𝑡)

𝑧𝜏𝑖 ≤
∑︁
𝑖

ℎ
𝜏𝑚𝑖
𝑖 ≤

∑︁
𝑖

𝑠
𝜏𝑚𝑖
𝑖 ≤

∑︁
𝑖

𝑠𝑡−𝑛
𝑖 = 1

where the last inequality uses again Corollary 5.2.3.

We now analyze stay for arbitrary relocation costs ℓ𝑖𝑗.

Lemma 5.2.5. At all times 𝑡, the demand served by stay is at least 𝜌/𝑘 of the total

demand.

Proof. Recall that ds(𝑠𝑡, 𝑑𝑡) =
∑︀

𝑖 min(𝑠𝑡𝑖, 𝑑
𝑡
𝑖) =

∑︀
𝑖 min

(︀
1
𝑘
, 𝑑𝑡𝑖
)︀
. Denote 𝑆 =

{︀
𝑖|𝑠𝑡𝑖 ≥ 1

𝑘

}︀
.

If we have |𝑆| ≥ 𝜌 then ds(𝑠𝑡, 𝑑𝑡) ≥ 1
𝑘
· |𝑆| ≥ 𝜌

𝑘
. Otherwise, since 1

𝜌
≥ 1

𝑘
the total

demand not in 𝑆 is at least 1− |𝑆|
𝜌

and it is completely served by stay. Therefore,

ds
(︀
𝑠𝑡, 𝑑𝑡

)︀
≥ |𝑆|·1

𝑘
+1−|𝑆|

𝜌
=

𝑘𝜌+ |𝑆|𝜌− |𝑆|𝑘
𝑘𝜌

=
𝑘𝜌− |𝑆|(𝑘 − 𝜌)

𝑘𝜌
≥ 𝑘𝜌+ 𝜌2 − 𝑘𝜌

𝑘𝜌
=

𝜌

𝑘
.
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Now we analyze rand(𝑝) and relate it to 𝑔𝑡𝑖 .

Lemma 5.2.6. Let ̂︀𝑠𝑡𝑖 be the random variable representing the supply of rand(𝑝)

time 𝑡 in vertex 𝑖. Then, E[̂︀𝑠𝑡𝑖] ≥ 𝑔𝑡𝑖𝑝(1−𝑝)𝑛. In addition, the expected social welfare

of rand(𝑝) is at least 𝑝(1− 𝑝)𝑛
∑︀

𝑖,𝑡 𝑔
𝑡
𝑖 .

Proof. Let 𝜏 = argmax𝜏∈[𝑡−𝑛,𝑡) 𝑑
𝜏
𝑖 , i.e., 𝑑

𝜏
𝑖 = 𝑔𝑡𝑖 . We lower bound the expectation of

̂︀𝑠𝑡𝑖 by the probability that rand(𝑝) sets 𝑠𝜏 = 𝑑𝜏 and keeps the supply until time 𝑡,

i.e., 𝑠𝑡 = 𝑠𝜏 . The probability that we have 𝑠𝜏 = 𝑑𝜏 is at least 𝑝. The probability

that 𝑠𝑡 = 𝑠𝜏 is at least (1− 𝑝)𝑛. Therefore, E[̂︀𝑠𝑡𝑖] ≥ 𝑔𝑡𝑖𝑝(1− 𝑝)𝑛, which implies that

the expected social welfare of rand(𝑝) is at least 𝑝(1− 𝑝)𝑛
∑︀

𝑖,𝑡 𝑔
𝑡
𝑖 .

Theorem 5.2.7. The algorithm composite(
√︀

𝜌/𝑘) = 1
2
stay + 1

2
rand(

√︀
𝜌/𝑘) is

( 1
2𝑒

√︀
𝜌
𝑘
)-competitive.

Proof. By Lemma 5.2.1 we have that 𝑂𝑃𝑇 =
∑︀

𝑡,𝑖 ℎ
𝑡
𝑖 ≤

∑︀
𝑡,𝑖 𝑧

𝑡
𝑖 + 𝑔𝑡𝑖 . We bound

separately
∑︀

𝑡,𝑖 𝑧
𝑡
𝑖 and

∑︀
𝑡,𝑖 𝑔

𝑡
𝑖 .

By Lemma 5.2.4 we can partition the time to 𝑇
𝑛
blocks of size 𝑛 each, and in each

the sum is at most 1, therefore
∑︀

𝑡,𝑖 𝑧
𝑡
𝑖 ≤ 𝑇

𝑛
. On the other hand, stay guarantees a

social welfare of at least 𝜌 · 𝑇
𝑘
.

