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Abstract

Machine learning techniques were initially designed for stationary and benign environments, where the train-

ing and test data are assumed to be generated from the same statistical distribution. However, this assumption

often doesn’t hold in the real world. The existence of intelligent and adaptive adversaries can, to a signif-

icant extent, violate this statistical assumption, aiming to disrupt machine learning methods used in critical

systems.

Our objective is to investigate the statistical and algorithmic aspects of learning models that are robust to

test-time attacks on their inputs, commonly known as evasion attacks or adversarial examples. In our model,

the learner receives training data with access to arbitrary perturbation sets, which represent an abstract set

of possible perturbations that an adversary may utilize during test time. These perturbation sets effectively

capture real-world modeling of adversarial examples, such as `p ball attacks. The goal of the learner is to

make robust predictions even when faced with adversarial perturbations during testing.

In the first part of this thesis, we study the sample complexity of adversarially robust PAC (Probably

Approximately Correct) learning in classification and regression for both supervised and semi-supervised

settings. We investigate the following fundamental question:

How many training samples are required to learn a robust hypothesis in the presence of test-time

adversarial attacks?

Our findings reveal a fundamentally different landscape compared to non-robust PAC learning. In the

supervised setting (Attias, Kontorovich, and Mansour [1]), we applied a regret minimization algorithm to

compute a near-optimal hypothesis for the learner and achieved improved sample complexity guarantees

compared to prior works. We further investigated semi-supervised learning (Attias, Hanneke, and Man-

sour [2]), where the learner has access to both labeled and unlabeled examples. The learner aims to limit the

amount of labeled data, a significantly more expensive resource than unlabeled data. Our study demonstrates

that with sufficient unlabeled data, the labeled sample complexity can be arbitrarily smaller compared to pre-

vious works, sharply characterized by a different complexity measure. We provided nearly matching upper

and lower bounds on this sample complexity, establishing a gap between supervised and semi-supervised
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label complexities, which is known not to hold in standard non-robust PAC learning. Subsequently, we ini-

tiated the study of adversarially robust regression within the PAC framework (Attias and Hanneke [3]). We

addressed the question of which hypothesis classes are PAC learnable in this setting. Our findings indicate

that classes of finite fat-shattering dimension are learnable in both realizable and agnostic settings. Fur-

thermore, convex hypothesis classes, are even properly learnable. In contrast, some non-convex hypothesis

classes provably require improper learning algorithms.

The second part of this thesis consists of general techniques we developed that may interest the sta-

tistical learning theory community. First, we address a fundamental question in statistical learning theory

regarding the complexity of ensemble methods for regression (Attias and Kontorovich [4]). Specifically,

we provide estimates on the fat-shattering dimension—a property that characterizes learnability in regres-

sion—of aggregation rules for real-valued hypothesis classes. The latter consists of all ways of choosing

multiple hypotheses from these classes, and computing a pointwise function of them, such as the median,

mean, and maximum. Our bound is expressed in terms of the fat-shattering dimensions of the component

classes. This contribution has numerous applications and fills an important gap in the literature, as this was

previously known only for binary hypothesis classes.

In a different work (Attias, Hanneke, Kontorovich, and Sadigurschi [5]), we study sample compression

schemes in the context of agnostic regression with the `p loss, p 2 [1,1]. Sample compression schemes in

machine learning are methods used to simplify a learned model by representing it with a smaller, essential

subset of the training data and a method to reconstruct the full model from this subset. A notable example

of such a scheme is the Support Vector Machine algorithm. We construct a generic sample compression

scheme for real-valued hypothesis classes, exhibiting exponential size in the fat-shattering dimension but

independent of the sample size. For linear regression, we construct a compression of size linear in the

dimension and show that p 2 {1,1} provably provides better guarantees than other `p losses. Prior to our

work, this question was investigated only for realizable regression and classification problems.
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Chapter 1

Introduction

Machine learning focuses on developing algorithms and statistical models that enable computers to learn

from and make decisions based on data. This capability has revolutionized fields such as image recognition,

natural language processing, and speech recognition. However, traditional machine learning assumes that

both the training and test data are drawn from the same distribution, an assumption that may not hold in

adversarial environments where data can be intentionally manipulated to deceive the model.

In this thesis, we study theoretical questions regarding the development of robust machine learning mod-

els that can withstand test-time attacks on their inputs, commonly known as adversarial examples. These

examples are often imperceptible to humans but can cause significant degradation in the performance of the

learned model. Our learning framework extends the traditional PAC learning model to address the challenges

posed by adversarial attacks.

1.1 PAC Learning with Test Time Adversarial Attacks

Probably Approximately Correct (PAC) learning has long been a cornerstone for the theoretical understand-

ing of the feasibility and efficiency of learning algorithms (Vapnik and Chervonenkis [6], Valiant [7]). This

framework provides a rigorous foundation for understanding the learning process and formalizes the concept

of learning a hypothesis that generalizes well from a finite sample of training data. An algorithm is said to

successfully learn if, with high probability (over a random sample), it outputs a hypothesis with a low error

rate on unseen data at test time. The algorithm is evaluated based on two key parameters: sample complexity,

which is the number of training examples needed to achieve a desired level of accuracy, and computational

complexity, which refers to the time and resources required to find the hypothesis.

The PAC model assumes that both the training and test data are drawn i.i.d. from the same unknown
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probability distribution. In this thesis, we study a variant of this model, called adversarially robust PAC

learning (Feige, Mansour, and Schapire [8], Montasser, Hanneke, and Srebro [9]), which addresses the

challenges posed by adversarial attacks on the inputs observed by the learner at test time. The model is

defined as follows.

Let X be the input space, Y be the output (label) space, and H ✓ YX be a hypothesis class that we aim

to learn (e.g., hyperplanes, neural networks). Suppose that there is an unknown probability distribution D

over X ⇥Y . An adversarial attack is formalized by a perturbation (corruption) function U : X ! 2X , where

U(x) is the set of possible perturbations (attacks) on input x. We have no restriction on U , besides x 2 U(x).

In practice, we usually consider U(x) to be the `p ball centered at x. The goal is to find hypothesis h that

has a low robust generalization error with respect to a loss function ` : Y ⇥ Y ! [0, 1], distribution D, and

adversary U , defined as

Err`(h;D,U) = E(x,y)⇠D

"
sup

z2U(x)
`(h(z), y)

#
.

For classification we consider the zero-one loss `(y, y0) = I[y 6= y0] and for regression we consider the `p

loss `(y, y0) = |y � y0|p.

A hypothesis class H is said to be adversarially robust PAC learnable, if there exists a learning algorithm

A : (X ⇥ Y)⇤ ! YX such that for any ✏, � > 0, any distribution D, and any perturbation function U ,

the algorithm A will output hypothesis ĥ = A(S), where S is an i.i.d. sample from D of size m =

m(✏, �,H,U) 2 N, such that

Err`(ĥ;D,U)  inf
h2H

Err`(h;D,U) + ✏, with probability 1� �. (1.1)

The sample complexity is defined as the minimal i.i.d. sample size for which Eq. (1.1) holds. If there exists

h 2 H with Err`(h;D,U) = 0, we call it the realizable setting, and otherwise, the agnostic setting. This

setting recovers the non-robust PAC setting, by just taking the perturbation function to be identity U(x) = x.

1.2 Our Contributions: The Sample Complexity of Adversarially Ro-

bust PAC Learning

In the standard PAC setting, hypothesis classes are considered learnable if their VC dimension [see Definition

2.5] in binary classification, or the fat-shattering dimension [see Definition 2.9] in regression, is finite. In the

following lines of work, we investigate learnability in the adversarially robust PAC learning model in several

settings. While we provide some algorithmic principles in these works, the main focus is on the sample
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complexity.

Improved Generalization Bounds for Adversarially Robust Learning [1]

We study a robust learning framework for classification and regression, introduced by Feige, Mansour, and

Schapire [8]. In this game-theoretic framework, the learner and the adversary play a half-infinite zero-sum

game, where the learner chooses a mixture of hypotheses from a hypothesis class (possibly of infinite size),

and the adversary chooses a mixture of perturbations, which is finite for each possible input. We improve the

sample complexity bounds for binary classification and also provide bounds for regression.

More formally, we employ a regret minimization algorithm that uses an ERM oracle as a black box.

The algorithm provides near-optimal policies for the players on a given training sample. For binary clas-

sification, we provide an improved sample complexity guarantee for agnostic (✏, �)-PAC learning of size

Õ
⇣

kVC(H)+log(1/�)
✏2

⌘
1 where the adversary is limited to k possible corruptions (sometimes referred to as

perturbations) and VC(H) is the Vapnik-Chervonenkis dimension of hypothesis class H. This result extends

to multiclass classification where the VC dimension is replaced by the graph dimension or the Natarajan

dimension. We extend the algorithm to the regression setting and prove the following upper bound on the

sample complexity Õ
✓

k(
R 1
0 fat(H,�)d�)+log(1/�)

✏2

◆
2, where fat(H, �) is the fat-shattering dimension of hy-

pothesis class H with a scale of �. In the course of our work, we introduced the notion of partial concept

classes, which had also been implicitly studied previously by Long [10]. This concept has since become

highly influential in the learning theory community, largely due to the contributions of Alon, Hanneke, Holz-

man, and Moran [11].

A Characterization of Semi-Supervised Adversarially Robust PAC Learnability [2]

Adversarial robustness has been empirically shown to significantly benefit from semi-supervised learning,

where the learner has access to both labeled and unlabeled examples. We address the question of how many

labeled and unlabeled examples are required to ensure learnability in the PAC model. We show that with

enough unlabeled data (the size of a labeled sample that a fully-supervised method would require), the labeled

sample complexity can be arbitrarily smaller compared to previous works, and is sharply characterized by a

different complexity measure. We prove nearly matching upper and lower bounds on this sample complexity.

This establishes a gap between supervised and semi-supervised label complexities, which does not hold in

standard non-robust PAC learning.

More formally, denote by ⇤s the sample complexity for supervised robust learning. We show that in the
1Õ(·) hides polylogarithmic factors in the specified expression.
2If the integral diverges at 0, we can truncate the integral and the bound still holds.
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realizable setting, having ⇤s unlabeled samples, and ⇤ss = Õ
⇣

VCU (H)+log(1/�)
✏

⌘
labeled samples suffice

for (✏, �) robust PAC learnability, where VCU is an extension to the VC dimension, VCU (H)  VC(H),

and for some hypothesis classes, there can be an infinite gap between the dimensions (see Definition 4.1).

Moreover, we show that for some hypothesis classes, ⇤ss ⌧ ⇤s and the gap can be arbitrarily large. We also

show a similar behavior in the agnostic setting.

Adversarially Robust PAC Learnability of Real-Valued Functions [3]

We initiated the study of adversarially robust regression within the PAC framework. This model is different

from the one in Attias et al. [1] for the following reasons: the adversary is allowed to choose perturbations

from an arbitrary set, possibly of infinite size, and a richer set of loss functions. We addressed the question

of which hypothesis classes are PAC learnable in this setting. Our findings indicate that classes of finite fat-

shattering dimension are learnable in both realizable and agnostic settings. Furthermore, convex hypothesis

classes are even properly (i.e., the algorithm is constrained to return a hypothesis within the hypothesis class)

learnable. In contrast, some non-convex function classes provably require improper learning algorithms [9].

On the other hand, non-robust regression with the mean squared error is properly learnable [12].

More formally, our main result is an upper bound on the sample complexity of agnostic robust regression

with the `p loss: Õ
⇣

fat(H,✏/p)fat⇤(H,✏/p)
✏2

⌘
, where fat⇤(H, ✏/p) is the fat-shattering dimension of the dual-

class, which is finite as long as the primal dimension is finite (see Definition 2.17). We also show that convex

classes are properly learnable with a larger sample complexity: Õ
⇣

fat3(H,✏/p)fat⇤(H,✏/p)
✏5

⌘
.

1.3 Contributions to Statistical Learning Theory

Fat-Shattering Dimension of k-fold Aggregations [4]

In many scenarios in machine learning, the output of the model consists of an ensemble of models. This

idea can be formalized by aggregation rules of hypothesis classes, which consists of all ways of choosing k

functions, one from each of the k classes, and computing pointwise an “aggregate” function of these, such as

the median, mean, and maximum. This finds application in adversarially robust learning, clustering methods,

learning polyhedra with a margin, and ensemble methods such as bootstrap aggregation and boosting.

We provide near-optimal estimates on the fat-shattering dimension of such aggregation rules of real-

valued hypothesis classes, where our bounds are stated in terms of the fat-shattering dimensions of the

component classes. For linear and affine hypothesis classes, we provide a considerably sharper upper bound

and a matching lower bound, achieving, in particular, an optimal dependence on k. Prior to our work, this

question has been investigated mainly for binary hypothesis classes.
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More formally, we prove the following upper bounds for a natural class of aggregation rules. Assuming

fat(Hi, �)  d, for 1  i  k, � > 0, then the fat-shattering of the aggregated class over H1, . . . ,Hk

is upper bounded by O
�
dk log2 (dk)

�
. Moreover, if the hypothesis classes H1, . . . ,Hk are bounded in

[�R,R] and fat(Hi, ✏�)  d, we show an upper bound of O
⇣
dk log1+✏ Rk

�

⌘
, where ✏, � > 0.

For affine hypothesis classes, we can provide tighter bounds. If the affine hypothesis classes H1, . . . ,Hk

are bounded in [�R,R], we prove a dimension-free upper bound on the fat-shattering dimension at scale

� of the aggregated classes: O
⇣

R2k log(k)
�2

⌘
. Additionally, for the maximum aggregation rule and affine

hypothesis classes (not necessarily bounded), we show a tight dimension-dependent bound ⇥(dk log(k)),

where d is the Euclidean dimension.

Agnostic Sample Compression Schemes for Regression [5]

Sample compression is a central problem in learning theory, introduced by Littlestone and Warmuth [13],

Floyd and Warmuth [14], whereby one seeks to retain a “small” subset of the labeled sample (called com-

pression set) from which a “good” hypothesis can be reconstructed. Quantifying small and good specifies the

different variants of the problem. For instance, in the classification setting, taking small to mean “constant

size” (i.e., depending only on the VC-dimension d of the concept class but not on the sample size) and good

to mean “consistent with the sample” specifies the classic realizable sample compression problem for VC

classes.

The benefits of sample compression schemes are the following. Generalization: Models that can be

effectively compressed often generalize better to unseen data. Specifically in the PAC model, sample com-

pression generalization bounds still hold when uniform convergence bounds become vacuous. These bounds

have proven useful in a wide range of learning settings, such as multiclass classification, regression, ad-

versarially robust learning, active learning, and density estimation. Computation and space efficiency: By

reducing the size of the dataset, computational resources required for training and making predictions are

significantly reduced, and smaller models require less storage space, which is beneficial for applications

with limited memory or storage capacity. A classic example of a sample compression scheme is the Support

Vector Machine (SVM), where the model can be represented by a small subset of the training examples that

determine the decision boundary, known as support vectors.

We studied sample compression schemes in the agnostic regression setting with the `p loss, p 2 [1,1].

Prior to our work, this question was investigated only for classification and realizable regression. First, we

construct a generic ↵-approximate sample compression scheme for real-valued function class H of size

Õ(fat(H,↵/p) fat⇤(H,↵/p)), where ↵-approximation means that the function reconstructed from the com-

pression set achieves an average error at most ↵ compared to the optimal hypothesis in the class. Notably,
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for linear regression, we construct an approximate compression of size linear in the Euclidean dimension.

Finally, we show a separation between `1 and `1 linear regression to other `p losses. While for `1 and `1 we

can construct an exact sample compression scheme of smaller size, we show that such compression cannot

exist for p 2 (1,1).

1.4 Excluded Work

During my PhD studies, I have also contributed to other projects that extend beyond the scope of this disser-

tation. These additional works include:

• Idan Amir, Idan Attias, Tomer Koren, Yishay Mansour, and Roi Livni. Prediction with corrupted

expert advice. In Advances in Neural Information Processing Systems (NeurIPS), 2020. Spotlight

presentation. [15]

• Matan Levi, Idan Attias, and Aryeh Kontorovich. Domain invariant adversarial learning. In Transac-

tions on Machine Learning Research (TMLR), 2022. [16]

• Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer. A framework for adversarial streaming

via differential privacy and difference estimators. In Innovations in Theoretical Computer Science

Conference (ITCS), 2023, and Algorithmica, 2024. [17]

• Eitan-Hai Mashiah, Idan Attias, and Yishay Mansour. Learning revenue maximization using posted

prices for stochastic strategic patient buyers. In Conference on Artificial Intelligence (AAAI), 2023.

[18]

• Angelos Assos, Idan Attias, Yuval Dagan, Constantinos Daskalakis, and Maxwell Fishelson. Online

learning and solving infinite games with an erm oracle. In Conference on Learning Theory (COLT),

2023. [19]

• Idan Attias, Steve Hanneke, Alkis Kalavasis, Amin Karbasi, and Grigoris Velegkas. Optimal learn-

ers for realizable regression: Pac learning and online learning. In Advances in Neural Information

Processing Systems (NeurIPS), 2023. Oral presentation. [20]

• Idan Attias, Gintare Karolina Dziugaite, Mahdi Haghifam, Roi Livni, and Daniel M Roy. Informa-

tion complexity of stochastic convex optimization: Applications to generalization, memorization, and

tracing. In International Conference on Machine Learning (ICML), 2024. Best paper award. [21]

• Ziyi Liu, Idan Attias, and Daniel M Roy. Causal bandits: The Pareto optimal frontier of adaptivity, a

reduction to linear bandits, and limitations around unknown marginals. In International Conference

on Machine Learning (ICML), 2024. [22]
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• Idan Attias, Steve Hanneke, Alkis Kalavasis, Amin Karbasi, and Grigoris Velegkas. Universal rates

for regression: Separations between cut-off and absolute loss. In Conference on Learning Theory

(COLT), 2024. [23]

• Ziyi Liu, Idan Attias, and Daniel M Roy. Sequential probability assignment with contexts: Minimax

regret, contextual Shtarkov sums, and contextual normalized maximum likelihood. In Advances in

Neural Information Processing Systems (NeurIPS), 2024. [24]
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Chapter 2

Background and Preliminaries

2.1 The PAC Model

Let X be the input space, Y be the output (label) space, and H ✓ YX be a hypothesis class that we aim

to learn (e.g., hyperplanes, neural networks). Suppose there is an unknown probability distribution D over

X ⇥ Y . The goal is to find hypothesis that has a low generalization error with respect to a loss function

` : Y ⇥ Y ! [0, 1] and distribution D:

Definition 2.1 (Generalization error) The generalization error of function f : X ! Y with respect to

distribution D and loss function ` : Y ⇥ Y ! [0, 1] is defined by

Err`(f ;D) = E(x,y)⇠D[`(f(x), y)] .

For classification we consider the zero-one loss `(y, y0) = I[y 6= y0] and for regression we consider the `p

loss `(y, y0) = |y � y0|p for p � 1.

We define the average error of a function with respect to a set of labeled examples as the empirical error:

Definition 2.2 (Empirical error) Let ` : Y ⇥ Y ! [0, 1] be a loss function, and let S = {(xi, yi)}mi=1. The

empirical error of a function f on S is defined by

dErr`(f ;S) =
1

m

mX

i=1

`(f(xi), yi).

Definition 2.3 (PAC learnability [7]) For any ✏, � 2 (0, 1), the sample complexity of realizable (✏, �)-PAC

learning for a class H, denoted by MRE(✏, �,H), is the smallest integer m for which there exists a learning

algorithm A : (X ⇥ Y)⇤ ! YX , such that for every distribution D over X ⇥ Y realizable by H, namely
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infh2H Err` (h;D) = 0, for a random sample S ⇠ Dm, it holds that

P (Err` (A(S);D)  ✏) > 1� �.

If no such m exists, define MRE(✏, �,H) =1, and H is not (✏, �)-PAC learnable in the realizable case.

The agnostic setting extends PAC learning for general distributions, where there is not necessarily a

hypothesis in H with zero generalization error on D, namely, infh2H Err` (h;D) > 0.

Definition 2.4 (Agnostic PAC learnability [25]) For any ✏, � 2 (0, 1), the sample complexity of agnostic

(✏, �)-PAC learning for a class H, denoted by MAG(✏, �,H), is the smallest integer m, for which there

exists a learning algorithm A : (X ⇥ Y)⇤ ! YX , such that for every distribution D over X ⇥ Y , for a

random sample S ⇠ Dm, it holds that

P
✓
Err` (A(S);D)  inf

h2H
Err` (h;D) + ✏

◆
> 1� �.

If no such m exists, define ⇤AG(✏, �,H) =1, and H is not (✏, �)-PAC learnable in the agnostic setting.

2.2 The Sample Complexity of PAC Learning in Binary Classification

In this setting, the label space is Y = {0, 1} and the loss function is the zero-one: (y, y0) 7! I[y 6= y0]. The

VC dimension characterizes the PAC learnability of binary-valued hypothesis classes.

Definition 2.5 (VC dimension [26]) Denote the projection of a hypothesis class H on set S = {x1, . . . , xk}

by H|S = {(h(x1), . . . , h(xk)) : h 2 H}. We say that a set S ✓ X is shattered by H if {0, 1}S = H|S . The

VC-dimension of H is defined as the maximal size of a shattered set S (possibly1).

Theorem 2.6 (Sample complexity of binary classification [27],[28],[29]) The sample complexity of (✏, �)-

PAC learning a hypothesis class H ✓ {0, 1}X :

⇥

✓
VC(H) + log 1

�

✏

◆
,

and the sample complexity of agnostic (✏, �)-PAC learning is

⇥

✓
VC(H) + log 1

�

✏2

◆
,

Every hypothesis class with a finite VC dimension is learnable by empirical risk minimization with near-

optimal sample complexity.
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Definition 2.7 (Empirical risk minimizer (ERM)) The empirical risk minimizer learning algorithm ERM :

(X ⇥ Y)⇤ ! H for a class H with respect to a sequence S is defined by ERMH(S) 2 argminh2H
dErr` (h;S) .

Theorem 2.8 (VC classes are learnable by empirical risk minimization [27]) Any hypothesis class H is

(✏, �)-PAC learnable by an ERM with sample of size ⌦
⇣

VC(H) log(1/✏)+log(1/�))
✏

⌘
, and agnostic (✏, �)-PAC

learnable with sample of size ⌦
⇣

VC(H)+log(1/�))
✏

⌘
.

2.3 The Sample Complexity of PAC Learning in Regression

In this setting, the label space is Y = [0, 1] and the loss function is the `p loss: (y, y0) 7! |y � y0|p, p � 1.

The fat-shattering dimension characterizes the PAC learnability of real-valued hypothesis classes.

Definition 2.9 (Fat-shattering dimension [30–32]) For F ⇢ RX and � > 0, we say that F �-shatters a

set S = {x1, . . . , xm} ⇢ X if there exists an r = (r1, . . . , rm) 2 Rm such that for each b 2 {�1, 1}m there

is a function fb 2 F such that

8i 2 [m] :

8
>><

>>:

fb(xi) � ri + � if bi = 1

fb(xi)  ri � � if bi = �1

We refer to r as the shift. The �-fat-shattering dimension, denoted by fat(F , �), is the size of the largest

�-shattered set (possibly1). Sometimes we use the notation fat�(F) instead of fat(F , �).

Also, sometimes we use the following compact way to describe a shattered set. A set S = {x1, . . . , xm} ⇢

X is said to be �-shattered by F if

sup
r2Rm

min
y2{�1,1}m

sup
f2F

min
i2[m]

bi(f(xi)� ri) � �. (2.1)

Theorem 2.10 (Sample complexity for (agnostic) regression [32],[33]) Let Lp
H be the `p loss class of hy-

pothesis class H,

Lp
H := {X ⇥ [0, 1] 3 (x, y) 7! |h(x)� y|p : h 2 H} .

The sample complexity of (✏, �)-PAC learning a hypothesis class Lp
H is

O
 
fatc✏(L

p
H) log2 1

✏ + log 1
�

✏2

!
,

where c > 0 is a universal constant.
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2.4 Other Complexity Measures and Generalization Bounds

It is a classic fact [28, Theorem 3.3] that the Rademacher complexity controls generalization bounds in a

wide range of supervised learning settings.

Definition 2.11 (Rademacher complexity) Let F be a real-valued function class on the domain space W .

Define the empirical Rademacher complexity of F on a given sequence (w1, . . . , wn) 2Wn as

Rn(F|w1, . . . , wn) = E� sup
f2F

1

n

nX

i=1

�if(wi),

where � = (�1, . . .�n) are independent random variables uniformly chosen from {�1, 1}. The Rademacher

complexity of F with respect to a distribution D is defined as

Rn(F) = Ew1,...,wn⇠DRn(F|w1, . . . , wn).

Theorem 2.12 (Rademacher complexity generalization bound [28]) Let G be a family of functions map-

ping from W to [0, 1]. Then, for any � > 0 with probability at least 1 � � over the draw of an i.i.d. sample

w = (w1, · · · , wn) from distribution D, for all g 2 G:

Ew⇠D[g(w)]� 1

n

nX

i=1

g(wi)  2Rn(G|w) + 3

s
log

�
2
�

�

2n
.

Theorem 2.13 ([34, 35]) For any F ✓ [�1, 1]X , any � 2 (0, 1) and w = (w1, . . . ,wn) 2Wn,

Rn(F|w) 
r

C

n

Z 1

0

s

fatc�(F) log

✓
2

�

◆
d�,

where c and C are universal constants.

When the integral above diverges, the bound can be refined by

Rn(F|w)  inf
↵�0

(
4↵+

r
C

n

Z 1

↵

s

fatc�(F) log

✓
2

�

◆
d�

)
.

Theorem 2.14 ([36]) For any F ✓ [�1, 1]X and w = (w1, . . . ,wn) 2Wn,

Rn(F|w)  C

r
VC(F)

n
,

where C is a universal constant.

Definition 2.15 (Uniform covering numbers) We say that G ✓ [0, 1]⌦ is ✏-cover for F ✓ [0, 1]⌦ in k·k1
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norm, if for any f 2 F the exists g 2 G such that for any x 2 ⌦, |f(x)� g(x)|  ✏. The ✏-covering number

of F is the minimal cardinality of any ✏-cover, and denoted by N (✏,F , k·k1).

Lemma 2.16 (Uniform covering numbers upper bound [37] (Theorem 4.4)) Let F ✓ [0, 1]⌦ be a class

of functions and |⌦| = n. Then for any 0 < a  1 and 0 < t < 1/2,

logN (t,F , k·k1)  Cv log(n/vt) · loga(2n/v) ,

where v = fatcat(F), and C, c are universal constants.

Definition 2.17 (Dual dimensions) Let F ✓ YX be a hypothesis class. The dual hypothesis class F⇤ ✓ YF

is defined as the set of all functions gx : F ! Y where gx(f) = f(x). If we think of a function class as

a matrix whose rows and columns are indexed by functions and points, respectively, then the dual class is

given by the transpose of the matrix.

For Y = {0, 1}, we denote the VC-dimension of the dual class by VC⇤(F). It is known that VC⇤(F) <

2VC(F)+1 (Assouad [38]). For Y = [0, 1] we denote the fat-shattering dimension at scale � of the dual-class

by fat⇤(F , �). We have the following bound due to Kleer and Simon [39, Corollary 3.8 and inequality 3.1],

fat⇤(F , �) . 1

�
2fat(F,�/2)+1. (2.2)

2.5 Sample Compression Schemes

Definition 2.18 (Approximate and exact sample compression schemes) Following David, Moran, and Yehu-

dayoff [40], a selection scheme (, ⇢) for a hypothesis class F ⇢ YX is defined as follows. A k-selection

function maps sequences {(x1, y1), . . . , (xm, ym)} 2
S
`�1{X ⇥ Y}` to elements in K =

S
`k0{X ⇥ Y}`⇥

S
`k00 {0, 1}`, where k0 + k00  k. A reconstruction is a function ⇢ : K! YX .

We say that (, ⇢) is a k-size agnostic exact sample compression scheme for F and loss ` : Y⇥Y ! [0, 1]

if  is a k-selection and for all S = {(xi, yi) : i 2 [m]}, fS := ⇢((S)) achieves F-competitive empirical

loss:

dErr`(fS ;S)  inf
f2F

dErr`(f ;S).

We also define a relaxed notion of agnostic ↵-approximate sample compression in which fS should satisfy

dErr`(fS ;S)  inf
f2F

dErr`(f ;S) + ↵.
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The classic sample compression definition for realizable classification by Littlestone and Warmuth [13],

Floyd and Warmuth [14] is for exact compression scheme where ` is the 0-1 loss and inff2F dErr`(f ;S) = 0

One of the advantages of the sample compression schemes is the ability to generalize beyond uniform

convergence. The following generalization bound is a variation of the classic bound by Graepel et al. [41].

It follows the same arguments while using the empirical Bernstein bound instead of Hoeffding’s inequality.

A variation of this bound, with respect to the 0-1 loss, appears in [11, Lemma 42], and [42, Section 5]. For

full proof see the lecture notes on sample compression in the context of adaptive data analysis [43].

Lemma 2.19 (Data-Dependent Sample Compression Generalization Bound) For any sample compres-

sion scheme (, ⇢), for any m 2 N, � 2 (0, 1), loss function ` : Y ⇥ Y ! [0, 1], for any distribution D over

X ⇥ Y , for S ⇠ Dm, with probability 1� �,

���Err` (⇢((S));D)�dErr` (⇢((S));S)
���  O

0

@

s

dErr` (⇢((S));S)
�
|(S)| log(m) + log

1

�

�

m
+

|(S)| log(m) + log
1

�

m

1

A .

Note that this bound applies for any bounded loss, in particular to the robust loss of `: (x, y) 7! supz2U(x) `(f(z), y).

2.6 Adversarially Robust PAC Learning

Recall the extension of PAC learning to handle test-time adversarial attacks, as discussed in Section 1.1. The

main difference is that at test time, the learner will only observe the adversarially perturbed example and not

the original one, while the training time does not change. As a result, we are now interested in minimizing

the robust generalization error:

Err`(f ;D,U) = E(x,y)⇠D

"
sup

z2U(x)
`(f(z), y)

#
.

In Theorem 3.1 (Chapter 3) we show that in the case of finite perturbation sets, |U(x)|  k, and when ` is

the zero-one loss, the VC of the robust loss class, LU
H =

⇢
(x, y) 7! max

z2U(x)
I [h(z) 6= y] : h 2 H

�
, is upper

bounded by O(VC(H) log(k)). This means that we can minimize the empirical robust error and the sample

complexity grows with O(VC(H) log(k)).

On the other hand, Montasser, Hanneke, and Srebro [9] showed that when U(x) is infinite, this is no

longer true, and as a result, robust empirical risk (error) minimization might fail. At the same time, general-

ization bounds based on sample compression schemes still hold.
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Chapter 3

Improved Generalization Bounds for

Adversarially Robust Learning

We consider a model of robust learning in an adversarial environment. The learner gets uncorrupted training

data with access to possible corruptions that may be affected by the adversary during testing. The learner’s

goal is to build a robust classifier, which will be tested on future adversarial examples. The adversary is

limited to k possible corruptions for each input. We model the learner-adversary interaction as a zero-

sum game. This model is closely related to the adversarial examples model of Schmidt et al. [44], Madry

et al. [45].

Our main results consist of generalization bounds for the binary and multiclass classification, as well

as the real-valued case (regression). For the binary classification setting, we both tighten the generalization

bound of Feige et al. [8], and are also able to handle infinite hypothesis classes. The sample complexity is

improved from O( 1
✏4 log(

|H|
� )) to O

�
1
✏2 (kVC(H) log

3
2+↵(kVC(H))+log( 1� )

�
for any ↵ > 0. Additionally,

we extend the algorithm and generalization bound from the binary to the multiclass and real-valued cases.

Along the way, we obtain results on fat-shattering dimension and Rademacher complexity of k-fold maxima

over function classes; these may be of independent interest.

For binary classification, the algorithm of Feige et al. [8] uses a regret minimization algorithm and an

ERM oracle as a black box; we adapt it for the multiclass and regression settings. The algorithm provides us

with near-optimal policies for the players on a given training sample.
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3.1 Introduction

We study the classification and regression problems in a setting of adversarial examples. This setting is dif-

ferent from standard supervised learning in that examples, at testing time, may be corrupted in an adversarial

manner to disrupt the learner’s performance. As standard supervised learning methods have demonstrated

vulnerabilities, the challenge to design reliable robust models has gained significant attention and has been

termed adversarial examples. We study the adversarially robust learning paradigm from a generalization

point of view.

We consider the following robust learning framework for multiclass and real-valued functions of Feige

et al. [8]. There is an unknown distribution over the uncorrupted inputs domain. The learner receives a

labeled uncorrupted sample (the labels can be categorical or real-valued) and has knowledge during the

training phase of all possible corruptions that the adversary might effect. The learner selects a hypothesis

from a fixed hypothesis class (in our case, a mixture of hypotheses from base class H) that gives a prediction

(a distribution over predictions) for a corrupted input. The learner’s accuracy is measured by predicting the

true label of the uncorrupted input while they observe only the corrupted input during test time. Thus, their

goal is to find a policy that is robust against those corruptions. The adversary is capable of corrupting each

future input, but there are only k possible corruptions for each point in the instance space. This suggests the

game-theoretic framework of a zero-sum game between the learner and the adversary. The model is closely

related to the one proposed by Schmidt et al. [44], Madry et al. [45] and other common robust optimization

approaches [46], which deal with bounded worst-case perturbations (under `1 norm) on the samples. In this

work, we do not assume any metric for the corruptions: the adversary can map an input from the instance

space to any other space, but is limited with finitely many possible corruptions for each input.

Our main results are generalization bounds for classification and regression. For the binary classification

setting, we improve the generalization bound given in Feige et al. [8]. In particular, we allow for the use of

infinite base hypothesis classes H. The sample complexity has been improved from O( 1
✏4 log(

|H|
� )) to

O
�

1
✏2 (kVC(H) log

3
2+↵(kVC(H)) + log( 1� )

�
, for any ↵ > 0. Roughly speaking, the core of all proofs is a

bound on the Rademacher complexity of the k-fold maximum of the convex hull of the loss class of H. The

k-fold maximum captures the k possible corruptions for each input. In the regression setting, we provide

three different generalization bounds. One of the main contributions in this setting is an upper bound on the

empirical fat-shattering dimension of k-fold maximum class.

Our algorithm is an adaptation of the regret minimization algorithm proposed for binary classification

by Feige et al. [8] for computing near-optimal policies for the players on the training data to the multiclass

classification settings. It is a variant of the algorithm found in Cesa-Bianchi et al. [47] and based on the ideas

of Freund and Schapire [48]. An ERM (empirical risk minimization) oracle is repeatedly used to return a



16

hypothesis from a fixed hypothesis class H that minimizes the error rate on a given sample, while weighting

samples differently every time. The learner uses a randomized classifier chosen uniformly from the mixture

of hypotheses returned by the algorithm.

Thus, we extend the ERM paradigm by using adversarial training techniques instead of merely find a

hypothesis that minimizes the empirical risk. In contradistinction to “standard” learning, ERM often does

not yield models that are robust to adversarially corrupted examples [49–54].

Subsequent Work: Montasser, Hanneke, and Srebro [9, 55].

Following the conference version [56] of this work, Montasser, Hanneke, and Srebro [9] have proved that

VC classes are robustly PAC-learnable only improperly (that is, the hypothesis is selected from a broader

class than that of the true concept), with respect to any arbitrary perturbation set, possibly of infinite size. The

sample complexity1 is independent of the number of allowed perturbations, Õ
⇣

VC(H) VC⇤(H)
✏ + 1

✏ log
1
�

⌘
in

the realizable setting and Õ
⇣

VC(H) VC⇤(H)
✏2 + 1

✏2 log
1
�

⌘
in the agnostic setting, where VC⇤(H) denotes the

dual VC-dimension. Their approach relies on sample compression arguments whereas uniform convergence

does not hold. As a by-product, for the case of k < 1 possible corruptions for each input, they obtained

a sample complexity of size O
⇣

VC(H) log k
✏2 polylog(VC(H) log k

✏ ) + 1
✏2 log(

1
� )
⌘

for the zero-one robust loss

(which is defined below).

The main difference between the two works is the definition of the loss function. Specifically, for func-

tions h1, . . . , hT , in the binary classification setting, we define the loss ` : �(H)⇥ X ⇥ Y ! [0, 1] by

`1(h1, . . . , hT , x, y) = max
z2U(x)

1

T

TX

i=1

I [hi(z) 6= y] = max
z2U(x)

�����
1

T

TX

i=1

hi(z)� y

����� , (3.1)

which we refer to as the [0, 1]-robust loss. Montasser et al. [9, 55] defined a loss function ` : H⇥X ⇥ Y !

{0, 1} as follows

`2(h, x, y) = max
z2U(x)

I [h(z) 6= y] , (3.2)

which we refer to as the zero-one robust loss. More specifically, they consider for functions h1, . . . , hT the

loss

`3(h1, . . . , hT , x, y) = max
z2U(x)

I [Majority(h1(z), . . . , hT (z)) 6= y] , (3.3)

where Majority takes the majority of its Boolean inputs (assuming that T is odd). Clearly, if
1Õ(·) hides poly-logarithmic factors of VC,VC⇤, 1/✏, 1/�.
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`1(h1, . . . , hT , x, y) < 1/2 then `3(h1, . . . , hT , x, y) = 0. However, if `3(h1, . . . , hT , x, y) = 0 it only

guarantees that `1(h1, . . . , hT , x, y) < 1/2 but can be very far from zero. This is why an upper bound on

the sample complexity of `1 implies an upper bound on the sample complexity of `3, but not vice versa. We

summarize the main results for both definitions in Section 3.1.

The work of Montasser et al. [9], that considers the zero-one robust loss, improper learning is necessary

due to the lack of uniform convergence, which may arise in the case of an infinite set of corruptions. The

learner competes with the single optimal hypothesis in the class and outputs a mixture of hypotheses to do

so. In this work, considering the [0, 1]-robust loss, we would like to guarantee an ✏-optimal value for the

learner in a zero-sum game, via a mixed strategy, and so we find an ✏-optimal mixture of hypotheses. That is,

we compete with the optimal mixture of hypotheses from the function class. In that sense, we have a proper

learning algorithm, with respect to the convex hull of the hypothesis class.

In another closely related work from the computational perspective, Montasser et al. [55] reduced the

problem of robust learning to non-robust learning. Namely, their algorithm uses access to only a black-

box PAC learner, similar to the algorithm of Feige et al. [8] that we employ in this paper. They provided an

algorithm that achieves small robust risk in the realizable setting with sample complexity (that is independent

of k) of Õ
⇣

VC(H)(VC⇤(H))2

✏ + 1
✏ log

1
�

⌘
, and uses O

�
log2(nk) + log 1

�

�
black-box oracle calls to any PAC-

learner, where n is the sample size. Their result relies on sample compression and not uniform convergence.

Uniform Convergence of the Zero-One Robust Loss Class

For the case of a finite set of corruptions, and learning with respect to the zero-one robust loss, we show

that the VC dimension of the robust loss class remains finite (as opposed to the case of infinite corruptions).

As a result, we have uniform convergence, and robust ERM suffices to ensure learning. (The proof is in

Section 3.7).

Lemma 3.1 For any class H of VC dimension d, and any adversary U : X ! 2X such that |U(x)|  k, the

VC-dimension of the zero-one robust loss class LU
H =

⇢
(x, y) 7! max

z2U(x)
I [h(z) 6= y] : h 2 H

�
is at most

O(d log k).

Via a standard uniform convergence argument, we have the following result.

Theorem 3.2 For any class H ✓ {0, 1}X of VC dimension d, and any adversary U : X ! 2X such that

|U(x)|  k. For the robust zero-one loss function `(h, x, y) = max
z2U(x)

I[h(z) 6= y], the sample complexity for

the realizable setting is MRE(✏, �,H,U) = O
⇣

d log k
✏ log 1

✏ +
1
✏ log

1
�

⌘
, and the sample complexity for the

agnostic setting is MAG(✏, �,H,U) = O
⇣

d log k
✏2 + 1

✏2 log
1
�

⌘
.
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Main Results

We provide a summary of the results for the [0, 1]-robust loss and the zero-one robust loss (see Eqs. (3.1)

and (3.2) for the definitions) for robust (✏, �)-PAC learning with a finite set of possible corruptions.

Sample complexity for agnostic learning with [0, 1]-robust loss

GENERALIZATION BINARY CLASSIFICATION REFERENCE

Uniform Convergence O
⇣

1
✏4 log

|H|
�

⌘
Feige et al. [8]

Sample Compression
Õ
⇣

dd⇤

✏4 + 1
✏4 log

1
�

⌘

Montasser et al. [9]
Õ
⇣

d log k
✏4 + 1

✏4 log
1
�

⌘

Uniform Convergence Õ
⇣

kd
✏2 + 1

✏2 log
1
�

⌘
This work

REGRESSION

Uniform Convergence Õ
✓
inf��0

⇢
� +

q
k
n

R 1
�

p
fat�(H)d�

�
+

q
log( 1

� )
n

◆
This work

Table 3.1: Sample complexity for agnostic learning with [0, 1]-robust loss for a finite set of corruptions.
Notation: d denotes the VC dimension, d⇤ denote the dual dual-VC dimension, fat�(·) is the ��fat shattering
dimension, and k is the size of possible corruptions for each input. Õ(·) stands for for omitting poly-
logarithmic factors of d, d⇤, 1/✏, 1/�.

Sample complexity for binary classification with zero-one robust loss

GENERALIZATION REALIZABLE AGNOSTIC REFERENCE

Sample Compression
Õ
⇣

dd⇤

✏ + 1
✏ log

1
�

⌘
Õ
⇣

dd⇤

✏2 + 1
✏2 log

1
�

⌘

Montasser et al. [9]
Õ
⇣

d log k
✏ + 1

✏ log
1
�

⌘
Õ
⇣

d log k
✏2 + 1

✏2 log
1
�

⌘

Uniform Convergence O
⇣

d log k
✏ log 1

✏ +
1
✏ log

1
�

⌘
O
⇣

d log k
✏2 + 1

✏2 log
1
�

⌘
This work

Table 3.2: Sample complexity for binary classification with zero-one robust loss for a finite set of corruptions.
The notations are as in Table 2.1.

Whether we can achieve a sample complexity of ⇡ d log k
✏2 or dd⇤

✏2 for agnostic learning with the [0, 1]-

robust loss remains an open question. The method of Montasser et al. [9] can be modified to accommodate

learning with respect to the [0, 1] robust loss. Specifically, taking the majority of weak learners is not suf-

ficient for obtaining an ✏-optimal mixed strategy. Rather, we take a majority of strong learners (each with

✏ error), each of which takes ⇡ d
✏2 samples (and not ⇡ d). This implies a sample complexity (via sample

compression scheme) of dd⇤

✏4 or d log(k)
✏4 .
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Other Related Work

The most closely related works studying robust learning with adversarial examples are Schmidt et al. [44],

Madry et al. [45]. Their model deals with bounded worst-case perturbations (under `1 norm) on the samples.

This is slightly different from our model as we mentioned above. Other related works that analyze the the-

oretical aspects of adversarial robust generalization are Attias et al. [2], Attias and Hanneke [3], Montasser

et al. [9], Levi et al. [16], Yin et al. [57], Awasthi et al. [58], Cullina et al. [59], Khim and Loh [60], Raghu-

nathan et al. [61], Diochnos et al. [62], Balda et al. [63], Pydi and Jog [64], Tu et al. [65], Chen et al. [66], Car-

mon et al. [67], Alayrac et al. [68], Zhai et al. [69], Najafi et al. [70]. A different notion of robustness by

Xu and Mannor [71] is shown to be sufficient and necessary for standard generalization. Learning with

adversarial examples is extensively studied from the computational point of view as well [72–83].

All of our results are based on a robust learning model for binary classification suggested by Feige

et al. [8]. The works of Feige et al. [8], Mansour et al. [84], Feige et al. [85] consider robust inference

for the binary and multiclass case. The robust inference model assumes that the learner knows both the

distribution and the target function. The main task is, for a given corrupted input, to derive a classification

in a computationally efficient way that will minimize the error. In this work, we consider only the learning

setting, where the learner has only access to an uncorrupted sample, and need to approximate the target

function on possibly corrupted inputs, using a restricted hypothesis class H.

The work of Globerson and Roweis [86] and its extensions Teo et al. [87], Dekel et al. [88] discuss a

robust learning model where an uncorrupted sample is drawn from an unknown distribution, and the goal is

to learn a linear classifier resilient against missing attributes in future test examples. They discuss both the

static model (where the set of missing attributes is selected independently from the uncorrupted input) and

the dynamic model (where the set of missing attributes may depend on the uncorrupted input). The model

we use [8] extends the robust learning model to handle corrupted inputs (and not only missing attributes) and

an arbitrary hypothesis class (rather than only linear classifiers).

There is a vast literature on statistics, operation research and machine learning regarding various noise

models. Typically, most noise models assume a random process that generates the noise. In computational

learning theory, popular noise models include random classification noise [89] and malicious noise [90, 91].

