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Abstract

We consider a social planner faced with a stream of myopic selfish agents. The goal of the social planner
is to maximize the social welfare, however, it is limited to using only information asymmetry (regarding
previous outcomes) and cannot use any monetary incentives. The planner recommends actions to agents,
but her recommendations need to be Bayesian Incentive Compatible to be followed by the agents.

Our main results is an optimal algorithm for the planner, in the case that the actions realizations are
deterministic and have a limited support, making significant important progress on this open problem. Our
optimal protocol has two interesting features. First, it always completes the exploration of a priori more
beneficial actions before exploring a priori less beneficial actions. Second, the randomization in the protocol

is correlated across agents and actions (and not independent at each decision time).
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Chapter 1

Introduction

The inherent trade-off between exploration and exploitation is at the core of any reactive learning algorithm.
Multi-arm bandit is a simple model which highlights this inherent trade-off. Multi-arm bandits can model a
variety of scenarios, including pricing (where the actions are prices), recommendation (e.g., where actions

are news articles) and many other settings.

To a large part, multi-arm bandits are viewed as a model for learning and optimization in which the
planner can select any available action. However, when we are considering human agents as the entities
performing the action, then incentives become a major issue. While a planner can recommend actions to
the agents (in order to explore different alternatives), the agents ultimately decide whether to follow the
recommendation given. This raises the issue of incentives in addition to the exploration-exploitation trade-
off.

The planner can induce explorations in many ways. The simplest is using monetary transfers, paying
the agents in order to explore (for example, Frazier et al. [FKKK14]]). We are interested in the case when
the social planner is unable or prefers to avoid any monetary transfers. (This can be due to regulatory
constraints, business model, social norms, or any other reason.) The main advantage of the planner in our
model is the information asymmetry, namely, the fact that the planner has much more information than the

agents.

As a motivating example for information asymmetry, consider a GPS driving application. The appli-
cation is recommending to the drivers (agents) the best route to drive, given the changing road delays, and
observes the actual road delays when the route is driven. While the application can recommend driving
routes, ultimately, the driver decides which route to actually drive. The application needs periodically to
send drivers (agents) on exploratory routes, where it has uncertainty regarding the actual delay, in order to
observe their delay. The driver (agent) is aware that the application has updated information regarding the
current delays on various roads. For this reason, the driver (agent) would be willing to follow the recom-
mendation even if she knows that there is a small probability that she is asked to explore. On the other

extreme, if the driver would assume that with high probability a certain recommended route has a higher



delay, she might drive an alternate route. This inherent balancing of exploration and exploitation while

satisfying agents’ incentives, is at the core of our work.

The abstract model that we consider is the following. There is a finite set of actions, and for each action
there is a prior distribution on its rewards. A social planner is faced with a sequence of myopic selfish agents,
and each agent appears only once. The social planner would like to maximize the social welfare, the sum of
the agents’ utilities. The social planner recommends to each agent an action, and if the recommendation is
Bayesian incentive compatible, the agent will follow the action. This model was presented in Kremer et al.
[KMP14]] and studied in [MSS15,IMSSW 16, MSW18]]. The work of Kremer et al. [KMP14] presented an
optimal algorithm for the social planner in the case of two action with deterministic outcome. (Deterministic
outcome implies that each time the action is performed we receive the same reward, and the uncertainty is

what that value will be, which is govern by the prior distribution.)

Our main focus is to make progress on this important open problem of providing an optimal policy for
this setting. For this end, we consider a somewhat more restricted setting, where each action has a finite
support. If we assume that there are only two possible values, say {—1, +1}, then the task becomes trivial.
We can simply order the agents according to their expectation, and ask them to explore until we reach an
action of value +1, and then recommend it forever. This would work even if we provide the agents with the
realizations of the previous actions. In this work we take a small, yet significant, step away from this trivial
model. We assume that the best a priori action has a larger support. For the most part we analyze the case
that the support of the a priori best action is {—1,0,+1}, while the other actions have support {—1,+1}.
We do extend our results to handle a more general setting of a continuous distribution with full support on

[—1, 1] for the a priori best action.

The simple model has a significant complexity and allows us to draw a few interesting insights. To un-
derstand the challenges, consider the case that the actions have a negative expected reward. (For simplicity,
we assume that the actions are sorted by their expected reward, where action 1 has the highest expecta-
tion.) In such a case, if the realization of action 1 is +1, clearly the planner would recommend it for all the
following agents. If the realization of action 1 is —1, clearly any other action is superior to it. However,
the challenging case that the realization of action 1 is 0. In this case, the selfish agents would prefer to
perform action 1 with 0 reward (since other actions have negative expected reward). The challenge to the
social planner is to incentivize the agents to explore. The main idea is that of information asymmetry. When
the planner recommends action 2, the agent is unsure whether the social planner observed that outcome of
action 1 is —1, in which it would like to perform it, or whether the social planner observed that the outcome
is 0 and asks the agent to explore. The social planner, by a delicate balancing of the exploration probability,
can make the recommendation Bayesian incentive compatible.

Our main result is an optimal algorithm for the social planner when faced with k actions, both for
support {—1,0,+1} and [—1, +1] for the best apriori action. First, the algorithm makes sure that the BIC
constraints are tight, which is a simple intuitive requirement and is clearly required for optimality. However,

we need to exhibit much more refine properties to construct an optimal algorithm. An interesting issue re-



garding the exploration order is whether when we force a tight BIC constraint we might be forced to explore
an action j before we know the values of actions 1,...,j — 1. We show that this is not the case in the opti-
mal algorithm, namely, the exploration of action j starts only after the social planner knows the realizations
of all the better a priori actions, i.e., 1,...,5 — 1. While this seems like an intuitive outcome, it relies on
the very delicate way in which our algorithm performs its randomization. (Recall that the recommendation
algorithm uses randomization to balance between exploring and exploiting.) The implementation of the
randomization is the second interesting property of our algorithm. In our randomization, we use a correla-
tion between agents and actions. Specifically, the randomization selects for each action a random agent that
might potentially explore it (if needed). Special care needs to be taken to make sure that for different actions
we always select different agents.

We show that our algorithm does not only maximize the social welfare but in addition minimize the
exploration time, the time until the social planner does not need to explore any more. For the most part
we assume that the number of agents is large enough that the social planner completes the exploration. We

show also how to derive the optimal policy in the case of a limited number of agents.

1.1 Related works

As mentioned, the work of Kremer et al. [KMP14| presented the model and derived the optimal policy
for two deterministic actions. Mansour et al. [MSS15] derive tight asymptotic regret bound in the case
of stochastic actions as well as a reduction from an arbitrary non-BIC policy to a BIC one. Bahar et al.
[BST16] enrich the model by embedding the agents in a social network, and allowing them to observe their
neighbors. Mansour et al. [MSSW16] extended the model to allow a multi-agent game in each time step,
rather than a single agent. Mansour et al. [MSW 18| consider the case of two competing planners.

Frazier et al. [FKKK14] consider a model with monetary transfers, where the social planner can pay
agents to explore. Che and Horner [CH13]] consider a setting with two binary-valued actions and continuous
information flow and a continuum of agents. Finally, Slivkins [Sli17] has an excellent overview of the topic.

A related topic is that of Bayesian Persuasion by Kamenica and Gentzkow [KG11]] where the planner
tries to infer a value of an “unobservable” state using interaction with multiple agents. See [DKQ16} [DX]
DX16| for a more algorithmic perspective of Bayesian Persuasion.

Multi-armed bandits [[CBLO6, (GGW11] is a well-studied model for exploration-exploitation trade-off
both in operations research and machine learning. The main focus in learning multi-arm bandits is on

designing efficient algorithms that have a guaranteed performance compared to the best single action.



Chapter 2

Model

Let A :={1,2, ..., k} be the set of possible actions. The prior distribution D = Dy X Dg X ... x Dy, defines
random variables X; for the rewards of actions j € A. The reward of action j € A, denoted by z;, is

sampled from D (it is sampled once, and any application of action j yields the same reward ).

In this work we focus on the case that the support of distribution of Dy is {—1,0,+1} (the case of
support [—1, 1] appears in Section [3). The support of distribution D;, for j > 2, is {+1,—1}. We denote
by p§ = Pr[X; = a], which implies that the distribution D, for j > 2, has a single parameter, pjl- (and

p}l =1- pjl). W.Lo.g. we assume that pjl- > 0, otherwise the action has a constant reward of —1.

The interaction between the planner and the agents proceeds as follows. At time ¢, the ¢-th agent arrives,
and the planner recommends to the ¢-th agent action oy € A, which is called the recommended action. Given
the recommended action oy, the ¢-th agent selects an action a;, receives a reward z,,, and leaves. Formally,
the t-th agent has a utility function u; and ui(a) = x, if action a has been explored, else E[u.(a)] = pq.
A history at time t, hy, contains all the previous chosen actions by the agents, i.e., a1, ..., as, and their
corresponding rewards, Zq,,...,Zq,. A strategy for the planner is a recommendation policy, m, where
mi(hi—1) = A\ € A(A), where A(A) is the set of distributions over A, ie., A(A) = {\ € RF|Vj €
A, M\[j] > 0and Z;‘f’:l)\t[j] = 1}. The value of \[j] is the probability that o; = j, i.e., \¢[j] = Prloy = j].