We have that,

𝑂𝑃𝑇 ≤ 𝑇

𝑛
+
∑︁
𝑖,𝑡

𝑔𝑡𝑖 .

Using Lemma 5.2.5 and Lemma 5.2.6, we have

1

2
stay+

1

2
rand(𝑝) ≥ 𝜌

2𝑘
𝑇 +

1

2
𝑝(1− 𝑝)𝑛

∑︁
𝑖,𝑡

𝑔𝑡𝑖

For 𝑝 =
√︀

𝜌
𝑘
and 𝑛 = 1

𝑝
we bound the competitive ratio as follows:

𝜌 𝑇
2𝑘

+ 1
2
𝑝(1− 𝑝)𝑛

∑︀
𝑖,𝑡 𝑔

𝑡
𝑖

𝑇
𝑛
+
∑︀

𝑖,𝑡 𝑔
𝑡
𝑖

=
1
2

√︀
𝜌
𝑘
𝑇
√︀

𝜌
𝑘
+ 1

2𝑒

√︀
𝜌
𝑘

∑︀
𝑖,𝑡 𝑔

𝑡
𝑖

𝑇
√︀

𝜌
𝑘
+
∑︀

𝑖,𝑡 𝑔
𝑡
𝑖

≥ 1

2𝑒

√︂
𝜌

𝑘
.
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5.3 Social Welfare Maximization when ℓ𝑖𝑗 = 1: Impossibility Results

We show that no online algorithm can hope to achieve a competitive ratio bet-

ter (greater) than 𝑂
(︀√︀

𝜌
𝑘

)︀
. Recall, that Section 5.2 describes an online algorithm,

composite(
√︀

𝜌/𝑘), that achieves this bound on the competitive ratio. Ergo, composite(
√︀

𝜌/𝑘)

achieves the optimal competitive ratio, up to a constant factor.

Theorem 5.3.1. Fix the metric ℓ𝑖𝑗 = 1. No online algorithm can achieve a com-

petitive ratio better (greater) than 𝑂
(︀√︀

𝜌
𝑘

)︀
.

Proof. We first describe the proof for 𝜌 = 1 and then extend it to arbitrary 𝜌.

Consider the following stochastic demand sequence. At time 𝑡 we select at random

a vertex 𝑐𝑡 ∈ 𝑉 , and assign all the demand to it, i.e., 𝑑𝑡𝑐𝑡 = 1 and 𝑑𝑡𝑖 = 0 for 𝑖 ̸= 𝑐𝑡.

Clearly any online algorithm has an expected social welfare of 𝑇/𝑘.

Essentially, for the optimal offline we use the birthday paradox to show that its

social welfare is Θ(𝑇/
√
𝑘). Consider the following offline strategy. Partition the

time to intervals of size of 2
√
𝑘. We show that in any such interval the offline can

increase social welfare by at least 1 with constant probability.

Fix such a time interval. We claim that with constant probability some vertex

appears twice in the interval. If in the first
√
𝑘 times there is a vertex 𝑖 that appears

twice, we are done. Otherwise, we have
√
𝑘 distinct vertices. The probability that

we resample one of those vertices in the next
√
𝑘 time steps is at least 1/𝑒. Now, if

vertex 𝑖 appears twice in the interval then the offline algorithm can move at the start

of the interval to vertex 𝑖 and increase social welfare by at least 1. This implies that

the expected social welfare of this offline strategy is Θ(𝑇/
√
𝑘), which lower bounds

the expected social welfare of the optimal offline strategy.

Since the online algorithm has expected social welfare of 𝑇/𝑘 and the optimal offline

algorithm has expected social welfare of Θ(𝑇/
√
𝑘), the competitive ratio, for 𝜌 = 1,
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is bounded by 𝑂(
√︀

1/𝑘).

We now sketch how the proof extends to a general 𝜌 ≥ 1. In this case we partition

the 𝑘 vertices into 𝑁 = ⌊𝑘/⌈𝜌⌉⌋ disjoint subsets, each of size 𝑀 = ⌈𝜌⌉. (Note, that

𝑁 ·𝑀 ≤ 𝑘.) The 𝑁 subsets replace the vertices 𝑉 and each time we select a subset,

we give a uniform demand over the subset. (note that the demand per vertex is

1/𝑀 ≤ 1/𝜌.)

As before, any online algorithm has expected social welfare of Θ(𝑇/𝑁) = Θ(𝑇𝜌/𝑘).