In the malicious noise model, the adversary gets to arbitrarily corrupt some small fraction of the examples;

in contrast, in our model the adversary can always corrupt every example, but only in a limited way.
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3.2 Model

There is an unknown distribution D over some domain X of uncorrupted examples and a finite domain of

corrupted examples Z , possibly the same as X . Our setting is the agnostic PAC-learning framework in

a deterministic scenario. The label of each input is uniquely determined by an arbitrary unknown target

function c : X ! Y . The function c maps each uncorrupted input x 2 X to a label c(x) = y, where the set

of labels Y can be {1, . . . , l} or R.

The adversary can corrupt an input by mapping an uncorrupted input x 2 X to a corrupted one z 2 Z .

There is a mapping U which for every x 2 X defines a set U(x) ✓ Z , such that |U(x)|  k. The adversary

can map an uncorrupted input x to any corrupted input z 2 U(x). We assume that the learner has access to

U(·) during the training phase.

There is a fixed hypothesis class H of hypothesis h : Z 7! Y over corrupted inputs. The learner observes

an uncorrupted sample Su = {hx1, c(x1)i, . . . , hxm, c(xm)i}, where xi is drawn i.i.d. from D, and selects

a mixture of hypotheses from H, h̃ 2 �(H). In the classification setting, h̃ : Z ! �(Y) is a mixture

{hi|H 3 hi : Z ! Y}Ti=1 such that label y 2 Y = {1, . . . , l} gets a mass of
PT

i=1 ↵iI [hi(z) = y] where
PT

i=1 ↵i=1. For each hypothesis h 2 H in the mixture we use the zero-one loss to measure the quality

of the classification, i.e., `(h(z), y) = I [h(z) 6= y]. The loss of h̃ 2 �(H) is defined by `(h̃(z), y) =
PT

i=1 ↵i`(hi(z), y). In the regression setting, h̃ : Z ! R is a mixture {hi|H 3 hi : Z ! R}Ti=1 and is

defined by h̃(z) =
PT

i=1 ↵ihi(z). For each hypothesis h 2 H in the mixture we use L1 and L2 loss

functions, i.e., `(h(z), y) = |h(z) � y|p, for p = 1, 2. We assume the L1 loss is bounded by 1. Again, the

loss of h̃ 2 �(H) is defined by `(h̃(z), y) =
PT

i=1 ↵i`(hi(z), y).

The test phase proceeds as follows. First, an uncorrupted input x 2 X is drawn from D. Then, the

adversary selects z 2 U(x), given x 2 X . The learner observes a corrupted input Z and outputs a prediction,

as dictated by h̃ 2 �(H). Finally, the learner incurs a loss as described above. The main difference from the

classical learning models is that the learner will be tested on adversarially corrupted inputs z 2 U(x). When

selecting a strategy this needs to be taken into consideration.

The goal of the learner is to minimize the expected loss, while the adversary would like to maximize it.

This defines a zero-sum game which has a value v which is the learner’s error rate. We say that the learner’s

hypothesis is ✏-optimal if it guarantees a loss which is at most v + ✏, and the adversary policy is ✏-optimal if

it guarantees a loss which is at least v � ✏. We refer to a 0-optimal policy as an optimal policy.

Formally, the error (risk) of the learner when selecting a hypothesis h̃ 2 �(H) is

Err(h̃;D,U) = Ex⇠D[ max
z2U(x)

`(h̃(z), c(x))],
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and their goal is to choose h̃ 2 �(H) with an error close to

min
h̃2�(H)

Err(h̃;D,U) = min
h̃2�(H)

Ex⇠D[ max
z2U(x)

`(h̃(z), c(x))] = v.

3.3 Definitions and Notation

For a function class H with domain Z and range Y = {1, . . . , l}, denote the zero-one loss class

LH := {Z ⇥ {1, . . . , l} 3 (z, y) 7! I [h(z) 6= y] : h 2 H} .

For H with domain Z and range R, denote the Lp loss class

Lp
H := {Z ⇥ R 3 (z, y) 7! |h(z)� y|p : h 2 H} .

Throughout the article, we assume a bounded loss `(h(z), y)  M . Without the loss of generality, we

use M = 1, since otherwise, M can be re-scaled.

We define the operator conv as the convex hull of a real-valued function class,

conv(F) :=

(
W 3 w 7!

TX

t=1

↵tft(w) : T 2 N,↵t 2 [0, 1],
TX

t=1

↵t = 1, ft 2 F
)
.

We also define the convex hull of loss class L, where the data is corrupted by U(·),

U
conv(L) :=

(
X ⇥ Y 3 (x, y) 7! max

z2U(x)

TX

t=1

↵tft(z, y) : T 2 N,↵t 2 [0, 1],
TX

t=1

↵t = 1, ft 2 L

)
.

For 1  j  k define,

F (j)
H := {X ⇥ Y 3 (x, y) 7! I [h(zj) 6= y] : h 2 H, U(x) = {z1, . . . , zk}} , (3.4)

where we treat the set-valued output of U(x) as an ordered list, and F (j)
H is constructed by taking the jth

element in this list, for each input x.

For a set W and k function classes A(1), . . . ,A(k) ✓ RW , define the max operator

max
⇣
(A(j))j2[k]

⌘
:=

⇢
W 3 w 7! max

j2[k]
f (j)(w) : f (j) 2 A(j)

�
.
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The composition of max and conv operators max
�
(conv(A(j)))j2[k]

�
is well-defined, note that

U
conv(LH) ✓ max

⇣
(conv(F (j)

H ))j2[k]

⌘
. (3.5)

Denote the error (risk) of hypothesis h : Z 7! Y under corruption of U(·) by

Err(h;D,U) = Ex⇠D[ max
z2U(x)

`(h(z), c(x))],

and the empirical error on sample S under corruption of U(·) by

dErr(h;S,U) = 1

|S|
X

(x,y)2S

max
z2U(x)

`(h(z), c(x)).

3.4 Algorithm

We have a base hypothesis class H with domain Z and range Y that can be {1, . . . , l} or R. The learner

receives a labeled uncorrupted sample and has access during the training to possible corruption by the ad-

versary. We employ the regret minimization algorithm proposed by Feige et al. [8] for binary classification,

and extend it to the regression and multiclass classification settings.

A brief description of the algorithm is as follows. Given x 2 X , we define a |U(x)|⇥H loss matrix Mx

such that Mx(z, h) = I [h(z) 6= y], where y = c(x). The learner’s strategy is a distribution Q over H. The

adversary’s strategy Px 2 �(U(x)), for a given x 2 X , is a distribution over the corrupted inputs U(x). We

can treat P as a vector of distributions Px over all x 2 X . Via the minimax principle, the value of the game

is

v = min
Q

max
P

Ex⇠D[PT
x MxQ] = max

P
min
Q

Ex⇠D[PT
x MxQ]

For a given P , a learner’s minimizing Q is simply a hypothesis that minimizes the error when the distribution

over pairs (z, y) 2 Z ⇥ Y is DP , where

DP (z, y) =
X

x: c(x)=y^z2U(x)

Px(z)D(x).

Hence, the learner selects

hP = argmin
h2H

E(z,y)⇠DP [`(h(z), y)].
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A hypothesis hP can be found using the ERM oracle when DP is the empirical distribution over a training

sample.

Repeating this process multiple times yields a mixture of hypotheses h̃ 2 �(H) (mixed strategy- a

distribution Q over H) for the learner. The learner uses a randomized classifier chosen uniformly from this

mixture. This also yields a mixed strategy for the adversary, defined by an average of vectors P . Therefore,

for a given x 2 X , the adversary uses a distribution Px 2 �(U(x)) over corrupted inputs.

Algorithm 1 Approximate Minimax Strategy for a Half-Infinite Zero-Sum Game
Input: H ✓ YZ , S = {(xi, yi)}ni=1, U : X ⇥ Y ! Z .
parameter: ⌘ > 0.
Algorithm used: ERM oracle.

. Initialize weights for each (x, y) 2 S and z 2 U(x) and a distribution vector over U(x) for each
(x, y) 2 S.

1. For (x, y) 2 S, z 2 U(x):

(a) w1(z, (x, y)) 1, 8(x, y) 2 S, 8z 2 U(x).

(b) P 1(z, (x, y)) w1(z,(x,y))P
z02U(x) w1(z0,(x,y)) .

. Compute approximate minimax strategy for the learner and maximin strategy for the adversary us-
ing regret minimization. The learner determines their best response using an ERM oracle, while the
adversary employs multiplicative updates.

2. For t = 1, . . . , T :

(a) ht  argmin
h2H

E(z,y)⇠DPt [`(h(z), y].

(b) For (x, y) 2 S, z 2 U(x):
i. wt+1(z, (x, y)) (1 + ⌘ · [`(ht(z), y)]) · wt(z, (x, y)).

ii. P t+1(z, (x, y)) wt+1(z,(x,y))P
z02U(x) wt+1(z0,(x,y)) .

Output: h1, . . . , hT for the learner, 1
T

PT
t=1 P

t for the adversary.

Similar to Feige et al. [8, Theorem 1], for the binary classification case and zero-one loss we have:

Theorem 3.3 [8, Theorem 1] Fix a sample S of size n, and let T � 4n log k
✏2 , where k is the number of possible

corruptions for each input. For an uncorrupted sample S, we have that the strategies P = 1
T

PT
t=1 P

t for

the adversary and h1, . . . , hT (each one of them chosen uniformly) for the learner are ✏-optimal strategies

on S.

Assuming a bounded loss, i.e., `(h(z), y)  1 , 8x 2 X , 8z 2 Z, 8h 2 H, the result remains the same for

the other settings.
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3.5 Generalization Bound for Classification

We would like to show that if the sample S is large enough, then the policy achieved by the algorithm above

will generalize well. We both improve a generalization bound, previously found in Feige et al. [8], which

handles any mixture of hypotheses from H, and also are able to handle an infinite hypothesis class H. The

sample complexity is improved from O( 1
✏4 log(

|H|
� )) to O

�
1
✏2 (kVC(H) log

3
2+↵(kVC(H)) + log( 1� )

�
for

any ↵ > 0.

Theorem 3.4 (Generalization bound for binary classification) Let H : Z 7! {0, 1} be a hypothesis class

with finite VC-dimension. For any ↵ > 0 there exists a constant C↵ and there is a sample complexity

n0 = C↵
✏2

⇣
kVC(H) log

3
2+↵(kVC(H)) + log( 1� )

⌘
, such that for |S| � n0, for every h̃ 2 �(H)

|Err(h̃;D,U)�dErr(h̃;S,U)|  ✏

with probability at least 1� �.

Theorem 3.4 provides an improvement to Theorem 7 in [92], where they considered learning with the

intersection of hyperplanes for an imbalanced binary classification problem.

Theorem 3.5 [93] Let F be a Rk-valued function class, such that the coordinate projection class is denoted

by Fj = {w 7! f(w)j | f 2 F}, for 1  j  k. Let ('t)tn be a sequence of functions such that each

't is L-Lipschitz with respect to `1 norm. For any ↵ > 0, there exists a constant C↵ > 0 such that if

|'t(f(w))| _ ||f(w)||1  B, then it holds for any sequence w = (w1, · · · , wn),

Rn(' � F|w) := E� sup
f2F

1

n

nX

t=1

�t't(ft(wt))

 C↵L
p
k ·max

i2[k]
sup

a=(a1,...,an)
Rn(Fi|a) · log

3
2+↵

 
Bn

maxi2[k] supa=(a1,...,an) Rn(Fi|a)

!
.

Proof (of Theorem 3.4). Our strategy is to bound the empirical Rademacher complexity (over the sample

points) of the loss class of h̃ 2 �(H). As we mentioned in Eq. (3.5), convU (LH) ✓ max(conv(F (j)
H ))j2[k]).

Recall that functions contained in F (j)
H are loss functions of the learner when the adversary corrupts input x to

zj 2 U(x). We are left to bound the Rademacher complexity of the function class max((conv(F (j)
H ))j2[k]).

Formally,

|Err(h̃;D,U)�dErr(h̃;S,U)| = |E(x,y)⇠D max
j2[k]

TX

t=1

↵tf
(j)
t (x, y)� 1

n

X

(x,y)2S

max
j2[k]

TX

t=1

↵tf
(j)
t (x, y)|

 2Rn

⇣
max((conv(F (j)

H ))j2[k])|x⇥ y
⌘
+ 3

s
log

�
2
�

�

2n
,
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where the inequality stems from applying Theorem 2.12 on the function class convU (LH) and Eq. (3.5).

By taking '(z1, · · · , zk) = maxj2[k] zj , which is a 1-Lipschitz with respect to `1, and F = {(x, y) 7!

(f1(x, y), · · · , fk(x, y)) | fj 2 conv(F (j)
H ), 1  j  k} we can apply Theorem 3.5, for any ↵ > 0, there

exists a constant C↵ > 0 such that

Rn

⇣
max((conv(F (j)

H ))j2[k])|x⇥ y
⌘

 C↵
p
k ·max

j2[k]
max

w=w1:n

Rn(conv(F (j)
H )|w) · log

3
2+↵

 
n

maxj2[k] maxw=w1:n Rn(conv(F (j)
H )|w)

!

= C↵
p
k ·max

j2[k]
max

w=w1:n

Rn(F (j)
H |w) · log

3
2+↵

 
n

maxj2[k] maxw=w1:n Rn(F (j)
H |w)

!
,

where the last equality follows from the well-known identity Rn(F|w) = Rn(conv(F)|w), (see, e.g.,

Boucheron et al. [94, Theorem 3.3]).

The function x 7! x log3/2+↵(n/x) has a maximum point at x = n/e3/2+↵, and for x 2 (0, n/e3/2+↵]

is monotonic increasing. We bound the empirical Rademacher complexity (on any given sequence) via the

VC-dimension [36]: Rn(F|w)  C
q

VC(F)
n ,

and for
⇣
C
p
VC(FH)e3/2+↵

⌘2/3
 n, by the monotonicity of the function x log3/2+↵(n/x) we get an

upper bound of

C↵C

s
kmaxj2[k] VC(F

(j)
H )

n
· log

3
2+↵

 
n

3
2

C
q
maxj2[k] VC(F

(j)
H )

!

= C↵C

r
kVC(H)

n
· log

3
2+↵

 
n

3
2

C
p
VC(H)

!

= O
 
C↵

r
kVC(H)

n
· log

3
2+↵(n)

!
,

where the inequality follows from Lemma 3.7. We require that

C↵

r
kVC(H)

n
· log

3
2+↵(n) +

s
log

�
1
�

�

n
 ✏,

and a standard inversion of this inequality yields sample complexity n0 = O
�
C↵
✏2 (kVC(H) log

3
2+↵(kVC(H))+

log( 1� )
�
. ⇤
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We find it instructive to provide an alternative (albeit worse) bound of

Rn

⇣
max((conv(F (j)

H ))j2[k])|x⇥ y
⌘
 O

0

@

s
VC(H) log2(VC(H))k log k log9(n)

n

1

A (3.6)

on the Rademacher complexity, via a different technique (In Appendix 3.7).

Multiclass Classification

Let H ✓ YZ be a function class such that Y = [l] = {1 . . . , l}. We follow similar arguments to the binary

case, where the graph dimension replaces the VC dimension.

Graph Dimension. Let H ✓ YX be a categorical function class such that Y = [l] = {1 . . . , l}. Let

S ✓ X . We say that H G-shatters S if there exists an f : S 7! Y such that for every T ✓ S there is a g 2 H

such that

8x 2 T, g(x) = f(x) and 8x 2 S \ T, g(x) 6= f(x).

The graph dimension of H, denoted dG(H), is the maximal cardinality of a set that is G-shattered by H.

Theorem 3.6 (Generalization bound for multiclass classification) Let H be a function class with domain

Z and range Y = [l] with finite Graph-dimension dG(H). For any ↵ > 0 there exists a constant C↵ and

there is a sample complexity n0 = C↵
✏2

⇣
kdG(H) log

3
2+↵(kdG(H)) + log( 1� )

⌘
, such that for |S| � n0, for

every h̃ 2 �(H),

|Err(h̃;D,U)�dErr(h̃;S,U)|  ✏

with probability at least 1� �.

The following Lemma is standard and holds for the function classes F (j)
H (defined in Eq. (3.4)).

Lemma 3.7 Let H be a function class with domain Z and range Y = [l]. Denote the Graph-dimension of

H by dG(H). Then for all j 2 [k]

VC(F (j)
H )  dG(H).

In particular, for binary-valued classes, VC(F (j)
H )  VC(H) — since for these, the VC- and Graph-

dimensions coincide.
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Proof. Suppose that the binary function class F (j)
H shatters the points {(x1, y1), . . . , (xd, yd)} ⇢ X ⇥ Y .

That means that for each b 2 {0, 1}d, there is an hb 2 H such that I [hb(zj(xi)) 6= yi] = bi for all i 2 [d],

where zj(x) is the jth element in the (ordered) set-valued output of U on input x. We claim that H is able

to G-shatter S = {zj(x1), . . . , zj(xd)} ⇢ Z . Indeed, for each T ✓ S, let b = b(T ) 2 {0, 1}S be its

characteristic function. Taking f : S ! Y to be f(xi) = yi, we see that the definition of G-shattering

holds. ⇤

For the proof of Theorem 3.6, we follow the same proof of Theorem 3.4 and use the Graph-dimension

property of Lemma 3.7.

A similar bound to that of Theorem 3.4 can be achieved by using the Natarajan dimension and the fact

that

dG(H)  4.67 log2(|Y|)dN (H)

as previously shown Ben-David et al. [95], where the Natarajan dimension is defined as follows

Natarajan Dimension. Let H ✓ YX be a categorical function class such that Y = [l] = {1 . . . , l}. Let

S ✓ X . We say that H N -shatters S if there exist f1, f2 : S 7! Y such that for every y 2 S f1(y) 6= f2(y),

and for every T ✓ S there is a g 2 H such that

8x 2 T, g(x) = f1(x), and 8x 2 S \ T, g(x) = f2(x).

The Natarajan dimension of H, denoted dN (H), is the maximal cardinality of a set that is N -shattered by H.

3.6 Generalization Bounds For Regression

Let H ✓ RZ be a hypothesis class of real functions. In the following, we provide three different gen-

eralization bounds, which, as far as we can tell, are mutually incomparable uniformly over the parameter

regimes.

Theorem 3.8 (Generalization bound for Regression) Let H be a function class with domain Z and range

[0, 1]. Assume H has a finite �-fat-shattering dimension for all � > 0. Denote the sample size |S| = n and

mn(H) = inf
��0

8
<

:4� +O

0

@

s
log4(n)

n

Z 1

�

s

fatc�(H) log

✓
1

�

◆
d�

1

A

9
=

; ,

where c is a universal constant. For the L1 loss function and for every h̃ 2 �(H), for any ↵ > 0 there exist
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a constant C↵ such that,

|Err(h̃;D,U)�dErr(h̃;S,U)|  O

0

@C↵
p
k ·mn(H) · log

3
2+↵

✓
n

mn(H)

◆
+

s
log

�
1
�

�

n

1

A ,

with probability at least 1� �.

Moreover, in the case of L2 loss function, the same result holds with fat c�
2
(H) plugged into mn(H).

In the following corollary (proof is in Appendix 3.7) we derive a simplified bound for hyperplanes.

Corollary 3.9 Let H be a function class of homogeneous hyperplanes with domain Rm. Using the same

assumptions as in Theorem 3.8, we have

|Err(h̃;D,U)�dErr(h̃;S,U)|  O

0

@C↵

r
k

n
log

7
2 (n) log

3
2+↵

 
n

log
7
2 (n)

!
+

s
log

�
1
�

�

n

1

A ,

with probability at least 1� �.

The class of hyperplanes can be learned with SGD, as the maximum of finite convex functions remains

convex. However, our bound works for an arbitrary hypotheses class.

Theorem 3.10 (Generalization bound for Regression) Let H be a function class with domain Z and range

[0, 1]. Assume H has a finite �-fat-shattering dimension for all � > 0. Denote the sample size |S| = n and

mn(H) = inf
↵�0

8
<

:4↵+O
 s

k log(k) log4(n)

n

Z 1

↵

vuutlog

✓
1

�

◆ 
fat c�

4
(H)

�2
log2

✓
fat c�

4
(H)

�

◆!
d�

!9=

; .

For the L1 loss function and for every h̃ 2 �(H),

|Err(h̃;D,U)�dErr(h̃;S,U)|  O

0

@mn(H) +

s
log

�
1
�

�

n

1

A ,

with probability at least 1� �.

Moreover, in the case of L2 loss function, the same result holds with fat c�
8
(H) plugged into mn(H).

Theorem 3.11 (Generalization bound for Regression) Let H be a function class with domain Z and range

[0, 1]. Assume H has a finite �-fat-shattering dimension for all � > 0. Denote the sample size |S| = n and

d = fat ✏
4
(H). For the L1 loss function, there is a sample complexity

n0 = O
✓

1

✏2

✓
k log(k)

d

✏2
log2

d

✏
log2

1

✏
log2

✓
k log(k)

d

✏4
log2

d

✏
log2

1

✏

◆
+ log

1

�

◆◆
,
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such that for |S| � n0, for every h̃ 2 �(H)

|Err(h̃;D,U)�dErr(h̃;S,U)|  ✏

with probability at least 1� �.

We would like to compare the bounds in Theorems 3.8, 3.10 and 3.11. In terms of dependence in the

fat-shattering dimension and k, Theorem 3.8 would give a better bound than Theorem 3.10. However, the

latter has a better dependence on log(n) factors. Regarding Theorem 3.11, on the one hand, the dependence

in n (sample size) is 1/n1/4. On the other hand, we have the fat-shattering dimension with a specific scale

(the error parameter, ✏). In some cases, we can obtain an improved learning rate. For example, by taking

fat�(H) = 1/�6, Theorem 3.8 guarantees learning rate of 1/n1/6 and so Theorem 3.11 provides a sharper

bound.

Shattering Dimension of the Class max
�
(A(j))j2[k])

�

The main result of this section is bounding the fat-shattering dimension of max
�
(A(j))j2[k]

�
class.

Theorem 3.12 (Fat-shattering of k-fold maxima) Let S = {x1, . . . , xm}. For any k real-valued functions

classes F1, . . . ,Fk ✓ RS ,

fat�
�
max

�
(Fj)j2[k]

��
 O

0

@log(k) log2(m)
kX

j=1

fat�(Fj)

1

A .

Before presenting the proof, we introduce some auxiliary notions. We say that F “�-shatters a set S at

zero” if the shift r is constrained to be 0 in the the usual �-shattering definition (has appeared previously in

Gottlieb et al. [96]). The analogous dimension will be denoted by fat0�(F).

Lemma 3.13 For all F ✓ RX and � > 0, we have

fat�(F) = max
r2RX

fat0�(F � r), (3.7)

where F � r = {f � r : f 2 F} is the r-shifted class; in particular, the maximum is always achieved.

Proof. Fix F and �. For any choice of r 2 RX , if F � r �-shatters some set S ✓ X at zero, then then

F �-shatters S in the usual sense with shift rS 2 RS (i.e., the restriction of r to S). This proves that the

left-hand side of Eq. (3.7) is at least as large as the right-hand side. Conversely, suppose that F �-shatters

some S ✓ X in the usual sense, with some shift r 2 RS . Choosing r0 2 RX by r0S = r and r0X\S = 0, we

see that F � r0 �-shatters S at zero. This proves the other direction and hence the claim. ⇤
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Consider an ambiguous function class F ? ✓ {0, 1, ?}X . We say that F ? shatters a set S ✓ X if F ?(S) ◆

{0, 1}S . We say that f̄ 2 {0, 1}X is a disambiguation of f? 2 F ? if the two functions agree on x 2 X

whenever f?(x) 6= ?. We say that F̄ ✓ {0, 1}X is a disambiguation of F ? if each f̄ 2 F̄ is a disambiguation

of some f? 2 F ? and every f? 2 F ? has a disambiguated representative f̄ 2 F̄ . We define VC(F ?) as the

maximum size of a shattered set (possibly,1).

It will be convenient to visually represent such function classes as (possibly infinite) matrices, where the

rows correspond to f 2 F and the columns correspond to x 2 X .

Example 3.14 It might be the case that VC(F ?) = 1 while any disambiguation F̄ verifies VC(F̄ ) = 2:

0

BBBBBBBBBB@

x1 x2 x3

f1 1 1 1

f2 0 1 1

f3 1 0 1

f4 ? 0 0

f5 0 ? 0

1

CCCCCCCCCCA

.

It was mistakenly claimed in the conference version [56, Lemma 14] that one can always find a disambigua-

tion F̄ such that VC(F̄ )  VC(F ?). We thank Yann Guermeur for pointing out this error.

The following result provides a generic disambiguation rule that upper bounds the size of any disam-

biguated function classes. We reproduce it in Section 3.7 for completeness.

Lemma 3.15 [97, Theorem 13] For X = N = {1, 2, . . .} and any F ? ✓ {0, 1, ?}X with VC(F ?) 

d, there is a disambiguation F̄ ✓ {0, 1}X with the following property: For each prefix Xm := [m] =

{1, 2, . . . ,m}, we have

|F̄ (Xm)|  mO(d logm).

Example 3.16 [97] Consider the following ambiguous class F ? consisting of 5 functions acting on the 3
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points X = {x1, x2, x3}:

0

BBBBBBBBBB@

x1 x2 x3

f1 0 0 0

f2 1 1 1

f3 ? 1 0

f4 0 ? 1

f5 1 0 ?

1

CCCCCCCCCCA

.

It is straightforward to verify that VC(F ⇤) = 1 and further that any disambiguation F̄ verifies |F̄ (X)| = 5.

Contrast this with the Sauer-Shelah lemma, which upper-bounds the number of behaviors that a class of

VC-dimension 1 can achieve on 3 points by 4.

There exists an ambiguous function class F ?, such that for any disambiguation F̄ it holds that VC(F̄ ) =1.

See [97, Theorem 1].

Lemma 3.17 Let G : {�1, 1}k ! {�1, 1} and let F1, . . . ,Fk ✓ {�1, 1}X be hypothesis classes with

VC(Fj) = dj . Denote d̄ := 1
k

Pk
i=1 dj . Define the function class

G (F1, . . . ,Fk) =: {X 3 x 7! G (f1(x), . . . , fk(x)) : fi 2 Fi} ,

Then,

VC(G (F1, . . . ,Fk))  2k log(3k)d̄

Proof. We adapt the argument of Blumer et al. [98, Lemma 3.2.3], which is stated therein for k-fold unions

and intersections. The k = 1 case is trivial, so assume k � 2. For any S ✓ X , define G (F1, . . . ,Fk) (S) ✓

{�1, 1}S to be the restriction of G (F1, . . . ,Fk) to S. The key observation is that

|G (F1, . . . ,Fk) (S)| 
kY

j=1

|Fj(S)|


kY

j=1

(e|S|/dj)dj

 (e|S|/d̄)d̄k.

The last inequality requires proof. After taking logarithms and dividing both sides by k, it is equivalent to

the claim that

d̄ log d̄  1

k

kX

j=1

dj log dj ,
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an immediate consequence of Jensen’s inequality applied to the convex function f(x) = x log x.

The rest of the argument is identical to that of Blumer et al. [98]: one readily verifies that for m = |S| =

2d̄k log(3k), we have (em/d̄)d̄k < 2m. ⇤

Proof (of Theorem 3.12). To prove the Theorem, it suffices to show that for all Fj ✓ RS

fat0�(max((Fj)j2[k]))  O(log(k) log2(m)
kX

j=1

fat0�(Fj)). (3.8)

Indeed, we observe that r-shift commutes with the max operator:

max((Fj � r)j2[k]) = max((Fj)j2[k])� r. (3.9)

By applying Lemma 3.13 to the function class max((Fj)j2[k]) and using Eq. (3.9), we have

fat�(max((Fj)j2[k])) = max
r

fat0�(max((Fj)j2[k])� r) = max
r

fat0�(max((Fj � r)j2[k])).

Applying Eq. (3.8) to classes Fj � r obtains

max
r

fat0�(max((Fj � r)j2[k])  max
r

O(log(k) log2(m)
kX

j=1

fat0�(Fj � r)),

Then,

max
r

O(log(k) log2(m)
kX

j=1

fat0�(Fj � r))  O(log(k) log2(m)
kX

j=1

max
rj

fat0�(Fj � rj))

= O(log(k) log2(m)
kX

j=1

fat�(Fj)),

where the last identity follows from Lemma 3.13.

Now we proceed to prove Eq. (3.8). First, convert Fj ✓ RS to a finite class F?
j ✓ {��, �, ?}S for

S = {x1, . . . , xm}, as follows. For every vector in v 2 Fj , define v? 2 F?
j by: v?i = sgn(vi)� if

|vi| � � and v?i = ? else. The notion of shattering (at zero) remains the same: a set T ✓ S is shattered if

{��, �}T ✓ F?
j (T ). Note that F?

j and Fj have the same �-shattering dimension at zero.

Lemma 6.11 furnishes a mapping ' : F?
j ! {��, �}S such that (i) for all v 2 F?

j and all i 2 [m],

we have vi 6= ? =) ('(v))i = vi and (ii) '(F?
j ) does not shatter more points than F?

j times log2(m).

Together, properties (i) and (ii) imply that for all j 2 [k],

fat0�('(F?
j ))  O(fat0�(Fj) · log2(m)).
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Finally, observe that any set of points in S �-shattered by max((Fj)j2[k]) are also shattered by

max(('(F?
j ))j2[k]). Applying Lemma 3.17 with G(f1, . . . , fk)(x) = maxj2[k] fj(x) shows that

max(('(F?
j ))j2[k]) cannot shatter 2 log(3k)

Pk
j=1 dj points, where

dj = fat0�('(F?
j ))  O(fat0�(Fj) · log2(m)).

We have shown that,

fat0�(max((Fj)j2[k]))  O(log(k) log2(m)
kX

j=1

fat0�(Fj)),

this concludes the proof of Eq. (3.8). ⇤

Shattering Dimension of L1 and L2 Loss Classes

Lemma 3.18 Let H ⇢ Rm be a real valued function class on m points. denote L1
H and L2

H the L1 and L2

loss classes of H respectively. Assume L2
H is bounded by M . For any H,

fat�(L
1
H)  O(log2(m)fat�(H)), and fat�(L

2
H)  O(log2(m)fat�/2M (H)).

Lemma 3.19 Let ` : Y ⇥ Y ! R be an arbitrary loss function. For j 2 [k] define

F (j),`
H := {X ⇥ Y 3 (x, y) 7! `(h(zj), y) : h 2 H, U(x) = {z1, . . . , zk}} ,

and

L`H := {Z ⇥ Y 3 (z, y) 7! `(h(z), y) : h 2 H} .

Then, for all � > 0,

fat�(F (j),`
H )  fat�(L

`
H).

Proof. The claim stems from the inclusion F (j),`
H ✓ L`H. ⇤

Proof (of Lemma 3.18). For any X and any function class H ⇢ RX , define the difference class H� ⇢ RX⇥R

as

H� = {X ⇥ R 3 (x, y) 7! �h(x, y) := h(x)� y;h 2 H} .
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In words: H� consists of all functions �h(x, y) = h(x)� y indexed by h 2 H.

It is easy to see that for all � > 0, we have fat�(H�)  fat�(H). Indeed, if H� �-shatters some set

{(x1, y1), . . . , (xk, yk)} ⇢ X ⇥R with shift r 2 Rk, then H �-shatters the set {x1, . . . , xk} ⇢ X with shift

r + (y1, . . . , yk).

Next, we observe that taking the absolute value does not significantly increase the fat-shattering di-

mension. Indeed, for any real-valued function class F , define abs(F) := {|f |; f 2 F}. Observe that

abs(F) ✓ max((Fj)j2[2]), where F1 = F and F2 = �F =: {�f ; f 2 F}. It follows from Theorem 3.12

that

fat�(abs(F)) < O(log2(m)(fat�(F) + fat�(�F))) < O(log2(m)fat�(F)). (3.10)

Next, define F as the L1 loss class of H:

F = {X ⇥ R 3 (x, y) 7! |h(x)� y)|;h 2 H} .

Then

fat�(F) = fat�(abs(H�))

 O(log2(m)fat�(H�))

 O(log2(m)fat�(H));

this proves the claim for L1.

To analyze the L2 case, consider F ⇢ [0,M ]X and define F�2 :=
�
f2; f 2 F

 
. We would like to

bound fat�(F�2) in terms of fat�(F). Suppose that F�2 �-shatters some set {x1, . . . , xk} with shift r2 =

(r21, . . . , r
2
k) 2 [0,M ]k (there is no loss of generality in assuming that the shift has the same range as the

function class). Using the elementary inequality

|a2 � b2|  2M |a� b|, a, b 2 [0,M ],

we conclude that F is able to �/(2M)-shatter the same k points and thus fat�(F�2)  fat�/(2M)(F).

To extend this result to the case where F ⇢ [�M,M ]X , we use Eq. (3.10). In particular, define F as

the L2 loss class of H:

F =
�
X ⇥ R 3 (x, y) 7! (h(x)� y)2;h 2 H

 
.
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Then

fat�(F) = fat�((H�)�2)

= fat�((abs(H�))�2)

 fat�/(2M)(abs(H�))

 O(log2(m)fat�/(2M)(H�))

 O(log2(m)fat�/(2M)(H)). ⇤

Auxiliary Results

Finally, before providing formal proofs, we use the following result on the fat-shattering of convex hulls. We

then conclude a bound on the fat-shattering dimension of k-fold maximum of convex hulls using Theorem

3.12.

Theorem 3.20 [99, Theorem 1.5] There is an absolute constant C, such that for every function class F

bounded by [0, 1] and every � > 0,

fat�(conv(F ))  C
fat �

4
(F)

�2
log2

✓
2fat �

4
(F)

�

◆

Corollary 3.21 Let S = {x1, . . . , xm}. For any k real-valued functions classes F1, . . . ,Fk ✓ [0, 1]S ,

fat�(max((conv(Fj))j2[k]))  O
✓
k log(k) log2(m)max

j2[k]

✓
fat �

4
(Fj)

�2
log2

✓
fat �

4
(Fj)

�

◆◆◆
.

Proof.

fat�(max((conv(Fj))j2[k])(S))
(i)
 O

0

@log(k) log2(m)
kX

j=1

fat�(conv(Fj))

1

A

(ii)
 O

0

@log(k) log2(m)
kX

j=1

fat �
4
(Fj)

�2
log2

✓
fat �

4
(Fj)

�

◆1

A

 O
 
k log(k) log2(m)max

j2[k]

 
fat �

4
(Fj)

�2
log2

✓
fat �

4
(Fj)

�

◆!!
,

where (i) stems from Theorem 3.12 and (ii) stems from Theorem 3.20. ⇤
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Proofs

We now formally prove our main results for this section, generalization bounds in the case of real-valued

functions.

Proof (of Theorem 3.8). We follow the same steps as in the proof of Theorem 3.4 with two changes. The

first one is bounding the empirical Rademacher complexity via the fat-shattering dimension (instead of the

VC-dimension in the binary case), using Theorem 2.13,

Rn(F|w)  inf
��0

(
4� +

r
C

n

Z 1

�

s

fatc�(F) log

✓
2

�

◆
d�

)
:= gn(F),

this bound holds for every sequence of points. The second difference is that we now need to bound the

maximum fat-shattering dimension (instead of the VC-dimension) over the classes F (j)
H , for that purpose we

use Lemma 3.18 and Lemma3.19,

max
j2[k]

fat�(F (j)
H )  O(log2(n)fat�(H)).

Denote

mn(H) = inf
��0

8
<

:4� +O

0

@

s
log4(n)

n

Z 1

�

s

fatc�(H) log

✓
1

�

◆
d�

1

A

9
=

; .

Similar to Theorem 3.4, the function x log3/2+↵(n/x) is monotonic increasing for x 2 (0, n/e3/2+↵]. For

sufficiently large n
�
gn(F)  n/e3/2+↵

�
and considering the aforementioned changes we have that for any

↵ > 0 there exists a constant C↵ > 0 such that

Rn(max((conv(F (j)
H ))j2[k])|x⇥ y)

 C↵
p
k ·max

j2[k]
max

w=w1:n

Rn(F (j)
H |w) · log

3
2+↵

 
n

maxj2[k] maxw=w1:n Rn(F (j)
H |w)

!

 O
 
C↵
p
kmax

j2[k]
gn(F (j)

H ) · log
3
2+↵

 
n

maxj2[k] gn(F
(j)
H )

!!

= O
✓
C↵
p
k ·mn(H) · log

3
2+↵

✓
n

mn(H)

◆◆
.

We conclude that

|Err(h̃;D,U)�dErr(h̃;S,U)|  O

0

@C↵
p
k ·mn(H) · log

3
2+↵

✓
n

mn(H)

◆
+

s
log

�
1
�

�

n

1

A . ⇤
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Proof (of Theorem 3.10). Similar to the proof for binary case, we bound the empirical Rademacher com-

plexity of the loss class of h̃ 2 �(H).

|Err(h̃;D,U)�dErr(h̃;S,U)| = |E(x,y)⇠D max
j2[k]

TX

t=1

↵tf
(j)
t (x, y)� 1

n

X

(x,y)2S

max
j2[k]

TX

t=1

↵tf
(j)
t (x, y)|

 2Rn(max((conv(F (j)
H ))j2[k])|x⇥ y) + 3

s
log

�
2
�

�

2n
,

where the inequality stems from applying Theorem 2.12 on the function class convU (LH) and Eq. (3.5).

From Theorem 2.13 we have

Rn(max((conv(F (j)
H ))j2[k])|x⇥ y)

 inf
↵�0

(
4↵+

r
C1

n

Z 1

↵

s

fatc�(max((conv(F (j)
H ))j2[k])) log

✓
2

�

◆
d�

)
.

Using Corollary 3.21 we upper bound the inner term by

O

0

@

s
k log(k) log2(n)

n

Z 1

↵

vuutlog

✓
1

�

◆
max
j2[k]

 
fat c�

4
(F (j)

H (S))

�2
log2

✓
fat c�

4
(F (j)

H (S))

�

◆!
d�

1

A .

Lemmas 3.18 and 3.19 concludes the proof with

O
 s

k log(k) log4(n)

n

Z 1

↵

vuutlog

✓
1

�

◆ 
fat c�

4
(H)

�2
log2

✓
fat c�

4
(H)

�

◆!
d�

!
. ⇤

Proof (of Theorem 3.11). Denote the sample size by |S| = n. We start off with a known generalization

bound by Bartlett and Long [32], showing that for any function class H : Z ! [0, 1], the sample size is at

least

n  O
✓

1

✏2

✓
fat ✏

5
(H) log2

1

✏
+ log

1

�

◆◆
.

In our case, the function class we are interested in is max((conv(F (j)
H ))j2[k]). by Corollary 3.21 we have

that

fat✏(max((conv(F (j)
H ))j2[k]))  O

✓
k log(k) log2(n)

✓
fat ✏

4
(H)

✏2
log2

✓
fat ✏

4
(H)

✏

◆◆◆
.
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Thus, it suffices to solve the following

n  O
✓✓

1

✏2

✓
k log(k) log2(n)

✓
fat ✏

4
(H)

✏2
log2

✓
fat ✏

4
(H)

✏

◆◆
log2

1

✏
+ log

1

�

◆◆◆
.

Denote d = fat ✏
4
(H), A = 1

✏2 log
1
� , and B = k log(k) d

✏4 log
2 d
✏ log

2 1
✏ . It suffices to take n0 = O

�
B log2 B +A

�
,

therefore,

n  O
✓

1

✏2

✓
k log(k)

d

✏2
log2

d

✏
log2

1

✏
log2

✓
k log(k)

d

✏4
log2

d

✏
log2

1

✏

◆
+ log

1

�

◆◆
. ⇤

3.7 Deferred Proofs

Proof (of Lemma 3.1). Take an arbitrary sample S = {(x1, y1), ...., (xn, yn)}. Construct the set that con-

tains all possible corrupted examples on inputs from S, SU =
S

i2[n] {z : z 2 U(xi)}, the size of SU is at

most nk. Denote by LU
H(S) the set of all possible behaviors on S using functions in LU

H, and by H(SU ), the

set of all possible behaviors on SU using functions in H. Namely, LU
H(S) =

�
(`(x1, y1), . . . , `(xn, yn)) : ` 2 LU

H
 

and H(SU ) = {(h(z1), . . . , h(zm)) : h 2 H}. Observe that each pattern in the set LU
H(S) will map to at least

one pattern in H(SU ), implying that the size of LU
H(S) is at most the size of H(SU ). Using Sauer’s lemma,

the size of H(SU ) is at most (nk)d, solving for n such that (nk)d < 2n yields the stated bound. ⇤

Proof (of Corollary 3.9). We seek an upper bounds on the following term in the case of homogeneous hy-

perplanes with norm bounded by 1.

mn(H) = inf
��0

8
<

:4� +O

0

@

s
log4(n)

n

Z 1

�

s

fatc�(H) log

✓
1

�

◆
d�

1

A

9
=

; ,

 inf
��0

8
<

:4� +O

0

@

s
log4(n)

n

Z 1

�

1

�

s

log

✓
2

�

◆
d�

1

A

9
=

; ,

where the inequality stems from the bound fat�(H)  1
�2 [100].

Compute

Z 1

�

1

t

r
log

2

t
dt =

2

3

⇣
(log 2/�)3/2 � (log 2)3/2

⌘
,

choosing � = 1/
p
n yields

mn(H)  O
 r

1

n
log

7
2 (n)

!
.



39

The function x log3/2+↵(n/x) is monotonic increasing for x 2 (0, n/e3/2+↵]. Then, for sufficiently large

n,
⇣
log7/2(n)e3/2+↵

⌘2/3
 n we have

mn(H) · log
3
2+↵

✓
n

mn(H)

◆
 O

 r
1

n
log

7
2 (n) log

3
2+↵

 
n

log
7
2 (n)

!!
. ⇤

Proof (of Lemma 3.15). For any finite sequence (x1, y1), . . . , (xk, yk) with xi 2 X , yi 2 {0, 1}, and x1 <

. . . < xk, denote by F ?|(x1,y1),...,(xk,yk)
the subfamily of those members of F ? that label the point xi with

yi, for all i. For such a constrained subfamily, we define its weight:

w(F ?|(x1,y1),...,(xk,yk)
) =

X

S

1

n(S)d+1
,

where the summation is over all nonempty subsets S of N \ {1, . . . , xk} that are shattered by this subfamily,

and n(S) denotes the largest element of S. The definition applies verbatim to the special case where k = 0,

i.e., F ?|; = F ?. Clearly, if c is a prefix of c0, then w(F ?|c) � w(F ?|c0), and hence the maximum weight is

achieved by F ?|; = F ?. The latter is upper-bounded by

w(F ?) 
X

n2N

nd�1

nd+1
=
X

n2N

1

n2
=
⇡2

6
, (3.11)

where the numerator nd�1 accounts for the number of of subsets of [n] of size at most d which have n as

their largest element.

Any constrained subfamily F ?|(x1,y1),...,(xk,yk)
induces the “majority” classifier M [F ?|(x1,y1),...,(xk,yk)

] :

X ! {0, 1} as follows:

M [F ?|(x1,y1),...,(xk,yk)
](x) = [w(F ?|(x1,y1),...,(xk,yk),(x,1)

) > w(F ?|(x1,y1),...,(xk,yk),(x,0)
)](3.12)

(ties may be broken arbitrarily, and the rule above favors 0 in such cases). We observe that

w(F ?|(x1,y1),...,(xk,yk)
) � w(F ?|(x1,y1),...,(xk,yk),(x,1)

) + w(F ?|(x1,y1),...,(xk,yk),(x,0)
),

with equality occurring if and only if no f? 2 F ? verifies f?(x) = ?.

We now describe the disambiguation procedure. We proceed one “row” f? 2 F ? at a time. For a given

f? 2 F ?, initialize the “constraint” sequence c to be empty (i.e., to be of length k = 0). Predict the label

at x = 1 via y = M [F ?|c](x). The prediction is said to be a mistake if f?(x) 6= ? and y 6= f(x). In case

of a mistake, append (x, f?(x)) to the end of the constraint sequence c and leave c unchanged otherwise.

Repeat the procedure for x = 2: predict y = M [F ?|c](x) and append (x, f?(x)) to c in case of a mistake.
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Repeating these steps for x = 1, 2, . . . ,m produces a disambiguation f̄ of f?. To disambiguate the next

“row” of F ?, re-initialize c := ; and repeat the procedure above for x = 1, 2, . . . ,m.

Having described the construction of F̄ , it remains to analyze the number of behaviors that it can possibly

attain on a prefix of length m — that is, to bound |F̄ (Xm)|. The first key observation is that if c is the

constraint before a mistake and c0 immediately after, then (3.12) implies that w(F ?|c) � 1
2w(F

?|c0) (i.e.,

the weight of the constrained family is reduced by a half or more). This is because a mistake is caused

by the majority being wrong, and the updated constraint effectively removes those members of F ? that

contributed to the mistake. The second key observation is that if some x  m witnesses the last2 mistake

when disambiguating a given f?, the weight prior to updating the constraint on this mistake is at least

1/md+1 — because in this case, {x} must be a shattered set.