A recommended action, oy, is Bayesian incentive-compatible (BIC) if for any action j € A, we have
E[u¢ (o) — ut(5)] > 0. Such constrains are called BIC constrains. L.e., there is no other action j € A that
can increase agent t’s expected reward, based on the prior D, the policy 7, the recommended action oy, and
the agent’s place in line ¢, all of which the agent observe (note that the agent does not observe the history
ht—1). A recommendation policy for the planner, 7, is BIC if all it’s recommendations are BIC. Namely,
for any agent ¢ and any history h;_1, the recommendation o, is BIC, i.e., for any action j € A, we have
Elug(or) — ue(j)loe] = 0.

The social welfare is the expected cumulative reward of all the agents. The social welfare of a BIC
recommendation policy  is: SWr () := E[XL ui(01)] = B[S us(me(hi—1))],

The Bayesian prior D on the rewards, is a common knowledge to the planner as well as all the agents.



W.l.o.g, we restrict the planner’s recommendation policy to be BIC, which assures that the agents follow the
recommended actions. Our main goal is to design a BIC algorithm that maximizes social welfare (i.e., the

cumulative reward of the agents).



Chapter 3

BIC Algorithm for supp(D;) = {—1,0,1}

We start with a simpler case that will have most of the ingredients of the more general case. We restrict
the first action to have only three possible values {—1, 0, 1}, namely, the support of Dy is {—1,0,1}. The
second restriction is that we assume that there are only three actions, i.e., & = 3. The terminology is provided
for k-actions settings, but some of the intuition and motivation are provided for three actions settings. The
proofs appear in Appendix [B| The algorithm for the general case of k > 3 actions, and some of its proofs
are in the appendix [A]

Given this special case, we claim that the challenging case is when 0 > pg > ps. In the case that
w1 > e > us > 0, we can simply recommend to the first agent action 1, i.e., 037 = 1. When we observe
x1, then: (1) If ;1 = 1, we recommend to all the agents action 1,i.e., 0, = 1. 2)If x1 = 0 or z; = —1,
we recommend to the second agent action 2, i.e., oo = 2. This is BIC since po > 0 > x; in this case. If
r9 = 1 we recommend to all the agents oy = 2. Otherwise, o = —1, and we recommend to the third agent
action 3, i.e., 03 = 3. Again, this is BIC since u3 > 0 > x1 > xo. Either way, all the agents after the first
three will be performing the optimal action. The above policy maximizes social welfare even if we do not
restrict the information flow, and the planner announces to the agents the actions’ realizations. In the case
that ©1 > pe > 0 > ug, we can execute for the first two agents the above strategy, and essentially reduce
the number of actions to two, for which the optimal policy was given by Kremer et al. [KMP14]. For this
reason, we assume that 0 > s > ps. (And for k actions, we assume 0 > g > -+ > ug.)

To build intuition we start with a simple example, in order to explain how a BIC policy can give a

recommendation oy # 1.

Example 1. Consider a recommendation oy = 2 to agent t. The possible reasons for it is one of the
following:
1. Exploitation driven recommendation: Action 2 is the best action given the history. This can be due
to one of the following cases:
(a) A known reward: The planner already observed that xo = 1, which is the maximum possible

reward. From that time, the recommended action is oy = 2, as it has the maximum possible



reward.

(b) An unknown reward: The observed realizations have the minimum possible reward, i.e., xt1 =

—1 and maybe x3 = —1. Given this realization, we know that u;(2) = ps > x1 (and in case that
x3 = —1, also uy(2) = pe > x3). This makes action 2 the best action to execute, considering
the history.

2. Exploration driven recommendation: The planner has not yet observed an action with the best possi-
ble reward (i.e., 1), and observed x1 = 0. Since we assume that O > us > us, such a recommendation

would not benefit for agent t (but the planner is recommending it since it might benefit future agents).

Fortunately, the agents do not know the realizations of the actions’ rewards, hence cannot infer the
reason for their recommendations. This is where the information asymmetry translates into an advantage for

the planner, and enable her to maximize social welfare.

3.1 Information States

It would be very useful to partition the histories depending on the information that the planner has, regarding
the realized values of the actions. Since we have only three actions, we have at most three realized values,
and we can encode them in a vector of length three. We use the * symbol to indicate that a value is still
unknown. For example, (0, —1, *) implies that we know that z1 = 0, 2o = —1 and we never explored the
value of X3. Any history of the first £ — 1 agents which is compatible with zZ = (0, —1, ) is assigned to
the information state S7. The recommendation to the ¢-th agent would depend on the planner’s information
state.

Note that the agents do not know the planner’s information state. However, given the recommendation
oy, and the planner policy 7, they can deduce the probabilities of each state, conditioned on the recommen-
dation o; they received. Those probabilities allow them to test whether the recommended action is indeed
BIC, i.e., maximizes their expected reward given the information they observe.

Going back to example[I| we can now describe it using information states.

Example 2. Consider a recommendation to agent t, o, = 2. Every possible reason for it can be one of the
following:
1. States that result in exploitation driven recommendation, action 2 either has:

(a) A known reward: The planner has already observed action 2’s reward and it is the maxi-

mum possible reward. lLe., the planner is in one of the following information states: St<7l’1’*>,

St(—l,l,—l) or S(O,l,*)

t .
(b) An unknown reward: The only action with a better prior expected reward compared to action

2, action 1, has been explored and resulted in minimal reward (i.e, xt1 = —1). Action 2 that
now has the best utility, has not yet explored. We denote this state with Sé_l’*’*>. (An additional
possible state is Sé_l’*’_m where the planner also observed that x5 = —1.)



The set of these exploitation states is denoted by F{ ! for the reason that following a recommendation
for action j in such states produces higher expected utility for agent t compared to action 1.
2. States that may result in exploration driven recommendation: Action 2 has not been explored yet,

whereas x1 = 0. This implies that the planner is either in information state Sﬁo’*’ﬂ , or in information

state Séo’*’_n.
The set of these exploration states is denoted by I'] ", for the reason that following a recommendation

for action j in such states produces lower expected utility for agent t then selecting action 1.

3.2 The optimal BIC recommendation algorithm

Given the information states, we can describe the planner’s recommendation policy. The recommendation
policy will map the information states to recommended actions. In the case of an “Exploration driven
Recommendation” the mapping would be stochastic, to make sure that the incentives are maintained.
Algorithm 3-actions isdescribed in Table [3.1] defining what recommendation to give in each infor-
mation state.

Algorithm 3-actions uses two functions, fZ(y) and f3(y), which control the exploration and
are based on a mutual parameter y, which will be selected uniformly at random in [0, 1]. The states are
marked also as terminal states if there is a unique recommendation for all future agents, and exploration
if the recommended action might not have the highest expected reward (S7 € I‘{ ). States not marked as
exploration result in a exploitation driven recommendation, and are therefore exploitation states (Sf € F{ ).

Looking at Algorithm 3-actions in Table [3.1] might be intimidating, however, in most of the
information states the recommendations are rather straightforward. In the initial information state, i.e.,
(%, %, %), the only BIC recommendation is action 1, since the first agent knows that the planner has no
additional information beyond the prior. In any information state in which some x; = 1, the planner
recommends that action, the agents get the maximum reward, and the state does not change (i.e., terminal
state). In any information state in which all the realized actions are x; = —1, the planner recommends an
unexplored action with the highest expected reward, the agents get the maximum expected reward, and after
it the state does change to include the new explored action.

The main challenge is in the cases that the realized value of action 1 is 1 = 0 and 0 > o > ps. In
such information states we have a tension between the agent incentive, to perform action 1 and maximize
her expected reward, and the planner incentive to explore new actions to the benefit of future agents. Indeed
we have two information states in which we explore stochastically, balancing between the incentives of the
agent and making the recommendation BIC. In information state (0, *, x) the planner explores with some
probability action 2, and in information state (0, —1, %) the planner explores with some probability action 3.

We stress that the stochastic exploration is not done in a “independent” way, but rather in a coordinated
way through the parameter y € [0, 1], which is selected initially uniformly at random, and never changes.

The property that we will have is that while we are in information state (0, *, *) we eventually have an agent



Recommendation Table. Policy Parameters: (y,t)
State Information state Recommendation (o) Terminal | Exploration
s Xy =« 1
st xi=1 1 v
S Xy = —1, Xy =« 2
STl Xy =1, Xy =1 2 v
SV X, = S, Xy = | 3
-1, X3 =%
sl X, = —1,X, =3 v
1, X3=1
Sﬁ_l’_l’_l X1 = -1, X5 =1 v
1, X3 =1
S X =0, X5 =+ fRy) € {1,2) v
SOt X =0,Xy =1 2 v
SO X =0,X0 = —1,X5 = | f(y) € {1,3} v
*
SO X =0, X, = —1,X3 = | 3 v
1
SO X =0, X, = —1, X3 = | 1 v
-1
Séo’*’_n X1 = 0,X, = %, X3 = | infeasible[corollary | v
—1
Séo’*’n X1=0,Xo=%,X3=1 infeasible[corollary v
SOV Xy = 0,X2 = 1,X3 = | infeasible[corollary[14] | v/
—1

Table 3.1: Algorithm 3-Action’s recommendation policy

that explores action 2, and its index is f2(y). Similarly, while we are in information state (0, —1,*) we
eventually have an agent that tries action 3, and its index is f3(y). We need to take special care to make sure
that agent f2(y), which explores action 2, is different than agent f3(y), which explores action 3. (Clearly,

each agent can explore at most one action.) This is why we use a coordinate sampling (to be define later).