Similar to before, there is an offline strategy that guarantees an expected social

welfare of Θ(𝑇
√︀

𝜌/𝑘). This implies that the competitive ratio is at most Θ(
√︀

𝜌/𝑘).

5.4 Extensions

In (Section 5.4.1 we show that the assumption that ℓ𝑖𝑗 = 1 was critical to achieve

the non-trivial competitive ratio of Section 5.2 unless 𝜌 (the fraction of demand at

any single vertex) was sufficiently small. We also consider restricting the demand

sequences by bounding the average variability in demand. In Section 5.4.2 we show

that the online algorithm that greedily matches supply and demand works well, the

average drift is sufficiently small.

5.4.1 Arbitrary Metric Spaces

We can apply the online algorithm stay and guarantee a competitive ratio of 𝜌/𝑘

as shown in Lemma 5.2.5. The following theorem establishes an impossibility result

when the costs are different than 1 (even if they are still identical).

Theorem 5.4.1. Fix some 1 > 𝜖 > 0, and consider costs ℓ𝑖𝑗 = 1 + 𝜖 for 𝑖 ̸= 𝑗.

No online algorithm has a competitive ratio better (greater) than (1+𝜖)2

𝜖
· 1
𝑘
for this

metric.

Proof. The idea is the following: we generate a demand sequence that at every time
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step demand is concentrated in a single vertex. We generate a random sequence of

vertices, such that no two successive positions are identical. We then duplicate every

position for a random duration. The duration, the number of successive demands

at that position, is geometrically distributed. We set the parameters such that no

online algorithm can benefit by switching between vertices. On the other hand, given

a sufficiently long duration of repeated demands for the same vertex, the optimal

schedule switches to this vertex.

We now describe the stochastic demand sequence generation. We first generate a

sequence of locations 𝑐. We set 𝑐1 = 𝑖 ∈ 𝑉 uniformly at random. For 𝑐𝜏 we set 𝑐𝜏 = 𝑗

where 𝑗 ∈ 𝑉 ∖ {𝑐𝜏−1} uniformly. In addition we generate a sequence of duration 𝑏

distributed geometrically with parameter 𝑝 = 1
1+𝜖

. Namely, 𝑏𝜏 = 𝑗 with probability

𝑝𝑗−1𝑝, for 𝑗 ≥ 1. We are now ready to generate the demand sequence 𝑑. For each

𝑐𝜏 = 𝑖 we associate a unit vector 𝑒𝑖 which has 𝑒𝑖,𝑖 = 1 and 𝑒𝑖,𝑗 = 0 for 𝑗 ̸= 𝑖. We

duplicate 𝑒𝑐𝜏 exactly 𝑏𝜏 times. We truncate the sequence at time 𝑇 , and this is the

demand sequence 𝑑.

First consider an arbitrary online algorithm. We claim that it does not gain (in

expectation) any social welfare by moving supply, and hence it’s expected social

welfare is 𝑇/𝑘. The argument is that the cost of moving 𝛿 supply to a new location

is (1 + 𝜖)𝛿. On the other hand, the expected duration in the new location is only

1 + 𝜖, so in expectation there is no benefit. For an online algorithm that does not

move any supply the expected social welfare is 𝑇/𝑘.

We now analyze the social welfare attained by an optimal offline algorithm. The

main benefit of an offline algorithm is that it has access to the realized 𝑏 = 𝜏 . It is

simple to see that if 𝑏𝜏 ≥ 2 then the offline algorithm has a benefit of 𝑏𝜏−(1+𝜖) > 0.

E[𝑏𝜏 − (1 + 𝜖)|𝑏𝜏 ≥ 2] Pr[𝑏𝜏 ≥ 2] =
∞∑︁
𝑖=2

(
𝜖

𝜖+ 1
)𝑖−1 · 𝑖− 1− 𝜖

1 + 𝜖
=

𝜖

1 + 𝜖
.

We now would like to sum over 𝜏 however the numbers summands in the sum is a
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random variable. Since we have a random sums of random variables we need to use

Wald’s identity. Since the expected number of summands is 𝑇
1+𝜖

and the expectation

of each is 𝜖
1+𝜖

we have that the optimal offline algorithm has an expected social

welfare of at least 𝜖
(1+𝜖)2

𝑇 .

This implies that no algorithm has a competitive ratio better than (1+𝜖)2

𝜖
1
𝑘
.