Together with (3.11), these two estimates on the weight immediately prior to the last update imply that

the number of updates u satisfies

1

md+1
2u�1  w(F ?)  ⇡2

6
,

which implies that u = O(d logm). To translate this into an estimate on |F̄ (Xm)|, observe that any f̄ 2 F̄

is uniquely defined by the indices on which a mistake was made during its disambiguation procedure. It

follows that |F̄ (Xm)|  O(
�m
u

�
)  mO(d logm). ⇤

Additional Generalization Bound for Binary Classification

We derive the result in Eq. (3.6). Denote the sample size |S| = n and VC(H) = d. Using Theorem 3.10 for

binary valued function classes we upper bound the empirical Rademacher complexity on the sample

Rn(max((conv(F (j)
H ))j2[k])|x⇥ y) by

inf
↵�0

8
<

:4↵+O
 s

k log(k) log4(n)

n
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↵
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✓
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(H)
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✓
fat c�
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(H)
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◆◆
d�

!9=

; .

For a binary-valued class, this is upper-bounded by

inf
↵�0

8
<

:4↵+O

0
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s
dk log(k) log4(n)

n
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↵

s
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✓
2
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1
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✓
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1
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9
=

;

= inf
↵�0

8
<

:4↵+O

0
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s
dk log(k) log4(n)

n

Z 1

↵

1

�
log

✓
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�
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✓
2

�

◆
d�

1

A

9
=

; .

2The case where no mistakes are made is trivial.
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 O
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log(d) log
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and

Rn(max((conv(F (j)
H ))j2[k])|x⇥ y)  O

0

@

s
d log2(d)k log(k) log9(n)

n
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Chapter 4

A Characterization of Semi-Supervised

Adversarially Robust PAC Learnability

We study the problem of learning an adversarially robust predictor to test time attacks in the semi-supervised

PAC model. We address the question of how many labeled and unlabeled examples are required to ensure

learning. We show that having enough unlabeled data (the size of a labeled sample that a fully-supervised

method would require), the labeled sample complexity can be arbitrarily smaller compared to previous works,

and is sharply characterized by a different complexity measure. We prove nearly matching upper and lower

bounds on this sample complexity. This shows that there is a significant benefit in semi-supervised robust

learning even in the worst-case distribution-free model, and establishes a gap between supervised and semi-

supervised label complexities which is known not to hold in standard non-robust PAC learning.

4.1 Introduction

The problem of learning predictors that are immune to adversarial corruptions at inference time is central

in modern machine learning. The phenomenon of fooling learning models by adding imperceptible per-

turbations to their input illustrates a basic vulnerability of learning-based models and is named adversarial

examples. We study the model of adversarially-robust PAC learning, in a semi-supervised setting.

Adversarial robustness has been shown to significantly benefit from semi-supervised learning, mostly

empirically, but also theoretically in some specific cases of distributions [e.g., 16, 67–70, 101, 102]. In this

paper, we ask the following natural question. To what extent can we benefit from unlabeled data in the

learning process of robust models in the general case? More specifically, what is the sample complexity in a

distribution-free model?
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Our semi-supervised model is formalized as follows. Let H ✓ {0, 1}X be a hypothesis class. We

formalize the adversarial attack by a perturbation function U : X ! 2X , where U(x) is the set of possible

perturbations (attacks) on x. In practice, we usually consider U(x) to be the `p ball centered at x. In this

paper, we have no restriction on U , besides x 2 U(x). The robust error of hypothesis h on a pair (x, y) is

supz2U(x) I [h(z) 6= y]. The learner has access to both labeled and unlabeled examples drawn i.i.d. from

unknown distribution D, and the goal is to find h 2 H with low robust error on a random point from D. The

sample complexity in semi-supervised learning has two parameters, the number of labeled examples and the

number of unlabeled examples which suffice to ensure learning. The learner would like to restrict the amount

of labeled data, which is significantly more expensive to obtain than unlabeled data.

In this paper, we show a gap between supervised and semi-supervised label complexities of adversarially

robust learning in a distribution-free model. The label complexity in semi-supervised may be arbitrarily

smaller compared to the supervised case and is characterized by a different complexity measure. Importantly,

we are not using more data, just less labeled data. The unlabeled sample size is the same as how much labeled

data a fully-supervised method would require, so this is a strict improvement. This kind of gap is known not

to hold in standard (non-robust) PAC learning, this is a unique property of robust learning.

Background

The following complexity measure VCU was introduced by Montasser et al. [9] (and denoted there by

dimU⇥) as a candidate for determining the sample complexity of supervised robust learning. It was shown

that indeed its finiteness is necessary, but not sufficient. This parameter is our primary object in this work, as

we will show that it characterizes the labeled sample complexity of semi-supervised robust PAC-learning.

Definition 4.1 (VCU -dimension) A sequence of points {x1, . . . , xk} is U -shattered by H if 8y1, . . . , yk 2

{0, 1}, 9h 2 H such that 8i 2 [k], 8z 2 U(xi), h(z) = yi. The VCU (H) is largest integer k for which there

exists a sequence {x1, . . . , xk} U -shattered by H.

Intuitively, this dimension relates to a shattering of the entire perturbation sets, instead of one point in the

standard VC-dimension. When U(x) = {x}, this parameter coincides with the standard VC. Moreover, for

any hypothesis class H, it holds that VCU (H)  VC(H), and the gap can be arbitrarily large. That is, there

exist H0 such that VCU (H0) = 0 and VC(H0) =1 (see Proposition 4.8).

For an improved lower bound on the sample complexity, Montasser et al. [9, Theorem 10] introduced the

Robust Shattering dimension, denoted by RSU (and denoted there by dimU ).

Definition 4.2 (RSU -dimension) A sequence x1, . . . , xk is said to be U -robustly shattered by F if

9z+1 , z
�
1 , . . . , z+k , z

�
k such that xi 2 U

�
z+i

�
\ U

�
z�i

�
8i 2 [k] and 8y1, . . . , yk 2 {+,�} , 9f 2 F with
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f(⇣) = yi, 8⇣ 2 U (zyi
i ) , 8i 2 [k]. The U -robust shattering dimension RSU (H) is defined as the maximum

size of a set that is U -robustly shattered by H.

Specifically, the lower bound on the sample complexity is ⌦
�
RSU
✏ + 1

✏ log
1
�

�
for realizable robust learning,

and ⌦
�
RSU
✏2 + 1

✏2 log
1
�

�
for agnostic robust learning. They also showed upper bounds of Õ

⇣
VC ·VC⇤

✏ +
log 1

�
✏

⌘
1

in the realizable case and Õ
⇣

VC ·VC⇤

✏2 +
log 1

�
✏2

⌘
in the agnostic case, where VC⇤ is the dual VC dimension

(definitions are in Section 4.7). Montasser et al. [9] showed that for any H, VCU (H)  RSU (H)  VC(H),

and there can be an arbitrary gap between them. Specifically, there exists H0 with VCU (H0) = 0 and

RSU (H0) =1, and there exists H1 with RSU (H1) = 0 and VC(H1) =1.

Main Contributions

• In Section 4.3, we first analyze the simple case where the support of the marginal distribution on the inputs

is fully known to the learner. In this case, we show a tight bound of ⇥
⇣

VCU (H)
✏ +

log 1
�

✏

⌘
on the labeled

complexity for learning H.

• In Section 4.4, we present a generic algorithm that can be applied both for the realizable and agnostic

settings. We prove an upper bound and nearly matching lower bounds on the sample complexity in the

realizable case. For semi-supervised robust learning, we prove a labeled sample complexity bound ⇤ss

and compare it to the sample complexity of supervised robust learning ⇤s. Our algorithm uses ⇤ss =

Õ
�
VCU
✏ + 1

✏ log
1
�

�
labeled examples and O(⇤s) unlabeled examples. Recall that ⇤s = ⌦(RSU ), and

since RSU can be arbitrarily larger than VCU , this means our labeled sample complexity represents a

significant improvement over the sample complexity of supervised learning.

• In Section 4.5, we prove upper and lower bounds on the sample complexity in the agnostic setting. We re-

veal an interesting structure, which is inherently different than the realizable case. Let ⌘ be the minimal ag-

nostic error. If we allow an error of 3⌘+✏, it is sufficient for our algorithm to have ⇤ss = Õ
⇣

VCU
✏2 +

log 1
�

✏2

⌘

labeled examples and O(⇤s) unlabeled examples (as in the realizable case). If we insist on having error

⌘ + ✏, then there is a lower bound of ⇤ss = ⌦
�
RSU
✏2 + 1

✏2 log
1
�

�
labeled examples. Furthermore, an error

of ( 32 � �)⌘+ ✏ is unavoidable if the learner is restricted to O(VCU ) labeled examples, for any � > 0. We

also show that improper learning is necessary, similar to the supervised case. We summarize the results in

Section 4.1 showing for which labeled and unlabeled samples we have a robust learner.

• The above results show that there is a significant benefit in semi-supervised robust learning. For example,

take H0 with VCU (H0) = 0 and RSU (H0) = n. The labeled sample size for learning H0 in supervised

1Õ(·) stands for omitting poly-logarithmic factors of VC,VC⇤,VCU ,RSU , 1/✏, 1/�.
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Figure 4.1: Sample complexity regimes for semi-supervised robust learning, for the realizable model and the
agnostic model with error 3⌘ + ✏, where ⌘ is the minimal agnostic error in the hypothesis class. Obtaining
an error of ⌘ + ✏ requires at least RSU labeled examples, as in the supervised case. ⇤s denotes the sample
complexity of supervised robust learning. It is an open question whether ⇤s equals RSU .

learning is ⌦(n). In contrast, in semi-supervised learning our algorithms require only O(1) labeled exam-

ples and O(n) unlabeled examples. We are not using more data, just less labeled data. Note that n can be

arbitrarily large.

• A byproduct of our result is that if we assume that the distribution is robustly realizable by a hypothesis

class (i.e., there exists a hypothesis with zero robust error) then, with respect to the non-robust loss (i.e.,

the standard 0-1 loss) we can learn with only Õ
⇣

VCU (H)
✏ +

log 1
�

✏

⌘
labeled examples, even if the VC is

infinite. Recall that there exists H0 with VCU (H0) = 0, RSU (H0) = 1 and VC(H0) = 1. Learning

linear functions with a margin is a special case of this data-dependent assumption. Moreover, we show

that this is obtained only by improper learning. (See Section 4.6.)

Related Work

Adversarially robust learning. The work of Montasser et al. [9] studied the setting of fully-supervised

robust PAC learning. In this paper, we propose a semi-supervised method with a significant improvement

in the labeled sample size. We show that the labeled and unlabeled sample complexities are controlled

by different complexity measures. Adversarially robust learning has been extensively studied in several

supervised learning models [e.g., 1, 3, 4, 8, 44, 55, 57, 59, 60, 81, 83, 103–111]. For semi-supervised

robust learning, Ashtiani et al. [83] showed that under some assumptions, robust PAC learning is possible
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with O(VC(H)) labeled examples and additional unlabeled samples. Carmon et al. [67] studied a robust

semi-supervised setting where the distribution is a mixture of Gaussians and the hypothesis class is linear

separators.

Semi-supervised (non-robust) learning. There is substantial interest in semi-supervised (non-robust) learn-

ing, and many contemporary practical problems significantly benefit from it [e.g., 112–114]. This was for-

malized in theoretical frameworks. Urner et al. [115] suggested a semi-supervised learning (non-robust)

framework, with an algorithmic idea that is similar to our method. Their framework consists of two steps;

using labeled data to learn a classifier with small error (not necessarily a member of the target class H), and

then labeling an unlabeled input sample in order to use a fully-supervised proper learner. They investigate

scenarios where the saving of labeled examples occurs. In our paper, we are interested in the robust loss

function. We use labeled data in order to learn a classifier (with the 0-1 loss function) from a class with a

potentially smaller complexity measure, then we label an unlabeled input sample and use a fully-supervised

method using the robust loss function. The sample complexity of learning the robust loss class is controlled

by a larger complexity measure. Fortunately, this affects our unlabeled sample size and not the labeled sam-

ple size as in the fully-supervised setting. Göpfert et al. [116] studied circumstances where the learning rate

can be improved given unlabeled data. Darnstädt et al. [117] showed that the label complexity gap between

the semi-supervised and the fully supervised setting can become arbitrarily large for concept classes of in-

finite VC-dimension and that this gap is bounded when a function class contains the constant zero and the

constant one functions. Balcan and Blum [118, 119] introduced an augmented version of the PAC model

designed for semi-supervised learning and analyzed when unlabeled data can help. The main idea is to aug-

ment the notion of learning a concept class, with a notion of compatibility between a function and the data

distribution that we hope the target function will satisfy.

4.2 Preliminaries

Let X be the instance space, Y a label space, and H ✓ YX a hypothesis class. A perturbation function U :

X ! 2X maps an input to a set U(x) ✓ X . Denote the 0-1 loss of hypothesis h on (x, y) by `0-1(h;x, y) =

I [h(x) 6= y], and the robust loss with respect to U by `U (h;x, y) = sup
z2U(x)

I [h(z) 6= y]. Denote the support

of a distribution D over X ⇥ Y by supp(D) = {(x, y) 2 X ⇥ Y : D(x, y) > 0}. Denote the marginal

distribution DX on X and its support by supp(DX ) = {x 2 X : D(x, y) > 0}. Define the robust risk

(error) of a hypothesis h 2 H with respect to distribution D over X ⇥ Y ,

Err (h;D,U) = E(x,y)⇠D [`U (h;x, y)] = E(x,y)⇠D

"
sup

z2U(x)
I [h(z) 6= y]

#
.
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The approximation error of H on D, namely, the optimal robust error achievable by a hypothesis in H on D

is denoted by,

Err(H;D,U) = inf
h2H

Err (h;D,U) .

We say that a distribution D is robustly realizable by a class H if Err(H;D,U) = 0.

Define the empirical robust error of a hypothesis h 2 H with respect to a sequence S 2 (X ⇥ Y)⇤ ,

dErr (h;S,U) = 1

|S|
X

(x,y)2S

`U (h;x, y) =
1

|S|
X

(x,y)2S

"
sup

z2U(x)
I [h(z) 6= y]

#
.

The robust empirical risk minimizer learning algorithm RERM : (X ⇥ Y)⇤ ! H for a class H on a sequence

S is defined by

RERMH(S) 2 argmin
h2H

dErr (h;S,U) .

When the perturbation function is the identity, U(x) = {x}, we recover the standard notions. The risk of

a hypothesis h 2 H with respect to distribution D over X⇥Y is defined by Err (h;D) = E(x,y)⇠D [`0-1(h;x, y)] =

E(x,y)⇠D [I [h(x) 6= y]] , and the empirical risk of a hypothesis h 2 H with respect to a sequence S 2

(X ⇥ Y)⇤ is defined by dErr (h;S) = 1
|S|

P
(x,y)2S `0-1(h;x, y) =

1
|S|

P
(x,y)2S [I [h(x) 6= y]] . The empir-

ical risk minimizer learning algorithm ERM : (X ⇥ Y)⇤ ! H for a class H on a sequence S is defined by

ERMH(S) 2 argminh2H
dErr (h;S) .

A learning algorithm A : (X ⇥ Y)⇤ ! YX for a class H is called proper if it always outputs a hypothesis

in H, otherwise it is called improper.

Realizable robust PAC learning. We define the supervised and semi-supervised settings.

Definition 4.3 (Realizable robust PAC learnability) For any ✏, � 2 (0, 1), the sample complexity of re-

alizable robust (✏, �)-PAC learning for a class H, with respect to perturbation function U , denoted by

⇤RE(✏, �,H,U), is the smallest integer m for which there exists a learning algorithm A : (X ⇥ Y)⇤ ! YX ,

such that for every distribution D over X ⇥ Y robustly realizable by H, namely Err (H;D,U) = 0, for a

random sample S ⇠ Dm, it holds that

P (Err (A(S);D,U)  ✏) > 1� �.

If no such m exists, define ⇤RE(✏, �,H,U) =1, and H is not robustly (✏, �)-PAC learnable with respect to

U .

For the standard (non-robust) learning with the 0-1 loss function, we omit the dependence on U and denote

the sample complexity of class H by ⇤RE(✏, �,H).
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Definition 4.4 (Realizable semi-supervised robust PAC learnability) A hypothesis class H is semi-supervised

realizable robust (✏, �)-PAC learnable, with respect to perturbation function U , if for any ✏, � 2 (0, 1), there

exists mu,ml 2 N[ {0}, and a learning algorithm A : (X ⇥ Y)⇤ [ (X )⇤ ! YX , such that for every distri-

bution D over X ⇥ Y robustly realizable by H, namely Err (H;D,U) = 0, for random samples Sl ⇠ Dml

and Su
X ⇠ Dmu

X , it holds that

P
�
Err

�
A(Sl, Su

X );D,U
�
 ✏

�
> 1� �.

The sample complexity MRE(✏, �,H,U) includes all such pairs (mu,ml). If no such (mu,ml) exist, then

MRE(✏, �,H,U) = ;.

Agnostic robust PAC learning. In this case we have Err (H;D,U) > 0, and we would like to compete

with the optimal h 2 H. We add a parameter to the sample complexity, denoted by ⌘, which is the optimal

robust error of a hypothesis in H, namely ⌘ = Err (H;D,U). We say that a function f is (↵, ✏)-optimal if

Err (f ;D,U)  ↵⌘ + ✏.

Definition 4.5 (Agnostic robust PAC learnability) For any ✏, � 2 (0, 1), the sample complexity of ag-

nostic robust (↵, ✏, �)-PAC learning for a class H, with respect to perturbation function U , denoted by

⇤AG(↵, ✏, �,H,U , ⌘), is the smallest integer m, for which there exists a learning algorithm A : (X ⇥ Y)⇤ !

YX , such that for every distribution D over X ⇥ Y , for a random sample S ⇠ Dm, it holds that

P
✓
Err (A(S);D,U)  ↵ inf

h2H
Err (h;D,U) + ✏

◆
> 1� �.

If no such m exists, define ⇤AG(↵, ✏, �,H,U , ⌘) =1, and H is not robustly (↵, ✏, �)-PAC learnable in

the agnostic setting with respect to U . Note that for ↵ = 1 we recover the standard agnostic definition, our

notation allows for a more relaxed approximation.

Analogously, we define the semi-supervised case.

Definition 4.6 (Agnostic semi-supervised robust PAC learnability) A hypothesis class H is semi-supervised

agnostically robust (↵, ✏, �)-PAC learnable, with respect to perturbation function U , if for any ✏, � 2 (0, 1),

there exists mu,ml 2 N [ {0}, and a learning algorithm A : (X ⇥ Y)⇤ [ (X )⇤ ! YX , such that for every

distribution D over X ⇥ Y , for random samples Sl ⇠ Dml and Su
X ⇠ Dmu

X , it holds that

P
✓
Err

�
A(Sl, Su

X );D,U
�
 ↵ inf

h2H
Err (h;D,U) + ✏

◆
> 1� �.

The sample complexity MAG(↵, ✏, �,H,U , ⌘) includes all such pairs (mu,ml). If no such (mu,ml)
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exist, then MAG(↵, ✏, �,H,U , ⌘) = ;.

Partial concept classes [11]. Let a partial concept class H ✓ {0, 1, ?}X . For h 2 H and input x such

that h(x) = ?, we say that h is undefined on x. The support of a partial hypothesis h : X ! {0, 1, ?} is

the preimage of {0, 1}, formally, h�1({0, 1}) = {x 2 X : h(x) 6= ?}. The main motivation for introducing

partial concept classes is that data-dependent assumptions can be modeled in a natural way that extends the

classic theory of total concepts. The VC dimension of a partial class H is defined as the maximum size of

a shattered set S ✓ X , where S is shattered by H if the projection of H on S contains all possible binary

patterns, {0, 1}S ✓ H|S . The VC-dimension also characterizes verbatim the PAC learnability of partial

concept classes, even though uniform convergence does not hold in this setting.

We use the notation Õ(·) for omitting poly-logarithmic factors of VC,VC⇤,VCU ,RSU , 1/✏, 1/�. See

Section 4.7 for additional preliminaries on complexity measures, sample compression schemes, and partial

concept classes.

4.3 Warm-Up: Knowing the Support of the Marginal Distribution

In this section, we provide a tight bound on the labeled sample complexity when the support of marginal

distribution is fully known to the learner, under the robust realizable assumption. Studying this setting gives

an intuition for the general semi-supervised model. The main idea is that as long as we know the support of

the marginal distribution, supp(DX ) = {x 2 X : 9y 2 Y, s.t. D(x, y) > 0}, we can restrict our search to a

subspace of functions that are robustly self-consistent, HU -cons ✓ H, where

HU -cons = {h 2 H : 8x 2 supp(DX ), 8z, z0 2 U(x), h(z) = h(z0)} .

As long as the distribution is robustly realizable, i.e., Err(H;D,U) = 0, we are guaranteed that the target

hypothesis belongs to HU -cons. As a result, it suffices to learn the class HU -cons with the 0-1 loss function, in

order to robustly learn the original class H. We observe that,

VC(HU -cons) = VCU (H)  VC(H).

Moreover, there exits H0 with VCU (H0) = 0 and VC(H0) =1 (see Proposition 4.8). Fortunately, moving

from VC(H) to VCU (H) implies a significant sample complexity improvement. Since supp(DX ) is known,

we can now employ any algorithm for learning the hypothesis class HU -cons. 2 This leads eventually to
2See Mohri et al. [28, Chapter 3] for standard upper and lower bounds. In order to remove the superfluous log 1

✏
factor of the

standard uniform convergence based upper bound, O
✓

VCU (H)

✏
log 1

✏
+

log
1
�

✏

◆
, we can use the learning algorithm and its analysis
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robustly learning H with labeled sample complexity that scales linearly with VCU (instead of the VC).

Formally,

Theorem 4.7 For hypothesis class H and adversary U , when the support of the marginal distribution DX is

known, the labeled sample complexity is ⇥
⇣

VCU (H)
✏ +

log 1
�

✏

⌘
.

The following Proposition demonstrates that semi-supervised robust learning requires much fewer labeled

samples compared to the supervised counterpart. Recall the lower bound on the sample complexity of super-

vised robust learning, ⇤RE(✏, �,H,U) = ⌦
⇣

RSU (H)
✏ + 1

✏ log
1
�

⌘
given by Montasser et al. [9, Theorem 10].

For completeness, we prove the following in Section 4.7.

Proposition 4.8 ([9], Proposition 9) There exists a hypothesis class H0 such that VCU (H0) = 0, RSU (H0) =

1, and VC(H0) =1.

We can now conclude the following separation result on supervised and semi-supervised label complexities.

Corollary 4.9 The hypothesis class in Proposition 4.8 is not learnable in supervised robust learning (i.e.,

we need to see the entire data distribution). However, when supp(DX ) is known, this class can be learned

with O( 1✏ log
1
� ) labeled examples.

In the next section, we prove a stronger separation in the general semi-supervised setting. The size of the

labeled data required in the supervised case is lower bounded by RSU , whereas in the semi-supervised

case, the labeled sample complexity depends only on VCU and the unlabeled data is lower bounded by

RSU . Moreover, note that in Theorem 4.7, when supp(DX ) is known, we can use any proper learner. In

Section 4.4 we show that in the general semi-supervised model this is not the case, and sometimes improper

learning is necessary, similar to supervised robust learning.

4.4 Near-Optimal Semi-Supervised Sample Complexity

In this section, we present our algorithm and its guarantees for the realizable setting. We also prove nearly

matching lower bounds on the sample complexity. Finally, we show that improper learning is necessary in

semi-supervised robust learning, similar to the supervised case.

We present a generic semi-supervised robust learner, that can be applied in both realizable and agnostic

settings. The algorithm uses the following two subroutines. The first one is any algorithm for learning partial

concept classes, which controls our labeled sample size. (In Section 4.7 we discuss in detail the algorithm

suggested by Alon et al. [11].) The second subroutine is any algorithm for the agnostic adversarially robust

from Hanneke [29] that applies for any H and D, or some other algorithms that are doing so while restricting the hypothesis class or
the data distribution [e.g., 120–127].
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supervised learning, which controls our unlabeled sample size. (In Section 4.7 we discuss in detail the

algorithm suggested by Montasser et al. [9].) Any progress on one of these problems directly improves the

guarantees of our algorithm. We use the following definition that explains how to convert a total concept

class into a partial one, in a way that preserves the idea of the robust loss function.

Definition 4.10 Let a hypothesis class H ✓ {0, 1}X and a perturbation function U : X ! 2X . For

any h 2 H, we define a corresponding partial concept h? : X ! {0, 1, ?}, and denote this mapping by

'(h) = h?. For x 2 X , whenever h is not consistent on the entire set U(x), i.e., 9z, z0 2 U(x), h(z) 6=

h(z0), define h?(x) = ?. Otherwise, h is robustly self-consistent on x, i.e., 8z, z0 2 U(x), h(z) = h(z0)

and h remains unchanged, h?(x) = h(x). The corresponding partial concept class is defined by H?
U =

{h? : '(h) = h?, 8h 2 H}.

The main motivation for the above definition is the following. Fix a hypothesis h. For any point x, as

defined above, the adversary can force a mistake on h, regardless of the prediction of h. We would like to

mark such points as mistake. We do this by defining a partial concept h? and setting h?(x) = ?, which, for

partial concepts, implies a mistake. The benefit of this preprocessing is that we reduce the complexity of the

hypothesis class from VC to VCU , which potentially can reduce the labeled sample complexity.

We are now ready to describe the algorithm.

Algorithm 2 Generic Adversarially-Robust Semi-Supervised (GRASS) learner
Input: Labeled data set Sl ⇠ Dml , unlabeled data set Su

X ⇠ Dmu
X , hypothesis class H, perturbation function

U , parameters ✏, �.
Algorithms used: PAC learner A for partial concept classes, agnostic adversarially robust supervised PAC
learner B.

1. Given the class H, construct the hypothesis class H?
U using Definition 4.10.

2. Execute the learning algorithm for partial concepts A on H?
U and sample Sl, with the 0-1 loss and

parameters ✏
3 ,

�
2 . Denote the resulting hypothesis h1.

3. Label the unlabeled data set Su
X with h1, denote the labeled sample by Su. (On points where h1

predicts ?, we can arbitrarily choose a label of 0 or 1.)

4. Execute the agnostic adversarially robust supervised PAC learner B on Su with parameters ✏
3 ,

�
2 .

Denote the resulting hypothesis h2.

Output: h2.

Algorithm motivation. The main idea behind the algorithm is the following. Given the class H?
U , we

would like to find a hypothesis h1 2 H?
U which has a small error, whose existence follows from our re-

alizability assumption. The required sample size scales with VCU , which is the complexity of H?
U , rather

than VC. This is where we make a significant gain in the labeled sample complexity. Note that h1 does not

guarantee a small robust error, although it does guarantee a small non-robust error. We utilize an additional

unlabeled sample for this task, which we label using h1. If we would simply minimize the non-robust error
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on this sample we would simply get back h1. The main insight is that we would like to minimize the robust

error over this sample, which will result in hypothesis h2. We now need to bound the robust error of h2.

The optimal function hopt has only a slightly increased robust error on this sample, namely, at most on the

sample points where it disagrees with h1. Note that h1 might have a large robust error due to the perturbation

U . However, a robust supervised PAC learner would return a hypothesis h2 which has robust error similar to

hopt, which is at most ✏.

Algorithm outline and guarantees. In the first step, we convert H to H?
U . Then we employ a learning

algorithm A for partial concepts on H?
U with a labeled sample Sl ⇠ Dml . The output of the algorithm is

a function h1 with ✏/3 on the 0-1 error. Crucially, we needed for this step |Sl| = Õ(VCU (H)/✏) labeled

examples for learning the partial concept H?
U , since VC(H?

U ) = VCU (H). So our labeled sample size is

controlled by the sample complexity for learning partial concepts with the 0-1 loss. In step 3, we label an

independent unlabeled sample Su
X ⇠ Dmu

X with h1, denote his labeled sample by Su. Define a distribution

D̃ over X ⇥ Y by D̃(x, h1(x)) = DX (x), and so Su is an i.i.d. sample from D̃. We argue that the robust

error of H with respect to D̃ is at most ✏
3 , i.e., Err(H; D̃,U) = ✏

3 . Indeed, the function with zero robust

error on D, hopt 2 argminh2H Err(h;D,U) has a robust error of at most ✏
3 on D̃. Finally, we employ an

agnostic adversarially robust supervised PAC learner B for the class H on Su ⇠ D̃mu , that should be of

size of the sample complexity of agnostically robust learn H with respect to U , when the optimal robust

error of hypothesis from H on D̃ is at most ✏
3 . Moreover, the total variation distance between D and D̃ is

at most ✏3 . We are guaranteed that the resulting hypothesis h2 has a robust error of at most ✏3 + ✏
3 + ✏

3 = ✏

on D. We conclude that a size of |Su
X | = mu = ⇤AG

�
1, ✏3 ,

�
2 ,H,U , ⌘ = ✏

3

�
unlabeled samples suffices,

this completes the proof for Theorem 4.11. For a specific instantiation of such algorithm ([9]), we deduce

the sample complexity in Theorem 4.13. A simple analysis of the latter yields a dependence of ✏2 for the

unlabeled sample size. However, by applying a suitable data-dependent generalization bound, we reduce this

dependence to ✏. (Full proofs appear in Section 4.7).

We now formally present the sample complexity of the generic semi-supervised learner for the robust

realizable setting. First, in the case of using a generic agnostic robust supervised learner as a subroutine

(step 4 in the algorithm). Then we deduce the sample complexity of a specific instantiation of such an

algorithm.

Theorem 4.11 For any hypothesis class H and adversary U , algorithm GRASS (✏, �)-PAC learns H with

respect to the robust loss function, in the realizable robust case, with samples of size

ml = O
✓
VCU (H)

✏
log2

VCU (H)

✏
+

log 1
�

✏

◆
, mu = ⇤AG

✓
1,
✏

3
,
�

2
,H,U , ⌘ =

✏

3

◆
,
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where ⇤AG (↵, ✏, �,H,U , ⌘) is the sample complexity of adversarially-robust agnostic supervised (↵, ✏, �)-

PAC learning, such that ⌘ is the error of the optimal hypothesis in H, i.e., ⌘ = Err (H;D,U).

Remark 4.12 Note that if we simply invoke a PAC learner (for total concept classes) on H, with the 0-1 loss,

instead of steps 1 and 2 in the algorithm, we would get a labeled sample complexity of roughly O(VC(H)).

This is already an exponential improvement upon previous results that require roughly O
�
2VC(H)

�
labeled

samples. The purpose of using partial concept classes is to further reduce the labeled sample complexity to

O(VCU (H)).

The following result follows by using the agnostic supervised robust learner suggested by Montasser et al. [9].

A simple analysis of the latter yields a dependence of ✏2 for the unlabeled sample size. However, by applying

a suitable data-dependent generalization bound, we reduce this dependence to ✏.

Theorem 4.13 For any hypothesis class H and adversary U , Algorithm GRASS (✏, �)-PAC learns H with

respect to the robust loss function, in the realizable robust case, with samples of size

ml = O
✓
VCU (H)

✏
log2

VCU (H)

✏
+

log 1
�

✏

◆
, mu = Õ

✓
VC(H)VC⇤(H)

✏
+

log 1
�

✏

◆
.

We present nearly matching lower bounds for the realizable setting. The following Corollary stems from

Theorem 4.7 and Montasser et al. [9, Theorem 10].

Corollary 4.14 For any ✏, � 2 (0, 1), the sample complexity of realizable robust (✏, �)-PAC learning for a

class H, with respect to perturbation function U is

ml = ⌦

✓
VCU (H)

✏
+

log 1
�

✏

◆
, mu =1, or ml +mu = ⌦

✓
RSU (H)

✏
+

log 1
�

✏

◆
.

Proper vs. improper. In Section 4.3, we have seen that when the support of the marginal distribution DX

is known, the labeled sample complexity is ⇥
⇣

VCU (H)
✏ +

log 1
�

✏

⌘
. This was obtained by a proper learner:

keep the robustly self-consistent hypotheses, HU -cons ✓ H, and then use ERM on this class. The case when

DX is unknown is different. We know that there exists a perturbation function U and a hypothesis class H

with finite VC-dimension that cannot be robust PAC learned with any proper learning rule [9, Lemma 3].

The same proof holds in the semi-supervised case. Note that both algorithms A and B used in Algorithm 2

are improper. (The proof appears in Section 4.7.)

Theorem 4.15 There exists H with VC(H) = 0 such that for any proper learning rule A : (X ⇥ Y)⇤ [

(X )⇤ ! H, there exists a distribution D over X⇥Y that is robustly realizable by H, i.e., Err (H;D,U) = 0.

It holds that Err
�
A(Sl, Su

X );D,U
�
> 1

8 with probability at least 1
7 over Sl ⇠ Dml and Su

X ⇠ Dmu , where
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ml,mu 2 N[{0} is the size of the labeled and unlabeled samples respectively. Moreover, when the marginal

distribution DX is known, there exists a proper learning rule for any H.

4.5 Agnostic Robust Learning

In this section, we prove the guarantees of Algorithm 2 in the more challenging agnostic robust setting. We

then prove lower bounds on the sample complexity which exhibits that it is inherently different from the

realizable case.

We follow the same steps as in the proof of the realizable case, with the following important difference.

In the first two steps of the algorithm, we learn a partial concept class with respect to the 0-1 loss and obtain

a hypothesis with an error of ⌘ + ✏/3 (⌘ is the optimal robust error of a hypothesis in H and not 0). This

leads eventually to the error of 3⌘ + ✏ for learning with respect to the robust loss.

We then present two negative results. In Theorem 4.17 we show that for obtaining error ⌘ + ✏ there is a

lower bound of ⌦(RSU ) labeled examples, this result coincides with the lower bound of supervised robust

learning. In Theorem 4.18, we show that for any � > 0, there exists a hypothesis class, such that having

access only to O(VCU ) labeled examples, leads to an error ( 32 � �)⌘ + ✏. (All proofs for this section are in

Section 4.7.)

We start with the upper bounds. First, we analyze the case of using a generic agnostic robust learner,

then we deduce the sample complexity of a specific instantiation of such algorithm.

Theorem 4.16 For any hypothesis class H and adversary U , Algorithm GRASS (3, ✏, �)-PAC learns H

with respect to the robust loss function, in the agnostic robust case, with samples of size

ml = O
✓
VCU (H)

✏2
log2

VCU (H)

✏2
+

log 1
�

✏2

◆
, mu = ⇤AG

✓
1,
✏

3
,
�

2
,H,U , 2⌘ + ✏

3

◆
,

where ⇤AG (↵, ✏, �,H,U , ⌘) is the sample complexity of adversarially-robust agnostic supervised learning,

such that ⌘ is error of the optimal hypothesis in H, namely ⌘ = Err (H;D,U).

By using the agnostic supervised robust learner suggested by Montasser et al. [9], we have the following

upper bound on the unlabeled sample size, mu = Õ
⇣

VC(H) VC⇤(H)
✏2 +

log 1
�

✏2

⌘
.

We now present two negative results.

Theorem 4.17 For any ✏, � 2 (0, 1), the sample complexity of agnostic robust (1, ✏, �)-PAC learning for a

class H, with respect to perturbation function U is (even if DX is known),

ml = ⌦

✓
RSU (H)

✏2
+

1

✏2
log

1

�

◆
, mu =1.
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Theorem 4.18 For any � > 0, there exists a hypothesis class H and adversary U , such that the sample

complexity for ( 32 � �, ✏, �)-PAC learn H is

ml = ⌦

✓
VCU (H)

✏2
+

1

✏2
log

1

�

◆
, mu =1.

Open question. What is the optimal error rate in the agnostic setting when using only O(VCU ) labeled

examples?

4.6 Learning with the 0-1 Loss Assuming Robust Realizability

In this section, we learn with respect to the 0-1 loss, under robust realizability assumption. A Distribution

D over X ⇥ Y is robustly realizable by H given a perturbation function U if there is h 2 H such that not

only h classifies all points in D correctly, it also does so with respect to the robust loss function, that is,

Err(H;D,U) = 0. Note that our guarantees, only in this section, are with respect to the non-robust error.

The formal definition is in Section 4.7. A simple example of this model is the following. Let H be linear

separators on X the unit ball in Rd, and U as `2 balls of radius �, the robustly realizable distributions are

separable with margin �, where VCU (H) = 1
�2 but VC(H) = d+ 1 can be arbitrarily larger. Moreover, we

have the following example. (All proofs are in appendix Section 4.7.)

Proposition 4.19 For any m 2 N, there exist a hypothesis class Hm and distribution D, such that D is

robustly realizable by Hm, VCU (Hm) = 1, and VC(Hm) = 2m.

Standard VC theory does not ensure learning in this case. In this section, we explain how we can learn in

such a scenario with a small sample complexity (scales linearly in VCU ). Moreover, we show that it cannot

be achieved via proper learners.

Theorem 4.20 The sample complexity for learning a hypothesis class H with respect to the 0-1 loss, for any

distribution D that is robustly realizable by H, namely Err (H;D,U) = 0,

O
✓
VCU (H)

✏
log2

VCU (H)

✏
+

log 1
�

✏

◆
,⌦

✓
VCU (H)

✏
+

log 1
�

✏

◆
.

This Theorem was an intermediate step in the proof of Theorem 4.11, and the sample complexity is the

same as Theorem 4.22, O (⇤RE(✏, �,H)) . We show that there exists a robust ERM that fails in this setting

(Proposition 4.25 in Section 4.7). Then, we claim that every proper learner fails.

Theorem 4.21 There exists H with VCU (H) = 1, such that for any proper learning rule A : (X ⇥ Y)⇤ !

H, there exists a distribution D over X ⇥ Y that is robustly realizable by H, i.e., Err (H;D,U) = 0, and it



56

holds that Err (A(S);D) > 1
8 with probability at least 1

7 over S ⇠ Dm.

4.7 Deferred Preliminaries and Proofs

Additional Preliminaries for Section 6.2

Complexity measures. The capacity measures, VCU , RSU and VC, play an important role in our results.

See Definitions 4.1 and 4.2 for the VCU and RSU dimensions. It holds that VCU (H)  RSU (H)  VC(H),

in Proposition 4.8 we demonstrate an arbitrary gap between VCU and RSU , the key parameters controlling

the sample complexity of robust learnability.

Partial concept classes - [11]. Let a partial concept class H ✓ {0, 1, ?}X . For h 2 H and input x such

that h(x) = ?, we say that h is undefined on x. The support of a partial hypothesis h : X ! {0, 1, ?} is

the preimage of {0, 1}, formally, h�1({0, 1}) = {x 2 X : h(x) 6= ?}. The main motivation for introducing

partial concept classes is that data-dependent assumptions can be modeled in a natural way that extends the

classic theory of total concepts.

The VC-dimension of a partial class H is defined as the maximum size of a shattered set S ✓ X , where

S is shattered by H if the projection of H on S contains all possible binary patterns, {0, 1}S ✓ H|S . The

V C dimension also characterizes verbatim the PAC learnability of partial concept classes. However, the

uniform convergence argument does not hold, and the ERM principle does not ensure learning. The proof

hinges on a combination of sample compression scheme and a variant of the one-Inclusion-Graph algorithm

[128]. In Section 4.4 we elaborate on the sample complexity of partial concept classes, and in Section 4.7

we elaborate on the learning algorithms. The definitions of realizability and agnostic learning in the partial

concepts sense generalize the classic definitions for total concept classes. See [11, Section 2 and Appendix

C] for more details.

Proofs for Section 4.3

Proof (of Proposition 4.8). We overview the construction by Montasser et al. [9], which exemplifies an arbi-

trarily large gap between VCU and RSU . In this example VCU (H) = 0, RSU (H) =1, and VC(H) =1.

Define the Euclidean ball of radius r perturbation function U(x) = Br(x). Consider infinite sequences

(xn)n2N and (zn)n2N of points such that 8i 6= j, U(xi) \ U(xj) = U(xi) \ U(zj) = U(xj) \ U(zi) = ;,

and 8i,
��U(xi) \ U(zi)

�� = 1.
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For a bit string b 2 {0, 1}N, define a hypothesis hb : {U(xi) [ U(zi)}i2N ! {0, 1} as follows.

hb =

8
>><

>>:

hb

⇣
U(xi)

⌘
= 1 ^ hb

⇣
U(zi) \ U(xi)

⌘
= �1, bi = 0

hb

⇣
U(zi)

⌘
= 1 ^ hb

⇣
U(xi) \ U(zi)

⌘
= �1, bi = 1.

Define the hypothesis class H =
n
hb : b 2 {0, 1}N

o
. It holds that VCU (H) = 0 and RSU =1. ⇤

Proofs for Section 4.4

Before proceeding to the proof, we present the following result on learning partial concept classes. Recall

the definition of VC is in the context of partial concepts (see Section 4.7).

Theorem 4.22 ([11], Theorem 34) Any partial concept class H with VC(H) <1 is PAC learnable in the

realizable setting with sample complexity,

• ⇤RE (✏, �,H) = O
⇣
min

n
VC(H)

✏ log 1
� ,

VC(H)
✏ log2

⇣
VC(H)

✏

⌘
+ 1

✏ log
1
�

o⌘

• ⇤RE (✏, �,H) = ⌦
⇣

VC(H)
✏ + 1

✏ log
1
�

⌘
.

Proof (of Theorem 4.11). At first, we convert the hypothesis class H to H?
U as described in Definition 4.10.

Then, we employ the learning algorithm A for partial concepts on the partial concept class H?
U and Sl,

denote the resulting hypothesis by h1. Note that we reduced the complexity of the class, since VC(H?
U ) =

VCU (H). Theorem 4.22 implies that whenever ml = |Sl| � Õ
⇣

VCU (H)
✏ + 1

✏ log
1
�

⌘
, the hypothesis h1

has a non-robust error at most ✏3 with probability 1 � �
2 , with respect to the 0-1 loss. Note that there exists

h 2 H that classifies correctly any point in D with respect to the robust loss function. So when we convert

H to H?
U , the "partial version" of h still classifies correctly any point in Sl, and does not return any ?, which

always counts as a mistake. Algorithm A guarantees to return a hypothesis that is ✏-optimal with respect to

the 0-1 loss, with high probability. Observe that after these two steps, we obtain the following intermediate

result. Whenever a distribution D is robustly realizable by a hypothesis class H, i.e., Err(H;D,U) = 0, we

have an algorithm that learns this class with respect to the 0-1 loss, with sample complexity of

⌥(✏, �,H,U) = O (⇤RE(✏, �,H)) = O
✓
VCU (H)

✏
log2

VCU (H)

✏
+

1

✏
log

1

�

◆
. (4.1)

The sample complexity of this model is defined formally in Definition 4.24. In Section 4.6 we present more

results for this model.

In the third step, we label an independent unlabeled sample Su
X ⇠ Dmu

X with h1, denote this labeled
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sample by Su. Define a distribution D̃ over X ⇥ Y by

D̃(x, h1(x)) = DX (x),

and so Su is an i.i.d. sample from D̃. We argue that the robust error of H with respect to D̃ is at most ✏3 , i.e.,

Err(H; D̃,U)  ✏
3 . Indeed, we show that hopt 2 argminh2H Err(h;D,U) has a robust error of at most ✏3 on

D̃. Note that,

Err(H; D̃,U)  E(x,y)⇠D [`U (hopt;x, h1(x))] = E(x,y)⇠D̃ [`U (hopt;x, y)] . (4.2)

Observe that the following holds for any (x, y),

`U (hopt;x, h1(x))  `U (hopt;x, y) + `0-1(h1;x, y). (4.3)

Indeed, the right-hand side is 0, whenever h1 classifies (x, y) correctly, and hopt robustly classifies (x, y)

correctly, which implies that the left-hand side is 0 as well.

By taking the expectation on Eq. (4.3) we have,

E(x,y)⇠D[`U (hopt;x, h1(x))]  E(x,y)⇠D[`U (hopt;x, y)] + E(x,y)⇠D[`0-1(h1;x, y)]. (4.4)

By combining it together, we obtain

Err(H; D̃,U)  E(x,y)⇠D̃ [`U (hopt;x, y)]

(i)
= E(x,y)⇠D[`U (hopt;x, h1(x))]

(ii)
 E(x,y)⇠D[`U (hopt;x, y)] + E(x,y)⇠D[`0-1(h1;x, y)]

 ✏

3

where (i) follows from Eq. (4.2) and (ii) follows from Eq. (4.4).