We also show that some information states are never reachable, namely, (0,x,1), (0,*,—1) and
(0,1, —1). This will be due to the fact that for any y € [0, 1] we will show that f2(y) < f3(y), which
implies that we complete the exploration of action 2 before exploring action 3. As we extend to &k actions,
we use the same y to coordinate between the stochastic exploration of all the actions. Then again, by show-
ing that for any pair of actions i < j, it holds that f(y) < f7(y), we deduce that the order in which the

actions are explored is from the a priori highest expected reward to the lowest, i.e., 2,3, ..., k.



3.3 Exploration Rates

In this section we formalize the exploration rate that the planner can have. A BIC exploration rate, de-
noted by g, measures the probability that a BIC recommendation o; = j is given when the planner is
in some exploration state. Namely, for any BIC recommendation policy 7, the BIC exploration rate is
ZSEGF{* Pr,[S7, 0 = j], where Pr,[S7, 0; = j] is the probability that the planner is in S7 at time ¢, and
recommends to explore action j, assuming that all the recommendations until the current agent use 7.

Let 7 denote a BIC recommendation policy that recommends actions base on Table 3.1] (or Table[A.I|for
k > 3 actions) and uses maximum BIC exploration rates for every agent ¢ and for every j € A. Maximal BIC
exploration rate, denoted by qf is the maximum probability of exploration, subject to the BIC constraints,
and bounded by the probability that the planner is in exploration state at time ¢ with j as a recommended

action. lLe., q{ is the solution of:

¢ =max gq
q

7 . . 7 . q
8.t Z PriSilor = j] Blu() — w(1)[SF, 00 = j] + p Prafor =] = 0 A
SZerit .
0<q< z
>q= Z l?rr[St]
SZery~

The first constraint makes sure that o; is a BIC recommendation. Its first summand is a summation taken
over each exploitation state probability, multiplied by the “gain” from choosing action j instead of action
1 in this state. The second summand is the “loss” of the agent, namely the prior expected reward of action
J (.e., uj;), multiplied by the exploration rate ¢ and divided by the probability of the event o, = j (which
includes also the exploration probability ¢). The terms “gain” and “loss” are from the agent’s perspective.
By looking at Table we can see that when oy = j is given in exploitation state, the expected utility
difference is positive, therefore the agent has a “gain” of reward in these states. On the other hand, as we
assume that p; < 0, the agent has a “loss” of reward in the exploration states (all of which share x1 = 0).

When this entire expression is non-negative (i.e., the first constraint holds), it is BIC.

Notice that 7 is defined as a BIC policy, and as such every recommendation o; = j is BIC, i.e., its
BIC constraints must be met for every action ¢ # j. We argue that in 7, if the BIC constraint of action
j compared to action 1 is satisfied, all the other BIC constraints for agent ¢ are met. Therefore, we only
refer to the BIC constraint with respect to action 1 when calculating qg . The reason is that for any pair of
actions a < b, and for every y € [0, 1], we show that f%(y) < f°(y), i.e., the exploration of action a is
done before the exploration of action b. Along with Table that represents the recommendations of 7,
we deduce that whenever a recommendation o; = j is given, the reward of action j is either unknown (i.e,
the expected reward is p; > —1) or X; has been observed and z; = 1. Now, for any action ¢ such that

1#i <34, fi(y) < f/(y) yields that X; has been observed and z; = —1. As for every action j < 1, since

10



fI(y) < fi(y) yields that X; has not to been sampled yet, and from the assumption that ; < ; we know
that p; < pj < Elug(j)]. Either way E[us (o) — ue(i)] > 0.

The second constraint in (3.1I)) prevents the exploration rate from exceeding the probability that the
planner is in exploration state (Sf € F{ 7). This guarantees that we can actually use of all of ¢ to give an
exploration driven recommendation. Namely, ¢ = > sFeri Pr:[S7, 00 = 7] <> sFeri- Pr;[S7].

Let n;j denote the index of last agent t < T that might explore action j, i.e., nj := argmax;(q] > 0). For

convenience, for every agent ¢ and action j, we denote

. 0 t<j
AJ = 1. =1, 1~~t—1 j
t 2ijz<jpi +p]' Z-,-:j qr >
1-2p} =J
and
0 1<y
Jo._ -1 .
Bl =qp) =31 ¢4 t>j=2

N t—1 j ,
Pjoy 2ormjr G~ 2@t >3

3.4 Computing the Maximum BIC Exploration Rates
We now calculate the maximum BIC exploration rates. (The next lemma’s proof for & = 3, namely, ¢? and
¢}, is in Appendix B and the proof for k& > 3, i.e., any qg , 1s in Appendix )

Lemma 3. Given q3,...,q7 ,, we have

, Jo t=1
2= (3.2)
t (A2 B2
min(A;7, By) t>2

And for action j > 3, given ¢' fori < j — 1 and 7 < t — 1, assuming qgjll = A{:ll andt < nj_1, we have

(o t<j
g = o (3.3)
min (A}, BY) t>g
In addition we show that qg < p;_ll A{:ll.

The next lemma derives the value of qg (without an assumption on qgjll ).

Lemma 4. For action j > 3, given ¢' fori < j — land 7 <t — 1, such that t > n;j_1, we have

o t<j
q = o (3.4)
min(Ag, Bf) t>j

11



The following are consequences of Lemma [3]and Lemma 4]
Lemma 5. For every j > 1, the exploration rate of agent j for action j is strictly positive, i.e., qj > 0.
The following lemmas relate the exploration rates q{ and the parameters A{ and Btj .
Lemma 6. For every action j and agent t > j and that qgfl > 0, it holds that A? < A{—l < A{.
Lemma 7. For every action j, for every n; >t > n;_1, it holds that
1. Bl > B/ >0

2. qg > 0.
3. Ifqg = B{(> 0), then it holds that qfﬂ- = BgH = 0 for every i > 1, therefore t = n; and we stop.

3.5 Properties of the Exploration Rates

In this subsection we show properties regarding the exploration rates which later enable to show that 7 is

well defined, that 7 eventually reaches a terminal state, and finally, that it maximizes expected social welfare.
The following theorem is a corollary to Lemmas [3|-|7} states the exact exploration rates.

Theorem 8. For action 2 and for agent t we have,

(

0 t=1
—11 1 t—1 2
2P PyHP) 2y O 2 <t < ny
¢ = 1-2p}
;=
0 -1 2 _
0 t > no
For action j > 3 and agent t we have,
0 t<y
2piicsp; 4o} S 0 ,
! =
—1 n;i—1 j—1 n;—1 j o

P ZTJ:j_l qr - ZT]:]‘ qr t=mn;
0 t> n;

Let p; = p(lJHg;zl D; 1. We show that p; is the total exploration rate of action j.

Lemma 9. For T > ny, the probability for exploration driven recommendation for any action j is pj, i.e.,

Pr[3t: oy =4, 57 €7 =p;
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3.6 Determining the explorers

We now explain how the algorithm chooses which agent will explore each action. Recall that the planner
knows the history h;_1, and therefore knows the current state at time ¢, as defined in Table She then
sets mi(ht—1) = A¢ to be the corresponding recommendation for the current state in Table Together
with the policy parameters and the functions f7 that we later define in Definitions 10| and respectively,

she returns o; ~ )\; as the recommended action.

Definition 10. a valid input for our algorithm is a triple (y,t, Q) such that:
1. y € [0,1] is a real number that is sampled from a uniform distribution in [0, 1].
2. tindicates the agent number (the agent for which the algorithm is run).
3. Q = {¢’lj € {2,....,k}} is a set that contains exploration rates vectors for each action excluding

action 1, such that ¢’ [t] := q{ (i.e, the exploration rate for agent t with j as recommended action).
We now define the functions f7 that determines which agent will explore action j.

Definition 11. Let f7 : [0,1] — {1, ...,n;} be the function that maps a real number y € [0, 1] to an agent t

such that
t—1

F(y) = argmax, (Y ¢} < yp;)

=1

Let ft] : [0,1] — {1,7} be the function for action j and agent t that maps a real number y € [0,1] to a

recommendation for agent t, i.e., oy, and is defined as follows:

i Fy) =t

1 else

) =
The following lemma shows that different actions are explored by different agents, and that better a
priori actions are explored always earlier.
Lemma 12. For every y € [0, 1], and for every action j, f(y) < fi+1(y).
Since f7(y) = nj, Lemma|12|implies the following corollaries.
Corollary 13. For every action j, it holds that nj +1 < njiq

Corollary 14. Action j is explored before any action i > j, making every state S? such that Sf [7] = * and
SZ[i] # * (e.g., S,fo’*’_n) infeasible for every agent t. Namely,

T}~ = {S7ISFI] = 0,v1 < i < j: Sfli] = —1,Vi > j : Sfli] = +]}

| =1.

Hence,
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We finish this chapter by showing that 7 is well-defined in a sense that every agent gets exactly one

action as a recommendation in Theorem [T3]

Theorem 15. Recommendation policy 7 is a well-defined recommendation policy, since for every y € [0, 1]
and for pair of actions action i # j, f'(y) # f?(y), and there exists t € {1,...,n;} such that f(y) = t.