5.4.2 Restricted Drift

For any demand sequence 𝑑 let 𝛿 ≤ 1 be the average drift, i.e.,
∑︀

𝑡 ‖𝑑𝑡 − 𝑑𝑡−1‖𝑡𝑣 =

(1/2)
∑︀

𝑡 ‖𝑑𝑡 − 𝑑𝑡−1‖1 = 𝛿𝑇 .

Theorem 5.4.2. For the case where costs ℓ𝑖𝑗 = 1 for all 𝑖 ̸= 𝑗, setting demand and

supply equal (the match algorithm) gives social welfare of (1 − 𝛿)𝑇 , and is (1 − 𝛿)-

competitive.

For arbitrary ℓ𝑖𝑗, where ℓ𝑖𝑗 ≤ ℓmax, the match algorithm has social welfare of at least

(1− 𝛿ℓmax)𝑇 , and is (1− 𝛿ℓmax)-competitive.

Proof. Since for ℓ𝑖𝑗 = 1 the earthmover distance metric coincides with the total

variation metric, we have that at time 𝑡 the social welfare of match is 1 − ‖𝑑𝑡 −

𝑠𝑡−1‖𝑡𝑣 = 1−‖𝑑𝑡−𝑑𝑡−1‖𝑡𝑣 since match sets 𝑠𝑡−1 = 𝑑𝑡−1. Summing over all time steps

we get that the social welfare of match is 𝑇 − 𝛿𝑇 . Since the social welfare of opt is

at most 𝑇 we have that match is (1− 𝛿)-competitive.

For a general metric, note that em(𝑑𝑡, 𝑑𝑡−1) ≤ ℓmax‖𝑑𝑡 − 𝑑𝑡−1‖𝑡𝑣. This implies that

the social welfare of match is at least (1 − ℓmax𝛿)𝑇 , and hence it is (1 − ℓmax𝛿)-

competitive.

Theorem 5.4.3. For the metric ℓ𝑖𝑗 = 1, no online algorithm has a competitive ratio

better (greater) than 1− 𝛿/4.

Proof. Consider the following demand sequence. The demand sequence uses only

the first two locations, i.e., for all locations 𝑖 ̸= 1, 2 and times 𝑡 we have 𝑑𝑡𝑖 = 0. For
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each time 𝑡 we select the demand randomly from the following distribution.

𝑑𝑡 =

⎧⎪⎨⎪⎩ 𝑑𝑡1 = 1, 𝑑𝑡2 = 0 With probability 1
2

𝑑𝑡1 = 1− 2𝛿, 𝑑𝑡2 = 2𝛿 With probability 1
2

.

The generated sequence has an expected drift of 𝛿𝑇 . Any online algorithm 𝐴𝐿𝐺

has, in expectation, social welfare of (1 − 𝛿)𝑇 . The main point is that opt has a

strictly better expected social welfare.

Consider the online algorithm match as a starting point. Partition the time to 𝑇/2

pairs of time slots, [2𝑚 − 1, 2𝑚]. Consider the event that 𝑑2𝑚−2 = 𝑑2𝑚 ̸= 𝑑2𝑚−1.

This event occurs with probability 1/4. In such an event we can modify match and

at time 2𝑚 − 1 set 𝑠2𝑚−1 = 𝑑𝑚. (This requires knowing the future, but we are

interested in opt so it is fine.) Such a modification increases the social welfare by

2𝛿 (lowering the serviced demand by 2𝛿 and lowering the movement costs by 4𝛿).

Therefore, the expected social welfare is improved by (1/4)(2𝛿)(𝑇/2). This implies

that the expected social welfare of opt is at least (1− (3/4)𝛿)𝑇 .

This means that no algorithm is more than 1−𝛿
1−(3/4)𝛿

-competitive. This implies that

no online algorithm can have a competitive ratio better than (1− 𝛿/4)𝑇 .
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VI Discussion

Social welfare in our setting depends on the taxicabs and their locations (the supply

𝑠), passengers, their locations and values (the profile 𝑃 ), and distances between

taxicabs and passengers. In this thesis we introduce passenger-taxicab equilibria,

prove their existence and give poly time algorithms for computing surge prices so

as to maximize social welfare.

We have shown that although time series are a critical part of the social welfare gains

of any taxicab provider, no algorithm can hope to achieve significant worst-case

ratios. Thus, in the future different relaxations to the problem might be considered

in order to allow for more adaptive algorithms.