Finally, we employ an agnostic adversarially robust supervised PAC learner B for the class H on Su ⇠

D̃mu , that should be of size of the sample complexity of agnostically robust learn H with respect to U ,

when the optimal robust error of hypothesis from H on D̃ is at most ✏3 . We are guaranteed that the resulting

hypothesis h2 has a robust error of at most ✏
3 + ✏

3 = 2✏
3 on D̃, with probability 1 � �

2 . We observe that

the total variation distance between D and D̃ is at most ✏
3 , and as a result, h2 has a robust error of at most

2✏
3 + ✏

3 = ✏ on D, with probability 1� �.
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We conclude that a size of |Su
X | = mu = ⇤AG

�
1, ✏3 ,

�
2 ,H,U , ⌘ = ✏

3

�
unlabeled samples suffices, in

addition to ml = Õ
⇣

VCU (H)
✏ + 1

✏ log
1
�

⌘
labeled samples which are required in the first 2 steps. ⇤

We now prove Theorem 4.13 using a data-dependent compression-based generalization bound Lemma 2.19:

���Err (⇢((S));D,U)�dErr (⇢((S));S,U)
���  O

0

@

s

dErr (⇢((S));S,U)
�
|(S)| log(m) + log

1

�

�

m
+

|(S)| log(m) + log
1

�

m

1

A .

This bound includes the empirical error factor, and as soon as we call the compression-based learner on a sample that

is "nearly" realizable (Step 4 in the algorithm), we can improve the sample complexity of the agnostic robust supervised

learner, such that the dependence on ✏2 is reduced to ✏, for the unlabeled sample size.

Proof (of Theorem 4.13). Montasser et al. [9, Theorem 6] introduced an agnostic robust supervised learner that requires

the following labeled sample size,

⇤AG (1, ✏, �,H,U , ⌘) = Õ
✓
VC(H)VC

⇤
(H)

✏2
+

log
1

�

✏2

◆
.

Their argument for generalization is based on classic compression generalization bound by Graepel et al. [41],

adapted to the robust loss. See Montasser et al. [9, Lemma 11].

We show that in our use case, we can deduce a stronger bound. We employ the agnostic learner on a distribution that

is "close" to realizable, the error of the optimal h 2 H is at most ⌘ =
✏

3
, and so we need ⇤AG

�
1, ✏

3
, �

2
,H,U , ⌘ =

✏

3

�

unlabeled examples. As a result, we obtain an improved bound by using a data-dependant generalization bound described

in Lemma 2.19.

This improves the unlabeled sample size (denoted by mu) and reduces its dependence on ✏2 to ✏. Overall we obtain

a sample complexity of

mu = Õ
✓
VC(H)VC

⇤
(H)

✏
+

log
1

�

✏

◆
, ml = O

✓
VCU (H)

✏
log

2 VCU (H)

✏
+

log
1

�

✏

◆
. ⇤

Proof (of Theorem 4.15). This proof is identical to [9, Lemma 3], We overview the idea of the proof. If the proof is true

for a labeled sample, it remains true when some of the labels are missing.

Define the following hypothesis class Hm ✓ [0, 1]X . Define the instance space X = {x1, . . . , xm} ✓ R and a

perturbation function U : X ! 2
X , such that the perturbation sets of the instances do not intersect, that is, 8i, j 2 [m] :

U (xi) \ U (xj). We can simply take the perturbations sets to be `2 unit balls, U(x) = {z 2 R : kz � xk2  1} such

that 8i, j 2 [m] : kxi � xjk2 > 2. Now, each hb 2 Hm is represented by a bit string b = {0, 1}m, such that if bi = 1,

then there exists an adversarial example in U (xi) that is unique for each hb, and otherwise, the function is consistent on

U(xi).

Formally, for each i 2 [m] define a bijection  i : xi ⇥Hm ! U (xi) \ {xi}. Define Hm = {hb : b 2 {0, 1}m},
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such that for any xi 2 X , hb is defined by

hb(xi) =

8
>><

>>:

hb

⇣
U(xi) \  i(xi, hb)

⌘
= 0 ^ hb

⇣
 i(xi, hb)

⌘
= 1, bi = 1,

hb

⇣
U(xi)

⌘
= 0, bi = 0.

Note that since  i is a bijection and different functions with bi = 1 have a different perturbation for xi that causes a

misclassification.

For a function class H, define the robust loss class LU

H =

n
(x, y) 7! sup

z2U(x)
I {h(z) 6= y} : h 2 H

o
. It holds

that VC(Hm)  1 and VC
�
LU

Hm

�
= m (see [9, Lemma 2]).

We define a function class H̃3m =
�
hb 2 H3m :

P
3m

i=1
bi = m

 
. In words, we are keeping only functions in H3m

that are robustly correct on exactly 2m points. Note that the function h0 (bit string of all zeros) which is robustly correct

on all 3m points, is not the class.

The idea is that we can construct a family of
�
3m

2m

�
distributions, such that each distribution is supported on 2m

points from X = {x1, . . . , x3m}. Now, if we have a proper learning rule, observing only m points, the algorithm has

no information which are the remaining m points in the support (out of 2m possible points in X ). For each such a

distribution there exists h 2 H̃3m, with zero robust error. We can follow a standard proof of the no-free-lunch theorem

[e.g., 27, Section 5], showing via the probabilistic method, that there exists a distribution on which the algorithm has a

constant error, although there is an optimal function in H̃3m. See [9, Lemma 3] for the full proof. ⇤

Proofs for Section 4.5

Before proceeding to the proof, we present the following result on agnostic learning partial concept classes. Recall the

definition of VC is in the context of partial concepts (see Section 4.7).

Theorem 4.23 ([11], Theorem 41) Any partial concept class H with VC(H) <1 is agnostically PAC learnable with

sample complexity,

• ⇤AG (✏, �,H) = O
⇣

VC(H)

✏2
log

2

⇣
VC(H)

✏2

⌘
+

1

✏2
log

1

�

⌘
.

• ⇤AG (✏, �,H) = ⌦

⇣
VC(H)

✏2
+

1

✏2
log

1

�

⌘
.

Proof (of Theorem 4.16). We follow the same steps as in the proof of the realizable case, with the following difference.

In the first two steps of the algorithm, we learn with respect to the 0-1 loss, with an error of ⌘ (the optimal robust error

of a hypothesis in H) and not 0, which leads eventually to an approximation of 3⌘ for learning with the robust loss.

At first, we convert the class H into H?

U , on which we employ the learning algorithm A for partial concepts with the

sample Sl. Theorem 4.23 implies that whenever ml = |Sl| � Õ
⇣

VCU (H)

✏2
+

1

✏2
log

1

�

⌘
, the resulting hypothesis h1

returned by algorithm A has a non-robust error at most ⌘+ ✏

3
with probability 1� �

2
, with respect to the 0-1 loss, where

⌘ = Err (H;D,U). Note that there exists h 2 H with robust error of ⌘ on D. The "partial version" of h has an error

of ⌘ on D with respect to the 0-1 loss. As a result, algorithm A guarantees to return a hypothesis that is ✏-optimal with

respect to the 0-1 loss, with high probability.
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We label an independent unlabeled sample Su

X ⇠ Dmu
X

with h1, denote this labeled sample by Su. Similarly to the

realizable case, define a distribution D̃ over X ⇥ Y by

D̃(x, h1(x)) = DX (x),

and so Su is an i.i.d. sample from D̃. We argue that the robust error of H with respect to D̃ is at most 2⌘ +
✏

3
, i.e.,

Err(H; D̃,U) = 2⌘ + ✏

3
, by showing that hopt = argmin

h2H
Err(h;D,U) has a robust error of at most 2⌘ + ✏

3
on D̃.

Eqs. (4.2) to (4.4) still hold as in the realizable case proof. Combining it together, we have

Err(H; D̃,U)  E
(x,y)⇠D̃

[`U (hopt;x, y)]

(i)
= E(x,y)⇠D[`U (hopt;x, h1(x))]

(ii)
 E(x,y)⇠D[`U (hopt;x, y)] + E(x,y)⇠D[`0-1(h1;x, y)]

 ⌘ + ⌘ +
✏
3

= 2⌘ +
✏
3
,

where (i) follows from Eq. (4.2) and (ii) follows from Eq. (4.4).

Finally, we employ an agnostic adversarially robust supervised PAC learner B for the class H on Su ⇠ D̃mu , that

should be of size of the sample complexity of agnostically robust learn H with respect to U , when the optimal robust

error of hypothesis from H on D̃ is at most 2⌘+ ✏

3
. We are guaranteed that the resulting hypothesis h2 has a robust error

of at most 2⌘+ ✏

3
+

✏

3
= 2⌘+ 2✏

3
on D̃, with probability 1� �

2
. We observe that the total variation distance between D

and D̃ is at most ⌘+ ✏

3
, and as a result, h2 has a robust error of at most 2⌘+ 2✏

3
+⌘+ ✏

3
= 3⌘+ ✏ on D, with probability

1� �.

We conclude that a size of |Su

X | = mu = ⇤AG

�
1, ✏

3
, �

2
,H,U , 2⌘ + ✏

3

�
unlabeled sample suffices, in addition to the

ml = O
⇣

VCU (H)

✏2
log

2 VCU (H)

✏2
+

log
1
�

✏2

⌘
labeled samples which are required in the first 2 steps. We remark that the

best known value of ⇤AG (1, ✏, �,H,U , ⌘) is Õ
⇣

VC(H) VC
⇤
(H)

✏2
+

log
1
�

✏2

⌘
. ⇤

Proof (of Theorem 4.17). We give a proof sketch, this is similar to [9, Theorem 10], knowing the marginal distribution

DX does not give more power to the learner. The argument is based on the standard lower bound for VC classes (for

example [28, Section 3]). Let S = {x1, . . . , xk} be a maximal set that is U-robustly shattered by H.

Let z+
1
, z�

1
, . . . , z+

k
, z�

k
be as in Definition 4.2, and note that for i 6= j, z+

i
6= z+

j
and z�

i
6= z�

j
. Define a distribution

D� for any possible labeling � = (�1, . . . ,�k) 2 {0, 1}k of S.

8j 2 [k] :

8
>><

>>:

D�(z
+

j
, 1) = 1�↵

2k
^ D�(z

�

j
, 0) = 1+↵

2k
�j = 0,

D�(z
+

j
, 1) = 1+↵

2k
^ D�(z

�

j
, 0) = 1�↵

2k
�j = 1.

We can now choose ↵ as a function of ✏, � in order to get a lower bound on the sample complexity |S| & RSU
✏2

. ⇤

Proof (of Theorem 4.18). We take the construction in Proposition 4.8, where there is an arbitrary gap between VCU and
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RSU .

Recall that on every pair (x, z) in Proposition 4.8 the optimal error is ⌘ = 1/2. On such unlabeled pairs, the learner

can only randomly choose a prediction, and the error is 3/4. We have VCU = 0, and the labeled sample size is 1

✏2
log

1

�
.

As (RSU � 1

✏2
log

1

�
) grows, the gap between the learner and the optimal classifier is approaching 3/2, which means

that for any � > 0 we can pick RSU such that error of ( 2
3
� �)⌘ is not possible.

In order to prove the case of any 0 < ⌘  1/2, we can just add points such that their perturbation set does not

intersect with any other perturbation set, and follow the same argument. ⇤

Auxiliary Definitions and Proofs for Section 4.6

Definition of the model.

Definition 4.24 ((non-robust) PAC learnability for robustly realizable distributions) For any ✏, � 2 (0, 1), the sam-

ple complexity of (✏, �)-PAC learning for a class H, denoted by ⌥(✏, �,H,U), is the smallest integer m for which there

exists a learning algorithm A : (X ⇥ Y)
⇤ ! YX , such that for every distribution D over X ⇥ Y robustly realizable by

H with respect to a perturbation function U : X ! 2
X , namely Err (H;D,U) = 0, for a random sample S ⇠ Dm, it

holds that

P (Err (A(S);D)  ✏) > 1� �.

If no such m exists, define ⌥(✏, �,H,U) =1, and H is not (✏, �)-PAC for distributions that are robustly realizable by

H with respect to U .

Proof (of Proposition 4.19). Define the uniform distribution D over the support {(x1, 1), . . . , (x2m, 1)}, such that
T

2m

i=1
U(xi) 6=

;. Define H : X ! 2
X to be all binary functions over X . Note that the D is robustly realizable by H, the constant

function that always returns 1 has no error. Moreover we have VCU = 1, and VC = 2m, for any m 2 N. ⇤

Proof (of Theorem 4.20). We follow only the first two steps of the generic Algorithm 2. Namely, take a labeled sample S

and a hypothesis class H and create the partial hypothesis class H?

U . Assuming that the distribution is robustly realizable

by H, we end up in a realizable setting of learning a partial concept class H?

U .

In the second step of the algorithm, we call a learning algorithm for partial concept classes (Section 4.7) in order to

do so. The sample complexity is the same as Theorem 4.22, ⌥(✏, �,H,U) = O (⇤RE(✏, �,H)) . Has we have shown in

the proof of Theorem 4.11, Eq. (4.1), this implies the Theorem. ⇤

Proposition 4.25 Consider the distribution D and the hypothesis class H in Theorem 4.19. There exists a robust ERM

algorithm returning a hypothesis hERM 2 H, such that Err (hERM;D) � 1

4
with probability 1 over S ⇠ Dm.

Proof. Consider the following robust ERM. For any sample of size m, return 1 on the sample points and randomly

choose a label for out-of-sample points. The error rate of such a robust ERM is at least 1/4 with probability 1. ⇤

Proof (of Theorem 4.21). This follows from a similar no-free-lunch argument for VC classes [e.g., 27, Section 5]. We

briefly explain the proof idea.
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Take the distribution D, and the class H from Proposition 4.25 with VCU (H) = 1 and VC(H) = 3m. Keep

functions that are robustly self-consistent only on 2m points. Construct all of the distributions on 2m points from the

support of D. We have
�
3m

2m

�
such distributions, and each one of them is robustly realizable by different h 2 H. The

idea is that a proper leaner observing only m points should guess which are the remaining m points in the support of the

distribution. There rest of the proof follows from the no-free-lunch proof. It can be shown formally via the probabilistic

method, that for every proper rule, there exists a distribution on which the error is constant with fixed probability. ⇤

Learning Algorithms for Partial Concept Classes

Here we overview the algorithmic techniques from Alon et al. [11, Theorem 34 and 41], for learning partial concepts in

realizable and agnostic settings. We use these algorithms in step 2 of our Algorithm 2.

One-inclusion graph algorithm for partial concept classes. We briefly discuss the algorithm, for the full

picture, see [128, 129]. The one-inclusion algorithm for a class F ✓ {0, 1, ?}X gets an input of unlabeled examples

S = (x1, . . . , xm) and labels (y1, . . . , yi�1, yi+1, . . . , ym) that are consistent with some f 2 F , that is, f(xk) = yk

for all k 6= i. It guarantees an (✏, �)- PAC learner in the realizable setting, with sample complexity of ⇤RE (✏, �,H) =

O
⇣

VC(H)

✏
log

1

�

⌘
as mentioned in Theorem 4.22.

Here is a description of the algorithm. First, construct the one-inclusion graph. For any j 2 [m] and f 2 F|S define

Ej,f = {f 0 2 F|S : f 0
(xk) = f(xk), 8k 6= j}, that is, all functions in F|S that are consistent with f on S, except the

point xj . Define the set of edges E = {Ej,f : j 2 [m], f 2 F|S}, and the set vertices V = F|S of the one-inclusion

graph G = (V,E). An orientation function  : E ! V for an undirected graph G is an assignment of a direction to

each edge, turning G into a directed graph. Find an orientation  that minimizes the out-degree of G. For prediction of

xi, pick f 2 V such that f(xk) = yk for all k 6= i, and output  (Ei,f )(xi).

Note that this algorithm is transductive, in the sense that in order to predict the label of a test point, it uses the entire

training sample to compute its prediction.

Boosting and compression schemes. Recall the well-known boosting algorithm, ↵-Boost [130, pages 162-163],

which is a simplified version of AdaBoost, where the returned function is a simple majority over weak learners, instead

of a weighted majority. For a hypothesis class H and a sample of size m, the algorithm yields a compression scheme of

size O (VC(H) log(m)). Recall the generalization bound based on a sample compression scheme in Lemma 2.19.

The learning algorithm for the realizable setting is ↵-Boost, where the weak learners are taken from the one-inclusion

graph algorithm. As mentioned in Theorem 4.22, this obtains an upper bound of ⇤RE (✏, �,H) = O
⇣

VC(H)

✏
log

2

⇣
VC(H)

✏

⌘
+

1

✏
log

1

�

⌘
.

For the agnostic setting, follow a reduction to the realizable case suggested by David et al. [40]. The reduction

requires the construction of a compression scheme based on a Boosting algorithm. Roughly speaking, the reduction

works as follows. Denote ⇤RE = ⇤RE(1/3, 1/3,H), the sample complexity of (1/3, 1/3)-PAC learn H, in the

realizable case. Now, ⇤RE samples suffice for weak learning for any distribution D on a given sample S.

Find the maximal subset S0 ✓ S such that infh2H
dErr (h;S0

) = 0. Now, ⇤RE samples suffice for weak robust
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learning for any distribution D on S0. Execute the ↵-boost algorithm on S0, with parameters ↵ =
1

3
and number of

boosting rounds T = O (log (|S0|)), where each weak learner is trained on ⇤RE samples. The returned hypothesis

h̄ = Majority

⇣
ĥ1, . . . , ĥT

⌘
satisfies that dErr

�
h̄;S0

�
= 0, and each hypothesis ĥt 2

n
ĥ1, . . . , ĥT

o
is representable

as set of size O(⇤RE). This defines a compression scheme of size ⇤RET , and h̄ can be reconstructed from a compression

set of points from S of size ⇤RET .

Recall that S0 ✓ S is a maximal subset such that infh2H
dErr (h;S0

) = 0 which implies that dErr
�
h̄;S

�


infh2H
dErr (h;S). Plugging it into a data-dependent compression generalization bound (Lemma 2.19), we obtain a

sample complexity of

⇤AG (✏, �,H) = O
⇣

VC(H)

✏2
log

2

⇣
VC(H)

✏2

⌘
+

1

✏2
log

1

�

⌘
, as mentioned in Theorem 4.23.

Supervised Robust Learning Algorithms

We overview the algorithms of Montasser et al. [9, proofs of Theorems 4 and 8]. Their construction is based on sample

compression methods explored in [131, 132].

Let H ✓ {0, 1}X , fix a distribution D over the input space X ⇥ Y . Let S = {(x1, y1), . . . , (xm, ym)} be an

i.i.d. training sample from a robustly realizable distribution D by H , namely infh2H Err (h;D,U) = 0. Denote

d = VC(H), d⇤ = VC
*
(H) is the dual VC-dimension. Fix ✏, � 2 (0, 1).

1. Define the inflated training data set

SU =

[

i2[n]

�
(z, yI(z)) : z 2 U(xi)

 
,

where I(z) = min {i 2 [n] : z 2 U(xi)}. The goal is to construct a compression scheme that is consistent with SU .

2. Discretize SU to a finite set S̄U . Define the class of hypotheses with zero robust error on every d points in S,

Ĥ =
�
RERMH(S0

) : S0 ✓ S, |S0| = d
 
,

where RERMH maps any labeled set to a hypothesis in H with zero robust loss on this set. The cardinality of this

class is bounded as follows

|Ĥ| =
 
n
d

!

⇣en

d

⌘
d

.

Discretize SU to a finite set using the finite class Ĥ. Define the dual class H⇤ ✓ {0, 1}H of H as the set of all

functions f(x,y) : H ! {0, 1} defined by f(x,y)(h) = I [h(x) 6= y], for any h 2 H and (x, y) 2 SU . If we

think of a binary matrix where the rows consist of the distinct hypotheses and the columns are points, then the dual

class corresponds to the transposed matrix where the distinct rows are points and the columns are hypotheses. A

discretization S̄U will be defined by the dual class of Ĥ. Formally, S̄U ✓ SU consists of exactly one (x, y) 2 SU for

each distinct classification
�
f(x,y)(h)

 
h2Ĥ

. In other words, Ĥ induces a finite partition of SU into regions where

every ĥ 2 Ĥ suffers a constant loss I
h
ĥ(x) 6= y

i
in each region, and the discretization S̄U takes one point per
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region. By Sauer’s lemma [26, 133], for n > 2d,

|S̄U | 
 
e|Ĥ|
d⇤

!
d
⇤


✓
e2n
dd⇤

◆dd
⇤

,

3. Execute the following modified version of the algorithm ↵-boost [130, pages 162-163] on the discretized set S̄U ,

with parameters ↵ =
1

3
and number of boosting rounds T = O

�
log
�
|S̄U |

��
= O (dd⇤ log(n)).

Modified ↵-boost
Input: H, S, S̄U , d,RERMH.
Parameters: ↵, T .
Initialize P1 = Uniform(S̄U ).
For t = 1, . . . , T :

(a) Find O(d) points St ✓ S̄U such that every h 2 H with dErr(h;St) = 0 has Err(h;Pt)  1/3.

(b) Let S0
t be the original O(d) points in S with St ✓

S
(x,y)2S0

t

S
{(z, y) : z 2 U(x)}.

(c) Let ĥt = RERMH(S0
t).

(d) For each (x, y) 2 S̄U :

Pt+1(x, y) / Pt(x, y)e
�↵I{ĥt(x)=y}

Output: classifiers ĥ1, . . . , ĥT and sets S0
1, . . . , S

0
T .

4. Output the majority vote h̄ = Majority

⇣
ĥ1, . . . , ĥT

⌘
.

We are guaranteed that dErr
�
h̄;S,U

�
= 0, and each hypothesis ĥt 2

n
ĥ1, . . . , ĥT

o
is representable as set S0

t of size

O(d). This defines a compression function (S) =
S

t2[T ]
S0

t. Thus, h̄ can be reconstructed from a compression set of

size

dT = O
�
d2d⇤ log(n)

�
.

This compression size can be further reduced to O (dd⇤), using a sparsification technique introduced by Hanneke

et al. [131], Moran and Yehudayoff [132], by randomly choosing O(d⇤) hypotheses from
n
ĥ1, . . . , ĥT

o
. The proof

follows via a standard uniform convergence argument. Plugging it into a compression generalization bound, we have a

sample complexity of Õ
⇣

dd
⇤

✏
+

log
1
�

✏

⌘
, in the realizable robust case.

Agnostic case. The construction follows a reduction to the realizable case suggested by David et al. [40]. Denote

⇤RE = ⇤RE(1/3, 1/3,H,U), the sample complexity of (1/3, 1/3)-PAC learn H with respect to a perturbation function

U , in the realizable robust case.

Using a robust ERM, find the maximal subset S0 ✓ S such that infh2H
dErr (h;S0,U) = 0. Now, ⇤RE samples

suffice for weak robust learning for any distribution D on S0.

Execute the ↵-boost algorithm [130, pages 162-163] on S0 for the robust loss function, with parameters ↵ =
1

3

and number of boosting rounds T = O (log (|S0|)), where each weak learner is trained on ⇤RE samples. The returned

hypothesis h̄ = Majority

⇣
ĥ1, . . . , ĥT

⌘
satisfies that dErr

�
h̄;S0,U

�
= 0, and each hypothesis ĥt 2

n
ĥ1, . . . , ĥT

o
is

representable as set of size O(⇤RE). This defines a compression scheme of size ⇤RET , and h̄ can be reconstructed from

a compression set of points from S of size ⇤RET .
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Recall that S0 ✓ S is a maximal subset such that infh2H
dErr (h;S0,U) = 0 which implies that dErr

�
h̄;S,U

�


infh2H
dErr (h;S,U). Plugging it into a compression generalization bound, we have a sample complexity of Õ

⇣
⇤RE
✏2

+
log

1
�

✏2

⌘
,

which translates into Õ
⇣

dd
⇤

✏2
+

log
1
�

✏2

⌘
, in the agnostic robust case.
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Chapter 5

Adversarially Robust PAC Learnability

of Real-Valued Functions

We study robustness to test-time adversarial attacks in the regression setting with `p losses and arbitrary perturbation

sets. We address the question of which function classes are PAC learnable in this setting. We show that classes of finite

fat-shattering dimension are learnable in both realizable and agnostic settings. Moreover, for convex function classes,

they are even properly learnable. In contrast, some non-convex function classes provably require improper learning

algorithms. Our main technique is based on a construction of an adversarially robust sample compression scheme of

a size determined by the fat-shattering dimension. Along the way, we introduce a novel agnostic sample compression

scheme for real-valued functions, which may be of independent interest.

5.1 Introduction

Learning a predictor that is resilient to test-time adversarial attacks is a fundamental problem in contemporary machine

learning. A long line of research has studied the vulnerability of deep learning-based models to small perturbations of

their inputs (e.g., Madry et al. [45], Szegedy et al. [49], Biggio et al. [50], Goodfellow et al. [51]). From the theoretical

standpoint, there has been a lot of effort to provide provable guarantees of such methods (e.g., [1, 2, 8, 44, 55, 57, 59,

60, 81, 83, 103–110, 134–137]), which is the focus of this work.

In the robust PAC learning framework, the problem of learning binary function classes was studied by Montasser

et al. [9]. They showed that uniform convergence does not hold in this setting, and as a result, robust empirical risk

minimization is not sufficient to ensure learnability. Yet, they showed that VC classes are learnable, by considering an

improper learning rule; the learning algorithm outputs a function that is not in the function class that we aim to learn.

In this work, we provide a theoretical understanding of the robustness of real-valued predictors in the PAC learning

model, with arbitrary perturbation sets. The work of Attias et al. [1] considered this question for finite perturbation
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sets, they obtained sample complexity guarantees based on uniform convergence, which is no longer true for arbitrary

perturbation sets. We address the fundamental question, which real-valued function classes are robustly learnable?

Furthermore, we study the robust learnability of convex classes, a natural and commonly studied subcategory for

regression. We address the question, are real-valued convex classes properly robustly learnable? On the one hand,

some non-convex function classes provably require improper learning due to Montasser et al. [9]. On the other hand,

Mendelson [12] showed that non-robust regression with the mean squared error is properly learnable.

We study the following learning models for real-valued functions. An adversarial attack is formalized by a pertur-

bation function U : X ! 2
X , where U(x) is the set of possible perturbations (attacks) on x. In practice, we usually

consider U(x) to be the `1 ball centered at x. In this work, we have no restriction on U , besides x 2 U(x). Let D be

an unknown distribution over X ⇥ [0, 1] and let H ✓ [0, 1]X be a concept class. In our first model, the robust error of

concept h is defined as

Err`p(h;D,U) = E(x,y)⇠D

"
sup

z2U(x)

|h(z)� y|p
#
, 1  p  1.

The learner gets an i.i.d. sample from D, and would like to output function ĥ, such that with high probability,

Err`p(ĥ;D,U)  inf
h2H

Err`p(h;D,U) + ✏. (5.1)

The sample complexity for learning H is the size of a minimal i.i.d. sample from D such that there exists a learning

algorithm with output as in Eq. (5.1). We refer to this model as Robust Regression with `p robust loss. This is a robust

formulation of the classic nonparametric regression setting.

In the second model, the robust error of concept h is defined as

Err⌘(h;D,U) = E(x,y)⇠D

"
I
(

sup
z2U(x)

|h(z)� y| � ⌘
)#

.

We refer to the loss function in this model as cutoff loss, where ⌘ > 0 is a predefined cutoff parameter. The learner gets

an i.i.d. sample from D, and would like to output function ĥ, such that with high probability,

Err⌘+�(ĥ;D,U)  inf
h2H

Err⌘(h;D,U) + ✏,

where � > 0 is a predefined parameter. The sample complexity is defined similarly to the previous model. We refer to

this model as Robust (⌘,�)-Regression. The non-robust formulation of this setting was studied by, e.g., Anthony and

Bartlett [138], Simon [139]. See also Anthony et al. [33, section 21.4] and references therein.

Main Results

Denote the �-fat-shattering dimension of H by fat(H, �), and the dual �-fat-shattering dimension by fat
⇤
(H, �), which

is the dimension of the dual class. The dimension of the dual class is finite as long as the �-fat-shattering of the primal

class is finite (see Kleer and Simon [39], and Eq. (2.2)).
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• In Section 5.3 we provide a learning algorithm for robust regression with `p losses, with sample complexity 1

Õ
✓
fat

3
(H, ✏/p) fat⇤(H, ✏/p)

✏5

◆
.

Moreover, this algorithm is proper for convex function classes. We circumvent a negative result regarding non-convex

function classes, for which proper learning is impossible, even for binary-valued functions [9].

• In Section 5.4 we provide a learning algorithm with a substantial sample complexity improvement,

Õ
✓
fat(H, ✏/p) fat⇤(H, ✏/p)

✏2

◆
.

• In Section 5.5, we provide learning algorithms for the (⌘,�)-robust regression setting in the realizable and agnostic

settings. Our sample complexity for the realizable case is

Õ
✓
fat(H,�) fat⇤(H,�)

✏

◆
,

and

Õ
✓
fat(H,�) fat⇤(H,�)

✏2

◆

for the agnostic case.

Technical Contributions and Related Work

The setting of agnostic adversarially robust regression with finite perturbation sets was studied by Attias et al. [1]. Sub-

sequently, improved bounds appeared in Attias and Kontorovich [4]. Adversarially robust PAC learnability of binary-

valued function classes with arbitrary perturbation sets was studied by Montasser et al. [9]. They showed that uniform

convergence does not hold in this setting, which means that some classes provably require improper learning. Their

main technique is constructing a sample compression scheme from a boosting-style algorithm, where the generalization

follows from sample compression bounds.

First, we explain our new technical ideas behind the algorithms for robust (⌘,�)-regression, and compare it to the

ones of Montasser et al. [9] in the classification setting. We then explain why the approach for learning these models

fails in the general robust regression setting and introduce the new ingredients behind the proofs for this setting.

Robust (⌘,�)-Regression. We construct an adversarially robust sample compression scheme of a size determined

by the fat-shattering dimension of the function class. The following steps are different from the binary-valued case.

First, we use a robust boosting algorithm for real-valued functions. In the non-robust setting, Hanneke et al. [131]

showed how to convert a boosting algorithm (originally introduced by Kégl [140]), into a sample compression scheme.

In order to find weak learners (and prove their existence), we rely on generalization from approximate interpolation

1Õ hides polylogarithmic factors in the specified expression.
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(see Anthony and Bartlett [138] and Anthony and Bartlett [138, section 21.4]). The idea is that any function f 2

F that approximately interpolates a sample S ⇠ Dm, that is, |f(x)� y|  ⌘ for (x, y) 2 S, also satisfies that

P{(x, y) : |f(x)� y|  ⌘ + �} > 1� ✏ with high probability, as long as Õ(fat(F ,�)/✏)  |S|. Crucially, this result

relies on uniform convergence and does not apply to the robust loss function. Another difference is in the discretization

step. In the classification setting, we inflate the data set to include all possible perturbations (potentially infinite set).

We then define a function class Ĥ by running a robust empirical minimizer on every subset of size VC(H) from the

training set, where H is the class we want to learn. Ĥ induces a finite partition on the inflated set into regions, such that

any h 2 Ĥ has a constant error in each region. This is no longer true in the real-valued case. Instead, we discretize the

inflated set by taking a uniform cover using the supremum metric and controlling the errors that arise from the cover.

Robust Regression. We first explain which natural techniques fail. We cannot run boosting for the `p loss as

explained by Hanneke et al. [131]: "Duffy and Helmbold [141, Remark 2.1] spell out a central technical challenge: no

boosting algorithm can always force the base regressor to output a useful function by simply modifying the distribution

over the sample. This is because unlike a binary classifier, which localizes errors on specific examples, a real-valued

hypothesis can spread its error evenly over the entire sample and it will not be affected by reweighting".

As a first attempt, we could try to learn with respect to the cutoff loss (with a fixed cutoff parameter) and conclude

learnability in the general regression setting. However, the `p loss can spread over different values for different points,

which means that this approach fails. In another possible attempt, we could try to solve the realizable case first and try

to reduce agnostic to realizable learning as in Montasser et al. [9] for binary-valued functions, as we prove the agnostic

setting for robust (⌘,�)-regression. However, this attempt fails for the same reasons we mentioned above.

Therefore, we introduce a novel technique for handling changing cutoffs. We establish generalization from approxi-

mate interpolation with different cutoff parameters, and thereby, we find a learner that approximates the loss of the target

function on different points. Utilizing this idea, we provide a learning algorithm for `p robust loss that constructs an

ensemble and predicts with the average. Further, we show that this algorithm is proper for convex function classes. In

contrast, some non-convex function classes provably require improper learning [9]. Moreover, we show how to reduce

the sample complexity substantially with a different algorithm, by constructing an ensemble of weak learners and pre-

dicting with the median. Both algorithms can be represented as an agnostic sample compression scheme for the robust

loss. This is a new result since constructing a sample compression scheme for real-valued functions is known only for

the realizable setting [131]. We believe that this technique may be of independent interest.

5.2 Problem Setup and Preliminaries

Let H ✓ [0, 1]X be a concept class. We implicitly assume that all concept classes are satisfying mild measure-theoretic

conditions (see e.g., Dudley [142, section 10.3.1] and Pollard [143, appendix C]). Let D be a distribution over X ⇥ Y ,

where Y = [0, 1]. Define a perturbation function U : X ! 2
X that maps an input to an arbitrary set U(x) ✓ X , such

that x 2 U(x).

We consider the following loss functions. For 1  p  1, define the `p robust loss function of h on (x, y) with
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respect to a perturbation function U ,

`p,U (h; (x, y)) = sup
z2U(x)

|h(z)� y|p . (5.2)

We define also the ⌘-ball robust loss function of h on (x, y) with respect to a perturbation function U ,

`⌘
U
(h; (x, y)) = I

(
sup

z2U(x)

|h(z)� y| � ⌘
)
. (5.3)

The non-robust version of this loss function is also known as ⌘-ball or ⌘-tube loss (see for example Anthony et al. [33,

Section 21.4]).

Define the error of a function h on distribution D, with respect to the `p robust loss,

Err`p(h;D,U) = E(x,y)⇠D

"
sup

z2U(x)

|h(z)� y|p
#
,

and the error with respect to the ⌘-ball robust loss

Err⌘(h;D,U) = E(x,y)⇠D

"
I
(

sup
z2U(x)

|h(z)� y| � ⌘
)#

.

Note that in our model the learner is tested on the original label y while observing only the perturbed exam-

ple z. There are formulations of robustness where the learner is compared to the value of the optimal function in

the class on the perturbed example, i.e., if the optimal function in the class is h?, then the `1 robust loss would be

sup
z2U(x)

|h(z)� h?
(z)|. For more details and comparisons of the two models, see Diochnos et al. [62], Gourdeau

et al. [144], Bubeck et al. [145].

Learning models. We precisely define the models for robustly learning real-valued functions. Our first model is

learning with the `p robust loss (see Eq. (5.2)), we refer to this model as Robust Regression.

Definition 5.1 (Robust regression) For any ✏, � 2 (0, 1), the sample complexity robust (✏, �)-PAC learning a concept

class H ✓ [0, 1]X with the `p robust loss, denoted by M(✏, �,H,U , `p), is the smallest integer m such that the following

holds: there exists a learning algorithm A : (X ⇥ Y)
m ! [0, 1]X , such that for any distribution D over X ⇥ [0, 1], for

an i.i.d. random sample S ⇠ Dm, with probability at least 1� � over S, it holds that

Err`p(A(S);D,U)  inf
h2H

Err`p(h;D,U) + ✏.

If no such m exists, define M(✏, �,H,U , `p) = 1, and H is not robustly (✏, �)-PAC learnable. We use the shorthand

M = M(✏, �,H,U , `p) for notational simplicity.

Our second model is learning with the ⌘-ball robust loss (see Eq. (5.3)) in the realizable and agnostic settings, we

refer to this model by Robust (⌘,�)-regression. We say that a distribution D is ⌘-uniformly realizable with respect to H
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and U , if there exists h? 2 H such that

Err⌘(h
?
;D,U) = 0. (5.4)

Definition 5.2 (Robust (⌘,�)-regression) For any ⌘,�, ✏, � 2 (0, 1), the sample complexity of realizable robust

(⌘,�, ✏, �)-PAC learning a concept class H ✓ [0, 1]X , denoted by MRE(⌘,�, ✏, �,H,U), is the smallest integer m

such that the following holds: there exists a learning algorithm A : (X ⇥ Y)
m ! [0, 1]X , such that for any distribution

D over X ⇥ [0, 1] that is ⌘-uniformly realizable w.r.t. H and U (see Eq. (5.4)), for an i.i.d. random sample S ⇠ Dm,

with probability at least 1� � over S, it holds that

Err⌘+�(A(S);D,U)  ✏.

If no such m exists, define MRE(⌘,�, ✏, �,H,U) =1, and H is not robustly (⌘,�, ✏, �)-PAC learnable.

The agnostic sample complexity, denoted by MAG(⌘,�, ✏, �,H,U), is defined similarly with the following differ-

ence. We require the learning algorithm to output a function, such that with probability at least 1� �,

Err⌘+�(A(S);D,U)  inf
h2H

Err⌘(h;D,U) + ✏.

We use the shorthand M⌘,�

RE
= MRE(⌘,�, ✏, �,H,U) and M⌘,�

AG
= MAG(⌘,�, ✏, �,H,U) for notational simplicity.

We do not define the setting of robust regression in the realizable setting since it coincides with the realizable setting

of robust (⌘,�)-regression, by taking ⌘ = 0,� = ✏/2, and re-scaling ✏ to ✏/2. Moreover, we could define the `p variant

of the ⌘-ball loss in robust (⌘,�)-regression, however, results for our definition translate immediately by taking ⌘1/p.

Note that there is a fundamental difference between the models. In the robust (⌘,�)-regression, we demand from

the learning algorithm to find a function that is almost everywhere within ⌘ + � from the target function in class. That

is, on 1 � ✏ mass of elements in the support of D, we find an approximation up to ⌘ + �. On the other hand, in the

robust regression model, we aim to be close to the target function on average, and the error can possibly spread across

all elements in the support.

Proper and improper learning algorithms. The learning algorithm is not limited to returning a function that is inside

the concept class that we aim to learn. When learning a class H, whenever the learning algorithm returns a function

inside the class, that is, A : (X ⇥ Y)
m ! H, we say that the algorithm is proper and the class in properly learnable.

Otherwise, we say that the algorithm is improper. Improper algorithms are extremely powerful and using them often

circumvents computational issues and sample complexity barriers [9, 29, 146–155].

Oracles. We rely on the following robust empirical risk minimizers. Let a set S = {(xi, yi)}mi=1
. Define an ✏-

approximate  -robust empirical risk minimizer  -RERMH : (X ⇥ Y)
m ⇥ [0, 1]m ⇥ (0, 1)! H,

 -RERMH(S, |S , ✏) := argmin
h2H

1

m

X

(x,y)2S

I
"

sup
z2U(x)

|h(z)� y| �  (x, y) + ✏

#
, (5.5)
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where  |S = ( (x1, y1), . . . , (xm, ym)). We refer to  (x, y) as cutoff parameters. Note that  is a function of (x, y)

and not necessarily a constant.

For p 2 [1,1), define the empirical robust loss of a function h on a labeled sample S by

Lp(h, S,U) =
1

m

X

(x,y)2S

sup
z2U(x)

|h(z)� y|p ,

and for p =1

L1(h, S,U) = max
(x,y)2S

sup
z2U(x)

|h(z)� y| .

For the empirical non-robust loss, we omit U from the notation and use Lp(h, S).

Define a robust empirical risk minimizer for the `p robust loss, `p-RERMH : (X ⇥ Y)
m ! H by

`p-RERMH(S) := argmin
h2H

Lp(h, S,U). (5.6)

Approximate sample compression schemes. Recall Definition 2.18 of a sample compression scheme, which we

use here for the `p loss. We say that a compression scheme (, ⇢) is a k-size agnostic ↵-approximate sample compression

scheme for H if  is a k-selection and for all S = {(xi, yi) : i 2 [m]}, and fS := ⇢((S)) achieves H-competitive

empirical loss:

Lp(fS , S)  inf
h2H

Lp(h, S) + ↵. (5.7)

Similarly, we define an agnostic ↵-approximate adversarially robust sample compression scheme if fS := ⇢((S))

achieves H-competitive empirical robust loss:

Lp(fS , S,U)  inf
h2H

Lp(h, S,U) + ↵. (5.8)

When p =1 we refer to the sample compression as uniformly ↵-approximate.

Notation. We use the notation Õ(·) for omitting poly-logarithmic factors of

(fat(H, �), fat⇤(H, �), 1/✏, 1/�, 1/⌘, 1/�). We denote [n] = {1, . . . , n}, and exp(·) = e(·). . and & denote inequal-

ities up to a constant factor, and ⇡ denotes equality up to a constant factor. Vectors are written using bold symbols.

5.3 Robust Regression

In this section, we provide an algorithm and prove its sample complexity for robust regression with the `p loss. Moreover,

our learning algorithm is proper for convex function classes, arguably the most commonly studied subcategory of real-

valued function classes for regression. This result circumvents a negative result from Montasser et al. [9]; there exist,

non-convex function classes, where proper learning is impossible.
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Theorem 5.3 Algorithm 3 implies that the sample complexity for robust (✏, �)-PAC learning a concept class H with the

`p robust loss is 8
>>><

>>>:

Õ
✓
fat

3
(H, c✏/p) fat⇤(H, c✏/p)

✏5
+

1

✏2
log

1

�

◆
, p 2 [1,1)

Õ
✓
fat

3
(H, c✏) fat⇤(H, c✏)

✏5
+

1

✏2
log

1

�

◆
, p =1,

for some numerical constant c 2 (0,1). Recall that fat⇤(F , ✏) . 1

✏
2
fat(F,✏/2)+1 by Eq. (2.2).

Remark 5.4 The output of Algorithm 3 is a convex combination of the functions from the concept class, which is a

proper predictor, assuming convexity of the function class.

Remark 5.5 Similar to non-robust regression, our results generalize to loss functions with bounded codomain [0,M ].

The generalization bound should be multiplied by pMp and the scaling of the fat-shattering dimension should be ✏/pMp.

In the following result, we establish generalization from approximate interpolation for changing cutoff parameters

for different points. This generalizes a result by Anthony and Bartlett [138], where the cutoff parameter is fixed for all

points (Theorem 5.12). The proof is in Section 5.7.

Theorem 5.6 (Generalization from approximate interpolation with changing cutoffs) Let F ✓ [0, 1]X be a func-

tion class with a finite fat-shattering dimension (at any scale). For any �, ✏, � 2 (0, 1), any function  : X ⇥Y ! [0, 1],

any distribution D over X ⇥ Y , for a random sample S ⇠ Dm, if

m = O
✓
1

✏

✓
fat(F ,�/8) log2

✓
fat(F ,�/8)

�✏

◆
+ log

1

�

◆◆
,

then with probability at least 1 � � over S, for any f 2 F satisfying |f(x)� y|   (x, y) + �, 8(x, y) 2 S, it holds

that P(x,y)⇠D{(x, y) : |f(x)� y|   (x, y) + 2�} � 1� ✏.

Algorithm 3 Improper Robust Regressor with High-Vote
Input: H ✓ [0, 1]X , S = {(xi, yi)}mi=1.
Parameters: Approximation parameter ✏, base learner sample size d � 1, number of Multiplicative Weights
rounds T � 1, loss parameter p 2 [1,1].
Algorithms used: `p-RERMH (Eq. (5.6)),  -RERMH (Eq. (5.5)), a robust variant of
Multiplicative Weights (Algorithm 6).

1. Compute h?  `p-RERMH(S).
Denote  (x, y) = supz2U(x) |h?(z)� y|, 8(x, y) 2 S.

2. Inflate S to SU to include all perturbed points.

3. Discretize S̄U ✓ SU : (i) Construct a function class Ĥ, where each ĥ 2 Ĥ is obtained by  -RERM
optimizer operating on d points from S. The input cutoff parameters to the optimizer are  (x, y), as
computed in step 1.
(ii) Let H̃ = Ĥ [ {h?}. Each (z, y) 2 SU defines a function in the dual space, f(z,y) : H̃ ! [0, 1]

such that f(z,y)(h) =
��h(z)� y

��p. Define S̄U to be the minimal cover of SU at scale O(✏/p) under the
supremum norm.

4. Compute a robust Multiplicative Weights algorithm on S̄U . Let
n
ĥ1, . . . , ĥT

o
be the returned set of

classifiers.

Output: ĥ = 1
T

PT
i=1 ĥi.
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We construct an adversarially robust sample compression scheme of a size determined by the fat-shattering dimen-

sion of the function class. Recall that uniform convergence does not necessarily hold. Instead, we derive generalization

from sample compression bounds.

Proof overview and algorithm outline. The complete proof is in Section 5.7. We follow the steps in Algorithm 3.

1. We start with computing a robust empirical risk minimizer (ERM) h? on S for the `p robust loss, p 2 [1,1]. This

defines the target loss we are aiming for at any point in S. In other words, the robust loss of h? on (x, y) defines

a cutoff  (x, y) and our goal is to construct a predictor with a loss of  (x, y)p + ✏ for any (x, y) 2 S, which

means that this predictor is an approximate robust ERM. In order to derive generalization, we cannot rely on uniform

convergence. Instead, our predictor is based on a sample compression scheme from which we can generalize.

2. Inflate the training set by including all possible perturbations. Whenever the same perturbation is mapped to more

than one input, we assign the label of the input with the smallest index to prevent ambiguity. We denote this set by

SU .