This implies that every agent receives a recommendation for exactly one action.

i
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Chapter 4
Optimality

4.1 Finite exploration

Clearly the flow between the information states is acyclic. From Table [3.1} when the planner is in a non-
terminal state, she is exploring, with some probability. This implies that after nj there is no more explo-
ration. Therefore, 7 will eventually reach a terminal state and thus complete the exploration. From this we

derive the following theorem:

Theorem 16. In 7, as long as the planner has not observed an action j with x; = 1, she will keep exploring

until all actions’ rewards are revealed. Therefore 7 always reaches a terminal state.

4.2 Minimum exploration time

Two BIC planners may differ only in their recommendations when they are in the exploration states. We
would prefer the one that explores the actions “faster”, as it would mean finding the optimal action sooner.
For this we define a partial order between policies. We say that a policy is stochastic dominant over another

if it discovers the realizations of the rewards faster.

Definition 17. A BIC policy algorithm 7 4 is stochastic dominant over another BIC policy algorithm 7 p if
for every prior D and for every agent t, w4 has at least the same probability to observe action j’s reward
as mp, and for some action j a strictly higher probability to know it’s reward in time t. Le., for any agent t
and action j we have Pr ,[SF A Z[j] # *] > Prn, [S7 A Z]j] # #], and there exists some action j and agent
t for which Pry, [S7 A Z[j] # %] > Pra,[S7 A Z[j] # ).

The following lemma states that the suggested policy, 7 is stochastic dominant over all other BIC poli-

cies.

Lemma 18. Let m4 # 7 be a BIC policy algorithm, with the same recommendations for the exploitation

states as in Table Then 7 is stochastic dominant over T 4.
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From Lemma 18] we easily obtain that 7 maximizes exploration rates of each action j and agent ¢. Due
to the use of y € [0, 1] to decide which agent will explore each action, 7 manages to maximize exploration

rates of all the actions independently. This give us an important result regarding 7:

Theorem 19. 7 minimizes the time until terminal state .

4.3 Maximum expected social welfare

In this chapter we present the main result: The best BIC policy is the one that minimizes exploration time

for every action simultaneously.

Theorem 20. Let 7., be a BIC policy algorithm that maximizes the expected Social welfare. Then for a

large number of agents (specifically, T' > (é + ng — 1]), it holds that
SWr(mopt) = SWrp(7)
Proof. For the sake of contradiction, assume that there exists a prior D, such that
SWr(OPT) = Ep[S{_yur(mopt(he-1))] > Ep[Siy (7t (he-1))] = SWr(7)

Topt Maximizes expected social welfare, therefore it is easy to see that m,,; must give the same recommen-
dation as in Table whenever that social planner is in exploitation state. Since m,,; and 7 are different,
there is at least one agent ¢, that might not receive the same recommendation from the two policies i.e.,
(At)ope 7 (At)#, Where (A¢)r[j] is the probability that a policy 7 recommends action j to agent ¢. We have
already established that this scenario can only happen when the planner is in exploration state. Therefore,
it is a result of difference between exploration rates in both policies for at least one action j. Let ¢y and j
denote the first indexes of such agent and action, respectively. It is easy to see that if ¢y > n,; then 7, is not
in a terminal state and therefore does not maximizes social welfare. So assume ¢y < n;. Let (¢g )rope denote
the exploration rate used by ¢, and let € denote the difference between this exploration rate, and in 7, i.e.,

e=q y (7 o )mope - Let T be a policy identical to 7, that substitutes (7 ) With q ,- Recommendation

Topt

Tope 18 MOt the maximum

policy 7 is a well defined BIC policy as % is the first index of j for which (1/},{0)

value, q{ , 1s a BIC exploration rate, and from Lemma the rest of the exploration rates can still be used.
Let ¢ be the agent such that ¢; = [tg + pi; —1]. Since tp < n; < ng and p]l > p,1€, it holds that

t1 < [ng + é — 1] = T. Now, since

SWr(m) — SWr(mopt) > Ep[Zikye(mopt (hi—1))] — Ep [Tl ur(m(he-1))]
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We get

1
SWr(m) — SWr(mopt) > €((t1 — to)pj + 2p; — 1) = e((— — L)pj + 2pj — 1) = ep;

J

contradicting the optimality of 7. 0
From the the above theorem we deduce the following corollary.

Corollary 21. Recommendation policy T maximizes social welfare for every T' > f}% +ng — 1]
k

4.4 Limited number of agents

The planner’s goal is to maximize social welfare. If there is a limited number of agents, she cannot rely
on the existence of the agent that balances the the loss of social welfare (i.e., agent ¢; in the proof for
Theorem [20). Our algorithm must be adjusted for that. A natural solution is to limit the recommendation for
exploration, so that the planner must give exploration driven recommendation for action j in round ¢ if the
gain for the following agents, pjl- (T —t — 1) is high enough to cover for the expected loss of the ¢-th agent,
i.e., u;. We add the following requirement that must be fulfilled if the algorithm gives an exploration driven
recommendations to agent ¢t. Namely
(T—t)-pj+p; >0

or alternatively (7' — ¢ +2) - pj > 1.
Theorem [20f's proof still applies for any pair (j, ¢) that meets the additional requirement. For pairs (j, t)
that do not meet the requirement, action j is no longer recommended for exploration in round ¢ or afterwards.

An exploration driven recommendation for these agents harms the social welfare.
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Chapter 5

Continuous distribution for the a priori best

action’s reward

In this chapter we explore the same model with one significant difference. The prior distribution D; is now
a continuous distribution that has full support of [—1, 1]. (Note that we do not allow mass points.) Consider
that the number of agents, 7', is large enough so that a social planner must complete the exploration of all
the actions.

The different type of recommendation policy algorithm we introduce for this setting is a generalization

of the partition policy, originally defined in Kremer et al. [KMP14]].

5.1 Partition policy as a recommendation algorithm
The following two definitions are used to define a partition policy (in Definition [24)).
Definition 22. ©7 is a collection of T disjoint sets, ©7 := {0]}I_,, where 6 C [—1,1].

Definition 23. A valid input for any partition policy algorithm is a series © = (©7 )?:2 s.t. for any pair of
actions i # j € A, it holds that 0{ N6 = () for every agent t.

Definition 24. Given a valid input, (©7)"

=2 and a realization X1 = x1, a partition policy is a recommen-

dation policy that makes the following recommendations. For agent t we have,

1. Fort =1 we have o1 = 1.

2. If there is an explored action j with a reward of 1 (i.e., it is optimal), then oy = j.

3. Else, if x1 € 0{ then oy = j. (In this case agent t is the first agent for whom oy = j.).
4. [-1,pu) C 6
b}

. Else, oy = 1.

Let us inspect each clause in the above definition with regards to BIC and social welfare.
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1. Since action 1 is the a priori better action, any BIC policy must recommend to agent ¢ = 1 action

o1 = 1 (clause (I)).
2. After finding an explored action with value 1, to maximize the social welfare we must recommend it

(clause (2)).

3. Clause (3) is where action j is recommended for the first time. Once the planner will observe the value
of the explored action, if it is 1 it will be recommended to all future agents (as indicated in clause [2).
4. Clause () deals with the case that the a priori best action has low value. Together with clause 2] it
guarantees that agent j performs action j if none of the explored actions has a higher reward.
5. Clause (5)) gives an exploitation recommendation. Note that any explored action j, in this case, has
x> xj = —1
Notice that a valid input, (@j ) ?:2, insures that every agent ¢ > 2 receives a recommendation for exactly one

action. We can now derive the following lemma:

Lemma 25. The optimal BIC recommendation policy is a partition policy.

5.2 The suggested BIC Partition Policy

Recall that agent ¢ finds that recommendation oy to be BIC if for any action i € A we have
Elut(j) — ui(i)|oy = j] = 0
Note that this holds if and only if for any actioni € A
Prloy = j] - E[u(j) — ue(i)|or = j] = 0

Namely,
/ X, — Xi]dD > 0.
ot=j

We now describe how to extract parameters for the suggested policy iteratively, given a prior D for the
problem. Then we continue by showing that these collections can be used as a valid input of a partition

policy. Finally, we show that using these parameters produces a BIC recommendation policy.

Definition 26. The sets ©7 = {ég 4L are calculated as follows.
Let 0! be the ordered interval (i, i{H], where

1. Fort < jlet ég = () (this can be done by setting zi = —1fort <j).

2. Fort = j, recall that zg = —1, and let w? 11 be the solution to:
-1
H(pgl)/ [j — X1]dDy = / - [X1 — pyldDy (5.1)
n=2 wi=X1 ni<X1<wi
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3. Foreveryt > j, let wgﬂ be the solution to:

P} / [1— X,JdD, = / Xy —pldDy 52)
- i <X1<wiy

1< X1 <]

4. iy =min(1,w],,) for every t > j. (We have 6] = (i, il ].).

Notice that in each step, distribution D, the parameters p} Pt 5 and zg are known, therefore one can
compute the value of i ;. A ‘
In the next lemma, we show that i] < i 1 for every action j and agent ¢. This will allow us to deduce in

Corollary [28| that S) ;j 1s a collection of disjoint sets, which is required from a valid input for partition policy.
Lemma 27. For every action j # 1 and agent t € T, it holds that zg < zg 11

Proof. Let j # 1 be some action. The proof is by induction over ¢.

For the induction base, consider ¢ < 5 — 1, for which zg = zi 1= —1.