When computing the surge prices above, we have implicitly assumed that taxicab

locations are known (e.g., via GPS). Contrawise, passengers have no incentive to

misreport their location (trivially) and valuation (as proved above). An interesting

variation on our models would be to consider taxicabs declaring their own distances

to passengers. Those would not be physical distances but rather a personalized cost

for service at a given location.

If such personalized costs are verifiable, and social welfare is redefined as the sum of

passenger values served minus the personalized service costs, then the surge prices

computed in this thesis maximize this new social welfare. This allows for more

robust pricing mechanisms which allow us to incorporate issues such as “start up

costs” which are a bonus for drivers to get out of bed.

Taxicab personalized costs are private to the taxicab. Thus, any surge price compu-

tation would have to contend with private values of the taxicabs as well as private

values for the passengers. It is easy to see that without Bayesian assumptions on

the private values, little can be done. Just consider a passenger and a taxicab at
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the same location, they need to agree upon a price. In the Bayesian setting this is

called the bilateral trading problem and there is a rich literature on the topic.
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 תקציר

 

 uber כגון שירותים – העולם ברחבי האחרונות בשנים משמעותית בעליה נמצאים שיתופיים שירותים   

 בגמישות נעוץ האלה השירותים של היתרון. למקום ממקום נוסעים להסיע לנהגים מאפשרים lyft-ו

 גמישות להם מאפשר ובכך כרצונם בשעות לעבוד מסוגלים הנהגים. לנוסעים והן לנהגים הן מספק שהוא

 בסיכוי ולקבלה זמן בכל נסיעה לבקש ומסוגלים גבוהה ברמה שירות מקבלים לעומתם הנוסעים. רבה

 .הגבו

 במחירים משתמשים השירותים שונים ומקומות בזמנים והנהגים הנוסעים תכמו את לאזן מנת על

 surge בלעז) באיזור המחירים את יעלה השירות מנהגים נוסעים יותר יש שבהן בשעות – דינאמיים

pricing )יחליט כיצד אך. לאיזור נהגים יותר ימשוך וכן בנסיעה שיחפצו הנוסעים כמות את יוריד ובכך 

 ?נתונים ורגע מקום בכל המחיר היהי מה השירות

 לבין ביניהן המרחק את משלמות המוניות המודלים בשני) הבעיה לייצוג שונים מודלים בשני נתעניין

 עבור הנוסעים של מהשערוך מתעלם אך רציף אחד –( הנסיעה את ולאפשר אליו להגיע מנת על הנוסע

 אלגוריתמים של יעילותם את נבחן, כן כמו .לנסיעה שערוך יש נוסע לכל ובו בדיד והשני הנסיעה

 .הרציף המודל עבור( online) מקוונים

 – מהבעיות אחת כל עבור תוצאות מציגה זו עבודה

 שכל כך מחירים למצוא מנת על פולינומיאלית ביעילות אלגוריתם נראה – הרציף במודל 

 הרווחים את עבורה שתשיג בצורה תפעל מונית שכל ההנחה תחת זאת. שירות יקבלו הנוסעים

 האפשרי היחיד המאוזן המצב שזהו מראים אנחנו, בנוסף. מחירים אותם תחת המקסימליים

 .מחשבים שאנו המחירים עבור

 שהמצב כך מחירים למצוא מנת על פולינומיאלית ביעילות אלגוריתם נראה – הבדיד במודל 

 סכום היא המערכת של התועלת. יציב מצב הוא המקסימלית בתועלת נמצאת המערכת שבו

 כמו(. המוניות של התשלום) המרחקים סכום פחות שירות קיבלו אשר הנוסעים של השערוכים

 וכן עבורה האופטימלית בצורה מגיבה מהמוניות אחת כל המחירים שתחת נראה אנחנו, כן

 .שלו האמיתי השערוך את למערכת להציג היא נוסע כל עבור האופטימלית האסטרטגיה

 מ יותר להשיג נוכל לא, מחירים לקבוע היכולת בהינתן שגם נראה – ןהמקוו במודל- O(
l

k
) 

 הוא k כאשר, המיקומים בין המרחקים על הגבלות ללא האופטימלי האלגוריתם של מהתועלת

-ו במודל המיקומים מספר
1

ρ
 אלגוריתם נראה. מיקום בכל נוסעים של המקסימלי המספר הוא 

-מ יותר להשיג נוכל לא 1-ל שווים המרחקים כל כאשר, בנוסף. זה חסם שמשיג טרוויאלי

O(√
𝜌

k
 .הזה החסם את שמשיג אלגוריתם נראה. האופטימלי האלגוריתם מאשר תועלת (
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