3. Discretize the set SU as follows: (i) Construct a set of functions Ĥ, such that each function is the output of  -RERM

for H (defined in Eq. (5.5)), performing on a subset S0 ✓ S of size

8
>><

>>:

d Õ
✓
1

✏
fat(H, c✏/p)

◆
, p 2 [1,1)

d Õ
✓
1

✏
fat(H, c✏)

◆
, p =1.

This means that for any S0 ✓ S there exists ĥ 2 Ĥ that is an approximate robust ERM on S0, that is, ĥ is within

 (x, y)p + ✏ for any (x, y) 2 S0. The size of Ĥ is bounded (m/d)d, where |S| = m.

(ii) Let H̃ = Ĥ [ {h?}. Define a discretization S̄U ✓ SU by taking a uniform cover of the dual space defined on

H̃. In the dual space, each (z, y) 2 SU defines a function f(z,y) : H̃ ! [0, 1] such that f(z,y)(h) =
��h(z) � y

��p.

We take a minimal O(✏/p)-cover for SU with the supremum norm, which is of size N
�
O(✏/p) , SU , k·k1

�
. We use

covering numbers arguments [37] to upper bound the size of S̄U

4. Compute a variant of Multiplicative Weights (MW) update (Algorithm 6) on S̄U for T ⇡ log
��S̄U

�� rounds as

follows. From Theorem 5.6 and using the Lipschitzness of the `p loss, we know that for any distribution P on S̄U ,

upon receiving an i.i.d. sample S00 from P of size d, with probability 2/3 over sampling S00 from P , for any h 2 H

with 8(z, y) 2 S00
: |h(z)� y|p   (z, y)p + ✏, it holds that

P(z,y)⇠P{(z, y) : |h(z)� y|p   (z, y)p + 2✏} � 1� ✏, where  (z, y) is the  (x, y) for which z 2 U(x). We can

conclude that for any distribution P on S̄U , there exists such a set of points S00 ✓ S̄U . Then, we can find a set S0 of

d points in S that S00 originated from. Formally, S00 ✓
S

(x,y)2S0
S
{(z, y) : z 2 U(x)}. We execute the optimizer

ĥ  -RERM on S0 with the relevant cutoff parameters. ĥ has error of  (z, y)p + ✏ on a fraction of (1� ✏) points

with respect to the distribution P . We start with P1 as the uniform distribution over S̄U and find ĥ1 respectively. We

perform a multiplicative weights update on the distribution and find the next hypothesis w.r.t. the new distribution

and so forth.
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Following the analysis of MW (or ↵-Boost) from Schapire and Freund [130, Section 6]), we know that for any point

in S̄U , roughly (1 � ✏) base learners are within ✏ from the target cutoff. The rest ✏ fraction can contribute an error of at

most ✏ since the loss is bounded by 1. We get that for any point in S̄U , the average loss of hypotheses in the ensemble is

within 3✏ from the target cutoff. Crucially, we use strong base learners in the ensemble. By the covering argument, we

get that for any point in SU , the average loss of the ensemble is within 5✏,

8(z, y) 2 SU :
1

T

TX

i=1

���ĥi(z)� y
���
p

  (z, y)p + 5✏.

We are interested that the average prediction 1

T

P
T

i=1
ĥi will be within the target cutoffs. For that reason, we use the

convexity of the `p loss to show that

�����
1

T

TX

i=1

ĥi(z)� y

�����

p

 1

T

TX

i=1

���ĥi(z)� y
���
p

.

Therefore, we conclude that

8(z, y) 2 SU :

�����
1

T

TX

i=1

ĥi(z)� y

�����

p

  (z, y)p + 5✏,

which implies that we have an approximate robust ERM for S,

8(x, y) 2 S : sup
z2U(x)

�����
1

T

TX

i=1

ĥi(z)� y

�����

p

  (x, y)p + 5✏.

The proof follows by applying a sample compression generalization bound in the agnostic case, bounding the com-

pression size, and rescaling ✏.

For convex classes, we have a proper learner. The output of the algorithm is a convex combination of functions from

H which is also in the class.

5.4 Improved Sample Complexity via Median Boosting and Sparsifi-

cation

In this section, we provide an algorithm with a substantial sample complexity improvement. The key technical idea in

this result is to note that, if we replace base learners with weak learners in the improper ensemble predictor, we can still

get an accurate prediction by taking the median aggregation of the ensemble. Thus, we incorporate a variant of median

boosting for real-valued functions [131, 140] in our algorithm. Each base learner requires fewer samples and as a result,

we improve the sample complexity. On the contrary, in Algorithm 3 we obtained accurate predictions for a 1 � O(✏)

quantile of the predictors, and we output their average.

Theorem 5.7 Algorithm 4 implies that the sample complexity for robust (✏, �)-PAC learning a concept class H with the
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`p robust loss is 8
>><

>>:

Õ
✓
fat(H, c✏/p) fat⇤(H, c✏/p)

✏2
+

1

✏2
log

1

�

◆
, p 2 [1,1)

Õ
✓
fat(H, c✏) fat⇤(H, c✏)

✏2
+

1

✏2
log

1

�

◆
, p =1,

for some numerical constant c 2 (0,1). Recall that fat⇤(F , ✏) . 1

✏
2
fat(F,✏/2)+1 by Eq. (2.2).

We shall define the notion of weak learners in the context of real-valued learners.

Definition 5.8 (Weak real-valued learner) Let ⇠ 2 (0, 1

2
], ⇣ 2 [0, 1]. We say that f : X ! [0, 1] is a (⇣, ⇠)-weak

learner with respect to D and a target function h? 2 H if

P(x,y)⇠D{(x, y) : |f(x)� y| > |h?
(x)� y|+ ⇣}  1

2
� ⇠.

This notion of a weak learner must be formulated carefully. For example, taking a learner guaranteeing absolute loss at

most 1

2
� ⇠ is known to not be strong enough for boosting to work. On the other hand, by making the requirement too

strong (for example, AdaBoost.R in Freund and Schapire [156]), then the sample complexity of weak learning will be

high that weak learners cannot be expected to exist for certain function classes. We can now present an overview of the

proof and the algorithm.

Algorithm 4 Improper Robust Median Regressor
Input: H ✓ [0, 1]X , S = {(xi, yi)}mi=1.
Parameters: Approximation parameter ✏ 2 (0, 1), weak learner sample size d � 1, sparsification parameter
k � 1, number of boosting rounds T � 1, loss parameter p 2 [1,1].
Algorithms used: `p-RERMH (Eq. (5.6)),  -RERMH (Eq. (5.5)), a variant of median boosting:
MedBoost (Algorithm 7), sparsification method (Algorithm 8).

1. Compute h?  `p-RERMH(S).
Denote  (x, y) = supz2U(x) |h?(z)� y|, 8(x, y) 2 S.

2. Inflate S to SU to include all perturbed points.

3. Discretize S̄U ✓ SU : (i) Construct a function class Ĥ, where each ĥ 2 Ĥ is obtained by  -RERM
optimizer operating on d points from S. The input cutoff parameters to the optimizer are  (x, y), as
computed in step 1.
(ii) Let H̃ = Ĥ [ {h?}. Each (z, y) 2 SU defines a function in the dual space, f(z,y) : H̃ ! [0, 1]

such that f(z,y)(h) =
��h(z)� y

��p. Define S̄U to be the minimal cover of SU at scale O(✏/p) under the
supremum norm.

4. Compute robust MedBoost on S̄U , where Ĥ consists of weak learners for any distribution over S̄U .
Let F =

n
ĥ1, . . . , ĥT

o
be the returned set of classifiers.

5. Sparsify the set F to a smaller set
n
ĥ1, . . . , ĥk

o
.

Output: ĥ = Median
⇣
ĥ1, . . . , ĥk

⌘
.

Proof overview and algorithm outline. The complete proof is in Section 5.7.

We explain the main differences from Algorithm 3 and where the sample complexity improvement comes from.

In the discretization step, we replace the base learners in Ĥ with weak learners. We construct an improper ensemble
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predictor via a median boosting algorithm, where the weak learners are chosen from Ĥ. Specifically, each function in Ĥ

is the output of  -RERM for H (defined in Eq. (5.5)), performing on a subset S0 ✓ S of size

8
><

>:

d Õ(fat(H, c✏/p)) , p 2 [1,1)

d Õ(fat(H, c✏)) , p =1.

This is in contrast to Algorithm 3, where we use Multiplicative Weights update that operates with stronger base learn-

ers. We can make accurate predictions by aggregating the outputs of the weak learners by taking their median instead

of the average. Another improvement arises from sparsifying the ensemble [131] to be independent of the sample size

while keeping the median accurate almost with the same resolution. The sparsification step uses sampling and uniform

convergence in the dual space (with respect to the non-robust loss).

We elaborate on the steps in Algorithm 4. Steps (1),(2), and (3) are similar to Algorithm 3, besides the construction

of Ĥ as we explained above. In step (4), we compute a robust version of the real-valued boosting algorithm MedBoost

[140] on the discretized set S̄U , see Algorithm 7. Hanneke et al. [131] showed how to construct a sample compression

scheme from MedBoost. From this step, we have that for any point in S̄U , the median of the losses of each hypothesis

in the ensemble is within 2✏ of the target cutoff that was computed in step 1. By the covering argument, the median of

the losses is within 4✏ for any point in (z, y) 2 SU ,

���Median
�
ĥ1(z)� y, . . . , ĥT (z)� y

����
p

  (z, y)p + 4✏.

The median is translation invariant, so we have

���Median
�
ĥ1(z), . . . , ĥT (z)

�
� y
���
p

  (z, y)p + 4✏.

Finally, for any (x, y) 2 S,

sup
z2U(x)

���Median
�
ĥ1(z)� y, . . . , ĥT (z)� y

����
p

  (x, y)p + 4✏.

To further reduce the sample compression size, in step (5) we sparsify the ensemble to k = Õ(fat
⇤
(H, c✏)) func-

tions,

sup
z2U(x)

���Median
�
ĥ1(z)� y, . . . , ĥk(z)� y

����
p

  (x, y)p + 5✏.

The proof follows by applying a sample compression generalization bound in the agnostic case, bounding the compres-

sion size, and rescaling ✏.
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5.5 Robust (⌘, �)-Regression

In this section, we study robust (⌘,�)-regression in realizable and agnostic settings. We provide an algorithm for the

realizable setting and show how to reduce agnostic to realizable learning. We conclude by deriving sample complexity

guarantees for both settings.

This model is different than regression which guarantees a small expected error (with high probability). In the robust

(⌘,�)-regression, we aim for a small pointwise absolute error almost everywhere on the support of the distribution.

Results for this model do not follow from the standard regression model. We first present our result for the realizable

case. The proof is in Section 5.7.

Theorem 5.9 Let D be a distribution that is ⌘-uniformly realizable (see Eq. (5.4)) by a class H ✓ [0, 1]X . Algorithm 5

implies that the sample complexity for robust (⌘,�, ✏, �)-PAC learning a concept class H is

Õ
✓
fat(H, c�) fat⇤(H, c�)

✏
+

1

✏
log

1

�

◆
,

for some numerical constant c 2 (0,1), Recall that fat⇤(F , ✏) . 1

✏
2
fat(F,✏/2)+1 by Eq. (2.2).

Algorithm 5 Improper Robust (⌘,�)-Regressor for the Realizble Setting
Input: H ✓ [0, 1]X , S = {(xi, yi)}mi=1.
Parameters: Approximation parameters ⌘,� 2 (0, 1), sparsification parameter k � 1, number of boosting
rounds T � 1.
Algorithms used:  -RERMH (Eq. (5.5)), a variant of median boosting: MedBoost (Algorithm 7), sparsi-
fication method (Algorithm 8).

1. Inflate S to SU to include all perturbed points.

2. Discretize S̄U ✓ SU : (i) Construct a function class Ĥ, where each ĥ 2 Ĥ defined by  -RERM
optimizer on Õ(fat(H,O(�))) points from S. The input cutoff parameters to the optimizer are fixed
⌘ for all points.
(ii) Let H̃ = Ĥ [ {h?}. Each (z, y) 2 SU defines a function in the dual space, f(z,y) : H̃ ! [0, 1]
such that f(z,y)(h) =

��h(z)� y
��. Define S̄U to be the minimal cover of SU under k·k1 norm at scale

O(�).

3. Compute robust MedBoost on S̄U , where Ĥ consists of weak learners for any distribution over S̄U .
Let F =

n
ĥ1, . . . , ĥT

o
be the returned set of classifiers.

4. Sparsify the set F to a smaller set
n
ĥ1, . . . , ĥk

o
.

Output: ĥ = Median
⇣
ĥ1, . . . , ĥk

⌘
.

We explain the main differences from Algorithm 4. This model is different from robust regression with the `1 loss. Our

goal is to find a predictor with a prediction within ⌘ + � of the true label almost everywhere the domain, assuming that

the distribution is ⌘-uniformly realizable by the function class (Eq. (5.4)).

In this model, the cutoff parameter is given to us as a parameter and is fixed for all points. This is different from

Algorithms 3 and 4, where we computed the changing cutoffs with a robust ERM oracle. Moreover, the weak learners
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in Ĥ are defined as the output of  -RERM performing on a subset S0 ✓ S of size d = Õ(fat(H,O(�))). Note that

the scale of shattering depends on � and not ✏. The resolution of discretization in the cover depends on � as well.

Agnostic setting We establish an upper bound on the sample complexity of the agnostic setting, by using a reduction

to the realizable case. The main argument was originally suggested in [40] for the 0-1 loss and holds for the ⌘-ball robust

loss as well. The proof is in Section 5.7.

Theorem 5.10 The sample complexity for agnostic robust (⌘,�, ✏, �)-PAC learning a concept class H is

Õ
✓
fat(H, c�) fat⇤(H, c�)

✏2
+

1

✏2
log

1

�

◆
,

for some numerical constant c 2 (0,1).

Recall that fat⇤(F , ✏) . 1

✏
2
fat(F,✏/2)+1 by Eq. (2.2).

Remark 5.11 An agnostic learner for robust (⌘,�)-regression does not apply to the robust regression setting. The

reason is that the optimal function in H may have different scales of robustness on different points, which motivates our

approach of using changing cutoffs for different points. In Section 5.7 we show that by using a fixed cutoff for all points

we can obtain an error of only
p

OPTH + ✏.

5.6 Discussion

In this paper, we studied the robustness of real-valued functions to test time attacks. We showed that finite fat-shattering

is sufficient for learnability. we proved sample complexity for learning with the general `p losses and improved it for

the `1 loss. We also studied a model of regression with a cutoff loss. We proved sample complexity in realizable and

agnostic settings. We leave several interesting open questions for future research. (i) Improve the upper bound for

learning with `p robust loss (if possible) and show a lower bound. There might be a gap between sample complexities of

different values of p. More specifically, what is the sample complexity for learning with `2 robust loss? (ii) We showed

that the fat-shattering dimension is a sufficient condition. What is a necessary condition? In the binary-valued case, we

know that having a finite VC is not necessary. (iii) To what extent can we benefit from unlabeled samples for learning

real-valued functions? This question was considered by Attias et al. [2] for binary function classes, where they showed

that the labeled sample complexity can be arbitrarily smaller compared to the fully-supervised setting. (iv) In this work

we focused on the statistical aspect of robustly learning real-valued functions. It would be interesting to explore the

computational aspect as well.

5.7 Deferred Proofs

Theorem 5.12 (Generalization from approximate interpolation) [33, Theorems 21.13 and 21.14] Let F ✓ [0, 1]X

be a function class with a finite fat-shattering dimension (at any scale). For any ⌘,�, ✏, � 2 (0, 1), any distribution D
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over X , any function t : X ! [0, 1], for a random sample S ⇠ Dm, if

m(⌘,�, ✏, �) = O
✓
1

✏

✓
fat(F ,�/8) log2

✓
fat(F ,�/8)

�✏

◆
+ log

1

�

◆◆
,

then with probability at least 1 � � over S, for any f 2 F satisfying |f(x)� t(x)|  ⌘ 8(x, y) 2 S, it holds that

Px⇠D{x : |f(x)� t(x)|  ⌘ + �} � 1� ✏.

Proof of Theorem 5.6: Generalization from Approximate Interpolation with Chang-

ing Cutoffs

Let F ✓ [0, 1]X and let

H = {(x, y) 7! |f(x)� y| : f 2 F} .

Define the function classes

F1 = {(x, y) 7! |f(x)� y|�  (x, y) : f 2 F} ,

and

F2 = {(x, y) 7! max{f(x, y), 0} : f 2 F1} .

We claim that fat(H, �) = fat(F1, �). Take a set S = {(x1, y1), . . . , (xm, ym)} that is �-shattered by H. There

exists a witness r = (r1, . . . , rm) 2 [0, 1]m such that for each � = (�1, . . . ,�m) 2 {�1, 1}m there is a function

h� 2 H such that

8i 2 [m]

8
>><

>>:

h�((xi, yi)) � ri + �, if �i = 1

h�((xi, yi))  ri � �, if �i = �1.

The set S is shattered by F1 by taking r̃ = (r1 +  (x1, y1), . . . , rm +  (xm, ym)). Similarly, any set that is shattered

by F1 is also shattered by H.

The class F2 consists of choosing a function from F1 and computing its pointwise maximum with the constant

function 0. In general, for two function classes G1,G2, we can define the maximum aggregation class

max(G1,G2) = {x 7! max{g1(x), g2(x)} : gi 2 Gi},

Attias and Kontorovich [4] showed that for any G1,G2

fat(max(G1,G2), �) . (fat(G1, �) + fat(G2, �)) log
2
(fat(G1, �) + fat(G2, �)) .

Taking G1 = F1 and G2 ⌘ 0, we get

fat(F2, �) . fat(F1, �) log
2
(fat(F1, �)) .
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For the particular case G2 ⌘ 0, we can show a better bound of

fat(F2, �) . fat(F1, �) .

In words, it means that truncation cannot increase the shattering dimension. Indeed, take a set S = {(x1, y1), . . . , (xk, yk)}

that is �-shattered by F2 = max(F1, 0), we show that this set is �-shattered by F1. There exists a witness r =

(r1, . . . , rk) 2 [0, 1]k such that for each � = (�1, . . . ,�k) 2 {�1, 1}k there is a function f� 2 F1 such that

8i 2 [k]

8
>><

>>:

max{f�((xi, yi)), 0} � ri + �, if �i = 1

max{f�((xi, yi)), 0}  ri � �, if �i = �1.

For max{f�((xi, yi)), 0}  ri � �, we simply have that f�((xi, yi))  ri � �. Moreover, this implies that ri � �. As

a result,

max{f�((xi, yi)), 0} � ri + �

� 2�

> 0,

which means that f�((xi, yi)) � ri+�. This shows that F1 �-shatters S as well. We can conclude the proof by applying

Theorem 5.12 to the class F2 with t(x) = 0 and ⌘ = �.

Proofs for Section 5.3: Robust Regression for `p Losses

Proof (of Theorem 5.3). Fix ✏, � 2 (0, 1) and p 2 [1,1]. Let H ✓ [0, 1]X . Fix a distribution D over X ⇥ Y , and let

S = {(xi, yi)}mi=1
be an i.i.d. sample from D. We first prove for p 2 {1,1}, and generalize for p 2 (1,1) by using

the Lipschitzness of the `p loss. We follow the steps described in Algorithm 3.

1. Compute h?  `p-RERMH(S) in order to get the set of cutoffs  (x, y) = sup
z2U(x)

|h?
(z)� y| for (x, y) 2 S.

Let  |S = ( (x1, y1), . . . , (xm, ym)). Our goal is to construct a predictor with an empirical robust loss of

 (x, y)p + ✏, for p 2 (1,1), and  (x, y) + ✏ for p 2 {1,1}, for any (x, y) 2 S, which means that our predictor

is an approximate robust ERM.

2. Define the inflated training data set

SU =

[

i2[n]

�
(z, yI(z)) : z 2 U(xi)

 
,

where I(z) = min{i 2 [m] : z 2 U(xi)}. For (z, y) 2 SU , let  (z, y) be the  (x, y) for which z 2 U(x) and

yI(z) = y.

3. Discretize SU to a finite set S̄U as follows.

(a) Define a set of functions, such that each function is defined by an ✏-approximate  -RERMH optimizer on
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d = O
⇣

1

✏
fat(H, ✏/8) log2

⇣
fat(H,✏/8)

✏2

⌘⌘
points from S,

Ĥ =
�
 -RERMH(S0, |S0 , ✏) : S0 ✓ S, |S0| = d

 
.

Recall the definition of  -RERMH, see Eq. (5.5). The cardinality of this class is bounded as follows

|Ĥ| ⇡
 
m
d

!
.
⇣m
d

⌘
d

. (5.9)

(b) A discretization S̄U ✓ SU will be defined by covering of the dual class in k·k
1

. Define H̃ = Ĥ [ {h?}. Let

L1

H̃
be the L1 loss class of H̃, namely, L1

H̃
=

n
Z ⇥ Y 3 (z, y) 7! |h(z)� y| : h 2 H̃

o
. The dual class of L1

H̃

, L1

H̃

⇤ ✓ [0, 1]H̃, is defined as the set of all functions f(z,y) : H̃! [0, 1] such that f(z,y)(h) =
��h(z)� y

��, for

any (z, y) 2 SU . Formally, L1

H̃

⇤

=
�
f(z,y) : (z, y) 2 SU

 
, where f(z,y) =

⇣
f(z,y)(h1), . . . , f(z,y)(h|H̃|)

⌘
.

We take S̄U ✓ SU to be a minimal ✏-cover for SU in k·k
1

,

sup
(z,y)2SU

inf
(z̄,ȳ)2S̄U

��f(z,y) � f(z̄,ȳ)
��
1
 ✏. (5.10)

Let fat⇤
�
L1

H̃
, ✏
�

be the dual ✏-fat-shattering of L1

H̃
. Applying a covering number argument from Theorem 2.16

on the dual space and upper bounding the dual fat-shattering of the L1 loss class with the dual fat-shattering of

H̃ , we have the following bound

��S̄U

�� = N
�
✏, SU , k·k1

�

. exp

✓
fat

⇤
�
L1

H̃
, c✏
�
log

2

✓
|H̃|
✏

◆◆

. exp

✓
fat

⇤

⇣
H̃, c✏

⌘
log

2

✓
|H̃|
✏

◆◆

. exp

✓
fat

⇤
(H, c✏) log2

✓
|H̃|
✏

◆◆
,

(5.11)

where c 2 (0,1) is a numerical constant, derived from the covering argument in Theorem 2.16.

4. Compute the following robust variant of Multiplicative Wights (MW) algorithm on the discretized set S̄U for

T ⇡ log
��S̄U

��. Let d = O
⇣

1

✏
fat(H, ✏/8) log2

⇣
fat(H,✏/8)

✏2

⌘⌘
, and let  (z̄, ȳ) be the  (x, y) for which z̄ 2 U(x).

From Theorem 5.6, taking � = 1/3, � = ✏, we know that for any distribution P on S̄U , upon receiving an i.i.d.

sample S00 from P of size d, with probability 2/3 over sampling S00 from P , for any h 2 H with 8(z̄, ȳ) 2 S00
:

|h(z̄)� ȳ|   (z̄, ȳ) + ✏, it holds that

P(z̄,ȳ)⇠P{(z̄, ȳ) : |h(z̄)� ȳ|   (z̄, ȳ) + 2✏} � 1 � ✏. We can conclude that for any distribution P on S̄U , there

exists such a set of points S00 ✓ S̄U .

Given that set, we can find the function with the aforementioned property in Ĥ. Let S0 be the d points in S

that the perturbed points S00 originated from. That is, S00 ✓
S

(x,y)2S0
S
{(z̄, ȳ) : z̄ 2 U(x)}. Take Ĥ 3 ĥ =

 -RERMH(S0, |S0 , ✏), it holds that 8(z̄, ȳ) 2 S00
:

���ĥ(z̄)� ȳ
���   (z̄, ȳ)+✏, as a result we get P(z̄,ȳ)⇠P

n
(z̄, ȳ) :

���ĥ(z̄)� ȳ
���   (z̄, ȳ) + 2✏

o
�

1� ✏.
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Algorithm 6 Robust Multiplicative Weights

Input: H, S, S̄U .
Parameters: Approximation parameter ✏ 2 (0, 1), weights update parameter ⇠ 2 (0, 1), number of
boosting rounds T � 1, base learner sample size d � 1, loss parameter p 2 [1,1] cutoff parameters
 |S = ( (x1, y1), . . . , (xm, ym)) for (xi, yi),2 S and  (z̄, ȳ) is the  (x, y) for which z̄ 2 U(x).
Algorithms used: ✏-approximate  -robust empirical risk minimizer  -RERMH (Eq. (5.5)).
Initialize P1 = Uniform(S̄U ).
For t = 1, . . . , T :

. Compute a strong base learner w.r.t. distribution Pt by finding n points in S and executing
 -RERMH on them.

(a) Find d points S00
t ✓ S̄U such that any h 2 H satisfying: 8(z̄, ȳ) 2 S00

t : |h(z̄)� ȳ|p   (z̄, ȳ)p + ✏,
it holds that E(z̄,ȳ)⇠Pt

h
I
n
|h(z̄)� ȳ|p   (z̄, ȳ)p + 2✏

oi
� 1 � ✏. (See the analysis for why this set

exists).

(b) Let S0
t be the d points in S that S00

t originated from. Formally, S00
t ✓

S
(x,y)2S0

t

S
{(z̄, ȳ) : z̄ 2 U(x)}.

(c) Compute ĥt =  -RERMH(S0
t, |S0

t
, ✏).

. Make a multiplicative weights update on Pt.

(d) For each (z̄, ȳ) 2 S̄U :

Pt+1(z̄, ȳ) / Pt(z̄, ȳ)e
�⇠I{|ĥt(z̄)�ȳ|p (z̄,ȳ)p+2✏}

Output: classifiers ĥ1, . . . , ĥT and sets S0
1, . . . , S

0
T .

A uniformly 5✏-approximate adversarially robust sample compression scheme for S. The output of the algorithm

is a sequence of functions ĥ1, . . . , ĥT , and the corresponding sets that encode them S0

1, . . . , S
0

T , where we predict with

the average of the returned hypotheses, 1

T

P
T

t=1
ĥt(·). For T ⇡ log

��S̄U

��, we show that

8(z̄, ȳ) 2 S̄U :
1

T

TX

t=1

���ĥt(z̄)� ȳ
���   (z̄, ȳ) + 3✏. (5.12)

For any distribution Pt over S̄U , we have a base learner ĥt, satisfying E(z̄,ȳ)⇠Pt

h
I
n���ĥt(z̄)� ȳ

���   (z̄, ȳ) + 2✏
oi
�

1 � ✏, due to Theorem 5.6. Following standard analysis of MW / ↵-Boost (see Schapire and Freund [130, Section 6]),

for any (z̄, ȳ) 2 S̄U , 1 � ✏ fraction of the base learners have an error within  (z̄, ȳ) + 2✏. The loss is bounded by 1,

so the other ✏ fraction can add an error of at most ✏. The overall average loss of the base learners is upper bounded by

 (z̄, ȳ) + 3✏. Note that we can find these base learners in Ĥ, as defined in step 2(a) of the main algorithm. Crucially,

we use strong base learners in order to ensure a low empirical loss of the average base learners.

From the covering argument (Eq. (5.27)), we have

8(z, y) 2 SU :
1

T

TX

t=1

���ĥt(z)� y
���   (z, y) + 5✏. (5.13)

Indeed, for any (z, y) 2 SU there exists (z̄, ȳ) 2 S̄U , such that for any h 2 H̃,

���
��h(z)� y

���
��h(z̄)� ȳ

��
���  ✏.
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Specifically, it holds for
n
ĥ1, . . . , ĥT

o
✓ H̃ and h? 2 H̃, and so

1

T

TX

t=1

���ĥt(z)� y
��� 

1

T

TX

t=1

���ĥt(z̄)� ȳ
���+ ✏, (5.14)

and

 (z̄, ȳ) =
��h?

(z̄)� ȳ
�� 

��h?
(z)� y

��+ ✏ =  (z, y) + ✏. (5.15)

Combining Eqs. (5.14) and (5.15) we get Eq. (5.13). By using the convexity of the `1 loss, we have

�����
1

T

TX

t=1

ĥt(z)� y

����� 
1

T

TX

t=1

���ĥt(z)� y
��� . (5.16)

Finally, from Eqs. (5.13) and (5.16) we conclude a uniformly 5✏-approximate adversarially robust sample compres-

sion scheme for S,

8(z, y) 2 SU :

�����
1

T

TX

t=1

ĥt(z)� y

�����   (z, y) + 5✏, (5.17)

which implies that

8(x, y) 2 S : sup
z2U(x)

�����
1

T

TX

t=1

ĥt(x)� y

�����   (x, y) + 5✏.

Bounding the compression size. We have T = O
�
log
��S̄U

��� hypotheses, where each one is representable by

d = O
⇣

1

✏
fat(H, ✏/8) log2

⇣
fat(H,✏/8)

✏2

⌘⌘
points. By counting the number of predictors using Eq. (5.20), we get for

m � 2d

k = log
���S̄U

���

. fat
⇤
(H, c✏) log2

✓
|H̃|
✏

◆

. fat
⇤
(H, c✏) log2

✓
1

✏

✓⇣m
d

⌘
d

+ 1

◆◆

. fat
⇤
(H, c✏) log2

✓
1

✏

⇣m
d

⌘
d
◆

. fat
⇤
(H, c✏)

✓
log

✓
1

✏

◆
+ d log

⇣m
d

⌘◆2

. fat
⇤
(H, c✏)

✓
log

2

✓
1

✏

◆
+ log

✓
1

✏

◆
d log

⇣m
d

⌘
+ d2 log2

⇣m
d

⌘◆

. fat
⇤
(H, c✏) log2

✓
1

✏

◆
d2 log2

⇣m
d

⌘
.

We get a uniformly 5✏-approximate adversarially robust sample compression scheme for S of size

O
✓
fat

⇤
(H, c✏) log2

✓
1

✏

◆
d3 log2

⇣m
d

⌘◆
.
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Each weak learner is encoded by a multiset S0 ✓ S of size d and is constructed by computing some ĥ 2 H that

solves the constrained optimization

sup
z2U(x)

���ĥ(z)� y
���   (x, y) + ✏, 8(x, y) 2 S0.

By plugging in d = O
⇣

1

✏
fat(H, ✏/8) log2

⇣
fat(H,✏/8)

✏2

⌘⌘
, we have

O

0

@ 1

✏3
fat

3
(H, ✏/8) fat⇤(H, c✏) log6

✓
fat(H, ✏/8)

✏2

◆
log

2

✓
1

✏

◆
log

2

0

@ m
1

✏
fat(H, ✏/8) log2

⇣
fat(H,✏/8)

✏2

⌘

1

A

1

A .

Encoding base learners. We encode each  (x, y) by some approximation  ̃(x, y), such that
��� ̃(x, y)�  (x, y)

���  ✏, by discretizing [0, 1] to 1/✏ buckets of size ✏, and each  (x, y) is rounded down to the closest

value  ̃(x, y). Each approximation requires to encode log(1/✏) bits, and so each learner encodes d log(1/✏) bits and d

samples. We have k weak learners, and the compression size is

k(d+ d log(1/✏))  2kd log(1/✏) .

Therefore, we have a uniform 5✏-approximate compression for `1 and `1 losses of size

O

0

@ 1

✏3
fat

3
(H, ✏/8) fat⇤(H, c✏) log6

✓
fat(H, ✏/8)

✏2

◆
log

3

✓
1

✏

◆
log

2

0

@ m
1

✏
fat(H, ✏/8) log2

⇣
fat(H,✏/8)

✏2

⌘

1

A

1

A .

Generalizing for p 2 (1,1). We rely on the Lipschitzness of the `p loss and rescaling the approximation parameter

✏ to ✏/p. Recall the covering of SU in step 3(b). Note that an (✏/p)-cover for the L1 loss class is an ✏-cover for the Lp

loss class due to the Lipschitzness of the `p loss

���|h(z)� y|p � |h(z̄)� ȳ|p
���  p

���|h(z)� y|� |h(z̄)� ȳ|
���

 p✏.

Moreover, we constructed a function f =
1

T

P
T

t=1
ĥt(x) with sup

z2U(x)
|f(z)� y|   (x, y)+ ✏ for any (x, y) 2

S. Note that since |f(·)� y| 2 [0, 1], the same z that maximizes the `1 loss also maximizes for any `p. This implies

that

sup
z2U(x)

|f(z)� y|p
(i)

 (( (x, y)) + ✏)p
(ii)

  (x, y)p + p✏,

where (i) follows by just raising both sides to the power of p and (ii) follows since the function x 7! |x� y|p is
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p-Lipschitz for (x� y) 2 [0, 1], and so

|( (x, y) + ✏)p �  (x, y)p|  p| (x, y) + ✏�  (x, y)|

 p✏.

By rescaling p✏ to ✏, we get

sup
z2U(x)

�����
1

T

TX

t=1

ĥt(x)� y

�����

p

  (x, y)p + ✏.

Therefore, we have an approximate compression for `p of size

O

0

@ 1

✏3
fat

3
(H, c✏/p) fat⇤(H, c✏/p) log6

✓
p2 fat(H, ✏/8)

✏2

◆
log

3

⇣p
✏

⌘
log

2

0

@ m
1

✏
fat(H, c✏/p) log2

⇣
p2 fat(H,c✏/p)

✏2

⌘

1

A

1

A .

Note that the 1/✏3 term is not affected by the rescaling. The instances of ✏ that should be rescaled are the ones that arise

from the covering argument in step 3(b), and the approximation parameter for the sample compression.

Generalization bound. Let (, ⇢) be the compression scheme and |(S)| the compression size. LetdErr`p(h;S) be

the empirical loss of h on S with the `p robust loss. We can derive the error as follows,

Err`p(⇢((S));D)

(i)

. dErr`p(⇢((S));S) +

s
|(S)| log(m) + log

1

�

m

(ii)

. dErr`p(h
?
;S) + 5✏+

s
|(S)| log(m) + log

1

�

m

(iii)

. Err`p(h
?
;D) + 5✏+

s
|(S)| log(m) + log

1

�

m
+

s
log

1

�

m

. Err`p(h
?
;D) + 5✏+

s
|(S)| log(m) + log

1

�

m
,

(i) follows from a generalization of sample compression scheme in the agnostic case, see Theorem 2.19, (ii) follows

Eq. (5.17), (iii) follows from Hoeffding’s inequality. We take m sufficiently large such that

s
|(S)| log(m) + log

1

�

m
. ✏.

Re-scale ✏ = ✏/5 and plug in the compression size, we get sample complexity of size

M = O
✓

1

✏2

✓
|(S)| log 1

✏
+ log

1

�

◆◆
,

where |(S)| is upper bounded as follows

O

0

@ 1

✏3
fat

3
(H, c✏/p) fat⇤(H, c✏/p) log6

✓
p2 fat(H, ✏/8)

✏2

◆
log

3

⇣p
✏

⌘
log

2

0

@ m
1

✏
fat(H, c✏/p) log2

⇣
p2 fat(H,c✏/p)

✏2

⌘

1

A

1

A .
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We conclude the sample complexity

M = Õ
✓

1

✏5
fat

3
(H, c✏/p) fat⇤(H, c✏/p) +

1

✏2
log

1

�

◆
,

for some numerical constant c 2 (0,1). ⇤

Proofs for Section 5.4: Improved Sample Complexity via Median Boosting and Spar-

sification

Proof (of Theorem 5.7). Fix ✏, � 2 (0, 1) and p 2 [1,1]. Let H ✓ [0, 1]X . Fix a distribution D over X ⇥ Y , and let

S = {(xi, yi)}mi=1
be an i.i.d. sample from D. We first prove for p 2 {1,1}, and generalize for p 2 (1,1) by using

the Lipschitzness of the `p loss. We follow the steps as described in Algorithm 4.

1. Compute h?  `p-RERMH(S) in order to get the set of cutoffs  (x, y) = sup
z2U(x)

|h?
(z)� y| for (x, y) 2 S.

Let  |S = ( (x1, y1), . . . , (xm, ym)). Our goal is to construct a predictor with an empirical robust loss of

 (x, y)p + ✏, for p 2 (1,1), and  (x, y) + ✏ for p 2 {1,1}, for any (x, y) 2 S, which means that our predictor

is an approximate robust ERM.

2. Define the inflated training data set

SU =

[

i2[n]

�
(z, yI(z)) : z 2 U(xi)

 
,

where I(z) = min{i 2 [m] : z 2 U(xi)}. For (z, y) 2 SU , let  (z, y) be the  (x, y) for which z 2 U(x) and

yI(z) = y.

3. Discretize SU to a finite set S̄U as follows.

(a) Define a set of functions, such that each function is defined by an ✏-approximate  -RERMH optimizer on

d = O
⇣
fat(H, ✏/8) log2

⇣
fat(H,✏/8)

✏2

⌘⌘
points from S,

Ĥ =
�
 -RERMH(S0, |S0 , ✏) : S0 ✓ S, |S0| = d

 
.

Recall the definition of  -RERMH, see Eq. (5.5).

In order to understand what this definition of Ĥ serves for, see step 4 below. The cardinality of this class is

bounded as follows

|Ĥ| ⇡
 
m
d

!
.
⇣m
d

⌘
d

. (5.18)

(b) A discretization S̄U ✓ SU will be defined by covering of the dual class in k·k
1

. Define H̃ = Ĥ [ {h?}. Let

L1

H̃
be the L1 loss class of H̃, namely, L1

H̃
=

n
Z ⇥ Y 3 (z, y) 7! |h(z)� y| : h 2 H̃

o
. The dual class of L1

H̃

, L1

H̃

⇤ ✓ [0, 1]H̃, is defined as the set of all functions f(z,y) : H̃! [0, 1] such that f(z,y)(h) =
��h(z)� y

��, for
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any (z, y) 2 SU . Formally, L1

H̃

⇤

=
�
f(z,y) : (z, y) 2 SU

 
, where f(z,y) =

⇣
f(z,y)(h1), . . . , f(z,y)(h|H̃|)

⌘
.

We take S̄U ✓ SU to be a minimal ✏-cover for SU in k·k
1

,

sup
(z,y)2SU

inf
(z̄,ȳ)2S̄U

��f(z,y) � f(z̄,ȳ)
��
1
 ✏. (5.19)

Let fat⇤
�
L1

H̃
, ✏
�

be the dual ✏-fat-shattering of L1

H̃
. Applying a covering number argument from Theorem 2.16

on the dual space and upper bounding the dual fat-shattering of the L1 loss class with the dual fat-shattering of

H̃ , we have the following bound

��S̄U

�� = N
�
✏, SU , k·k1

�

. exp

✓
fat

⇤
�
L1

H̃
, c✏
�
log

2

✓
|H̃|
✏

◆◆

. exp

✓
fat

⇤

⇣
H̃, c✏

⌘
log

2

✓
|H̃|
✏

◆◆

. exp

✓
fat

⇤
(H, c✏) log2

✓
|H̃|
✏

◆◆
,

(5.20)

where c 2 (0,1) is a numerical constant, derived from the covering argument in Theorem 2.16.

4. Compute a robust variant of the real-valued boosting algorithm MedBoost [131, 140] on the discretized set S̄U . The

output of the algorithm is a uniformly 2✏-approximate sample compression scheme for the set S̄U , for ⇡ log
���S̄U

���

boosting rounds. Moreover, the weak learners are chosen from the set Ĥ. Once we have these weak learners, the

guarantee of the algorithm follows from Hanneke et al. [131, Corollary 6]. We should explain why we have a weak

learner for any distribution over S̄U .

The existence of weak learners in Ĥ. Let d = O
⇣
fat(H, ✏/8) log2

⇣
fat(H,✏/8)

✏2

⌘⌘
and let  (z̄, ȳ) be the  (x, y)

for which z̄ 2 U(x). Taking � = 1/3, we know that for any distribution P on S̄U , upon receiving an i.i.d. sample

S00 from P of size d, with probability 2/3 over sampling S00 from P , for any h 2 H satisfying 8(z̄, ȳ) 2 S00
:

|h(z̄)� ȳ|   (z̄, ȳ) + ✏, it holds that P(z̄,ȳ)⇠P((z̄, ȳ) : |h(z̄)� ȳ| >  (z̄, ȳ) + 2✏)  1/3. That is, such a

function is a (2✏, 1/6)-weak learner for P and h?. We can conclude that for any distribution P on S̄U , there exists a

set of points S00 ✓ S̄U of size d that defines a weak learner for P and h?.

Furthermore, we can find these weak learners in Ĥ as follows. Let S0 be the d points in S that the perturbed

points S00 originated from. That is, S00 ✓
S

(x,y)2S0
S
{(z̄, ȳ) : z̄ 2 U(x)}. Therefore, we can conclude that

ĥ =  -RERMH(S0, |S0 , ✏) is a weak learner, and can be found in Ĥ. So, we can think of Ĥ as a pool of weak

learners for any possible distribution over the discretized set S̄U .
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Algorithm 7 Robust MedBoost

Input: H, S, S̄U .
Parameters: Approximation parameter ✏ 2 (0, 1), number of boosting rounds T � 1, weak learner sample
size d � 1, loss parameter p 2 [1,1], cutoff parameters  |S = ( (x1, y1), . . . , (xm, ym)) for (xi, yi),2 S
and  (z̄, ȳ) is the  (x, y) for which z̄ 2 U(x).
Algorithms used: ✏-approximate  -robust empirical risk minimizer  -RERMH (Eq. (5.5)).
Initialize P1 = Uniform(S̄U ).
For t = 1, . . . , T :

. Compute a weak base learner w.r.t. distribution Pt by finding d points in S and executing  -RERMH
on them.

(a) Find d points S00
t ✓ S̄U such that any h 2 H satisfying: 8(z̄, ȳ) 2 S00

t : |h(z̄)� ȳ|p   (z̄, ȳ)p + ✏,
it holds that E(z̄,ȳ)⇠Pt

h
I
n
|h(z̄)� ȳ|p �  (z̄, ȳ)p + 2✏

oi
 1/3. (See the analysis for why this set

exists).

(b) Let S0
t be the d points in S that S00

t originated from. Formally, S00
t ✓

S
(x,y)2S0

t

S
{(z̄, ȳ) : z̄ 2 U(x)}.

(c) Compute ĥt =  -RERMH(S0
t, |S0

t
, ✏). From steps (a) and (b), it follows that ĥt is a (2✏, 1/6)-weak

learner with respect to the distribution Pt over S̄U .

. Update the weight of the weak learner in the ensemble and make a multiplicative weights update on
Pt.

(d) For i = 1, . . . , n =
��S̄U

��:
Set

w(t)
i = 1� 2I

⇥���ĥt(z̄i)� ȳi
���
p
>  (z̄i, ȳi)

p + 2✏
⇤
.

(e) Set

↵t =
1

2
log

0

@
(1� 1/6)

Pn
i=1 Pt(z̄i, ȳi) I

h
w(t)

i = 1
i

(1 + 1/6)
Pn

i=1 Pt(z̄i, ȳi) I
h
w(t)

i = �1
i

1

A .

(f) If ↵t =1: return T copies of ht, (↵1 = 1, . . . ,↵T = 1), and S0
t.

Else:
Pt+1(z̄i, ȳi) = Pt(z̄i, ȳi)

exp(�↵twt
i)Pn

j=1 Pt(z̄j , ȳj) exp
�
�↵twt

j

� .

Output: Hypotheses ĥ1, . . . , ĥT , coefficients ↵1, . . . ,↵T and sets S0
1, . . . , S

0
T .

A uniformly 4✏-approximate adversarially robust sample compression scheme for S. The output of MedBoost

is a uniformly 2✏-approximate sample compression scheme for the set S̄U . We show that this is a uniformly 4✏-

approximate adversarially robust sample compression scheme for S, that is, a sample compression for S scheme

with respect to the robust loss.

For T ⇡ log
��S̄U

�� boosting rounds, it follows from Hanneke et al. [131, Corollary 6] that the output of the algorithm

satisfy

8(z̄, ȳ) 2 S̄U :

���Median
�
ĥ1(z̄), . . . , ĥT (z̄);↵1, . . . ,↵T

�
� ȳ
���   (z̄, ȳ) + 2✏, (5.21)

Median
�
ĥ1(z̄), . . . , ĥT (z̄);↵1, . . . ,↵T

�
is the weighted median of ĥ1, . . . , ĥT with weights ↵1, . . . ,↵T . From the

covering argument (Eq. (5.20)), this implies that

8(z, y) 2 SU :

���Median
�
ĥ1(z), . . . , ĥT (z);↵1, . . . ,↵T

�
� y
���   (z, y) + 4✏. (5.22)
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Indeed, for any (z, y) 2 SU there exists (z̄, ȳ) 2 S̄U , such that for any h 2 H̃,

���
��h(z)� y

���
��h(z̄)� ȳ

��
���  ✏.