For the induction step, we assume the induction hypothesis holds for ¢ and prove it for ¢ + 1.

The left-hand sides of (5.1) and are non-negative since zi <1, X1 <1,0 < p}L and p]l > 0.
Consequently, the right-hand sides are also non-negative. So from li we deduce —1 < p; < zg 41 and

from 1} and the induction hypothesis we deduce wf 12 z{ and as a result, zi 112 zi . O

Corollary 28. For every action j, since there is no intersection between the ordered intervals (i, i] 1) for

every agent t, 6 j is a collection of disjoint sets.

For (07) ?:2 to be well defined we need to verify that there is no intersection for the same agent ¢ for
different actions (as stated in Definition [23]). In the next lemma we show that for every agent and action

(t,7) the right bound of 0{ *1is smaller than the left bound of 0{ .

Lemma 29. For everyt > j, it holds that zi > ziill and there is an equality only lfzg = zij_rll =1.
Proof. Let j # 1 be some action.The proof is by induction over ¢.

For the base case, consider ¢t = j, for which z; =i > pjy1 = z?ﬁ

For the induction step, we assume the induction hypothesis holds for every agent < ¢.

Consider ¢t = j, then according to w;: 1 18 the solution to:

7j—1
H(pnl)/ [1j — X1]dDy —/ [ X1 — pyldDy (5.3)
n=2 #i=X1 pi<X1<wi

Now, since 0 < p}l < land pj > prjy1,

j—1 J
[T@." /M - [uj — X1)dDy > [T (v, ") / [1j+1 — X1]dDy

n—2 Hji+12>X1
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Putting the above inequality with (5.3)) for both 5 and j + 1 we get,

/ - [X1 = pyldDy > / Xy = pyaldDy
pwi<X1<wi pjp1<X1<wl})

t42

Since p; > pj 41 (and therefore —p; < —pj41) wgé < wgﬂ must hold.
For every ¢t > j, according to lb wf 1 18 the solution to:

ﬁ/ ibxwmz/_ X1 — py]dDs (5.4)
- i} <X1<wi,

1<X: <3

Combining the induction hypothesis (i > zgill ) with pj < p; we get

pal/ [1-X4]dDy > P}H/ [1— X;]dDy
- —-1<X: <

j 1
1<X: <! i

Putting the above inequality with (5.4) for both 5 and j + 1 we get,

/v , [Xl—uj]dD1>/. .
i <X1<wi,, <X <wi ]

Vi1 t+2

[X1 — pj1]dDy

Now, since —p; < —pj41 and we know that zi > ziill from the induction hypothesis, we get that wij{% <

w], . Consequently, for every ¢ > it holds that i}, < /.. [

k

Let 7 be a partition policy that uses the suggested parameters, (©7) =25

as an input.

Corollary 30. Policy 7 is well defined, as for every x1 € [—1, 1] there exists exactly one action j € A such
that oy = j.

We now investigate what is required from a BIC partition policy, in order to show that the suggested
partition policy is BIC. Following the same exhaustion demonstrated in Example I} for every agentt > 2 a
BIC recommendation for action j # 1 can be either exploration driven or exploitation driven:

1. Exploitation driven recommendation: Action j ## 1 is the best action given the history. Once again,

one of the following holds:
(a) A known reward- Action j has the best possible realized value (i.e., x; = +1) after one of
the previous agents 7 < 7 < t has explored it. Formally, the expected “gain” of agent ¢ from

choosing action j over of action 1 in this case is

/ X, - XD =} [ 1- X,)dD,
X':l,X1€U7—<t9JT X1€U-r<t9;

J

(b) An unknown reward- The observed realization x; yields lower reward compared to the prior

expected reward of action j, i.e., 1 < p;(< --- < p2), and the better a priori actions, k& < j
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have been explored and resulted in minimal reward of —1. Thus action j is better to execute

then action 1, and the expected ”gain” here is

j—1

H(p:ll)/uj>X1 [1j — X1]dDy

n=2

2. Exploration driven recommendation: The planner has not yet observed an action with the best
possible reward (i.e., +1), and x1 > p;. This recommendation does not benefit with agent ¢ (but

might yield higher expected social welfare hence is possible by the planner). The expected “loss” in

/ [X; — X1]dD = [1j — X1]dDq
1y <X1,X1€0% iy <X1,X1€0%

Taken together, the summation of the expected gains and loss is equivalent to the left hand sides of the

this case is:

integrals in the next lemma.

Lemma 31. A recommendation o = j # 1 is BIC w.r.t. action 1 if for t = j we have,

7j—1
/ (1 — X1ldD + [ [ (0, ") / [ — X1]dD; >0 (5.5)
,uj<X1,X1€¢9Z n=2 i>X1

and for t > j we have,

| w-xigaps) [ [1— X,)dD; >0 (5.6)
X160§

X1€U7—<t9}'

Notice that for t > j, X1 € 9{ yields X1 > p; since the sets are disjoint and according to clause in

deﬁm'tion [—1, 5] € 0;

Let us compare the BIC constraints in above lemma to the suggested series, o.
If zg = 1, then from Lemma [27|and the definition of zi , it holds that zg +1 = 1, which yields éi = 0.
Since both parts of (5.2)) are zero in this case, so the (exploitation driven) recommendation o; = j is BIC.

Else, zi = wj], in which case li and i satisfy (5.5) and 1| respectively. This allows us to derive the

following corollary.

Corollary 32. The partition policy T that uses the series O as input, outputs BIC recommendations o, = j

w.r.t. action 1 for every agent t.

Due to exploration of the a priori better actions earlier, it is sufficient for the suggested partition policy, 7
to maintain the BIC constraint w.r.t. action 1 alone. lL.e., if oy = j is an exploration driven recommendation,
then j has the lowest index of an unexplored action (and therefore has the highest expected value among all

unknown rewards.). Agent ¢ would not prefer any other action ¢ # j as such a behavior would yield either a
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lower prior reward for actions ¢ > j or the lowest possible reward (i.e., —1) for actions ¢ < j. The following

are corollaries of the last lemma.
Theorem 33. Policy 7 is a BIC partition policy.

Corollary 34. Policy  recommends the actions in ascending order, i.e., for every j < i, action j is explored

before action 1.

5.3 Optimality

We follow the same logic process of the proofs provided in chapter ] with some tiny adjustments. The
abstraction of the information states is used here with one small difference- considering all the BIC policies
recommend action 1 to the first agent and observe reward z1 € [—1, 1], we update the definition of stochastic

dominant to be conditioned on x; as follows.

Definition 35. A BIC policy algorithm T 4 is stochastic dominant over another BIC policy algorithm 7p if
for every prior D and a realization x1 € [—1,1], and for any agent t, w4 has at least the same probability
to observe action j’s reward as mp, and for some action j a strictly higher probability to observe it’s
reward in time t. Le., for any agent t, action j and realization 1 € [—1,1] we have Pr, ,[SF A Z[j] #
¥|Z[1] = x1] > Pry,[S7 A Z[j] # *|Z[1] = 21], and there exists some agent t and action j for which
Pr, ,[S7 A Z[j] # *|Z[1] = 1] > Py, [SF A 2[j] # *|Z[1] = 1]

The next step is to show the partition policy with the suggested parameters as input yields stochastic

dominance. It is done in the following lemma.

Lemma 36. Let (G)j)?:? and the realization X1 = x1, be the input for a (BIC) partition policy w4 # .

Then 7 is stochastic dominant over T 4.
Proof. For contradiction, suppose that there exists a prior, D, an action j and time ¢; such that
Pr(S7, A Zlj] # #2(1] = m] < fg[éﬁ A Zlg] # #[2[1] = 2] (5.7)

where 7 is the least such action and ¢; is the least such agent for action j. It means that 74 recommends
to some agent j < ¢t < t; to explore action j while Z]j] = * and (0y)# # j. If (04)# = 1 it means that
9;1 = (), therefore from Lemma m4 18 not a BIC policy (as it does not a valid partition policy). So
consider exploration driven recommendation (i.e., Sf A Z[i] = * A Z[j] = %), (04)# = i < j (since i > j

contradictions Corollary [34). In such a case,
Pr(SF A Zli] # #|2[1] = @] > fj[sfﬂ A Zli] # *|2[1] = 2] , (5.8)

Hence 74 is not stochastic dominant over 7. OJ
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From Lemma [36|we deduce that 7 maximizes exploration for each action j and agent ¢. Due to the use
of disjoint sets in the definition of a partition policy, 7 manages to maximize exploration rates independently.

This gives us the important result of time minimization:
Theorem 37. 7 minimizes the time until terminal state.
Finally, we show the main result for this case as well.
Theorem 38. & maximizes social welfare for unlimited number of agents.

Proof. For the sake of contradiction, assume that there exists a prior D and a realization X; = x1, such that
SWr(OPT) = Ep[S{_qut(mopt(he-1))] > Ep[Squs(7t(he-1))] = SWr(7)

Topt Maximizes expected social welfare, so according to Lemmait must be a partition policy. By differing
from 7, there exist an action j and a time ¢; in which (o, )7 = j and (0¢, )rppy = ¢ # j, Where j is the
least such action and ?; is the least such agent for action j. If ¢ < j then action 7 is already explored by both
planners and x; = —1, and the result is a lower SW for OPT. If ¢ > j, since u; < p; the result is a lower
social welfare for OPT. Overall we get that SWr(OPT) < SWr (7). O
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Chapter 6

Conclusion

This paper explores the problem of incentivizing exploration via Bayesian persuasion. We consider two
different supports for the a priori better action, a discrete version {—1,0,1}, and a continuous version
[—1,1]. In both settings, our optimal policy explores the better a priori actions earlier. In addition, it
maximizes the exploration, subject to the BIC constraints. This leads to a planner policy that maximize the
social welfare.