Specifically, it holds for
n
ĥ1, . . . , ĥT

o
✓ H̃ and h? 2 H̃. So,

���Median
�
ĥ1(z), . . . , ĥT (z);↵1, . . . ,↵T

�
� y
���
(a)

=

���Median
�
ĥ1(z)� y, . . . , ĥT (z)� y;↵1, . . . ,↵T

����
(b)


���Median

�
ĥ1(z̄)� ȳ, . . . , ĥT (z̄)� ȳ;↵1, . . . ,↵T

����+ ✏

(c)

=

���Median
�
ĥ1(z̄), . . . , ĥT (z̄);↵1, . . . ,↵T

�
� ȳ
���+ ✏

(d)

 |h?
(z̄)� ȳ|+ 3✏

(e)

 |h?
(z)� y|+ 4✏

(f)

=  (z, y) + 4✏,

(5.23)

(a)+(c) follow since the median is translation invariant, (b)+(e) follow from the covering argument, (d) holds since

the returned function by MedBoost is a uniformly 2✏-approximate sample compression for S̄U , (f) follows from

the definition in step 2 of the algorithm.

Finally, from Eq. (5.23) we conclude a uniformly 4✏-approximate adversarially robust sample compression scheme

for S,

8(x, y) 2 S : sup
z2U(x)

���Median
�
ĥ1(z), . . . , ĥT (z);↵1, . . . ,↵T

�
� y
���   (x, y) + 4✏. (5.24)

Bounding the compression size. We have T = O
�
log
��S̄U

��� hypotheses, where each one is representable by

d = O
⇣
fat(H, ✏/8) log2

⇣
fat(H,✏/8)

✏2

⌘⌘
points. By counting the number of predictors using Eq. (5.20), we get

log
���S̄U

��� . fat
⇤
(H, c✏) log2

✓
|H̃|
✏

◆

. fat
⇤
(H, c✏) log2

✓
1

✏

✓⇣m
d

⌘
d

+ 1

◆◆
.

We have a compression of size O
�
d log

���S̄U

����, which is already sufficient for deriving generalization. We can re-

duce further the number of predictors to be independent of the sample size, thereby reducing the sample compression

size and improving the sample complexity.

5. We follow the sparsification method suggested by Hanneke et al. [131]. The idea is that by sampling functions from

the ensemble, we can guarantee via a uniform convergence in the dual space, that it is sufficient to have roughly

⇡ fat
⇤
(H, c✏) predictors.

For ↵1, . . . ,↵T 2 [0, 1] with
P

T

t=1
↵t = 1, we denote the categorical distribution by Cat(↵1, . . . ,↵T ), which is

a discrete distribution on the set [T ] with probability of ↵t on t 2 [T ]. The inputs to the algorithm are ⌧(x, y) =

 (x, y)p + 5✏ and k = O
�
fat

⇤
(H, c✏) log2(fat⇤(H, c✏) /✏)

�
, where c 2 (0,1) is a numerical constant.
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Algorithm 8 Sparsify

Input: Hypotheses ĥ1, . . . , ĥT , coefficients ↵1, . . . ,↵T , S = {(xi, yi}mi=1.
Parameter: Number of functions to sample k � 1, cutoff parameters (⌧(x1, y1), . . . , ⌧(xm, ym)).

(a) Let ↵0
t = ↵t

�PT
s=1 ↵s.

(b) Repeat:
i. Sample (J1, . . . , Jk) ⇠ Cat(↵0

1, . . . ,↵
0
T)

k.
ii. Let F = {hJ1 , . . . , hJk}.

iii. Until 8(x, y) 2 S :
���
n
f 2 F : supz2U(x)|f(z)� y|p > ⌧(x, y)

o��� < k/2.

Output: Hypotheses ĥJ1 , . . . , ĥJk .

The sparsification method returns set of functions
n
ĥJ1 , . . . , ĥJk

o
, such that

8(x, y) 2 S : sup
z2U(x)

��Median
�
ĥJ1(x), . . . , ĥJk (x)

�
� y
��   (x, y) + 5✏. (5.25)

We get a uniformly 5✏-approximate adversarially robust sample compression scheme for S, where we have k =

O
�
fat

⇤
(H, c✏) log2(fat⇤(H, c✏) /✏)

�
functions, and each function is representable by d = O

�
fat(H, ✏/8) log2

�
fat(H, ✏/8) /✏2

��

points.

Encoding weak learners. Each weak learner is encoded by a multiset S0 ✓ S of size d and is constructed by

computing some ĥ 2 H that solves the constrained optimization

sup
z2U(x)

���ĥ(z)� y
���   (x, y) + ✏, 8(x, y) 2 S0.

We encode each  (x, y) by some approximation  ̃(x, y), such that
��� ̃(x, y)�  (x, y)

���  ✏, by discretizing [0, 1]

to 1/✏ buckets of size ✏, and each  (x, y) is rounded down to the closest value  ̃(x, y). Each approximation requires

to encode log(1/✏) bits, and so each learner encodes d log(1/✏) bits and d samples. We have k weak learners, and

the compression size is

k(d+ d log(1/✏))  2kd log(1/✏) .

Therefore, we have a uniform 6✏-approximate compression for `1 and `1 losses of size

O
✓
fat(H, ✏/8) fat⇤(H, c✏) log2

✓
fat(H, ✏/8)

✏2

◆
log

2

✓
fat

⇤
(H, c✏)
✏

◆
log

1

✏

◆
.

Generalizing for p 2 (1,1). We rely on the Lipschitzness of the `p loss and rescaling the approximation parameter

✏ to ✏/p.

Recall the covering of SU in step 3(b). Note that an (✏/p)-cover for the L1 loss class is an ✏-cover for the Lp loss
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class due to the Lipschitzness of the `p loss

���|h(z)� y|p � |h(z̄)� ȳ|p
���  p

���|h(z)� y|� |h(z̄)� ȳ|
���

 p✏.

Moreover, we constructed a function f = Median
�
ĥJ1 , . . . , ĥJk

�
with sup

z2U(x)
|f(z)� y|   (x, y)+ ✏ for any

(x, y) 2 S. Note that since |f(·)� y| 2 [0, 1], the same z that maximizes the `1 loss also maximizes for any `p. This

implies that

sup
z2U(x)

|f(z)� y|p
(i)

 (( (x, y)) + ✏)p
(ii)

  (x, y)p + p✏,

where (i) follows by just raising both sides to the power of p and (ii) follows since the function x 7! |x� y|p is

p-Lipschitz for (x� y) 2 [0, 1], and so

|( (x, y) + ✏)p �  (x, y)p|  p| (x, y) + ✏�  (x, y)|

 p✏.

By rescaling p✏ to ✏, we get

sup
z2U(x)

���Median

⇣
ĥJ1(z), . . . , ĥJk (z)

⌘
� y
���
p

  (x, y)p + ✏,

where the number of functions in the ensemble is

k = O
✓
fat

⇤
(H, c✏/p) log2

✓
p fat⇤(H, c✏/p)

✏

◆◆
,

and each function is represented by a set of samples of size

d = O
✓
fat(H, c✏/p) log2

✓
p2 fat(H, c✏/p)

✏2

◆◆
.

Therefore, we have an approximate compression for `p of size

O
✓
fat(H, c✏/p) fat⇤(H, c✏/p) log2

✓
p2 fat(H, c✏/p)

✏2

◆
log

2

✓
p fat⇤(H, c✏/p)

✏

◆
log

p
✏

◆
.
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Generalization bound. Let (, ⇢) be the compression scheme and |(S)| the compression size. LetdErr`p(h;S) be

the empirical loss of h on S with the `p robust loss. We can derive the error as follows,

Err`p(⇢((S));D)

(i)

. dErr`p(⇢((S));S) +

s
|(S)| log(m) + log

1

�

m

(ii)

. dErr`p(h
?
;S) + 6✏+

s
|(S)| log(m) + log

1

�

m

(iii)

. Err`p(h
?
;D) + 6✏+

s
|(S)| log(m) + log

1

�

m
+

s
log

1

�

m

. Err`p(h
?
;D) + 6✏+

s
|(S)| log(m) + log

1

�

m
,

(i) follows from a generalization of sample compression scheme in the agnostic case, see Theorem 2.19, (ii) follows from

the approximate sample compression we proved above, (iii) follows from Hoeffding’s inequality. We take m sufficiently

large such that

s
|(S)| log(m) + log

1

�

m
. ✏.

Re-scale ✏ = ✏/6 and plug in the compression size, we get sample complexity of size

M = O
✓

1

✏2

✓
fat(H, c✏/p) fat⇤(H, c✏/p) log2

✓
p2 fat(H, c✏/p)

✏2

◆
log

2

✓
p fat⇤(H, c✏/p)

✏

◆
log

2

⇣p
✏

⌘
+ log

1

�

◆◆
,⇤

for some numerical constant c 2 (0,1).

Proofs for Section 5.5: Robust (⌘, �)-Regression

Realizable Setting

Proof (of Theorem 5.9). Fix ✏, �,�, ⌘ 2 (0, 1). Let H ✓ [0, 1]X . Fix a distribution D over X ⇥ Y that is ⌘-uniformly

realizable by H, and let S = {(xi, yi)}mi=1
be an i.i.d. sample from D.

We elaborate on each one of the steps as described in Algorithm 5.

1. Define the inflated training data set

SU =

[

i2[n]

�
(z, yI(z)) : z 2 U(xi)

 
,

where I(z) = min{i 2 [m] : z 2 U(xi)}.

2. Discretize SU to a finite set S̄U as follows.

(a) Define a set of functions, such that each function is defined by an �-approximate  –RERMH optimizer on

d = O
⇣
fat(H,�/8) log2

⇣
fat(H,�/8)

�

⌘⌘
points from S, with fixed cutoff parameters  (x, y) = ⌘ for each
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(x, y) 2 S,

Ĥ =
�
 -RERMH(S0, |S0 ,�) : S0 ✓ S, |S0| = d

 
.

Recall the definition of  -RERMH, see Eq. (5.5). The cardinality of this class is bounded as follows

|Ĥ| ⇡
 
m
d

!
.
⇣m
d

⌘
d

. (5.26)

(b) A discretization S̄U ✓ SU will be defined by covering of the dual class in k·k
1

. Define H̃ = Ĥ [ {h?}. Let

L1

H̃
be the L1 loss class of H̃, namely, L1

H̃
=

n
Z ⇥ Y 3 (z, y) 7! |h(z)� y| : h 2 H̃

o
. The dual class of L1

H̃

, L1

H̃

⇤ ✓ [0, 1]H̃, is defined as the set of all functions f(z,y) : H̃! [0, 1] such that f(z,y)(h) =
��h(z)� y

��, for

any (z, y) 2 SU . Formally, L1

H̃

⇤

=
�
f(z,y) : (z, y) 2 SU

 
, where f(z,y) =

⇣
f(z,y)(h1), . . . , f(z,y)(h|H̃|)

⌘
.

We take S̄U ✓ SU to be a minimal �-cover for SU in k·k
1

,

sup
(z,y)2SU

inf
(z̄,ȳ)2S̄U

��f(z,y) � f(z̄,ȳ)
��
1
 �. (5.27)

Let fat⇤
�
L1

H̃
,�
�

be the dual �-fat-shattering of L1

H̃
. Applying a covering number argument from Theorem 2.16

on the dual space and upper bounding the dual fat-shattering of the L1 loss class with the dual fat-shattering of

H̃ , we have the following bound

��S̄U

�� = N
�
�, SU , k·k1

�

. exp

✓
fat

⇤
�
L1

H̃
, c�
�
log

2

✓
|H̃|
�

◆◆

. exp

✓
fat

⇤

⇣
H̃, c�

⌘
log

2

✓
|H̃|
�

◆◆

. exp

✓
fat

⇤
(H, c�) log2

✓
|H̃|
�

◆◆
,

(5.28)

where c 2 (0,1) is a numerical constant, derived from the covering argument in Theorem 2.16.

3. Compute a robust version of the real-valued boosting algorithm MedBoost (Algorithm 7) on the discretized set S̄U .

The inputs to the algorithm are as follows. Set ✏ = �,  |S = (⌘, . . . , ⌘), p = 1, and T ⇡ log
���S̄U

��� rounds of

boosting.

The output of the algorithm is a uniform �-approximate sample compression scheme for the set S̄U . Moreover, the

weak learners are chosen from the set Ĥ. Once we have these weak learners, the guarantee of the algorithm follows

from Hanneke et al. [131, Corollary 6]. We should explain why we have a weak learner for any distribution over S̄U .

The existence of weak learners in Ĥ. From Theorem 5.12, taking ✏ = � = 1/3, we know that for any distribution

P on S̄U , upon receiving an i.i.d. sample S00 from P of size

O
⇣
fat(H,�/8) log2

⇣
fat(H,�/8)

�

⌘⌘
, with probability 2/3 over sampling S00 from P , for any h 2 H with 8(z, y) 2

S00
: |h(z)� y|  ⌘, it holds that P(z,y)⇠P{(z, y) : |h(z)� y| > ⌘ + �}  1/3. That is, such a function is a

(�, 1/6)-weak learner for P (see Theorem 7.5). We can conclude that for any distribution P on S̄U , there exists a

set of points S00 ✓ S̄U of size O
⇣
fat(H,�/8) log2

⇣
fat(H,�/8)

�

⌘⌘
that defines a weak learner for P .
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Moreover, we can find these weak learners in Ĥ as follows. Let S0 be the O
⇣
fat(H,�/8) log2

⇣
fat(H,�/8)

�

⌘⌘
points

in S that the perturbed points S00 originated from. That is, S00 ✓
S

(x,y)2S0
S
{(z, y) : z 2 U(x)}. Therefore, we

can conclude that ĥ =  -RERMH(S0, |S0 ,�) is a weak learner, and can be found in Ĥ. So, we can think of Ĥ as

a pool of weak learners for any possible distribution over the discretized set S̄U .

A uniformly 3�-approximate adversarially robust sample compression scheme for S. The output of MedBoost

is a uniformly �-approximate sample compression scheme for the set S̄U . We show that this is a uniformly 3�-

approximate adversarially robust sample compression scheme for S, that is, a sample compression for S scheme

with respect to the robust loss.

For T ⇡ log
��S̄U

�� boosting rounds, it follows from Hanneke et al. [131, Corollary 6] that the output of the algorithm

satisfy

8(z̄, ȳ) 2 S̄U :

���Median
�
ĥ1(z̄), . . . , ĥT (z̄);↵1, . . . ,↵T

�
� ȳ
���  ⌘ + �, (5.29)

Median
�
ĥ1(z̄), . . . , ĥT (z̄);↵1, . . . ,↵T

�
is the weighted median of ĥ1, . . . , ĥT with weights ↵1, . . . ,↵T . From the

covering argument (Eq. (5.28)), this implies that

8(z, y) 2 SU :

���Median
�
ĥ1(z), . . . , ĥT (z);↵1, . . . ,↵T

�
� y
���  ⌘ + 3�. (5.30)

Indeed, for any (z, y) 2 SU there exists (z̄, ȳ) 2 S̄U , such that for any h 2 H̃,

���
��h(z)� y

���
��h(z̄)� ȳ

��
���  �.

Specifically, it holds for
n
ĥ1, . . . , ĥT

o
✓ H̃ and h? 2 H̃. So,

���Median
�
ĥ1(z), . . . , ĥT (z);↵1, . . . ,↵T

�
� y
���
(a)

=

���Median
�
ĥ1(z)� y, . . . , ĥT (z)� y;↵1, . . . ,↵T

����
(b)


���Median

�
ĥ1(z̄)� ȳ, . . . , ĥT (z̄)� ȳ;↵1, . . . ,↵T

����+ �

(c)

=

���Median
�
ĥ1(z̄), . . . , ĥT (z̄);↵1, . . . ,↵T

�
� ȳ
���+ �

(d)

 |h?
(z̄)� ȳ|+ 2�

(e)

 |h?
(z)� y|+ 3�

(f)

= ⌘ + 3�,

(5.31)

(a)+(c) follow since the median is translation invariant, (b)+(e) follow from the covering argument, (d) holds since

the returned function by MedBoost is a uniformly �-approximate sample compression for S̄U , (f) follows from the

assumption of ⌘-realizability.

Finally, from Eq. (5.31) we conclude a uniformly 3�-approximate adversarially robust sample compression scheme
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for S,

8(x, y) 2 S : sup
z2U(x)

���Median
�
ĥ1(z), . . . , ĥT (z);↵1, . . . ,↵T

�
� y
���  ⌘ + 3�. (5.32)

Bounding the compression size. We have T = O
�
log
��S̄U

��� hypotheses, where each one is representable by

d = O
⇣
fat(H,�/8) log2

⇣
fat(H,�/8)

�2

⌘⌘
points. By counting the number of predictors using Eq. (5.28), we get

log
���S̄U

��� . fat
⇤
(H, c�) log2

✓
|H̃|
�

◆

. fat
⇤
(H, c�) log2

✓
1

�

✓⇣m
d

⌘
d

+ 1

◆◆
.

We have a compression of size O
�
d log

���S̄U

����, which is already sufficient for deriving generalization. We can re-

duce further the number of predictors to be independent of the sample size, thereby reducing the sample compression

size and improving the sample complexity.

4. Compute the sparsification method (Algorithm 8). The idea is that by sampling functions from the ensemble, we

can guarantee via a uniform convergence for the dual space, that with high probability it is sufficient to have roughly

⇡ fat
⇤
(H,O(�)) predictors. Applying Hanneke et al. [131, Theorem 10] with the parameters ⌧(x, y) = ⌘+4� and

k = O
�
fat

⇤
(H, c�) log2(fat⇤(H, c�) /�)

�
, where c 2 (0,1) is a numerical constant. The sparsification method

returns set of functions
n
ĥJ1 , . . . , ĥJk

o
, such that

8(x, y) 2 S : sup
z2U(x)

��Median
�
ĥJ1(x), . . . , ĥJk (x)

�
� y
��  ⌘ + 4�.

We get a uniformly 4�-approximate adversarially robust sample compression scheme for S, where we have

O
�
fat

⇤
(H, c�) log2

�
fat

⇤
(H, c�) /�2

��
functions, and each function is representable by

O
�
fat(H,�/8) log2

�
fat(H,�/8) /�2

��
points.

Encoding weak learners. Each weak learner is encoded by a multiset S0 ✓ S of size d and is constructed by

computing some ĥ 2 H that solves the constrained optimization

sup
z2U(x)

���ĥ(z)� y
���  ⌘, 8(x, y) 2 S0.

We encode ⌘ by some approximation ⌘̃, such that |⌘̃ � ⌘|  �, by discretizing [0, 1] to 1/� buckets of size �, and

⌘ is rounded down to the closest value ⌘̃. The approximation requires to encode log(1/�) bits, and so each learner

encodes d log(1/�) bits and d samples. We have k weak learners, and the compression size is

k(d+ d log(1/�))  2kd log(1/�) .

Therefore, we have a uniform 5�-approximate compression of size

O
✓
fat(H,�/8) fat⇤(H, c�) log2

✓
fat(H,�/8)

�2

◆
log

2

✓
fat

⇤
(H, c�)
�

◆
log

1

�

◆
.
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Generalization bound. Let (, ⇢) be the compression scheme and |(S)| the compression size. LetdErr⌘(h;S) be

the empirical loss of h on S with the ⌘-ball robust loss. We can upper bound the error as follows,

Err⌘(⇢((S));D)

(i)

. dErr⌘(⇢((S));S) +
|(S)| log(m) + log

1

�

m
(ii)

. dErr⌘(h?
;S) + 5� +

|(S)| log(m) + log
1

�

m
(iii)

. Err⌘(h
?
;D) + 5� +

|(S)| log(m) + log
1

�

m
+

log
1

�

m

. Err⌘(h
?
;D) + 5� +

|(S)| log(m) + log
1

�

m
,

(i) follows from a generalization of a sample compression scheme in the realizable case, see Theorem 2.19, (ii) follows

from the approximate sample compression we proved above, (iii) follows from Hoeffding’s inequality. We take m

sufficiently large such that

|(S)| log(m) + log
1

�

m
. ✏.

By plugging it in the compression size and re-scaling �, we get a sample complexity of size

M = O
✓
1

✏

✓
fat(H, c�) fat⇤(H, c�) log2

✓
fat(H, c�)

�2

◆
log

2

✓
fat

⇤
(H, c�)
�2

◆
log

1

�
log

1

✏
+ log

1

�

◆◆
,

for some numerical constant c 2 (0,1). ⇤

Agnostic Setting

Proof (of Theorem 5.10). The construction follows a reduction to the realizable case similar to [40], which is for the

non-robust zero-one loss. Moreover, we use a margin-based analysis of MedBoost algorithm (see Kégl [140, Theorem

1]).

Denote ⇤RE = ⇤RE(⌘,�, 1/3, 1/3,H,U), the sample complexity of Robust (⌘,�)-regression for a class H with

respect to a perturbation function U , taking ✏ = � = 1/3

Using a robust ERM in order to find a maximal subset S0 ✓ S with zero empirical robust loss (for the ⌘-ball loss),

such that infh2H
dErr⌘(h;S0

) = 0. Now, ⇤RE samples suffice for weak robust learning for any distribution D on S0.

Compute the MedBoost on S0, with T ⇡ log(|S0|) boosting rounds, where each weak robust learner is trained on⇡

⇤RE samples. The returned weighted median ĥ = Median
�
ĥ1(z), . . . , ĥT (z);↵1, . . . ,↵T

�
satisfiesdErr⌘+�

⇣
ĥ;S0

⌘
=

0, and each hypothesis ĥt 2
n
ĥ1, . . . , ĥT

o
is representable as set of size O(⇤RE). This defines a compression scheme

of size ⇤RET .

By plugging it into an agnostic sample compression bound Theorem 2.19, we have a sample complexity of Õ
⇣

⇤RE
✏2

⌘
,

which translates into Õ
⇣

fat(H,c�)fat
⇤
(H,c�)

✏2

⌘
, for some numerical constant c 2 (0,1). ⇤
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Naive Approach with a Fixed Cutoff

An agnostic learner for robust (⌘,�)-regression does not apply to the robust regression setting. The reason is that the

optimal function in H has different scales of robustness on different points. we show that by using a fixed cutoff for all

points we can obtain an error of
p

OPTH + ✏, where

OPTH = inf
h2H

E(x,y)⇠D

h
sup

z2U(x)

|h(z)� y|
i
.

Theorem 5.13 For any H ✓ [0, 1]X with finite �-fat-shattering for all � > 0, any U : X ! 2
X , and any ⌘,�, ✏, � 2

(0, 1), for some numerical constant c 2 (0,1), with probability 1� �, Section 5.7 outputs a function with error at most
p
OPTH + ✏, by using a sample of size

⌦̃

✓
fat(H, c�) fat⇤(H, c�)

✏2
+

1

✏2
log

1

�

◆
.

Fixed Cutoff Approach for Agnostic Robust Regression
Input: H ✓ [0, 1]X , S = {(xi, yi)}mi=1, S̃ = {(xi, yi)}ni=1.
Algorithms used: Agnostic learner for Robust (⌘, ✏)-regression (see Theorem 5.10): Agnostic-(⌘ +
✏)-Regressor.

1. Define a grid ⇥ =
�

1
m , 2

m , 4
m , 8

m , . . . , 1
 

.

2. Define H⇥ = {h✓ = Agnostic-✓-Regressor(S) : ✓ 2 ⇥}.

3. Find an optimal function on the holdout set

ĥ✓ = argmin
h✓2H⇥

1��S̃
��

X

(x,y)2S̃

I
"

sup
z2U(x)

|h✓(z)� y| � ✓
#

Output: ĥ✓.

Proof (of Theorem 5.13). Let

OPTH = inf
h2H

E(x,y)⇠D

h
sup

z2U(x)

|h(z)� y|
i
,

which is obtained by h? 2 H. By Markov Inequality we have

P(x,y)⇠D

 
sup

z2U(x)

��h?
(z)� y

�� > ⌘

!


E(x,y)⇠D

h
sup

z2U(x)

��h?
(z)� y

��
i

⌘
.
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Taking ⌘ =
p
OPTH,

P(x,y)⇠D

 
sup

z2U(x)

��h?
(z)� y

�� >
p
OPTH

!
 OPTHp

OPTH

=
p
OPTH.

This means that we can apply the algorithm for agnostic robust uniform ⌘ regression with ⌘ =
p
OPTH, and obtain an

error of
p
OPTH + ✏. The problem is that OPTH is not known in advance. To overcome this issue, we can have a grid

search on the scale of ⌘, and then verify our choice using a holdout training set.

We define a grid,⇥ =
�

1

m
, 2

m
, 4

m
, 8

m
, . . . , 1

 
, such that one of its elements satisfies

p
OPTH < ✓̂ < 2

p
OPTH.

For each element in the grid, we compute the agnostic regressor for the ⌘-robust loss. That is, we define H⇥ =

{h✓ = Agnostic-✓-Regressor(S) : ✓ 2 ⇥}.

We choose the optimal function on a holdout labeled set S̃ of size ⇡ 1

✏2
log

1

�
,

ĥ✓ = argmin
h✓2H⇥

1��S̃
��
X

(x,y)2S̃

I
"

sup
z2U(x)

|h✓(z)� y| � ✓
#
.

With high probability, the algorithm outputs a function with error at most
p
OPTH + ✏ for the `1 robust loss, using

a sample of size

Õ
✓
fat(H, c✏) fat⇤(H, c✏)

✏2

◆
. ⇤
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Chapter 6

Fat-Shattering Dimension of k-fold

Aggregations

We provide estimates on the fat-shattering dimension of aggregation rules of real-valued function classes. The latter

consists of all ways of choosing k functions, one from each of the k classes, and computing pointwise an “aggregate”

function of these, such as the median, mean, and maximum. The bounds are stated in terms of the fat-shattering dimen-

sions of the component classes. For linear and affine function classes, we provide a considerably sharper upper bound

and a matching lower bound, achieving, in particular, an optimal dependence on k. Along the way, we improve several

known results in addition to pointing out and correcting a number of erroneous claims in the literature.

6.1 Introduction

The fat-shattering dimension, also known as “scale-sensitive” and the “parametrized variant of the P -dimension”, was

first defined by Kearns and Schapire [157]; its key role in learning theory lies in characterizing the PAC learnability of

real-valued function classes [158, 159].

In this paper, we study the behavior of the fat-shattering dimension under various k-fold aggregations. Let F1, . . . , Fk ✓

RX be real-valued function classes, and G : Rk ! R be an aggregation rule. We consider the aggregate function class

G(F1, . . . , Fk), which consists of all mappings x 7! G(f1(x), . . . , fk(x)), for any f1 2 F1, . . . , fk 2 Fk. Some

natural aggregation rules include the pointwise k-fold maximum, median, mean, and max-min. We seek to bound the

fat-shattering complexity of G(F1, . . . , Fk) in terms of the fat-shattering dimensions of the constituent Fis. This ques-

tion naturally arises in the context of ensemble methods, such as boosting and bagging, where the learner’s prediction

consists of an aggregation of base learners.

The analogous question regarding aggregations of VC classes (VC dimension being the combinatorial complexity

controlling the learnability of Boolean function classes) have been studied in detail and largely resolved [98, 160–
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163]. Furthermore, closure properties were also studied in the context of online classification and private PAC learning

[164, 165] for the Littlestone and Threshold dimensions. However, for real-valued functions, this question remained

largely uninvestigated.

Our Contributions

• For a natural class of aggregation rules that commute with shifts (see definition (6.7)) and commute with truncation

(see definition (6.20)), assuming fat�(Fi)  d, for 1  i  k, we show that

fat�(G(F1, . . . , Fk))  O
�
dk log2 (dk)

�
, � > 0.

In particular, this result holds for the maximum, minimum, median, and max-min aggregations. The formal

statement is given in Theorem 6.1.

• By using an entirely different approach, for aggregations that are L-Lipschitz (L � 1) in supremum norm (see

definition (6.8)) and for bounded function classes F1, . . . , Fk ⇢ [�R,R]
⌦ with fat✏�(Fi)  d, for 1  i  k,

we show that

fat�(G(F1, . . . , Fk))  O

✓
dk log1+✏ LRk

�

◆
, 0 < �/L < R and 0 < ✏ < log 2.

In particular, this result holds for the maximum, minimum, median, mean, and max-min aggregations. The formal

statement is given in Theorem 6.3.

• For R-bounded affine functions and for aggregations that are L-Lipschitz in supremum norm, we show the fol-

lowing dimension-free bound,

fat�(G(F1, . . . , Fk))  O

✓
L2R2k log(k)

�2

◆
, 0 < �/L < R.

This result also extends to the hinge-loss class of affine functions. In particular, this result holds for the maximum,

minimum, median, mean, and max-min aggregations. We improve by a log factor the estimate of Fefferman

et al. [166, Lemma 6] on the fat-shattering dimension of max-min aggregation of linear functions. The formal

statement is given in Theorem 6.5

Furthermore, in Corollary 6.7 we show an upper bound on the Rademacher complexity of the k-fold maximum

aggregation of affine functions and hinge-loss affine functions. Our bound scales with
p
k, improving upon Raviv

et al. [167] where the dependence on k is linear.

• For affine functions and the k-fold maximum aggregation, we show tight dimension-dependent bounds (up to

constants),

fat�(Gmax(F1, . . . , Fk)) = ⇥ (dk log k) , � > 0,

where d is the Euclidean dimension. For the formal statements, see Theorems 6.9 and 6.10.
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Applications

The need to analyze the combinatorial complexity of a k-fold maximum of function classes (see (6.4) for the formal

definition) arises in a number of diverse settings. One natural example is adversarially robust PAC learning to test time

attacks for real-valued functions [1, 3]. In this setting, the learner observes an i.i.d. labeled sample from an unknown

distribution, and the goal is to output a hypothesis with a small error on unseen examples from the same distribution,

with high probability. The difference from the standard PAC learning model is that at test time, the learner only observes

a corrupted example, while the prediction is tested on the original label. Formally, (x, y) is drawn from the unknown

distribution, and there is an adversary that can map x to k possible corruptions z that are known to the learner. The

learner observes only z while its loss is with respect to the original label y. This scenario is naturally captured by the

k-fold max: the learner aims to learn the maximum aggregation of the loss classes. Attias et al. [1] showed that uniform

convergence holds in this case, and so the sample complexity of an empirical risk minimization algorithm is determined

by the complexity measure of the k-fold maximum aggregation.

Analyzing the k-fold maximum arises also in a setting of learning polyhedra with a margin. Gottlieb et al. [168] pro-

vided a learning algorithm that represents polyhedra as intersections of bounded affine functions. The sample complexity

of the algorithm is determined by the complexity measure of the maximum aggregation of affine function classes.

Another natural example of where the k-fold maximum and k-fold max-min play a role is in analyzing the conver-

gence of k-means clustering. Fefferman et al. [166] bounded the max-min aggregation and Klochkov et al. [169], Biau

et al. [170], Appert and Catoni [171], Zhivotovskiy [172] bounded the max aggregation. The main challenge in this

setting is bounding the covering numbers of the aggregation over k function classes which can be obtained by bounding

the Rademacher complexity or the fat-shattering dimension.

Finally, there are numerous ensemble methods for regression that output some aggregation of base learners, such as

the median or mean. Examples of these methods include boosting (e.g., Kégl [140], Freund and Schapire [156]), bagging

(bootstrap aggregation) by Breiman [173], and its extension to the random forest algorithm [174].

Related Work

It was claimed in Attias et al. [175, Theorem 12] that

fat�(Gmax(F1, . . . , Fk))  2 log(3k)
kX

j=1

fat�(Fi),

but the proof had a mistake (see Section 6.5); our Open Problem (6.27) asks if the general form of the bound does hold

(we conjecture it does at least for the max aggregation). Using the recent disambiguation result of Alon et al. [176]

presented in Lemma 6.11 here, Attias et al. [1, Lemma 15] obtained the bound

fat�(Gmax(F1, . . . , Fk))  O

 
log(k) log2(|X |)

kX

j=1

fat�(Fi)

!
, (6.1)
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where ⌦ is the domain of the function classes F1, . . . , Fk. The latter is, in general, incomparable to Theorem 6.1.

However, for large or infinite X , Theorem 6.1 is clearly a considerable improvement over (6.1).

Using the covering number results of Mendelson and Vershynin [35], Talagrand [177] (see Section 6.6), Duan [178,

Theorem 6.2] obtained a general result, which, when specialized to k-fold maxima, yields

fat�(Gmax(F1, . . . , Fk))  O

 
log

k
�
·

kX

i=1

fat
c�/

p
k
(Fi)

!
(6.2)

for a universal constant c > 0; (6.2) is an immediate consequence of Theorem 6.12 (with p = 2), Lemma 6.21, and

Lemma 6.23 in this paper. Our results improve over (6.2) by removing the dependence on k in the scale of the fat-

shattering dimensions; however, Duan’s general method is applicable to a wider class of uniformly continuous k-fold

aggregations.

Srebro et al. [179, Lemma A.2] bounded the fat-shattering dimension in terms of the Rademacher complexity. Fos-

ter and Rakhlin [180] bounded the Rademacher complexity of a smooth k-fold aggregate, see also references therein.

Inspired by Appert and Catoni [171], Zhivotovskiy [172] has obtained the best known upper bound on the Rademacher

complexity of k-fold maxima over linear function classes. Raviv et al. [167] upper bounded the Rademacher complexity

of the k-fold maximum aggregation of affine functions and hinge-loss affine functions.

6.2 Preliminaries

Aggregation Rules

A k-fold aggregation rule is any mapping G : Rk ! R. Just as G maps k-tuples of reals into reals, it naturally aggregates

k-tuples of functions into a single one: for f1, . . . , fk : ⌦ ! R, we define G(f1, . . . , fk) : ⌦ ! R as the mapping

x 7! G(f1(x), . . . , fk(x)). Finally, the aggregation extends to k-tuples of function classes: for F1, . . . , Fk ✓ R⌦, we

define

G(F1, . . . , Fk) := {x 7! G(f1(x), . . . , fk(x)) : fi 2 Fi, i 2 [k]} . (6.3)

Examples. A canonical example of an aggregation rule is the k-fold max, induced by the mapping

Gmax(x1, . . . , xk) := max
i2[k]

xi. (6.4)

The minimum is defined analogously as

Gmin(x1, . . . , xk) := min
i2[k]

xi.

The mean aggregation is defined as

Gmean(x1, . . . , xk) :=
1

k

kX

i=0

xi.
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Denoting by x(1), . . . , x(k) the ascending order of a sequence x1, . . . , xk, that is, x(1)  · · ·  x(k), the (lower1)

median is defined as

GMedian(x1, . . . , xk) := x(dk/2e). (6.5)

We also define Gmax-min : Rk⇥` ! R as

Gmax-min(x11, . . . , xk`) := max
j2[`]

min
i2[k]

xij ; (6.6)

Next, we consider some properties that an aggregation rule might possess.

Commuting with shifts. We say that an aggregation rule G commutes with shifts if

G(x)� r = G(x� r), x 2 Rk, r 2 R, (6.7)

where x� r is defined as (x1� r, . . . , xk� r) for x = (x1, . . . , xk). It is readily verified that the maximum, minimum,

max-min, mean, and median commute with shifts.

Lipschitz continuity. The mapping G : Rk ! R is L-Lipschitz with respect to k·k
1

if

��G(x)�G(x0
)
��  L

��x� x0
��
1

= Lmax
i2[k]

|xi � x0

i|, x, x0 2 Rk. (6.8)

In Section 6.6, we show that maximum, median, and max-min aggregations are 1-Lipschitz (Lemmas 6.16, 6.17, 6.18

respectively). Showing it for the mean is a simple exercise. The proof for the minimum is similar to the one for the

maximum.

We also consider aggregations that commute with truncation; see Section 6.4 for the formal definition.

Complexity Measures

Fat-shattering dimension at zero. As in Gottlieb et al. [181], we also define the notion of �-shattering at 0, where

the “shift” r in (2.1) is constrained to be 0. Formally, the shattering condition is

min
y2{�1,1}m

sup
f2F

min
i2[m]

yif(xi) � �,

and we denote the corresponding dimension by fåt�(F ).

1Ordinarily, for even k, any m 2 [x(k/2), x(k/2+1)] is a median of x. For the proof of Theorem 6.1, the median must be a value
actually occurring in x.
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Attias et al. [175, Lemma 13] showed that for all F ⇢ RX ,

fat�(F ) = max
r2RX

fåt�(F � r), � > 0, (6.9)

where F � r = {f � r; f 2 F} is the r-shifted class (the maximum is always achieved). Lemma 6.28 presents another,

apparently novel, connection between fat and fåt.

Covering numbers. We start with some background on covering numbers. Whenever X is endowed with a proba-

bility measure µ, this induces, for p 2 [1,1) and f : ⌦! Rk, the norm

kfkp
L

(k)
p (µ)

= EX⇠µ kf(X)kp
p
=

Z

X

kf(x)kp
p
dµ(x)

on L(k)

p (µ) :=
n
f 2 (Rk

)
X

: kfk
L

(k)
p (µ)

<1
o

. When k = 1, we write Lp(µ) := L(1)

p (µ). For p = 1, kfk
L

(k)
1 (µ)

is the essential supremum of f with respect to µ. For t > 0 and H ⇢ F ⇢ Lp(µ), we say that H is a t-cover of F

under k·k
Lp(µ)

if sup
f2F

infh2H kf � hk
Lp(µ)

 t. The t-covering number of F , denoted by N (F,Lp(µ), t), is the

cardinality of the smallest t-cover of F (possibly,1). We note the obvious relation

p > q =) N (F,Lp(µ), t) � N (F,Lq(µ), t), (6.10)

which holds for all probability measures µ and all t > 0.

We sometimes overload the notation about aggregations by defining G on k-tuples of functions (instead of k-tuples

of reals), G : (R⌦
)
k ! R⌦. We say that G is L-Lipschitz with respect to k·k

L
(k)
p (µ)

, if

��G(f1:k)�G(f 0

1:k)
��
Lp(µ)

 L
��(f1:k)� (f 0

1:k)
��
L

(k)
p (µ)

, f1:k, f
0

1:k 2 (Rk
)
X .

Notation

We write N = {0, 1, . . .} to denote the natural numbers. For n 2 N, we write [n] := {1, 2, . . . , n}. All of our

logarithms are base e, unless explicitly denoted otherwise. We use max {u, v} and u _ v interchangeably, and write

Log(x) := log(e _ x). For any function class F over a set X and E ⇢ X , F (E) = F |
E

denotes the projection

on (restriction to) E. In line with the common convention in functional analysis, absolute numerical constants will be

denoted by letters such as C, c, whose value may change from line to line. Any transformation ' : R ! R may be

applied to a function f 2 RX via '(f) := ' � f , as well as to F ⇢ RX via '(F ) := {'(f); f 2 F}. The sign function

thresholds at 0: sign(t) = [t � 0].

6.3 Main Results

Our main results involve upper-bounding the fat-shattering dimension of aggregation rules in terms of the dimensions of

the component classes. We begin with the simplest (to present):
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Theorem 6.1 (General F and G that commutes with shifts and truncation) For F1, . . . , Fk ✓ RX , and an aggre-

gation rule G that commutes with shifts, (see definition (6.7)) and commutes with truncation (see definition (6.20)), we

have

fat�(G(F1, . . . , Fk))  35D� log
2
(126D�), � > 0,

where D� :=
P

k

i=1
fat�(Fi) > 0. In the degenerate case where D� = 0, fat�(G) = 0.

In particular, this result holds for the maximum, minimum, max-min, and median aggregation rules.

Remark 6.2 We made no attempt to optimize the constants; these are only provided to give a rough order-of-magnitude

sense. In the sequel, we forgo numerical estimates and state the results in terms of unspecified universal constants.

The next result provides an alternative bound based on an entirely different technique:

Theorem 6.3 (Bounded function classes and Lipschitz aggregations) For 0 < ✏ < log 2, F1, . . . , Fk ✓ [�R,R]
X ,

and an aggregation rule G that is L-Lipschitz (L � 1) in supremum norm (see definition (6.8)), we have

fat�(G(F1, . . . , Fk))  CD Log
1+✏ LRk

�
, 0 < �/L < R,

where

D =

kX

i=1

fatc✏�(Fi)

and C, c > 0 are universal constants. In particular, this result holds for natural aggregation rules, such as maximum,

minimum, max-min, mean, and median.

Remark 6.4 The bounds in Theorems 6.1 and 6.3 are, in general, incomparable—and not just because of the unspec-

ified constants in the latter. One notable difference is that Theorem 6.1 only depends on the shattering scale �, while

Theorem 6.3 additionally features a (weak) explicit dependence on the aspect ratio R/�. In particular, Theorem 6.1 is

applicable to semi-bounded affine classes (see Section 6.6), while Theorem 6.3 is not. Still, for fixed R, � and large k,

the latter presents a significant asymptotic improvement over the former.

For the special case of affine functions and hinge-loss affine functions, the technique of Theorem 6.3 yields a con-

siderably sharper estimate:

Theorem 6.5 (Dimension-free bound for Lipschitz aggregations of affine functions) Let B ⇢ Rd be the d-dimensional

Euclidean unit ball and

Fi =

n
x 7! w · x+ b; kwk _ |b|  Ri, w 2 Rd, b 2 R

o
, Ri 2 R, i 2 [k], (6.11)

be k collections of Ri-bounded affine functions on X = B and G be an aggregation rule that is L-Lipschitz in supremum



108

norm (see definition (6.8)). Then

fat�(G(F1, . . . , Fk))  CL2
Log(k)
�2

kX

i=1

R2

i , 0 < �/L < min
i2[k]

Ri, (6.12)

where C > 0 is a universal constant. Further, if

FHinge

i
= {(x, y) 7! max {0, 1� yf(x)} ; f 2 Fi} (6.13)

is a family of Ri-bounded hinge-loss affine functions for i 2 [k] and GHinge ⌘ G(FHinge

1
, . . . , FHinge

k
) is an aggregation

rule that is L-Lipschitz in supremum norm, then the same bound as in (6.12) holds for fat�(GHinge).

In particular, this result holds for the maximum, minimum, max-min, mean, and median aggregation rules.

Theorem 6.5 improves by a log factor the estimate of Fefferman et al. [166], on the fat-shattering dimension of

max-min aggregation (defined in Section 6.2) of linear functions:2

Lemma 6.6 (Fefferman et al. [166], Lemma 6) Let B ⇢ Rd be the d-dimensional Euclidean unit ball and

Fij =

n
x 7! w · x; kwk  k1k , w 2 Rd

o
, i 2 [k], j 2 [`],

be k` (identical) linear function classes defined on X = B. If Gmax-min is the max-min aggregation rule (6.6), then

fat�(Gmax-min(F11, . . . , Fk`))  C
k`
�2

Log
2

✓
k`
�2

◆
,

where C > 0 is a universal constant.

Our Theorem 6.5 improves the latter by a log factor:

fat�(Gmax-min(F11, . . . , Fk`))  C
k` log (k`)

�2
.

Corollary 6.7 (Rademacher complexity for k-Fold Maximum of Affine Functions) Let Fi be an Ri-bounded affine

function class as in (6.11) or a hinge loss affine function class as in (6.13), let Gmax be the maximum aggregation rule,

and let R̃ = maxi Ri, then

Rn(Gmax(F1, . . . , Fk))  C

s
Log(k) Log3(R̃n)R̃2

P
k

i=1
R2

i

n
.

where Rn is the Rademacher complexity and C > 0 is a universal constant.

Corollary 6.7 improves upon Raviv et al. [167, Theorem 7]. Their upper bound scales linearly with k, whereas ours

scales as
p
k log k.

2The max-min aggregation is shown to be 1-Lipschitz in supremum norm in Lemma 6.18 of Section 6.6.
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Note, however, that for linear classes a better bound is known:

Theorem 6.8 (Zhivotovskiy [172]) Let B ⇢ Rd be the d-dimensional Euclidean unit ball and

Fi =

n
x 7! w · x; kwk  1, w 2 Rd

o
, i 2 [k]

be k (identical) linear function classes defined on X = B. If Gmax is the maximum aggregation rule, then

Rn(Gmax(F1, . . . , Fk))  C log

⇣n
k

⌘rk log k
n

,

where Rn is the Rademacher complexity and C > 0 is a universal constant.

The estimate in Theorem 6.5 is dimension-free in the sense of being independent of d. In applications where a

dependence on d is admissible, an optimal bound can be obtained:

Theorem 6.9 (Dimension-dependent bound for k-fold maximum of affine functions) Let X = Rd and Fi ⇢ RX be

k (identical) function classes consisting of all real-valued affine functions:

Fi =

n
x 7! w · x+ b;w 2 Rd, b 2 R

o
, i 2 [k]

and let Gmax be the k-fold maximum (see definition (6.4)). Then

fat�(Gmax(F1, . . . , Fk))  Cdk Log k, � > 0,

where C > 0 is a universal constant.

The optimality of the upper bound in Theorem 6.9 is witnessed by the matching lower bound:

Theorem 6.10 (Dimension-dependent lower bound for k-fold maximum of affine functions) For k � 1 and d � 4,

let F1 = F2 = . . . = Fk be the collection of all affine functions over X = Rd and let Gmax be the k-fold maximum (see

definition (6.4)). Then

fat�(Gmax(F1, . . . , Fk)) � C log(k)
kX

i=1

fat�(Fi) = Cdk log k, � > 0,

where C > 0 is a universal constant.