Our optimal policy also achieves both: (1) minimizing the time until all of the actions are explored, and
(2) that all the actions are explored, in case of large enough 7'. Our optimal policy requires special correlated
randomization to guarantee the optimality.

There are few obvious open problems, First, to extend the support of all actions to be, for example
[—1,+1]. Second, to consider stochastic actions, even simple Bernoulli random variables with different
probabilities. Third, enabling the agents to receive limited amount of information about the past. (The
challenge here is to make the information informative, and still allow the planner to explore all actions,

eventually.)

6.1 The case of continuous distribution for all actions’ reward

Let us discuss a case in which the support of each action’s reward is [—1, 1]. In order to tackle such setting,
we must first update Definition 24] First, we need to remove clause (2), as there is no action with optimal
reward (unless all rewards are known). Second, we need to change clause @ to 0y = argmax;z;, so that
every exploitation driven recommendation with known reward will be for the action with the best reward.

The real issue here is that we can no longer assume that if a partition policy is BIC w.r.t. action 1 then it
is BIC w.r.t. all other actions. Consequently, we must also update the way we choose which agent should
explore which action. For example, if agent 5 receives a recommendation for action 3, i.e., o5 = 3 and there
is a very low probability that either xo or x; are smaller than u3 and also g is very small (slightly bigger

than —1). In this case, the agent knows that it is highly unlikely for such a recommendation to benefit her,
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and might prefer action 2 over this recommendation.

By updating Definition [26{ we can calculate partitions w.r.t. every action as follows. Let [Gi | denote
the ordered interval w.r.t. action m such that (5.1) and (5.2)) are calculated with X,,, and D,,, instead of X
and D;. Let us assume a weakening assumption of stochastic dominance of action j;’s reward over every

action’s jo < j1 reward. We can derive that for every < my,ma,t,7 > such that for every t > my > mo,Jj
4 P

if both intervals are not empty then [i7]™ < [i7]™2. An ’easy’ suggestion for the planner to handle BIC

constraints and still be able to explore new actions is to make sure that oy = j if j < [zg 4™ for every
my < j or simply j < [¢] +1]j ~1. The optimality of this suggestion remains to be uncertainty, as a different
planner might find a better way to recommend actions with unknown rewards sooner, thus gaining stochastic

dominance over it.
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Appendix A

K actions: Algorithm and Missing Proofs

In this appendix, we extend the algorithm for 3 actions to handle any number of actions, k. Recall that when
calculating BIC constraints, we consider 3 different reasons for a recommendation, o; = 7, as explained in
Example [2| To handle with multiple actions’ rewards, we abandon the explicit states, e.g., Sffl’l’”. We
intentionally dismiss any states where actions are, as we will see that these states are infeasible by 7.

¢ Exploitation driven recommendation, action j either has:

— A known reward- The planner has already observed action j’s reward and it is indeed the
maximum possible reward, i.e., x; = 1. As we are about to show, such a scenario is possible
only when z; € {0,1} and for every action 1 < i < 7, it’s reward has been observed, and
z; = —1.

— An unknown reward- action j is yet to be explored, and every action ¢ < j, has been explored
and z; = —1.

e Exploration driven recommendation Action j has not been explored yet, every ¢ < j has been

explored, and z; = —1 for ¢ < j, whereas z; = 0. This implies that the planner is in the exploration
state of action j.

In Table [A.T| we are extending the algorithm described in Table [3.1] to all states that may result in a
recommendation for action j when using 7. We also added the gain of each state compared to action 1 (i.e.,
Elut(j) — u¢(1)|S7,0¢ = j]), as well as the probability that the planner is in these states in round ¢ (i.e.,
Pr(S7]o: = j)).

A BIC exploration rate q§ for our algorithm is still the maximum value that satisfy the same constraints

as before (i.e., (3.1)).

Theorem 39. For k actions, given g3, . . . »%2—17 . ,qj::i, .. ,qg__ll,forj > 2,
0 t=1
2 _ ) . 2pi'ph o —9 Al
g = { min( =501 , D7) t= (A1)
. 2pT tpbpl L 62 t—1
min(2LPH Tt b 0 5L 2) > 2
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Recommendation Table. Policy Parameters: (y,t)
Xi X; o Elut(j) — ui(1)|S7, 01 = J] Pr[S;]
-1 * j 2pj ]l[t = j]Hijl
0 1 j 1 P gl
-1 1 i 2 1t = J]p]HKm ‘
0 * ftj(y)e{luj} 2]?}_1 127’ =j— 1qT _Zt—quT

Table A.1: Extension for states that may recommend on action j

0 t<j

; 205 icgp 1 .
q = mln(ﬁ,pﬂ 1qj D) t=7 (A2)

2 p T S g —1 —1 .

mm( S 1—217}-] : ’ ] 1 Z T=75—1 qT - Z T=j q”jf) > J

In addition we show that
1
di <p;j'd (A3)

Proof. The proof is done by induction over action j and agent ¢t. The induction base and ¢;’s part are
provided by Theorem [3] For the induction step we assume that (A.2)) and (A.3) holds for any ¢, < ¢ and
Jo <J.

As for q{ , by using the induction hypothesis, we know that an exploitation driven recommendation
o: = j can only come from the first three exploitation states described in Table We also know from
it that an exploration driven recommendation can only come from the last state in Table [A.T] For this we
notice that Pr[S7] = Pr[SZ, 0, = j] for every S7 € TV and that Pr[S7,0, = j] = ¢/ Hence, the BIC
constraint for any agent ¢ > j is

Elus(§) — ui(1)|oy = ] Prloy = j] = 20jTicsp; " + (20} — 1)g] +pj qu >0
Notice that the first and third state in Table[A. T have the same value for
P;rr[Sf\at = J1 Elus(5) — ue(1)|S7, 01 = ]
Therefore we merged them. In order for qg to be a valid, it must also satisfy
qg = Prlo; = j, Sf S F{’] < Pr[StE € F{f]

And by substituting Sf € F{ ~ with the probability for the last state in Table we get

t—1 t—1
i 1 i1 j
@<pih Y, @ =) d
T=j

T=5—1
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Therefore,

MLt S =
¢/ = min(—2 T ,]1261 A
p] T=75—1 i

We can upper bound q{ as follows

—1 t—1 j j
q]' < 2p;Hi<jpi +pjl‘ ZT:j qg’ < 2pj 1HZ<Jpz +p] 1 ZT =j qT
T >

1-— 2pj1. - 1-— 2pj_1

the second inequality is correct due to the assumption that pjl- < pjl-_l. From the induction hypothesis, we
know that q.J} < p}flqi_l for every 7 <t — 1. Hence,

-1
2p] Ticipr '+ Y g 219] i+ o et S @

—1 Jj— 1 o
A .
1—2pj71 1_2p] . =Dp;_ 1qt 1

q <
By using the induction hypothesis again, we get 0 < Z ] qT <p; Z 1 qT ! thus

t—2 t—1
1 =1 -1 -1, 1 j
piha <pihd T e Y @ qu P Z a7 =>"q¢
T=j

T=7—1 T=7—1

which completes the proof. O
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Appendix B

Missing proofs from Sections 3 and 4

Proof of Lemma[3] We prove here lemma for ¢? and ¢}, i.e., 5 = 3, and the full proof, for j > 4, can
be found in Appendix [Al The values g;’s are stated in the theorem, and we will show that they satisfy the
required conditions. In addition we state the values of qf’ , and later show that they also satisfy the required

conditions,
0 t<3
3 o2piprtpyt 1
g; = min(F525 -, py 63) t=3 (B.1)
201 Py PRHPYY I _nad 1 xt-1 9 -1 3
mln( 2 13_2?2:‘1; . yPo 27:2 ar — 27—:3 (:IT) t>3

Finally we need to show that q;?’ <py 1qt{l.

In the following, we calculate exploration rates for 7, and just for notational convenience, we will refer
to Pr;[ | simply as Pr[ ]. The first agent, by knowing her place in line, knows that none of the actions have
been explored yet. Hence, it is for her best interest to choose action 1, the action with the maximal prior
expected reward. Therefore, it is necessary that ¢? = 0 for 7 to be BIC policy. Consequently, the first agent
explores action 1, and gains reward of uq(1) = x1. As for the second agent, the planner can now use her
knowledge of x; for g9. If z1 = 1, (the best possible reward), since she wishes to maximize the social
welfare, she must recommend action 1 to the rest of the agents, i.e., Sél’*’*> is a terminal state with maximal
social welfare. If x1 = —1, action 2 currently has the best expected reward, i.e., uo > us > —1 = x1. It
also does not decrease the reward comparing to the known reward of action 1. Therefore, any social BIC
planner (including 7) must recommend on action 2 in this round, i.e., oo = 2. If ;7 = 0, although action
2 is not the best action for agent 2, a social planner would probably want to recommend it to the second
agent, at least with some probability. For that she uses her advantage of knowing the realization of action

1’s reward. Note that ¢2 influences the second agent only when x1 = 0.