The scaling argument employed in the proof of Theorem 6.10 can be invoked to show that the claim continues to hold

for X = B.

Together, Theorems 6.9 and 6.10 show that the dependence on k is optimal.
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6.4 Proofs

We start with upper-bounding the fat-shattering dimension of aggregation rules that commute with shifts (definition

(6.7)) and commute with truncation (defined below), in terms of the dimensions of the component classes.

Proof of Theorem 6.1

Partial concept classes and disambiguation. We say that F ? ✓ {0, 1, ?}X is a partial concept class over ⌦;

this usage is consistent with Alon et al. [176], while Attias et al. [1, 175] used the descriptor ambiguous. Define the

disambiguation operator D : {0, 1, ?}! 2
{0,1} as

D(0) = {0} ; D(1) = {1} ; D(?) = {0, 1} . (6.14)

For f? 2 F ?, define its disambiguation set D(f?
) ✓ {0, 1}X as

D(f?
) =

n
g 2 {0, 1}X : 8x 2 X , g(x) 2 D(f?

(x))
o
; (6.15)

in words, D(f?
) consists of the total concepts g : X ! {0, 1} that agree pointwise with f?, whenever the latter takes

a value in {0, 1}. We say that F̄ ✓ {0, 1}X disambiguates F ? if for all f? 2 F ?, we have F̄ \ D(f?
) 6= ;; in words,

every f? 2 F ? must have a disambiguated representative in F̄ .3

As in Attias et al. [1], Alon et al. [176], we say4 that S ⇢ X is VC-shattered by F ? if F ?
(S) ◆ {0, 1}S . We write

VC(F ?
) to denote the size of the largest VC-shattered set (possibly, 1). The obvious relation VC(F ?

)  VC(F̄ )

always holds between a partial concept class and any of its disambiguations. Alon et al. [176, Theorem 13] proved the

following variant of the Sauer-Shelah-Perles Lemma for partial concept classes:

Lemma 6.11 (Alon et al. [176]) For every F ? ✓ {0, 1, ?}X with d = VC(F ?
) < 1 and |⌦| < 1, there is an F̄

disambiguating F ? such that

|F̄ (X )|  (|X |+ 1)
(d+1) log2 |X|+2. (6.16)

For d > 0 and |X | > 1, this implies the somewhat more wieldy estimate5

|F̄ (X )|  |X |7d log2 |X|. (6.17)

We will make use of the elementary fact

x  A log
2
x =) x  3A log(3A), x, A � 1

3Attias et al. [1] additionally required that F̄ ✓
S

f?2F? D(f?), but this is an unnecessary restriction, and does not affect any of
the results.

4Attias et al. [175] had incorrectly given F ?(S) = {0, 1}S as the shattering condition.
5The estimate (6.17) does not appear in Alon et al. [176], but is an elementary consequence of (6.16).
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and its corollary

y  A(log
2
y)2 =) y  5A log

2
(18A), y, A � 1. (6.18)

Aggregation rules commuting with truncation. Fix � > 0 and define the truncation operator [·]?� : R !

{0, 1, ?} as

[t]?� =

8
>>>>>><

>>>>>>:

0, t  ��

1, t � �

?, else.

(6.19)

Let xi 2 R, i 2 [k]. Let the �-truncation [xi]
?

� 2 {0, 1, ?}, and x̄i 2 D([xi]
?

�) ✓ {0, 1} be a disambiguation. We say

that an aggregation rule G : Rk ! R commutes with truncation if for any � > 0,

G(x̄1, . . . , x̄k) 2 D([G(x1, . . . , xk)]
?

�) (6.20)

for all disambiguations x̄i, i 2 [k] (see definitions in (6.14) and (6.15)). In Section 6.6, we show that median and

max-min aggregations commute with truncations (Lemmas 6.19, 6.20 respectively). Showing it for the maximum and

minimum is a simple exercise. We note that the mean aggregation does not satisfy this property.

Proof (of Theorem 6.1). We follow the basic techniques of discretization and r-shifting, employed in Attias et al. [1,

175].

Fix � > 0, recall the truncation operator [·]?� : R ! {0, 1, ?} defined in (6.19). We also define the truncation

operator over functions [·]?� : R⌦ ! {0, 1, ?}⌦, as [f ]?� = f? where f?
(x) = [f(x)]?� , for x 2 ⌦. Observe that for all

F ✓ RX and [F ]
?

� :=
�
[f ]?� ; f 2 F

 
, we have fåt�(F ) = VC([F ]

?

�). Let G : Rk ! R be a k-fold aggregation rule

and F1, . . . , Fk ✓ R⌦ be real-valued function classes. Suppose that some S = {x1, . . . , x`} ⇢ X is �-shattered by

G ⌘ G(F1, . . . , Fk). Proving the claim amounts to upper-bounding ` appropriately. By (6.9), there is an r 2 RX such

that fat�(G) = fåt�(G� r) = VC([G� r]?�). Put F 0

i := Fi� r and since G commutes with r-shift, as defined in (6.7),

we have

G0
:= G(F 0

1, . . . , F
0

k) = G(F1 � r, . . . , Fk � r) = G(F1 . . . , Fk)� r. (6.21)

Hence, S is VC-shattered by [G0
]
?

� and

vi := VC([F 0

i ]
?

�) = fåt�(F 0

i )  fat�(F
0

i ) = fat�(Fi), i 2 [k]. (6.22)

Let us assume for now that each vi > 0; in this case, there is no loss of generality in assuming ` > 1. Let F̄i be a

“good” disambiguation of [F 0

i ]
?

� on S, as furnished by Lemma 6.11:

|F̄i(S)|  `7vi log2 `.
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Observe that Ḡ := G(F̄1, . . . , F̄k) is a valid disambiguation of [G0
]
?

� since we assume that G commutes with

truncation. It follows that

2
`
= |Ḡ(S)| 

kY

i=1

|F̄i(S)|  `7 log2 `
Pk

i=1 vi . (6.23)

Thus, (6.18) implies that `  35(
P

vi) log
2
(126

P
vi), and the latter is an upper bound on VC(Ḡ) — and hence, also

on VC([G0
]
?

�) = fat�(G). The claim now follows from (6.22).

If any one given vi = 0, we claim that (6.23) is unaffected. This is because any C? ⇢ {0, 1, ?}X with VC(C?
) = 0

has a singleton disambiguation C̄ = {c}. Indeed, any given x 2 X can receive at most one of {0, 1} as a label from

the members of C (otherwise, it would be shattered, forcing VC(C?
) � 1). If any c? 2 C? labels x with 0, then all

members of C? are disambiguated to label x with 0 (and, mutatis mutandis, 1). Any x labeled with ? by every c? 2 C?

i

can be disambiguated arbitrarily (say, to 0). Disambiguating the degenerate [F 0

i ]
?

� to the singleton F̄i(S) has no effect

on the product in (6.23).

The foregoing argument continues to hold if more than one vi = 0. In particular, in the degenerate case where

fat�(F1) = fat�(F2) = . . . = fat�(Fk) = 0, we have
Q

|F̄i(S)| = 1, which forces ` = 0. ⇤

Proof of Theorem 6.3

First, we upper bound the covering numbers of Lipschitz aggregations as a function of the covering numbers of the

component classes.

Theorem 6.12 (Covering number of L-Lipschitz aggregations) Let t > 0, p 2 [1,1], and F1, . . . , Fk ⇢ Lp(µ).

Let G be an aggregation rule that is L-Lipschitz. Then, for all probability measures µ on X ,

N (G(F1, . . . , Fk), Lp(µ), t) 

8
>><

>>:

Q
k

i=1
N (Fi, Lp(µ), t/Lk

1/p
), p <1

Q
k

i=1
N (Fi, Lp(µ), t/L), p =1.

We proceed to the main proof.

Proof (of Theorem 6.3). . Let G : Rk ! R be an aggregation rule that is L-Lipschitz (L � 1) in supremum norm, as de-

fined in (6.8), and let F1, . . . , Fk ✓ [�R,R]
⌦ be real-valued function classes. Suppose that some X` = {x1, . . . , x`} ⇢

X = B is a maximal set that is �-shattered by G, let Fi(X`) = Fi|X`
, and µ` be the uniform distribution on X`. We

upper bound the covering number with the fat-shattering dimension as in Lemma 6.25 (see Section 6.6), with n = ` and

p =1,

logN (Fi(X`), L1(µ`), �)  Cvi log(R`/vi�) log
✏
(`/vi), 0 < � < R,
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where vi = fatc✏�(Fi). Then Theorem 6.12 implies that

logN (G(X`), L1(µ`), �/2) 
kX

i=1

logN (Fi(X`), L1(µ`), �/2L)

 C
kX

i=1

vi log(LR`/vi�) log
✏
(`/vi)

(a)
 C

kX

i=1

vi log
1+✏

(LR`/vi�)

(b)
 CD log

1+✏ LR`k
D�

,

where D :=
P

k

i=1
vi, (a) follows since R/� > 1 and assuming L � 1, and (b) follows by the concavity of

x log
1+✏

(u/x) (see Lemma 6.32 in Section 6.6). We can assume ` � 2 without loss of generality. Combining the

monotonicity of the covering number (see (6.10)), a lower bound on the covering number in terms of the fat-shattering

dimension (see Lemma 6.21 in Section 6.6), and the fact the X` is a maximal set that is �-shattered by G yields

logN (G(X`), L1(µ`), �/2) � Cfat�(G) = C`,

whence

`  CD log
1+✏ LR`k

D�
.

Using the elementary fact

x  ALog
1+✏ x =) x  cALog

1+✏ A x,A � 1

(with x = LR`k/D� and A = cLRk/�), we get

`  CD Log
1+✏ LRk

�
,

which implies the claim. ⇤

Proof of Theorem 6.5

We use the notation and results from the Appendix, and in particular, from Section 6.6.

Proof (of Theorem 6.5). A bound of this form for the k-fold maximum aggregation was claimed in Kontorovich [182],

however the argument there was flawed, see Section 6.5.

Let G : Rk ! R be an aggregation rule that is L-Lipschitz in supremum norm, as defined in (6.8), and let F1, . . . , Fk

be bounded affine function classes, as defined in (6.11). Suppose that some X` = {x1, . . . , x`} ⇢ X = B is a maximal

set that is �-shattered by G, let Fi(X`) = Fi|X`
, and µ` be the uniform distribution on X`. We upper bound the covering
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number as in Lemma 6.27 (with m = `),

logN (Fi(X`), L1(µ`), �)  C
R2

i

�2
Log

`�2

R2

i

, 0 < � < Ri.

Denote vi := L2R2

i /�
2, and consider the L1 covering number of Fi(X`) at scale �/L:

logN (Fi(X`), L1(µ`), �/L)  Cvi Log
`
vi
.

Then Theorem 6.12 implies that

logN (G(X`), L1(µ`), �/2) 
kX

i=1

logN (Fi(X`), L1(µ`), �/2L)

 C
kX

i=1

vi Log
`
vi

(a)
 CD Log

k`
D

,

where D :=
P

k

i=1
vi and (a) follows by the concavity of x log(u/x) (see Corollary 6.31 in Section 6.6). Combining the

monotonicity of the covering number (see (6.10)), a lower bound on the covering number in terms of the fat-shattering

dimension (see Lemma 6.21 in Section 6.6), and the fact the X` is a maximal set that is �-shattered by G yields

logN (G(X`), L1(µ`), �/2) � Cfat�(G) = C`,

whence

`  CD Log
k`
D

.

Using the elementary fact

x  ALog x =) x  cALogA, x,A � 1

(with x = k`/D and A = ck) we get `  cD Log k, which implies the claim.

The result can easily be generalized to hinge-loss affine classes. Let Fi be an affine function class as in (6.11), define

F 0

i as the function class on B ⇥ {�1, 1} given by F 0

i = {(x, y) 7! yf(x); f 2 Fi}, and the hinge-loss affine class

FHinge

i
as the function class on B ⇥ {�1, 1} given by FHinge

i
= {(x, y) 7! max {0, 1� f(x, y)} ; f 2 F 0

i}. One first

observes that the restriction of F 0

i to any {(x1, y1), . . . , (xn, yn)}, as a body in Rn, is identical to the restriction of Fi

to {x1, . . . , xn}. Interpreting FHinge

i
as a 2-fold maximum over the singleton class H = {h ⌘ 0} and the bounded

affine class F 0

i lets us invoke Theorem 6.12 to argue that Fi and FHinge

i
have the same L1 covering numbers. Hence,

the argument we deployed here to establish (6.12) for affine classes also applies to k-fold L-Lipschitz aggregations

hinge-loss classes. ⇤
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Proof of Corollary 6.7

Proof (of Corollary 6.7). Raviv et al. [167, Theorem 7] upper-bounded the Rademacher complexity of the maximum

aggregation of k hinge loss affine functions by k/
p
n.

For Ri-bounded affine functions or hinge loss affine functions, the analysis above, combined with the calculation in

Kontorovich [182] yields a bound of O
✓q

Log(k) Log3(n)
Pk

i=1 R
2
i

n

◆
. For completeness, we provide the full proof.

Let Gmax : Rk ! R be the k-fold maximum aggregation rule, as defined in (6.4), and let F1, . . . , Fk ✓ R⌦ be

Ri-bounded affine function classes as in (6.11) or hinge loss affine function classes as in (6.13). Since this aggregation

is 1-Lipschitz in the supremum norm, Theorem 6.5 implies that

fat�(Gmax)  C Log(k)
�2

kX

i=1

R2

i , 0 < � < min
i2[k]

Ri,

where C > 0 is a universal constant.

From fat-shattering to Rademacher. The fat-shattering estimate above can be used to upper-bound the Rademacher

complexity by converting the former to a covering number bound and plugging it into Dudley’s chaining integral [34]:

Rn(F )  inf
↵�0

 
4↵+ 12

Z
1

↵

r
logN (F, k·k

2
, t)

n
dt

!
, (6.24)

where N (·) are the L2 covering numbers.

It remains to bound the covering numbers. A simple way of doing so is to invoke Lemmas 2.6, 3.2, and 3.3 in Alon

et al. [158] — but this incurs superfluous logarithmic factors in n. Instead, we use the sharper estimate of Mendelson

and Vershynin [35], stated here in Lemma 6.23. Putting R̃ = maxi Ri, the latter yields

Rn(Gmax)  inf
↵�0

 
4↵+ 12

Z
1

↵

r
logN (Gmax, k·k2 , t)

n
dt

!

 inf
↵�0

0

@4↵+ 12c0
Z

1

↵

s
fat

ct/R̃
(Gmax) log

2R̃

t

n
dt

1

A

 inf
↵�0

0

@4↵+ 12c00

s
Log(k)

P
k

i=1
R2

i

n

Z
1

↵

R̃
t

s

log
2R̃
t
dt

1

A .

Now

Z
1

↵

R̃
t

s

log
2R̃
t
dt =

2R̃
3

⇣
log(2R̃/↵)3/2 � (log 2R̃)

3/2

⌘

and choosing ↵ = 1/
p
n yields

Rn(Gmax)  4p
n
+ 12c00

s
Log(k)

P
k

i=1
R2

i

n
2R̃
3

⇣
log(2R̃

p
n)3/2 � (log 2R̃)

3/2

⌘

= O

0

@

s
Log(k) log3(R̃n)R̃2

P
k

i=1
R2

i

n

1

A . ⇤
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Proof of Theorem 6.9

Proof (of Theorem 6.9). Let Gmax : Rk ! R be the k-fold maximum aggregation rule, as defined in (6.4), and let

F1, . . . , Fk ✓ R⌦ be identical function classes consisting of all real-valued affine functions. Note that Gmax is an

aggregation that commutes with shift, as defined in (6.7).

By (6.9), there is an r 2 RX such that fat�(Gmax) = fåt�(Gmax � r). As in (6.21), put F 0

i := Fi � r and

G0

max := Gmax � r = Gmax(F
0

1, . . . , F
0

k). Define Ḡmax = sign(G0

max) and F̄i = sign(F 0

i ).

Since sign and max commute, we have Ḡmax = maxi2[k](F̄i). We claim that

fåt�(G0

max)  VC(Ḡmax). (6.25)

Indeed, any S ⇢ X that is �-shattered with shift r = 0 by any G ⇢ RX is also VC-shattered by sign(G). (See

Section 6.4, and notice that the converse implication—and the reverse inequality—do not hold.) It holds that

d+ 1
(a)

= VC(F̄i)
(b)

= fåt�(F 0

i )
(c)

= fat�(F
0

i )
(d)

= fat�(Fi),

where (a) follows from a standard argument (e.g., Mohri et al. [183, Example 3.2]), (b) holds because any S ⇢ Rd that

is VC-shattered by sign(F 0

i ) is also �-shattered by F 0

i with shift r = 0, (c) follows from Lemma 6.28, since the class

satisfies the closure property (6.33), and (d) holds since the shattering remains the same for the shifted class.

Now the argument of Blumer et al. [98, Lemma 3.2.3] applies:

VC(Ḡmax)  2(d+ 1)k log(3k) (6.26)

(this holds for any k-fold aggregation function, not just the maximum). Combining (6.25) with (6.26) proves the claim.⇤

Proof of Theorem 6.10

Proof (of Theorem 6.10). It follows from Mohri et al. [183, Example 3.2] that VC(sign(Fi)) = d + 1. Since Fi is

closed under scalar multiplication, a scaling argument shows that any S ⇢ Rd that is VC-shattered by sign(Fi) is also

�-shattered by Fi with shift r = 0, whence fåt�(Fi) = d+1 for all � > 0; invoking Lemma 6.28 extends this to fat�(Fi)

as well. Now Csikós et al. [163, Theorem 1] shows that the k-fold unions of half-spaces necessarily shatter some set

S ⇢ Rd of size at least cdk log k. Since union is a special case of the max operator, and the latter commutes with sign, the

scaling argument shows that this S is �-shattered by Gmax with shift r = 0. Hence, fat�(Gmax) � fåt�(Gmax) � |S|,

which proves the claim. ⇤

6.5 Discussion

In this paper, we proved upper and lower bounds on the fat-shattering dimension of aggregation rules as a function of the

fat-shattering dimension of the component classes. We leave some remaining gaps for future work. First, for aggregation
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rules that commute with shifts and commute with truncation, assuming fat�(Fi)  d, for 1  i  k, we show in

Theorem 6.1 that

fat�(G(F1, . . . , Fk))  Cdk Log2 (dk) , � > 0,

C > 0 is a universal constant. We pose the following

Open Problem 6.13 Let G be an aggregation rule with the properties as in Theorem 6.1. Is it the case that for all

Fi ✓ RX with fat�(Fi)  d, i 2 [k], we have

fat�(G(F1, . . . , Fk))  Cdk Log (k) , � > 0, (6.27)

for some universal C > 0?

In light of Theorem 6.10, this is the best one could hope for in general. We pose also the following conjecture about

bounded affine functions.

Conjecture 6.14 Theorem 6.5 is tight up to constants. For Ri-bounded affine functions and an aggregation rule G that

is 1-Lipschitz in supremum norm,

fat�(G(F1, . . . , Fk)) � C Log(k)
�2

kX

i=1

R2

i , 0 < � < min
i2[k]

Ri, (6.28)

where C > 0 is a universal constant.

Throughout the paper, we mentioned several mistaken claims in the literature. In this section, we briefly discuss the

nature of these mistakes—which are, in a sense, variations on the same kind of error. We begin with Attias et al. [175,

Lemma 14], which incorrectly claimed that any partial function class F ? has a disambiguation F̄ such that VC(F̄ ) 

VC(F ?
) (see Section 6.4 for the definitions). The mistake was pointed out to us by Yann Guermeur, and later, Alon

et al. [176, Theorem 11] showed that there exist partial classes, F ? with VC(F ?
) = 1 for which every disambiguation

F̄ has VC(F̄ ) =1.

Kontorovich [182] attempted to prove the bound stated in our Theorem 6.5 (up to constants, and only for linear

classes). The argument proceeded via a reduction to the Boolean case, as in our proof of Theorem 6.9. It was correctly

observed that if, say, some finite S ⇢ X is 1-shattered by Fi with shift r = 0, then it is also VC-shattered by sign(Fi).

Neglected was the fact that sign(Fi) might shatter additional points in X \ S—and, in sufficiently high dimension,

it necessarily will. The crux of the matter is that (6.25) holds in the dimension-dependent but not the dimension-free

setting; again, this may be seen as a variant of the disambiguation mistake.

Finally, the proof of Hanneke and Kontorovich [184, Lemma 6] claims, in the first display, that the shattered set can

be classified with a large margin, which is incorrect — yet another variant of mistaken disambiguation.
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6.6 Auxiliary results

Properties of Aggregation Rules

Lemma 6.15 If G : Rk ! R is L-Lipschitz under k·k
p
, then G : (R⌦

)
k ! R⌦ is L-Lipschitz in k·k

L
(k)
p (µ)

.

Proof.

��G(f1, . . . , fk)�G(f 0

1, . . . , f
0

k)
��p
Lp(µ)

=

Z

X

|G(f1, . . . , fk)(x)�G(f 0

1, . . . , f
0

k)(x)|pdµ(x)

=

Z

X

|G(f1(x), . . . , fk(x))�G(f 0

1(x), . . . , f
0

k(x))|pdµ(x)


Z

X

Lp
��(f1(x), . . . , fk(x))� (f 0

1(x), . . . , f
0

k(x))
��p
p
dµ(x),

where the inequality follows from the assumption that G : Rk ! R is L-Lipschitz in k·k
p
. This proves

��G(f1, . . . , fk)�G(f 0

1, . . . , f
0

k)
��
Lp(µ)

 L
��(f1, . . . , fk)� (f 0

1, . . . , f
0

k)
��
L

(k)
p (µ)

,

and hence the claim. ⇤

Proof (of Theorem 6.12). Suppose p <1, and let g = G(f1, . . . , fk) 2 G(F1, . . . , Fk). For each i 2 [k], let F̂i ⇢ Fi

be a t/Lk1/p-cover of Fi. Let each fi be “t/Lk1/p-covered” by some f̂i 2 F̂i, in the sense that
���fi � f̂i

���
Lp(µ)



t/Lk1/p. Assuming that G : Rk ! R is L-Lipschitz in k·k
p
, Lemma 6.15 implies that G : (R⌦

)
k ! R⌦ is L-Lipschitz

in k·k
L

(k)
p (µ)

. Then it follows that g is t-covered by G(f̂1, . . . , f̂k), since

���G(f1, . . . , fk)�G(f̂1, . . . , f̂k)
���
p

Lp(µ)
 Lp

���(f1, . . . , fk)� (f̂1, . . . , f̂k)
���
p

L
(k)
p (µ)

= Lp

Z

X

���(f1(x), . . . , fk(x))� (f̂1(x), . . . , f̂k(x))
���
p

p

dµ(x)

= Lp

Z

X

kX

i=1

���fi(x)� f̂i(x)
���
p

dµ(x)

= Lp

kX

i=1

Z

X

���fi(x)� f̂i(x)
���
p

dµ(x)

= Lp

kX

i=1

���fi � f̂i
���
p

Lp(µ)

 Lpk

✓
t

Lk1/p

◆
p

= tp,

and so
���G(f1, . . . , fk)�G(f̂1, . . . , f̂k)

���
Lp(µ)

 t.

We conclude that G(F1, . . . , Fk) has a t-cover of size |F̂1 ⇥ F̂2 ⇥ . . . ⇥ F̂k|, which proves the claim. The case

p =1 is proved analogously (or, alternatively, as a limiting case of p <1). ⇤

We show that natural aggregations are Lipschitz in k·k
p

norms, p 2 [1,1), and in supremum norm. The following facts
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are elementary:

|a _ b� c _ d|  |a� c| _ |b� d|, a, b, c, d 2 R; (6.29)

|a ^ b� c ^ d|  |a� c| _ |b� d|, a, b, c, d 2 R, (6.30)

where s _ t := max {s, t} and s ^ t := min {s, t}.

Lemma 6.16 (Maximum aggregation is 1-Lipschitz) Let Gmax : Rk ! R be the maximum aggregation, then for any

x, x0 2 Rk and p 2 [1,1],

��Gmax(x)�Gmax(x
0
)
�� 

��x� x0
��
p
.

Proof. For k = 2 and p = 1, the claim follows from the stronger, pointwise inequality (6.29). The proof follows by

simple induction on k. Since k·k
1
 k·k

p
, we conclude the proof for p 2 [1,1]. ⇤

Lemma 6.17 (Median aggregation is 1-Lipschitz) Let GMedian : Rk ! R be the median aggregation, then for any

x, x0 2 Rk and p 2 [1,1],

��GMedian(x)�GMedian(x
0
)
�� 

��x� x0
��
p
.

Proof. Denote by x(1), . . . , x(k) the ascending order of a sequence x1, . . . , xk, that is, x(1)  · · ·  x(k). For all

x, x0 2 Rk we have

���GMedian(x1, . . . , xk)�GMedian(x
0

1, . . . , x
0

k)

��� =

���x(dk/2e) � x0

(dk/2e)

���

 max
i2[k]

���x(i) � x0

(i)

���  max
i2[k]

���xi � x0

i

���,

where the last inequality follows from Cohen et al. [185, Eq. (16)]6 Since k·k
1
 k·k

p
, we conclude the proof for

p 2 [1,1]. ⇤

Lemma 6.18 (Max-Min aggregation is 1-Lipschitz) Let Gmax-min : Rk⇥` ! R be the max-min aggregation, then for

any x, x0 2 Rk⇥` and p 2 [1,1],

��Gmax-min(x)�Gmax-min(x
0
)
�� 

��x� x0
��
p
.

Proof. The inequalities (6.29), (6.30) imply that the k-fold max and min aggregations are both 1-Lipschitz with respect

to k·k
1

. Hence, for all x, y 2 Rk⇥`, we have

����min
i2[k]

xij � min
i2[k]

yij

����  max
i2[k]

|xij � yij | , j 2 [`]

6stated there for distributions but true for all vectors, by the same argument
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and further,

����max
j2[`]

min
i2[k]

xij �max
j2[`]

min
i2[k]

yij

����  max
j2[`]

max
i2[k]

|xij � yij | .

This proves that |Gmax-min(x)�Gmax-min(x
0
)|  kx� x0k

1
. Since k·k

1
 k·k

p
, the claim holds for all p 2

[1,1]. ⇤

Lemma 6.19 (Median aggregation commutes with truncation) Let GMedian : Rk ! R be the median aggregation,

then GMedian commutes with truncation. That is, for any � > 0 and x 2 Rd,

GMedian(x̄1, . . . , x̄k) 2 D([GMedian(x1, . . . , xk)]
?

�)

for all disambiguations x̄i 2 D([xi]
?

�), i 2 [k].

Proof. Fix � > 0 and denote by x(1), . . . , x(k) the ascending order of a sequence x1, . . . , xk. Now for x̄i 2 D([xi]
?

�) ✓

{0, 1}, our definition of the median (6.5) implies that GMedian(x̄1, . . . , x̄k) 2 {0, 1}. It remains to perform an exhaus-

tive verification of the possible cases.

If [GMedian(x1, . . . , xk)]
?

� = ? then any value in {0, 1} is valid. If [GMedian(x1, . . . , xk)]
?

� = 0 it means that

GMedian(x1, . . . , xk) outputs a value smaller than ��, which means that at least half of inputs x1, . . . , xk have a

value smaller than ��. Let these values be x(1), . . . , x(m) where m � k/2. We have [x(j)]
?

� = 0 for j 2 [m] and

[x(`)]
?

� ✓ {?, 1} for ` 2 {m+ 1, . . . , k}. For any disambiguation x̄(`), GMedian(x̄1, . . . , x̄k) would still output 0 and

is a valid disambiguation of [GMedian(x1, . . . , xk)]
?

� . The case [GMedian(x1, . . . , xk)]
?

� = 1 follows from the same

argument. ⇤

Lemma 6.20 (Max-Min aggregation commutes with truncation) Let Gmax-min : Rk⇥` ! R be the max-min aggre-

gation, then Gmax-min commutes with truncation. That is, for any � > 0 and x 2 Rk⇥`,

Gmax-min(x̄11, . . . , x̄k`) 2 D([Gmax-min(x11, . . . , xk`)]
?

�),

for all disambiguations x̄ij 2 D([xij ]
?

�), i 2 [k], j 2 [`].

Proof. Fix � > 0. For any i 2 [k] denote by xi(1), . . . , xi(`) the ascending order of a sequence xi1, . . . , xi`. We

assume x̄ij 2 D([xij ]
?

�) ✓ {0, 1} and Gmax-min(x̄11, . . . , x̄k`) outputs a value in {0, 1} by our definition of the max-

min. We check all possible outputs of [Gmax-min(x11, . . . , xk`)]
?

� and verify that Gmax-min(x̄11, . . . , x̄k`) is a valid

disambiguation.

If [Gmax-min(x11, . . . , xk`)]
?

� = ? then any value in {0, 1} is valid. If [Gmax-min(x11, . . . , xk`)]
?

� = 0 it means

that Gmax-min(x11, . . . , xk`) outputs a value smaller than ��. This means that all values that minimize each row

x1(1), . . . , xk(1) are smaller than �� since the maximum of them is smaller than ��. We have [xi(1)]
?

� = 0 for

i 2 [k]. For any disambiguation x̄ij Gmax-min(x̄11, . . . , x̄k`) would still output 0 and is a valid disambiguation of

[Gmax-min(x11, . . . , xk`)]
?

� . The case[Gmax-min(x11, . . . , xk`)]
?

� = 1 follows from the same argument. ⇤
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Covering Numbers and the Fat-Shattering Dimension

In this section, we summarize some known results connecting the covering numbers of a bounded function class to its

fat-shattering dimension.

Lemma 6.21 (Talagrand [177], Proposition 1.4) For any F ✓ [�R,R]
X , there exists a probability measure µ on X

such that

N (F,L2(µ), t) � 2
Cfat2t(F ), 0 < t < R, (6.31)

where C > 0 is a universal constant. Moreover, µ may be taken to be the uniform distribution on any 2t-shattered subset

of X .

Remark 6.22 The tightness of (6.31) is trivially demonstrated by the example F = {��, �}n.

Lemma 6.23 (Mendelson and Vershynin [35], Theorem 1) For all F ✓ [�1, 1]X and all probability measures µ,

N (F,L2(µ), t) 
✓
2

t

◆
Cfatct(F )

, 0 < t < 1, (6.32)

where C, c > 0 are universal constants.

Remark 6.24 The following example due to Vershynin [186] shows that (6.32) is tight. Take X = [n] and F =

[�1, 1]X . Then, for all sufficiently small t > 0, we have fatt(F ) = n. However, a simple volumetric calculation shows

that N (F,L2(µ), t) behaves as (C/t)n for small t, where C > 0 is a constant.

Lemma 6.25 (Rudelson and Vershynin [187]) Suppose that p 2 [2,1), µ is a probability measure on X , and R > 0.

If F ⇢ Lp(X , µ) satisfies sup
f2F
kfk

L2p(µ)
 R, then

logN (F,Lp(µ), t)  Cp2fatct(F ) log
R
ct
, 0 < t < R;

furthermore, for all ✏ > 0, if sup
f2F
kfk

L1(µ)
 R, then

logN (F,L1(µ), t)  Cv log(Rn/vt) log✏(n/v), 0 < t < R,

where n = |X |, v = fatc✏t(F ), and C, c > 0 are universal constants.

Covering Numbers of Linear and Affine Classes

Let B ⇢ Rd be the d-dimensional Euclidean unit ball and

F = {x 7! w · x+ b; kwk _ |b|  R}

be the collection of R-bounded affine functions on X = B.
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Remark 6.26 There is a trivial reduction from an R-bounded affine class in d dimensions to a 2R-bounded linear class

in d+ 1 dimensions, via the standard trick of adding an extra dummy dimension. This only affects the covering number

bounds up to constants.

For Xn ⇢ B, |Xn| = n, define F (Xn) = F |
Xn

, and endow Xn with the uniform measure µn. Zhang [188, Theorem 4]

implies the covering number estimate

logN (F (Xn), L1(µn), t)  C
R2

t2
Log

nR
t

, t > 0,

where C > 0 is a universal constant (Zhang’s result is more general and allows to compute explicit constants). We will

use the following sharper bound:

Lemma 6.27

logN (F (Xn), L1(µn), t)  C
R2

t2
Log

mt2

R2
, 0 < t < R,

where m = min {n, d} and C > 0 is a universal constant.

Proof. The result is folklore knowledge, but we provide proof for completeness.

Let B = Bd

2 be the Euclidean unit ball and X = {x1, . . . , xn} ⇢ B. This induces the set

F = {(w · x1, w · x2, . . . , w · xn);w 2 B} ⇢ Rn. We argue that there is no loss of generality in assuming d � n.

Indeed, if n > d, then X is spanned by some X 0
= {x0

1, . . . , x
0

d} ⇢ B and F ⇢ span(X 0
) is also a d-dimensional set.

Thus, we assume d � n henceforth.

Via a standard infinitesimal perturbation, we can assume that X is a linearly independent set (i.e., spans Rn). If we

treat X as an n ⇥ d matrix, then F = XB, which means that F is an ellipsoid. We are interested in estimating the `1

covering numbers of F .

Let K ⇢ Rd be such that XK = L, where L = Bn

1 is the unit cube. (The existence of a K such that XK ⇢ L is

obvious, but because we assumed that X spans Rn, every point in [�1, 1]n has a pre-image under X .) Let us compute

the polar body K�, defined as

K�
=

⇢
u 2 Rd

: sup
v2K

v · u  1

�
.

We claim that

K�
= absconv(X) =:

(
nX

i=1

↵ixi;

X
|↵i|  1

)
.
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Indeed, consider a z =
P

n

i=1
↵ixi 2 absconv(X). Then, for any v 2 K, we have

v · z = v ·
nX

i=1

↵ixi

=

nX

i=1

↵i(v · xi)


nX

i=1

|↵i|  1 =) z 2 K�,

where we have used |v · xi|  1, since XK = L = Bn

1 = [�1, 1]n. This shows that absconv(X) ✓ K�. On

the other hand, consider any u 2 K�. There is no loss of generality in assuming that u is in the span of X , that is,

u =
P

m

i=1
↵ixi, for ↵i 2 R. By definition of u 2 K�, we have

sup
v2K

v · u = sup
v2K

v ·
nX

i=1

↵ixi = sup
v2K

nX

i=1

↵i(v · xi)  1.

Now because XK = [�1, 1]n, for each choice of ↵ 2 Rn, there is a v 2 K such that |v ·xi| = sign(↵i) for all i 2 [n].

This shows that we must have
P

n

i=1
|↵i|  1, and proves K� ✓ absconv(X).

It is well-known (and easy to verify) that covering numbers enjoy an affine invariance:

N(F,L) := N(XB,XK) = N(B,K),

where N(A,B), for two sets A,B, is the smallest number of copies of B necessary to cover A. Now the seminal result

of Artstein et al. [189] applies: for all t > 0,

logN(B, tK)  a logN(K�, btB),

where a, b > 0 are universal constants.

This reduces the problem to estimating the `2-covering numbers of absconv(X). The latter may be achieved via

Maurey’s method [190, Corollary 0.0.4 and Exercise 0.0.6]: the t-covering number of absconv(rX) under `2 is at most

(c+ cmt2/r2)dr
2
/t

2
e, ⇤

where c > 0 is a universal constant.

Fat-Shattering Dimension of Linear and Affine Classes

In this section, X = Rd and B ⇢ Rd denotes the Euclidean unit ball. A function f : X ! R is said to be affine if it is

of the form f(x) = w · x+ b, for some w 2 Rd and b 2 R, where · denotes the Euclidean inner product.

Throughout the paper, we have referred to R-bounded affine function classes as those for which kwk _ |b|  R. In

this section, we define the larger class of R-semi-bounded affine functions, as those for which kwk  R, but b may be

unbounded. In particular, the covering-number results (and the reduction to linear classes spelled out in Remark 6.26)



124

do not apply to semi-bounded affine classes.

The following simple result may be of independent interest.

Lemma 6.28 Let F ⇢ RX be some collection of functions with the closure property

f, g 2 F =) (f � g)/2 2 F. (6.33)

Then, for all � > 0, we have fat�(F ) = fåt�(F ) .

Proof. Suppose that some set {x1, . . . , xk} is �-shattered by F . That means that there is an r 2 Rk such that for all

y 2 {�1, 1}k, there is an f = fy 2 F for which

�  yi(f(xi)� ri), i 2 [k]. (6.34)

Now for any y 2 {�1, 1}k, let f̂ = fy and f̌ = f�y . Then, for each i 2 [k], we have

�  yi(f̂(xi)� ri),

�  �yi(f̌(xi)� ri).

It follows that f = (f̂ � f̌)/2 achieves (6.34), for the given y, with r ⌘ 0. Now (6.33) implies that the function defined

by f belongs to F , which completes the proof. ⇤

Now it is well-known [100, Theorem 4.6] that bounded linear functions — i.e., function classes on B of the form

F = {x 7! w · x; kwk  R}, also known as homogeneous hyperplanes — satisfy fat�(F )  (R/�)2. The discussion

in Hanneke and Kontorovich [184, p. 102] shows that the common approach of reducing of the general (affine) case to

the linear (homogeneous, b = 0) case, via the addition of a “dummy” coordinate, incurs a large suboptimal factor in the

bound. Hanneke and Kontorovich [184, Lemma 6] is essentially an analysis of the fat-shattering dimension of bounded

affine functions. Although this result contains a mistake (see Section 6.5), much of the proof technique can be salvaged:

Lemma 6.29 The semi-bounded affine function class on B defined by F = {x 7! w · x+ b; kwk  R} in d dimensions

satisfies

fat�(F )  min

8
><

>:
d+ 1,

0

B@

⇣
1 +

q
8

⇡

⌘
R

�

1

CA

2
9
>=

>;
, 0 < �  R.

Proof. Since F satisfies (6.33), it suffices to consider fåt�(F ), and so the shattering condition simplifies to

�  yi(w · xi + b), i 2 [k]. (6.35)

Now fåt�(F ) is always upper-bounded by the VC-dimension of the corresponding class thresholded at zero, i.e., sign(F ).

For d-dimensional inhomogeneous hyperplanes, the latter is exactly d + 1 [183, Example 3.2]. Having dispensed with

the dimension-dependent part in the bound, we now focus on the R-dependent one.
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Let us observe, as in Hanneke and Kontorovich [184, Lemma 6], that for kxik  1 and kwk, �  R, one can always

realize (6.35) with |b|  2R; which is what we shall assume, without loss of generality, henceforth. Summing up the k

inequalities in (6.35) yields

k�  w ·
kX

i=1

yixi + b
kX

i=1

yi  R

�����

kX

i=1

yixi

�����+ 2R

�����

kX

i=1

yi

����� .

Letting y be drawn uniformly from {�1, 1}k and taking expectations, we have

k�  RE
�����

kX

i=1

yixi

�����+ 2RE
�����

kX

i=1

yi

�����  R

vuutE
�����

kX

i=1

yixi

�����

2

+ 2R

vuutE
 

kX

i=1

yi

!2

= R

vuut
kX

i=1

kxik2 + 2R

vuut
kX

i=1

Ey2

i
 3R

p
k.

Isolating k on the left-hand side of the inequality proves the claim k 
⇣

3R

�

⌘
2

.

Following a referee’s suggestion, we improve the constant as follows. Note that

E
�����

kX

i=1

yi

����� =
1

2k

kX

i=0

 
k
i

!
|k � 2i| = k

2k�1

 
k � 1

b k
2
c

!

r

2

⇡
kq
k +

1

2

,

where the inequality follows from a binomial coefficient estimate via Stirling’s approximation. Thus,

k�  R
p
k + 2R

r
2

⇡
kq
k +

1

2

 R
p
k + 2R

r
2

⇡

p
k,

which proves that k 
✓⇣

1+

p
8
⇡

⌘
R

�

◆2

. ⇤

Concavity Miscellanea

The results below are routine exercises in differentiation and Jensen’s inequality.

Lemma 6.30 For u > 0, the function x 7! x log(u/x) is concave on (0,1).

Corollary 6.31 For all u > 0 and vi > 0, i 2 [k],

kX

i=1

vi log(u/vi) 
⇣X

vi
⌘
log

ukP
vi
.

Lemma 6.32 For 0  ✏  log 2 and u � 2, the function x 7! x log
1+✏

(u/x) is concave on [1,1). It follows that for

✏, u as above and vi � 1, i 2 [k],

kX

i=1

vi log
1+✏

(u/vi) 
⇣X

vi
⌘
log

1+✏ ukP
vi
.
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Chapter 7

Agnostic Sample Compression Schemes

for Regression

We obtain the first positive results for bounded sample compression in the agnostic regression setting with the `p loss,

where p 2 [1,1]. We construct a generic approximate sample compression scheme for real-valued function classes

exhibiting exponential size in the fat-shattering dimension but independent of the sample size. Notably, for linear regres-

sion, an approximate compression of size linear in the dimension is constructed. Moreover, for `1 and `1 losses, we

can even exhibit an efficient exact sample compression scheme of size linear in the dimension. We further show that for

every other `p loss, p 2 (1,1), there does not exist an exact agnostic compression scheme of bounded size. This refines

and generalizes a negative result of David, Moran, and Yehudayoff [40] for the `2 loss. We close by posing general open

questions: for agnostic regression with `1 loss, does every function class admit an exact compression scheme of polyno-

mial size in the pseudo-dimension? For the `2 loss, does every function class admit an approximate compression scheme

of polynomial size in the fat-shattering dimension? These questions generalize Warmuth’s classic sample compression

conjecture for realizable-case classification [191].

7.1 Introduction

Sample compression is a central problem in learning theory, whereby one seeks to retain a “small” subset of the labeled

sample that uniquely defines a “good” hypothesis. Quantifying small and good specifies the different variants of the

problem. For instance, in the classification setting, taking small to mean “constant size” (i.e., depending only on the VC-

dimension d of the concept class but not on the sample size m) and good to mean “consistent with the sample” specifies

the classic realizable sample compression problem for VC classes. The feasibility of the latter was an open problem

between its being posed by Littlestone and Warmuth [192] and its positive resolution by Moran and Yehudayoff [132],

with various intermediate steps in between [193–202]. A stronger form of this problem, where small means O(d) (or

even exactly d), remains open [191].
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David, Moran, and Yehudayoff [40] recently generalized the definition of compression scheme to the agnostic case,

where it is required that the function reconstructed from the compression set obtains an average loss on the full data set

nearly as small as the function in the class that minimizes this quantity. In Theorem 7.2, we give a strong motivation

for this criterion by arguing an equivalence to the generalization ability of the compression-based learning algorithm.

Under this definition, David et al. [40] extended the realizable-case result for VC classes to cover the agnostic case as

well: a bounded-size compression scheme for the former implies such a scheme (in fact, of the same size) for the latter.

They also generalized from binary to multiclass concept families, with the graph dimension in place of VC-dimension.

Proceeding to real-valued function classes, David et al. [40] came to a starkly negative conclusion: they established that

there is no constant-size exact agnostic sample compression scheme for linear functions under the `2 loss. (Realizable

linear regression in Rd trivially admits sample compression of size d+ 1, under any loss, by selecting a minimal subset

that spans the data.)

Main Results

We are the first to construct bounded sample compression schemes for agnostic regression with `p loss, p 2 [1,1].

Table 7.1 summarizes our contributions in the context of previous results. We refer to an ↵-approximate compression

as one where the function reconstructed from the compression set achieves an average error at most ↵ compared to the

optimal function in the class. We consider the sample compression to be exact when we precisely recover this error. See

Eqs. (7.3) and (7.4) for formal definitions.

Our approach begins with proposing a boosting method (Algorithm 9) to construct an ↵-approximate sample com-

pression scheme for agnostic `p regression, within function classes characterized by a finite fat-shattering dimension.

The scheme has a size of Õ(fat(F , c↵/p) fat⇤(F , c↵/p))1, for some numerical constant c > 0, as established by The-

orem 7.3. Here, fat(F , c↵/p) represents the fat-shattering dimension of function class F at scale c↵/p, and fat
⇤ is

the dimension of the dual-class, which is finite as long as the dimension of the primal class is finite and can be at most

exponentially larger, see Eq. (2.2). Notably, our compression size is independent of the sample size. A major open ques-

tion is how to improve the exponential dependence in the dimension, even in the realizable binary classification setting

[191]. While such an approximate compression has been previously acknowledged in realizable regression [131], and

exact compression in agnostic binary classification [40], in Section 7.3 we delve into the details of our techniques and

elucidate why methods previously suggested fall short in addressing agnostic regression.

We proceed with exploring linear regression. The negative result of David et al. [40] regarding the impossibility of

achieving an exact compression for linear regression with the `2 (squared) loss raises a general doubt over whether exact

sample compression is ever a viable approach to agnostic learning of real-valued functions. We address this concern by

proving that, if we replace the `2 loss with the `1 or `1 loss, then there is a simple exact agnostic compression scheme

of size d + 1 for `1 linear regression and d + 2 for `1 in Rd, see Theorems 7.8 and 7.9. This is somewhat surprising,

given the above negative result for the `2 loss. Computationally, our compression schemes for `1 and `1 involve solving

a polynomial (in fact, linear) size linear program.