To complete the definition of the recommendation for the second agent, we calculate the value of ¢3.

The expected utility that agent 2 for following the recommendation must be at least the expected utility of
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choosing action 1. Therefore, q% satisfies the BIC constraint, i.e.,

Efuz(2) — ug(1)|og = 2] Prlog = 2] = (pz — (—1)) Pr[SS " |0y = 2] P[0y = 2] + piag > 0.

Information state Sé_l’*’*> always leads the planner to recommend oy = 2, therefore

Pr[SS" oy = 2] Prioy = 2] = Pr[S """ gy = 2] = Pr[sf ")

According to Table the above is true for any action j and exploitation state Sf € I, which all have
in common a corresponding recommendation o; = j. For this reason, for S7 € Fg+, we can replace

Pr[Sﬂat = j| Prloy = j] by Pr[S7]

Recall that g5 not only must satisfy the above constraint but also to satisfy the second part of (3.1).

Hence,
(14 p2) Pr[SST ) 4+ o2 > 0 and 2 < Pr[SS°)]
Since, 1z = 2py — 1, Pr[S3""*] = p{, and Pr[S§”"""] = p;!, we have
. 2p1p—1
q% = min (21 (1)) )

We proceed to calculate the first positive value of ¢;. Due to the assumption po > j3, agent 2 can deduce
that action 3 has not been explored yet, consequently she would definitely not follow a recommendation
to choose action 3, therefore, qg’ = 0. Consider recommending action 3 to agent 3, i.e., 03 = 3. This
recommendation can occur when the planner is in either exploitation state (—1, —1, %), or exploration state
(0, —1, %) . The BIC constraint is:

E[u3(3) — uz(1)|og = 3] Pr[o; = 3] = 2p} Pr[5§_17_1’*>] + p3gs >0
We again maximize over g3, subject to the the second constraint in (3.1) as well, i.e.,

2pipy 'py
1- 2p§

(0,%,%)

. p 0,—1,%
@ < and g3 < Pr[S" ) 4 Pr[S{0] = p? — ¢2pl

Since for t = 3 and j = 3, we assume that q% = A2, we have

92 1, —1, -1 2 1,—-1, -1
3_ “PsPL Py “PoP1 Py _ 42 -1

3 2 —1 2 1 0 2 1
g3 < Az = 305 = @3py - = ¢5(1 —p3) < py — @ap3
1—2p3 (1—2p}) 2 2
it implies that,
2p4p1 'yt o
g3 = min(=—> 2 g3p, ) (B.2)

1 2p£1)) 7QQp2

31



Since 0 < pl_l Dy ! p%, pzl,, < 1,and u3 = (2p§— 1) < 0, we get that both the numerator and the denominator
of ¢ are positive, therefore
g >0 (B.3)

We now prove by induction on agent ¢, the following:
@ <Py dia (B.4)

This assumption assures that every time 7 has recommends o; = 3, it is done after action 2 has been
explored. (This will be clear after we define f2(y) and f3(y), however, observe that the exploration rate
of the third action is bounded by the exploration of the second action up to the previous agent times the

probability that the second action realization is —1.) This will imply that Pr[St(O’*’*D] = Pr[SfO’*’U] =

Pr[St(()’l’_D] = 0. This will simplify the derivation, as a recommendation o; = 2 can come from only
two exploitation states, Sﬁfl’l’*% Séo’l’*>, or from S)fo’*’ﬂ, the only exploration driven state that may cause

recommendation for action 2.

For the induction base, consider agent ¢ = 3. Indeed, ¢3 < ¢3p, " from (B.2). For the induction step,
assume that 1| holds for every time ¢ < t. The exploration rates, ¢? and ¢} ', 1 for each agent ¢ = #( can
be derived from the following the constraints in (3.1). Starting with ¢?.

Efuy(2) — w(1)|oy = 2] Prloy = 2] = 2Pr[S ] 4 pag? + Pr[S%) > 0 (B.5)

The probabilities of each mentioned state are as follows.
) Pr[Sf_l’l’*>] = p; 'p. Also, note that S,f_l’l’*> is a terminal state.
o Pr[SéO’l’*>] is the intersection of the following events:

=1 ¢2, so (implicitly) action 1 has already

— Action 2 has been explored before agent ¢, i.e. )
sampled and z; = 0.

- Pr[Xy =1] = p}

— This is a terminal state, so no further events.

Combining all with (B.5),
t—1

2p;'py+ (205 — Vai +p3 Y a7 >0

T=2

and g7 = Pre[o = 2,5""] < Praf5{""] < pf — X217 ¢2. So,

_ _ -1

92 1p1+p1zt_1 P t

gi = min(—2 2= 0 N 2
1—2p; =

As for ¢, the recommendation o = 3 can come from the exploitation states Sé_17_1’1> and St<0’_1’1> (recall

that Pr{og = 3|S§_1’_1’*>] = 1, which implies that agent 3 will perform action 3, and therefore any agent
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t > 4 has Pr[Séil’fl’ﬂ] = 0), or from the only exploration state relevant for agent ¢, Sfo’fl’ﬂ. Hence, the

BIC constraint is
Efuy(3) — w(1)]oy = 3] Prloy = 3] = 2Pr[S 5] 4 pagd + Pr[s® V] > 0

substituting the probabilities we have

t—1
2p'py Py + (203 — V) +p3 Y a2 =0
T=3
Note that 23;13 q2 implicitly states that z; = 0 and that 25 = —1, or else action 3’s reward might has been

revealed by exploitation, or it still unknown, but did not revealed by exploration. In order for ¢} to be a

valid, it must also satisfy
t—1 t—1
0,~1, 0,1, _
¢ =Prloy = 3,5 < Pefs T =t Y 2 - Y
T=2 T=3

where p; ! Et;:lg q2 is the probability that there was an agent before agent ¢ that explored action 2, and

x9 = —1. From this probability we subtract the probability that action 3 has been explored, i.e., 23;13 @,

so that up until agent ¢ the state is (0, —1, %) Therefore,

- . t—1 t—1
2p 1p 1p1 +p1 Zt _1 q3
3 : 1 Po P33t P32 7=3 —1 2 3
gf = min( S T ) =) )
P T=2 T=3

We can upper bound ¢; as follows

-1 - t—1 -1 - t—1
2p1 Py DA PSS 0 2p1 Py Py DYy

3
<
b = 1-2p! 1-2p)

the second inequality is correct due to the assumption that p < p3. From the induction hypothesis (B.4) we
know that q§ <py 1qf_1 for every 7 <t — 1. Since, for ¢t and 7 = 3 we assume that qtz_1 = Af_l, we have,

t—2 q2
=249 _ 1,42 _ 12
=Dy Ai 4 =Py G417 -

R N SN d DS Y TN IR Ll )PP
"o 1—2p} - 1—2p;

By using the induction hypothesis again, with ll we get 0 < Zt;l?) Q< Dy ! Zi;% q2, thus

T

t—2 t—1 t—1 t—1
3,12 —12 —1 2 3_ . —1 2 3
@ <p' <ot Y 2> E=pt > =) ¢
T=2 T=3 T=2 T=3
which completes the proof of (B.4) and the proof of the theorem. O
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Proof of Lemmad}, First, we show that if action j is recommended for agent ¢ > n;_1, then action (j —1)’s
reward has been observed. If ¢ > n;_ then qg' ~! = 0. From the constraints in li regarding action j — 1
fort > n;_1 > j, as the “gain” part is strictly positive and the “loss” part is strictly negative, we get that
ZF(] - Prz[Sf ] 0. Therefore, all the states for which action j is explored before action 57 — 1 are
infeasuble for agent ¢ as they were for ¢ < n;_; and we get to continue the induction without relying on

q{ < pjillA{:II . Hence, we get exactly the same constraints for action j as for the case of t < n;_1,1i.e.,

Elus(§) — we(1)|or = 5] Prlov = j] = 2pjThicyp; * + (2p — V)l + p) Zqﬂ >0

and also,
t—1 t—1
J -1 ji—1 j
@ <pl Y d'-> d
T=5—1 T=j

which completes the proof of the lemma. O

proof of Lemmal6] The proof is by induction over ¢. For the induction base consider t = j. From Lemma
we have that Ag > qg > (0, therefore

i 2MLigpt 2piLiopt +plg)
A5 = 1 =450
J 1 —2p; 1-— 2pj J

For the inductions step, we assume that the induction hypothesis holds for ¢ and prove it for ¢ 4+ 1. From the
inductive hypothesis we have that A{_l < A{ f q{ > 0, we get
_ —1 4 _
io2Mp i g 2p i Y ¢

Al = - < = = Q)
t 1—2p! 1—2p! t+1

which proves the lemma. 0

Proof of Lemma(7} We show this lemma by induction over action index j. For the base of the induction,
consider action j = 2. We prove the case of action 2 by induction over ¢. For this induction we use the base
case of t = n; + 1 = 2 (since agent 1 always explores action 1). We have

e B2>¢q3>0= B

e 0 < g3, directly from Lemma

e g1 =0.

e If ¢3 = B3 = p{(> 0), we show by induction that for every ¢ > 1 it holds that g3, , = B3, = 0. For

base consider ¢ = 1. Then by using Lemma [6| we get

g3 = min(A3, B3) = min(A3,pY — ¢3) = min(A32,p? — p?) = min(A2,0) =0.
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For the induction step assume this property holds for ¢ — 1 and show for . From the induction

hypothesis and Lemma [6] we get
qg+i = min(A%_H-, BSH) = min(A%_H, B%—l—i—l - q§+i_1) = min(Ag_H-, 0)=0

For the induction step we assume that hypothesis of the lemma holds for action 2 and for every agent < ¢t —1,

and show it for ¢.

e From the induction hypothesis g2 ; > 0, so we get
t—2 t—1
2 0 2 0 2 2
Bi 1 =pi— qu >Ppi— ZQm:Bt
m=2 m=2

e Since B? | > B? and that g7 | = A? | (orelse t > ny), and we know that A7 ; > 0 from Lemma
[6l Therefore,
qg = mln(AL Bt2) < Il’lll’l(Ag, Bt271) = mln(Aga qgfl) >0

o If qg = BZ(> 0), we show by induction that for every i > 1 it holds that g2 L= Bt2+i = 0. For base

consider ¢ = 1. Then by using Lemma6| we get
qt2+1 = min(A%—f—l? Bt2+1) = min(A?—i-lv Btz - QtQ) = mm(Af, 0) = mln(AtQa O) =0.

For the induction step consider that this property holds for ¢ — 1 and show for i. From the induction

hypothesis and Lemma [6] we get
Qt2+i = min(A?H, BtQJri) = min(Aeria Bt2+i—1 - Qt2+i—1) = min(A?+ia 0)=0
So the hypothesis of the lemma holds for action j = 2.

We now assume that it holds for every action < j — 1 and show it for action j, again by induction over
t. For base, consider t = j
. B; qu >0:B§71.
e 0< q;, directly from Lemma
o If qg = Bg (> 0), we show by induction that for every ¢ > 1 it holds that qj: = Bg +; = 0. For the
induction base consider ¢ = 1. Then by using Lemma@ and the since we assume thatt = j > n;_1,
it holds that qj ~! = 0 therefore

. . . ) . 4 R . . i . .
qgﬂ = mm(A;-H, B§+1) = mm(A;H, Bﬁﬂ%mﬁ —qg) = mm(A;H,pjiqu, )= mm(A;H, 0)=0.

For the induction step consider that this property holds for ¢ — 1. Since ¢ = j > n;_1, it holds that
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qglil_l = (. Using Lemma@ we get

, , , By
q§+z = mm(A;H, Bj—&-z) mm(A;er B§+z‘—1 - q§+z’—1 +pj—1q§—1+z) mm(A?W 0)=0

For the induction step we assume that the hypothesis of the lemma holds for agent ¢ — 1 and for both actions

7 — 1 and 7. We now show that it holds for agent ¢ with action j.

e Sincet > n;_1 we get

t t—1 nj—1
doal=d at=) @
T=j—1 T=j—1 T=75—1
And from the induction hypothesis 0 < q{fl, hence
nj—1 nj—1 t—2
. . , .
Bl=pily Y @ qu>pg 1D @ =) =B,
T=j—1 T=j—1 T=j

e From the induction hypothesis and ¢t < n; we get 0 < Bg . From Lemma@ 0 < Al, therefore 0 < q{ .
e If ¢/ = B}(> 0), we show by induction that for every i > 1 it holds that ¢ = = BJ 4; = 0. For
the induction base consider ¢ = 1. Then by using Lemma @ and the since ¢ > n,;_1, it holds that
qf ~1 = 0,therefore,

t—1 j)

qf_H = min(A§+1, Bi+1) = mz’n(AtH,B +p;_- 1qJ —q;) = min(AtH,p] 1q§ 1) mz’n(AgH,O) =0.

For the induction step consider that this property holds for ¢ — 1. Since ¢ = j > n;_1, it holds that
qi;-l_l = 0. Using Lemma@ we get

J s J J J -1 j J _
gl = min(Ay,;, t+1) min(4;,;, B t+i71_qt+i71 +pj71qt71+i) min(4;,;,0) =0

Proof of Lemmal9, For every t; < t, it holds that [0y, = j, S7, € I’i;] N[oy, = 4,57 € Fi;] = (), since
if oy, = j then S}, ¢ I‘i; . From Theorem it implies that

T nj nj—l
Pri3t:o,=j4,S7 €T{ =) Prloy =4S/ €T} |=> g =B) + > d

t=1

We now prove by induction on action j the following:

Pr[3t: 0y = 5,57 €] = p;
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The induction base is done for action 5 = 2 as follows

no—1 no—1

Pr3t:oy =257 €I | =qn, +S027 ' =90 = ) a2+ ) o =)
T=2 t=1

Suppose the induction hypothesis is true for action j — 1. For action j we have,

n;—1 n;—1 n;—1

o - | o
Pr3t:op=j.Sf €T T =ai, + 52 al =pity Y a7t =Y d+ Y d =ph
T:j t=1

T=75—1

From the induction hypothesis we have that

nj—1
Pr3tioy=j—- 1,8 €Ty V=3 ¢t =pj
t=j—1
We get
n;—1
Pri3t:oy=4,S7 € |=p !y Y &' =pjlipi1=p
T=5—1
which completes the proof of the lemma.
Proof of Lemma From the definitions of f7(y), we get
. -1 t—1 '
Fy) + 1 =argmax, (D ¢} < yp;) = argmax, ., (> _p; el < yp;'p))
T=j T=j

Since qiﬁ < pj_lqi for every agent 7 < ¢t < n; from Lemma and pj_lpj = pj+1, we get

t—1 t

n;—1

>

T=5—1

| | - |
Fy) < Fy) +1 < argmax, (O ¢l51 <wypjr1) =argmax, (> ¢ <ypj1) =

T=]J T=j+1

t—1
argmax, (S g2 < ypj1) = (1)
T=j+1

hence f7(y) < f7T1(y) forevery y € [0, 1].

O]

Proof of Lemmal[I3] The first part, f'(y) # f?(y), is direct consequence of Lemma As for the second
part, for every action j and each agent ¢, qf > 0and E?;l q{ = p;, by Lemma@ We also have monotone

increasing exploration between agents- for every j < ¢ < n; —1 and forevery j € {2,...,k—1}, qg < qg L1

as a result of Lemma@ (A{ < A{ 4+1)and Lemma (qf = A{ ).
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Lety € [0,1]. Then f/(y) = alrgmaxt(zlt;:l1 ¢ < yp;). From the above get

t—1 n;
0= <> d <> ¢ =p,
T=1 =1

which completes the proof. O

Proof of Lemmal[I8] For action j € {2,...,k} let () ;?:1 denote the exploration rates used in 74, i.e.,

vl = siery- Pr,,[S7,0¢ = j]. Both w4 and 7 are BIC policy algorithms, with the same recommenda-
tions for exploitation states. This implies that the only difference between the probabilities of w4 and 7 to
know action j’s reward at time ¢ (i.e., the probability Sf [7] # *) is the difference between the sum of explo-
ration rates of action j until time ¢. Meaning that for every BIC policy 7 with the same recommendations

for exploitation states like 7,

t—1
P:Tr[Sf/\ Al £ =D > 13;[55, or = j]+Prl¥i < j ;= —1,j <{]
T=lszeri”

The sum 3_/_} Pr,[SZ, 0, = j] is the sum of all exploration rates of action j until ¢ — 1, therefore

SZeri~
Pr[Sf A 2[j] # #] — PrS; A 2[j] # ] = S\ q) — S
s TA

for every agent ¢.

For contradiction, suppose that there exists a prior, D, an action j and time ¢; such that
Pr{Si A 2] # +] < Pr(SE A2 # 4], (B.6)

where j is the least such action and ¢; is the least such agent for action j.

Every qg was calculated inductively so that it would attain a maximum value and maintain the constraints
in (3.1), independent of the other actions. Therefore it is not possible that there exists time ¢y < ¢; such that
¢z = q{ for every t < tp and ¢{0 > qgo. If 1/1{ = qg for every t < t1, then wgl < qzl.

So let ty < t; denote the first time that there is lower exploration rate in 7 4 for action j rather than in 7,
ie., tp = argmin, , 11/1{ < qt and 1/1] = qt for every t < to. Hence, the probability that 7 4 is in exploitation
state at time t = tg + 1 w.r.t. 7 is lower, i.e.,

Y. PrlSilen=4l= ) PrS< > PriSfl= ) Pr(Sflev =],

S7erst Sferyt SfeF{* SZEFJ+
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and the probability that 7 4 is in exploration state at time ¢ = ¢y + 1 w.r.t. 7 is higher, i.e.,

> Prsi< >0 Prisf]

SZeri~ SZeri~

Since Efu(j) — ut(1)|S7, 04 = 5] and y; depend only on the prior D, their value remain the same. As a
result of 1/1? 0 < qg , the exploration rate of action j in 74 at the next time, £o + 1 that maintains the constraint
is smaller than it could have been while using 7, and for every time ¢ > ¢, it holds that w{ < qf . This is true
for every time to < t1 such that wgo < qgo and therefore contradicts . Therefore, wg < qg for every
action j and agent ¢.

The difference between the policies indicates that there is an action j agent ¢ with wg %+ q,{ . Since

zﬁf < qg' , it implies that ¢§ < q{ and we get
Pr(Si A2l # ] < PriSi A Zl] # 4 (B.7)

Which completes the proof. 0
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