1Õ hides polylogarithmic factors in the specified expression.
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We then propose Algorithm 10 for an↵-approximate sample compression for `p linear regression of size O(d log(p/↵)),

where p 2 (1,1), see Theorem 7.7. Roughly speaking, we reduce the problem to realizable binary classification with

linear functions. Our approach involves introducing a discretized dataset on which the optimal solution of Support Vec-

tor Machine (SVM) pointwise approximates an optimal regressor on the original dataset. We complement this result

by showing that p 2 {1,1} are the only two `p losses for which a constant-size exact compression scheme exists

(Theorem 7.11), generalizing the argument of David et al. [40].

These appear to be the first positive results for a bounded agnostic sample compression for real-valued function

classes. We close by posing intriguing open questions generalizing our result to arbitrary function classes: under the

`1 loss, does every function class admit an exact agnostic compression scheme of size equal to its pseudo-dimension?

Under the `2 loss, does every function class admit an approximate agnostic compression of size equal to its fat-shattering

dimension? We argue that this represents a generalization of Warmuth’s classic sample compression problem, which

asks whether every space of classifiers admits a compression scheme of size VC-dimension in the realizable case.

Related Work

Sample compression scheme is a classic technique for proving generalization bounds, introduced by Littlestone and

Warmuth [13], Floyd and Warmuth [14]. These bounds proved to be useful in numerous learning settings, particularly

when the uniform convergence property does not hold or provides suboptimal rates, such as binary classification [41, 132,

203], multiclass classification [40, 154, 204, 205], regression [20, 131], active learning [206], density estimation [207],

adversarially robust learning [2, 3, 9, 55, 105, 208], learning with partial concepts [97], and showing Bayes-consistency

for nearest-neighbor methods [209, 210]. As a matter of fact, compressibility and learnability are known to be equivalent

for general learning problems [40]. A remarkable result by Moran and Yehudayoff [132] showed that VC classes enjoy

a sample compression that is independent of the sample size.

David et al. [40] introduced sample compression in the context of regression. They showed that an exact compres-

sion scheme for `2 agnostic linear regression requires a linear growth relative to the sample size. Additionally, they

showed that it is feasible to have an ↵-approximate compression for zero-dimensional linear regression with a size of

log(1/↵)/↵. In a broader sense, they established the equivalence between learnability and the presence of an approxi-

mate compression in regression.

Hanneke et al. [131] showed how to convert consistent real-valued learners into constant-size (i.e., independent of

sample size) efficiently computable approximate compression schemes for the realizable (or nearly realizable) regression

with the `1 loss. This result was obtained via a weak-to-strong boosting procedure, coupled with a generic construction

of weak learners out of abstract regressors. The agnostic variant of this problem remains open in its full generality.

Ashtiani et al. [207] adapted the notion of a compression scheme to the distribution learning problem. They showed

that if a class of distributions admits robust compressibility then it is agnostically learnable.
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Problem Setup Compression Type Compression Size Reference

Realizable/Agnostic Binary Classification Exact O(VC ·VC⇤) [40, 132]

Realizable/Agnostic Multiclass Classification Exact

O
�
dG · d⇤

G

�
[40]

O
�
DS1.5 · polylog(m)

�
[205]

⌦
⇣
log(m)1�o(1)

⌘
[211]

Realizable `1 Regression ↵-Approximate O
�
fatc↵ · fat⇤c↵ · polylog

�
fatc↵, fat⇤c↵,

1

↵

��
[131]

Agnostic `p Regression: p 2 (1,1)
↵-Approximate

O
�
fatc↵ · fat⇤c↵ · polylog

�
fatc↵, fat⇤c↵, p,

1

↵

��

This work
Agnostic `p Regression: p 2 {1,1} O

�
fatc↵ · fat⇤c↵ · polylog

�
fatc↵, fat⇤c↵,

1

↵

��

Agnostic `p Linear Regression: p 2 {1,1} Exact O(d) This work

Agnostic `p Linear Regression: p 2 (1,1) ↵-Approximate O
�
d · log

�
p

↵

��
This work

Agnostic `2 Linear Regression Exact ⌦(m) [40]

Agnostic `p Linear Regression: p 2 [1,1] Exact ⌦(log(m)) This work

Table 7.1: Sample compression schemes for classification and regression. We denote the sample size by
m, c > 0 is a numerical constant. The o(1) term vanishes as m ! 1. (i) Binary Classification: VC is
the Vapnik-Chervonenkis dimension that characterizes realizable and agnostic learnability. Any dimension
with (·)⇤ denotes the dimension of the dual-class. (ii) Multiclass Classification: dG is the Graph-dimension
and DS is the Daniely-Shwartz dimension. For a finite set of labels, both dimensions characterize realizable
and agnostic learnability. For an infinite set, only the finiteness of the DS dimension is equivalent to learn-
ability. There exist learnable function classes with infinite graph dimension and finite DS dimension. (iii)
Regression: fatc↵ is the fat-shattering dimension at scale c↵. A function class is agnostically learnable in
this setting if and only if the fat-shattering dimension is finite for any scale. However, in the realizable case,
there are learnable classes with infinite fat-shattering dimension. We comment that the results in [131] are
stated for `1, but still hold for any `p (with extra polylog factors in p) due to Lipschitzness of this loss. (iv)
Linear Regression: d is the vector space dimension. We refer to Section 7.5 for open problems.

7.2 Preliminaries

We denote [m] := {1, . . . ,m}. Let F ✓ YX be a hypothesis class. The `p loss incurred by a hypothesis f 2 F on

(x, y) is given by (x, y) 7! |f(x)� y|p, where p 2 [1,1]. For p 2 [1,1), the loss incurred by a hypothesis f 2 F on

a labeled sample S = {(xi, yi) : i 2 [m]} is given by

Lp(f, S) :=
1

m

mX

i=1

|f(xi)� yi|p, (7.1)

while for p =1,

L1(f, S) := max
1im

|f(xi)� yi|. (7.2)

Remark 7.1 The `p regression objective is typically written without taking the pth root so as to facilitate optimization
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algorithms. As we avoid taking the p-th root, the resulting p-norm formulation does not directly converge to `1 as p

approaches infinity. Consequently, our `p results explicitly depend on p, similar to results in the literature.

Now let us introduce a formal definition of sample compression, and a criterion we require of any valid agnostic com-

pression scheme. Following the definition, we provide a strong motivation for this criterion in terms of an equivalence to

the generalization ability of the learning algorithm under general conditions.

Approximate and exact sample compression schemes. Recall Definition 2.18 of a sample compression scheme,

which we use here for the `p loss. We say that a compression scheme (, ⇢) is a k-size agnostic exact sample compres-

sion scheme for F if  is a k-selection and for all S = {(xi, yi) : i 2 [m]}, and fS := ⇢((S)) achieves F -competitive

empirical loss:

Lp(fS , S)  inf
f2F

Lp(f, S). (7.3)

We also define a relaxed notion of agnostic ↵-approximate sample compression in which fS should satisfy

Lp(fS , S)  inf
f2F

Lp(f, S) + ↵. (7.4)

In principle, the size k of an agnostic compression scheme may depend on the data set size m, in which case we may

denote this dependence by k(m). However, in this work we are primarily interested in the case when k(m) is bounded:

that is, k(m)  k for some m-independent value k. Note that the above definition is fully general, in that it defines

a notion of agnostic compression scheme for any function class F and loss function L, though in the present work we

focus on Lp loss for 1  p  1.

Remark 7.2 At first, it might seem unclear why this is an appropriate generalization of sample compression to the

agnostic setting. To see that it is so, we note that one of the main interests in sample compression schemes are their

ability to generalize: that is, to achieve low excess risk under a distribution P on X ⇥ Y when the data S are sampled

iid according to P [192, 195, 212]. Also, as mentioned, in this work we are primarily interested in sample compression

schemes that have bounded size: k(m)  k for an m-independent value k. Furthermore, we are also focusing on the

most general case, where this size bound should be independent of everything else in the scenario, such as the data S or

the underlying distribution P . Given these interests, we claim that the above definition is essentially the only reasonable

choice. More specifically, for Lp loss with 1  p < 1, any compression scheme with k(m) bounded such that its

expected excess risk under any P converges to 0 as m ! 1 necessarily satisfies the above condition (or is easily

converted into one that does). To see this, note that for any data set S for which such a compression scheme fails to

satisfy the above F -competitive empirical loss criterion, we can define a distribution P that is simply uniform on S,

and then the compression scheme’s selection function would be choosing a bounded number of points from S and a

bounded number of bits, while guaranteeing that excess risk under P approaches 0, or equivalently, excess empirical

loss approaches 0. To make this argument fully formal, only a slight modification is needed, to handle having multiple

copies of points from S in the compression set; given that the size is bounded, these repetitions can be encoded in a
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bounded number of extra bits, so that we can stick to strictly distinct points in the compression set.

In the converse direction, we also note that any bounded-size agnostic compression scheme (in the sense of the above

definition) will be guaranteed to have excess risk under P converging to 0 as m ! 1, in the case that S is sampled

iid according to P , for losses Lp with 1  p < 1, as long as P guarantees that (X,Y ) ⇠ P has Y bounded (almost

surely). This follows from classic arguments about the generalization ability of compression schemes, which includes

results for the agnostic case [212]. For unbounded Y one cannot, in general, obtain distribution-free generalization

bounds. However, one can still obtain generalization under certain broader restrictions (see, e.g., 213 and references

therein). The generalization problem becomes more subtle for the L1 loss: this cannot be expressed as a sum of

pointwise losses and there are no standard techniques for bounding the deviation of the sample risk from the true risk.

One recently-studied guarantee achieved by minimizing empirical L1 loss is a kind of “hybrid error” generalization,

developed in Hanneke et al. [131, Theorem 9]. We refer the interested reader to that work for the details of those results,

which can easily be extended to apply to our notion of an agnostic compression scheme.

7.3 Approximate Agnostic Compression for Real-Valued Function Classes

In this section, we construct an approximate compression scheme for all real-valued function classes that are agnostically

PAC learnable, that is, classes with finite fat-shattering dimension at any scale [31, 32]. We prove the following main

result.

Theorem 7.3 (Approximate compression for agnostic regression) Let F ✓ [0, 1]X , S = {(xi, yi) : i 2 [m]} ✓

X⇥[0, 1], an approximation parameter↵ 2 [0, 1], a weak learner parameter � 2 (0, 1/2], and `p loss where p 2 [1,1].

By setting Algorithm 9 with T  O
⇣

1

�2 log(m)

⌘
and

8
>><

>>:

d Õ(fat(F , c↵/p)) , n Õ
✓
fat

⇤
(F , c↵/p)
�2

◆
, p 2 [1,1)

d Õ(fat(F , c↵)) , n Õ
✓
fat

⇤
(F , c↵)
�2

◆
, p =1,

we get an ↵-approximate sample compression scheme of size

8
>><

>>:

Õ
✓

1

�2
fat(F , c↵/p) fat⇤(F , c↵/p)

◆
, p 2 [1,1)

Õ
✓

1

�2
fat(F , c↵) fat⇤(F , c↵)

◆
, p =1,

for some universal constant c > 0. Recall that the dual fat-shattering is at most exponential in the primal dimension,

see Eq. (2.2). Õ(·) hides polylogarithmic factors of (fat, fat⇤, p, 1/↵, 1/�).

Remark 7.4 Note that having an ↵-approximate compression of size k implies the following bound on the generalization

error: ↵+

q
k log(m/k)

m
[40, Theorem 4.2].

Our algorithm incorporates a boosting approach for real-valued functions. Therefore, we need a definition of weak

learners in this context.
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Definition 7.5 (Approximate weak real-valued learners) Let � 2 (0, 1

2
], ↵ 2 (0, 1). We say that g : X ! [0, 1] is an

approximate (↵,�)-weak learner, with respect to P and a target function f? 2 F if

P(x,y)⇠P {(x, y) : |g(x)� y| > |f?
(x)� y|+ ↵}  1

2
� �.

This notion of a weak learner must be formulated carefully. For example, taking a learner guaranteeing absolute loss at

most 1

2
� � is known to not be strong enough for boosting to work, see the discussion in Hanneke et al. [131, Section

4]. On the other hand, by making the requirement too strong (for example, AdaBoost.R in Freund and Schapire [156]),

then the sample complexity of weak learning will be high that weak learners cannot be expected to exist for certain

function classes. We can now present the main algorithm.

The challenges beyond realizable regression and agnostic classification. There is a crucial difference from

previous boosting algorithms for real-valued used by Hanneke et al. [131], Kégl [140] in the realizable case. In our

approach, the cut-offs  (x, y) are allowed to vary across different points, in contrast to a fixed cut-off applied uniformly

across all points. This flexibility enables us to address the agnostic setting, wherein the loss of an optimal minimizer

may differ across various points in the sample. To prove the existence of weak learners we are required to have a

generalization theorem that is compatible with changing cut-offs, see Theorem 5.6. A similar generalization result was

used in the context of adversarially robust learning [3].

The compression approach for agnostic binary classification, as discussed in [40], encounters a similar challenge.

In this method, our initial emphasis is on identifying the points correctly classified by an optimal function in the class.

Subsequently, we apply compression techniques for realizable classification. However, in regression, discarding points

where the optimal function makes mistakes is not feasible, given that the loss is not strictly zero-one. Instead, we utilize

the entire sample, targeting the error for each point and constructing a function with a similar approximated error on each

point.

Proof overview. First, we show that the returned output of Algorithm 9 is a valid compression. Then we bound the

size of this compression.

Approximate compression correctness. In step 1, we compute some f? 2 F the minimizes the empirical `p error on

the sample S,

f?  argmin
f2F

Lp(f, S),

as defined in Eqs. (7.1) and (7.2). Let  : X ⇥ Y ! [0, 1] be the `1 loss of f? on each point in S,

 (x, y) |f?
(x)� y|, 8(x, y) 2 S.

In step 2, we implement a boosting algorithm, following Theorem 7.5 of weak learners. By using Theorem 5.6 with
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Algorithm 9 Approximate Agnostic Sample Compression for `p Regression, p 2 [1,1]

Input: F ✓ [0, 1]X , S = {(xi, yi) : i 2 [m]} ✓ X ⇥ [0, 1].
Parameters: Approximation parameter ↵ 2 (0, 1), weak learner parameter � 2 (0, 1/2], weak learner
sample size d � 1, sparsification parameter n � 1, number of boosting rounds T � 1, loss parameter
p 2 [1,1].
Initialize: P1  Uniform(S).

. Find an optimal function in f? 2 F . Our goal is to construct a function that pointwise approximates f?
on S

1. Compute:

(a) f?  argminf2F Lp(f, S) (defined in Eqs. (7.1) and (7.2)).

(b)  (x, y) |f?(x)� y|, 8(x, y) 2 S.

. Median boosting for real-valued functions

2. For t = 1, . . . , T :

(a) Get an (2↵,�)-approximate weak learner f̂t with respect to distribution Pt:
Find a multiset St ⇢ S of d points such that for any f 2 F with |f(x)� y|   (x, y) + ↵
8(x, y) 2 St, it holds that P(x,y)⇠Pt

{(x, y) : |f(x)� y| >  (x, y) + 2↵}  1/2 � �. (St exists
from Theorem 5.6).

(b) For i = 1, . . . ,m:
Set w(t)

i  1� 2I
⇥���f̂t(xi)� yi

��� >  (xi, yi) + 2↵
⇤
.

(c) Set ↵t  1
2 log

✓
(1��)

Pm
i=1 Pt(xi,yi)I

h
w(t)

i =1
i

(1+�)
Pm

i=1 Pt(xi,yi)I
h
w(t)

i =�1
i

◆
.

(d) If ↵t =1:
return T copies of f̂t, (↵1 = 1, . . . ,↵T = 1), St.
Else:
Pt+1(xi, yi) Pt(xi, yi)

exp(�↵tw
t
i)Pm

j=1 Pt(xj ,yj) exp(�↵twt
j)
.

. Sparsifying the weighted ensemble
n
f̂i
oT

i=1
returned from boosting via sampling

3. Repeat:

(a) Sampling:
(J1, ... , Jn) ⇠ Categorial

⇣
↵1PT

s=1 ↵s
, ... , ↵TPT

s=1 ↵s

⌘n
.

(b) Let F̃ = {fJ1 , . . . , fJn}.

(c) Until 8(x, y) 2 S :���
n
f 2 F̃ : |f(x)� y| >  (x, y) + 3↵

o��� < n/2.

Compression: Multisets SJ1 , . . . , SJn and cut-offs  |SJ1
, . . . , |SJn

corresponding to the weak learners in
F̃ .
Reconstruction: Reconstruct weak learners fJi from SJi and  |SJi

, i 2 [n], and output their median
Median(fJ1 , . . . , fJn).
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� = 1/3 and ✏ = 1/2� �, for any distribution Pt on S, upon receiving an i.i.d. sample St ✓ S from Pt of size

d = O
✓
fat(F ,↵/8) log2

✓
fat(F ,↵/8)
↵(1/2� �)

◆◆
,

with probability 2/3 over sampling St from Pt, for any f 2 F satisfying 8(x, y) 2 St : |f(x)� y|   (x, y) + ↵, it

holds that

P(x,y)⇠Pt{(x, y) : |f(x)� y| >  (x, y) + 2↵}  1

2
� �.

That is, such a function is an approximate (2↵,�)-weak learner for Pt and f?. Since this holds with probability 2/3,

there must be such St ✓ S. In order to construct an approximate (2↵,�)-weak learner f̂t, we need to find f 2 F such

that 8(x, y) 2 St : |f(x)� y|   (x, y) + ↵, and so the weak learner can be encoded by St of size d and the set of

cut-offs  (x, y) 2 [0, 1] for all (x, y) 2 St. We encode only approximations of the cut-offs to keep the compression

size bounded (see the paragraph about the compression size below). For T = O
⇣

1

�2 log(m)

⌘
rounds of boosting,

Theorem 7.15 guarantees that for all (x, y) 2 S the output of the boosting algorithm satisfies

���Median

⇣
f̂1, . . . , f̂T ;↵1, . . . ,↵T

⌘
(x)� y

���   (x, y) + 2↵.

Finally, we use sampling to reduce the number of hypotheses in the ensemble from O
⇣

1

�2 log(m)

⌘
to size that is

independent of m. Theorem 7.16 implies that the sparsification method in Step 3 ensures that we can sample

n = O
�
fat

⇤
(F , c↵) log2(fat⇤(F , c↵) /↵)

�

such that for all (x, y) 2 S

|Median(fJ1(x), . . . , fJn(x))� y|   (x, y) + 3↵,

where c > 0 is an absolute constant. By rescaling 3↵ to ↵, this proves the `1 and `1 losses. For p 2 (1,1), we use

the Lipschitzness of the `p loss and rescale the approximate parameter accordingly. We constructed a function h with

|h(x)� y|   (x, y) + ↵ for any (x, y) 2 S, which implies

|h(x)� y|p
(i)

 (( (x, y)) + ↵)p
(ii)

  (x, y)p + p↵,

and that will finish the proof. (i) Follows by just raising both sides to the power of p. (ii) Follows since the function

x 7! |x� y|p is p-Lipschitz for (x� y) 2 [0, 1], and so

|( (x, y) + ↵)p �  (x, y)p|  p| (x, y) + ↵�  (x, y)|

 p↵.

By rescaling p↵ to ↵, we get

|Median(fJ1(x), . . . , fJn(x))� y|p   (x, y)p + ↵,
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where

n = ⇥

✓
1

�2
fat

⇤
(F , c↵/p) log2

✓
p fat⇤(F , c↵/p)

↵

◆◆
,

and

d = O
✓
fat(F , c↵/p) log2

✓
p fat(F , c↵/p)
↵(1/2� �)

◆◆
.

We proved the correctness of an ↵-approximate compression

Lp(Median(fJ1 , . . . , fJn) , S)  inf
f2F

Lp(f, S) + ↵.

Approximate compression size. Each weak learner is encoded by a multiset S0 ✓ S of size d and is constructed by

computing some f 0 2 F that solves the constrained optimization

��f 0
(x)� y

��   (x, y) + ↵, 8(x, y) 2 S0.

We encode each  (x, y) by some approximation  ̃(x, y), such that
��� ̃(x, y)�  (x, y)

���  ↵, by discretizing [0, 1] to

1/↵ buckets of size ↵, and each  (x, y) is rounded down to the closest value  ̃(x, y). Each approximation requires to

encode log(1/↵) bits, and so each learner encodes d log(1/↵) bits and d samples. We have n weak learners, and the

compression size is

n(d+ d log(1/↵))  2nd log(1/↵) .

By plugging in n and d, and rescaling ↵, we conclude

8
>><

>>:

Õ
✓

1

�2
fat(F , c↵/p) fat⇤(F , c↵/p)

◆
, p 2 [1,1)

Õ
✓

1

�2
fat(F , c↵) fat⇤(F , c↵)

◆
, p =1.

7.4 Agnostic Compression for Linear Regression

In this section, our focus is on `p linear regression in Rd. We begin by improving upon the construction of an approximate

sample compression scheme for general classes, incorporating the structure of linear functions. Next, we demonstrate

the feasibility of constructing an exact compression for p 2 {1,1} with a size linear in d. In sharp contrast, we exhibit

that this holds only for p 2 {1,1}. We prove an impossibility result of achieving a bounded-size exact compression

scheme for p 2 (1,1).

We use the following notation. Vectors v 2 Rd are denoted by boldface, and their jth coordinate is indicated by

v(j). (Thus, vi(j) indicates the jth coordinate of the ith vector in a sequence.)
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Approximate Compression for p 2 [1,1]

In this subsection, our instance space is X = [0, 1]d, label space is Y = [0, 1], and hypothesis class is bounded

homogeneous linear functions F ✓ YX , consisting of all fw : X ! Y given by fw(x) = hw, xi, indexed by w 2 Rd,

where kwk2  1.

In Section 7.3 we proved an approximate compression for general function classes with `p losses of size

O
�
fatc↵/p · fat⇤

c↵/p
· polylog

�
fatc↵/p, fat

⇤

c↵/p
, p, 1/↵

��
. We have an immediate corollary for linear functions. Let

Pdim(F) be the pseudo-dimension of a function class F [25, 214], that can be defined as Pdim(F) = lim
�! 0

fat�(F).

The fat-shattering dimension (at any scale) is upper bounded by the pseudo-dimension. Moreover, the vector space

dimension is of the same order as the pseudo-dimension [33], and the dimension of the dual vector space is equal to the

one of the primal space. This implies the following.

Corollary 7.6 Algorithm 9 is a sample compression scheme of size O
�
d2 · polylog

�
d, p, 1

↵

��
for bounded linear re-

gression in dimension d with the `p loss, for p 2 [1,1].

Another “baseline” solution involves encoding the coefficients of the linear regressor up to a certain approximation

parameter. To achieve an ↵-approximate sample compression, each coefficient should be accurate up to an additive error

of ↵/dp for p 2 [1,1), and ↵/d for p =1. Thus, in this solution, we will encode d log (dp/↵) bits without retaining

any samples for p 2 [1,1), and d log (d/↵) for p =1.

In this section, Theorems 7.7 to 7.9 improve upon these bounds by using a dedicated algorithm for linear functions.

We start with the following result:

Theorem 7.7 (Approximate compression for agnostic linear regression) Let F =
�

x 7! hw, xi : w 2 Rd, kwk2  1
 

,

S = {(xi, yi) : kxik2  1, 8i 2 [m]} ✓ X ⇥ [0, 1], and an approximation parameter ↵ 2 (0, 1). Algorithm 10 is an

↵-approximate sample compression scheme for the `p loss of size

8
>><

>>:

O
⇣
d · log

⇣ p
↵

⌘⌘
, p 2 [1,1)

O
✓
d · log

✓
1

↵

◆◆
, p =1.
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Algorithm 10 Approximate Agnostic Compression for `p Linear Regression, p 2 [1,1]

Input: F =
�

x 7! hw, xi : w 2 Rd, kwk2  1
 

, S = {(xi, yi) : kxik2  1, 8i 2 [m]} ✓ X ⇥ [0, 1].
Parameters: Approximation parameter ↵ 2 [0, 1].

. Find an optimal regressor for S

1. f?  argminf2F Lp(f, S).

. Define a discretized dataset where the new labels are discretized to a resolution of ↵

2. Define S↵ = A [B, where

A =
n
(xi, j↵) : i 2 [m], j 2 {�1/↵, . . . ,�1, 0, 1, . . . , 1/↵}

o
, B =

n
(xi, j(1 + ↵)) : i 2 [m], j 2 {�1,+1}

o
.

. Label by ±1 the discretized dataset with f?

3. Define

S↵(f
?) = {((xi, ỹ) , z) : for any (xi, ỹ) 2 S↵ : z = +1 if f?(xi)� ỹ  0, otherwise z = �1}.

Compression: Run SVM for realizable binary classification on S↵(f?) and return a set of support vectors.
Reconstruction: Run SVM on the compression set.

Proof. Let F be the set of homogeneous linear predictors bounded by 1, F =
�

x 7! hw, xi : w 2 Rd, kwk2  1
 

, and

data a set S = {(xi, yi) : kxik2  1, 8i 2 [m]} ✓ X ⇥ [0, 1].

Approximate compression correctness. The algorithmic idea is as follows. We first compute in Step 1 an optimal

linear regressor f? 2 F for the `p loss. In step 2, we create a discretized dataset S↵ of size m(2/↵ + 3), where for

each example xi we create (2/↵ + 3) real-valued labels {�1� ↵,�1, . . . ,�2↵,�↵, 0,↵, 2↵, . . . , 1, 1 + ↵}. Then

in step 3, we use the regressor f? for classifying the dataset S↵. That is, for any (xi, ỹ) 2 S↵, we have ((xi, ỹ) ,+1)

whenever f?
(xi) � ỹ  0, and ((xi, ỹ) ,�1) otherwise. We denote this dataset by S↵(f

?
). Note that for each xi we

created a grid of binary labels of resolution ↵ in the range [�1 � ↵, 1 + ↵], and since |f?
(xi)|  1, for each vector

xi there exists ỹ1, ỹ2 such that (xi, ỹ1), (xi, ỹ2) 2 S↵(f
?
) have different labels. To obtain compression, we execute

Support Vector Machine(SVM) for realizable classification on S↵(f
?
). Note that the classification problem is

in Rd+1 and the original regression problem is in Rd. Applying Caratheodory’s theorem allows us to express its output

as a linear combination of d+2 support vectors (along with their labels). The set of returned support vectors constitutes

the compression set. For reconstruction, we utilize SVM on these support vectors. The hyperplane returned by SVM can

be re-interpreted as a function from Rd to R that pointwise approximates f? on all xi in S.

We proceed to prove the correctness. Denote the output of the compression scheme by fSVM = ⇢((S)) =

(wSVM, bSVM), which a affine linear function in Rd+1. This function can be re-interpreted as an affine linear function

f̂ : Rd ! R, for any x 2 Rd we compute y 2 R by solving hwSVM, (x, y)i+ bSVM = 0,

f̂(x) = y =
hwd

SVM, xi+ bSVM
wSVM(d+ 1)

,

where wd

SVM = (wSVM(1), . . . ,wSVM(d)). It holds that wSVM(d + 1) 6= 0, since for any xi there exists ỹ1, ỹ2 such that

(xi, ỹ1), (xi, ỹ2) 2 S↵(f
?
) have different labels. If wSVM(d+1) = 0 it means that the SVM hyperplane cannot distinguish
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between these two points, and thus, it makes a mistake on a realizable dataset, which is a contradiction. Since the output

of SVM is a valid compression scheme for realizable binary classification, f̂ should classify correctly all points in S↵(f
?
).

It follows that for any xi in S,
���f?

(xi)� f̂(xi)

���  ↵,

due to the two adjacent grid points with resolution ↵ lying above and below both the hyperplane of f? and the f̂

hyperplane. Therefore, for any (xi, yi) 2 S

���|f?
(xi)� yi|� |f̂(xi)� yi|

���
(i)


���f?

(xi)� yi � f̂(xi) + yi
���

=

���f?
(xi)� f̂(xi)

���

 ↵,

where (i) follows from the triangle inequality, and so f̂ is an ↵-approximate sample compression scheme for the `1 and

`1 losses. For p 2 (1,1), using Lipschitzness of the `p loss, we have

���|f?
(xi)� yi|p � |f̂(xi)� yi|p

��� 
���p
⇣
|f?

(xi)� yi|� |f̂(xi)� yi|
⌘���

= p
���|f?

(xi)� yi|� |f̂(xi)� yi|
���

 p↵.

By rescaling p↵ to ↵, we have an ↵-approximate compression scheme for the `p loss.

Approximate compression size. The SVM running on S↵(f
?
) returns a set of support vectors of size at most d + 2,

since the input is in dimension d + 1. The x vectors are part of the original sample S. We need to keep the grid point

labels of the support vectors as well, each one of them requires log(1/↵) bits, and each classification ±1 costs an extra

bit. We get a compression of size d+ 2 + (d+ 2) log(1/↵) + d+ 2 = O(d log(1/↵)) . ⇤

Exact Compression for p 2 {1,1}

In this section, we show that agnostic linear regression in Rd admits an exact compression scheme of size d+1 under `1

and d+ 2 under `1. Our instance space is X = Rd, label space is Y = R, and hypothesis class is F ✓ YX , consisting

of all fw,b : X ! Y given by fw,b(x) = hw, xi + b, indexed by w 2 Rd, b 2 R. Note that we allow unbounded norms

for the linear functions and the data can be unbounded as well, as opposed the the results in Section 7.4.

Theorem 7.8 There exists an efficiently computable (see the linear program in Eq. (7.7)) exact compression scheme for

agnostic `1 linear regression of size d+ 1.

The optimization technique based on minimizing the sum of absolute deviations is known as Least Absolute Deviations

(LAD) and was introduced by Boscovich in 1757 (see, for example, Dodge [215]). We derive a compression scheme

from this method.

Proof. We start with d = 0. The sample then consists of (y1, . . . , ym) [formally: pairs (xi, yi), where xi ⌘ 0], and
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F = R [formally, all functions h : 0 7! R]. We define fS to be the median of (y1, . . . , ym), which for odd m is defined

uniquely and for even m can be taken arbitrarily as the smaller of the two midpoints. It is well-known that such a choice

minimizes the empirical `1 risk and it clearly constitutes a compression scheme of size 1.

The case d = 1 will require more work. The sample consists of (xi, yi)i2[m], where xi, yi 2 R, and F =

{R 3 x 7! wx+ b : a, b 2 R}. Let (w?, b?) be a (possibly non-unique) minimizer of

L(w, b) :=
X

i2[m]

|(wxi + b)� yi|, (7.5)

achieving the value L?. We claim that we can always find two indices ı̂, |̂ 2 [m] such that the line determined by (xı̂, yı̂)

and (x|̂, y|̂) also achieves the optimal empirical risk L?. More precisely, the line (ŵ, b̂) induced by ((xı̂, yı̂), (x|̂, y|̂))

via2 ŵ = (y|̂ � yı̂)/(x|̂ � xı̂) and b̂ = yı̂ � ŵxı̂, verifies L(ŵ, b̂) = L?.

To prove this claim, we begin by recasting (7.5) as a linear program.

min
(✏1,...,✏m,w,b)2Rm+2

mX

i=1

✏i s.t. (7.6)

8i 2 [m] ✏i � 0

8i 2 [m] wxi + b� yi  ✏i

8i 2 [m] � wxi � b+ yi  ✏i.

We observe that the linear program in (7.6) is feasible with a finite solution (and actually, the constraints ✏i � 0 are

redundant). Furthermore, any optimal value is achievable at one of the extreme points of the constraint-set polytope

P ⇢ Rm+2. Next, we claim that the extreme points of the polytope P are all of the form v 2 P with two (or more)

of the ✏is equal to 0. This suffices to prove our main claim, since ✏i = 0 in v 2 P iff the (w, b) induced by v verifies

wxi + b = yi; in other words, the line induced by (w, b) contains the point (xi, yi). If a line contains two data points, it

is uniquely determined by them: these constitute a compression set of size 2. (See illustration in Figure 7.1.)

Now we prove our claimed property of the extreme points. First, we claim that any extreme point of P must have at

least one ✏i equal to 0. Indeed, let (w, b) define a line. Define

b+ := min

n
b̃ 2 [b,1) : 9i 2 [m], wxi + b̃ = yi)

o

and analogously,

b� := max

n
b̃ 2 (�1, b] : 9i 2 [m], wxi + b̃ = yi)

o
.

In words, (w, b+) is the line obtained by increasing b to a maximum value of b+, where the line (w, b+) touches a

datapoint, and likewise, (w, b�) is the line obtained by decreasing b to a minimum value of b�, where the line (w, b�)

touches a datapoint.

Define by S+

a,b
:= {i : |wxi + b < yi|} the points above the line defined by (w, b) and S�

a,b
:= {i : |wxi + b > yi|}

2We ignore the degenerate possibility of vertical lines, which reduces to the 0-dimensional case.
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Figure 7.1: Sample compression schemes for `1 and `1 linear regression. A sample S of m = 20 points
(xi, yi) was drawn iid uniformly from [0, 1]2. On this sample, `1 regression was performed by solving the
LP in (7.6), shown on the left, and `1 regression was performed by solving the LP in (7.8), on the right.
In each case, the regressor provided by the LP solver is indicated by the thick (red) line. Notice that for `1,
the line contains exactly 2 datapoints. For `1, the regressor contains no datapoints; rather, the d + 2 = 3
“support vectors” are indicated by .

the points below the line defined by (w, b). For a line (w, b) which does not contain a data point we can rewrite the sample

loss as

L(w, b) =

X

i2S
+
a,b

(yi � (wxi + b)) +
X

i2S
�
a,b

((wxi + b)� yi)

=

0

B@
X

i2S
�
a,b

xi �
X

i2S
+
a,b

xi

1

CA a+
�
|S�

a,b
|� |S+

a,b
|
�
b+

0

B@
X

i2S
+
a,b

yi �
X

i2S
�
a,b

yi

1

CA

=: �a+ µb+ ⌫.

Since for fixed a and b 2 [b�, b+], the quantities S�

a,b
, S+

a,b
are constant, it follows that the function L(w, ·) is affine

in b, and hence minimized at b± 2
�
b�, b+

 
. Thus, there is no loss of generality in taking b? = b±, which implies that

the optimal solution’s line (w?, b?) contains a data point (xı̂, yı̂). If the line (w?, b±) contains other data points then we

are done, so assume to the contrary that ✏ı̂ is the only ✏i that vanishes in the corresponding solution v? 2 P .

Let Pı̂ ⇢ P consist of all v for which ✏ı̂ = 0, corresponding to all feasible solutions whose line contains the data

point (xı̂, yı̂). Let us say that two lines (w1, b1), (w2, b2) are equivalent if they induce the same partition on the data

points, in the sense of linear separation in the plane. The formal condition is S�

w1,b1
= S�

w1,b1
, which is equivalent to

S+

w1,b1
= S+

w1,b1
.

Define P?

ı̂ ⇢ Pı̂ to consist of those feasible solutions whose line is equivalent to (w?, b±). Denote by

w+
:= max {a : ("1, .., "m, w, b) 2 P?

ı̂ } and define v+ to be a feasible solution in P?

ı̂ with slope w+, and analogously,

w�
:= min {w : ("1, .., "m, w, b) 2 P?

ı̂ } and v� 2 P?

ı̂ with slope w�. Geometrically this corresponds to rotating the

line (w?, b?) about the point (xı̂, yı̂) until it encounters a data point above and below.

Writing, as above, the sample loss in the form L(w, b), we see that L(·, b±) is affine in a over the range w 2

[w�, w+
] and hence is minimized at one of the endpoints. This furnishes another datapoint (x|̂, y|̂) verifying ŵx|̂+ b̂ =

y|̂ for L(ŵ, b̂) = L?, and hence proves compressibility into two points for d = 1.
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Generalizing to d > 1 is quite straightforward. We define

L(w, b) =
X

i2[m]

|(hw, xii+ b)� yi|

and express it as a linear program analogous to (7.6),

Linear programming for `1 regression:

min
(✏1,...,✏m,w,b)2Rm+d+1

mX

i=1

✏i s.t. (7.7)

8i 2 [m] ✏i � 0

8i 2 [m] hw, xii+ b� yi  ✏i

8i 2 [m] � hw, xii � b+ yi  ✏i.

Given an optimal solution (w?, b?), we argue exactly as above that b? may be chosen so that the optimal regressor

contains some datapoint — say, (x1, y1). Holding b? and w(j), j 6= 1 fixed, we argue, as above, that w(1) may be chosen

so that the optimal regressor contains another datapoint (say, (x2, y2)). Proceeding in this fashion, we inductively argue

that the optimal regressor may be chosen to contain some d + 1 datapoints, which provides the requisite compression

scheme. ⇤

Similarly, we can obtain a compression scheme for `1 loss via linear programming.

Theorem 7.9 There exists an efficiently computable (see the linear program in Eq. (7.8)) exact compression scheme for

agnostic `1 linear regression of size d+ 2.

Proof. Given m labeled points in Rd ⇥ R, S = {(xi, yi) : i 2 [m]} and any w 2 Rd, b 2 R define the empirical risk

L(w, b) := max {|hw, xii+ b� yi| : i 2 [m]} .

We cast the risk minimization problem as a linear program.

Linear programming for `1 regression:

min
(✏,w,b)2Rd+2

: ✏ (7.8)

s.t. 8i : ✏� hw, xii � b+ yi � 0

✏+ hw, xii+ b� yi � 0.

(As before, the constraint ✏ � 0 is implicit in the other constraints.) Introducing the Lagrange multipliers �i, µi � 0,

i 2 [m], we cast the optimization problem in the form of a Lagrangian:

L(✏,w, b, µ1 . . . , µm,�1 . . . ,�m) = ✏�
mX

i=1

�i (✏� hw, xii � b+ yi)�
mX

i=1

µi (✏+ hw, xii+ b� yi) .
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The KKT conditions imply, in particular, that

8i : �i(✏� hw, xii � b+ yi) = 0

µi(✏+ hw, xii+ b� yi) = 0.

Geometrically, this means that either the constraints corresponding to the ith datapoint are inactive — in which case,

omitting the datapoint does not affect the solution — or otherwise, the ith datapoint induces the active constraint

hw, xii+ b� yi = ✏. (7.9)
⇤

In analogy with SVM, let us refer to the datapoints satisfying (7.9) as the support vectors; clearly, the remaining sample

points may be discarded without affecting the solution. Solutions to (7.8) lie in Rd+2 and hence d+2 linearly independent

datapoints suffice to uniquely pin down an optimal (✏,w, b) via the equations (7.9).

Exact Constant Size Compression Is Impossible for p 2 (1,1)

We proceed to show that it is impossible to have an exact compression scheme of constant size (independent of the

sample size) for p 2 (1,1), generalizing the result for the `2 loss by David et al. [40, Theorem 4.1].

Theorem 7.10 (David et al. [40]) There is no exact agnostic sample compression scheme for zero-dimensional linear

regression with size k(m)  m/2.

Theorem 7.11 There is no exact agnostic sample compression scheme for zero-dimensional linear regression under `p

loss, 1 < p <1, with size k(m) < log(m).

Proof. Consider a sample (y1, . . . , ym) 2 {0, 1}m. Partition the indices i 2 [m] into S0 := {i 2 [m] : yi = 0} and

S1 := {i 2 [m] : yi = 1}. The empirical risk minimizer is given by

r̂ := argmin
s2R

mX

i=1

|yi � s|p.

To obtain an explicit expression for r̂, define

F (s) =
mX

i=1

|yi � s|p = |S1|(1� s)p + |S0|sp =: N1(1� s)p +N0s
p.

We then compute

F 0
(s) = pN0s

p�1 � pN1(1� s)p�1

and find that F 0
(s) = 0 occurs at

ŝ =
µ1/(p�1)

1 + µ1/(p�1)
,
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where µ = N1/N0. A straightforward analysis of the second derivative shows that ŝ = r̂ is indeed the unique minimizer

of F .

Thus, given a sample of size m, the unique minimizer r̂ is uniquely determined by N0 — which can take on any of

integer m + 1 values between 0 and m. On the other hand, every output of a k-selection function  outputs a multiset

Ŝ ✓ S of size k0 and a binary string of length k00
= k � k0. Thus, the total number of values representable by a

k-selection scheme is at most

kX

k0=0

k0
2
k�k

0
< 2

k+1 � k,

which, for k < logm, is less than m. ⇤

Remark 7.12 A more refined analysis, along the lines of David et al. [40, Theorem 4.1], should yield a lower bound of

k = ⌦(m). A technical complication is that unlike the p = 2 case, whose empirical risk minimizer has a simple explicit

form, the general `p loss does not admit a closed-form solution and uniqueness must be argued from general convexity

principles.

7.5 Open Problems

The positive result for `1 loss may also lead us to wonder how general of a result might be possible. In particular, noting

that the pseudo-dimension [33, 216, 217] of linear functions in Rd is precisely d+1 [33], there is an intriguing possibility

for the following generalization. For any class F of real-valued functions, denote by Pdim(F) the pseudo-dimension of

F .

Open Problem 7.13 : Compressing to pseudo-dimension Number of Points. Under the `1 loss, does every class F of

real-valued functions admit an exact agnostic compression scheme of size Pdim(F)?

It is also interesting, and perhaps more approachable as an initial aim, to ask whether there is an agnostic compression

scheme of size at most proportional to Pdim(F). Even falling short of this, one can ask the more basic question

of whether classes with Pdim(F) < 1 always have bounded agnostic compression schemes (i.e., independent of

sample size m), and more specifically whether the bound is expressible purely as a function of Pdim(F) (Moran and

Yehudayoff [132] have shown this is always possible in the realizable classification setting).

These questions are directly related to (and inspired by) the well-known long-standing conjecture of Warmuth [191],

Floyd and Warmuth [195], which asks whether, for realizable-case binary classification, there is always a compression

scheme of size at most linear in the VC dimension of the concept class. Indeed, it is clear that a positive solution of

our open problem above would imply a positive solution to the original sample compression conjecture, since in the

realizable case with a function class F of {0, 1}-valued functions, the minimal empirical `1 loss on the data is zero, and

any function obtaining zero empirical `1 loss on a data set labeled with {0, 1} values must be {0, 1}-valued on that data

set, and thus can be thought of as a sample-consistent classifier.3 Noting that, for F containing {0, 1}-valued functions,

3To make such a function actually binary-valued everywhere, it suffices to threshold at 1/2.
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Pdim(F) is equal to the VC dimension, the implication is clear.

The converse of this direct relation is not necessarily true. Specifically, for a set F of real-valued functions, consider

the set H of subgraph sets: hf (x, y) = I[y  f(x)], f 2 F . In particular, note that the VC dimension of H is precisely

Pdim(F). It is not true that any realizable classification compression scheme for H is also an agnostic compression

scheme for F under `1 loss. Nevertheless, this reduction-to-classification approach seems intuitively appealing, and it

might possibly be the case that there is some way to modify certain types of compression schemes for H to convert them

into agnostic compression schemes for F . Following up on this line of investigation seems the natural next step toward

resolving the above general open question.

Similarly, we ask the analogous question for the `2 loss and approximate sample compression schemes.

Open Problem 7.14 : Compressing to a fat-shattering Number of Points. Let c > 0 be an absolute constant. Under

the `2 loss, does every class F of real-valued functions admit an ↵-approximate agnostic compression scheme of size

fat(F , c↵)?

7.6 Deferred Proofs

Our proof for Theorem 7.3 relies on several auxiliary results.

Existence of approximate weak learners. The following boosting and sparsification claims were proven for the

case of a fixed cut-off parameter. The proofs extend similarly to the case of a changing cut-off parameter  : X ⇥ Y !

[0, 1].

Boosting. Following [131], we define the weighted median as

Median(y1, . . . , yT ;↵1, . . . ,↵T ) = min

(
yj :

P
T

t=1
↵tI[yj < yt]P
T

t=1
↵t

<
1

2

)
,

and the weighted quantiles, for � 2 [0, 1/2], as

Q+

�
(y1, . . . , yT ;↵1, . . . ,↵T ) = min

(
yj :

P
T

t=1
↵tI[yj < yt]P
T

t=1
↵t

<
1

2
� �

)

Q�

�
(y1, . . . , yT ;↵1, . . . ,↵T ) = max

(
yj :

P
T

t=1
↵tI[yj > yt]P
T

t=1
↵t

<
1

2
� �

)
.

We define Q+

�
(f1, . . . , fT ;↵1, . . . ,↵T )(x) = Q+

�
(f1(x), . . . , fT (x);↵1, . . . ,↵T ), and Q�

�
(f1, . . . , fT ;↵1, . . . ,↵T )(x) =

Q�

�
(f1(x), . . . , fT (x);↵1, . . . ,↵T ), and Median(f1, . . . , fT ;↵1, . . . ,↵T )(x) = Median(f1(x), . . . , fT (x);↵1, . . . ,↵T ).

We omit the weights ↵i when they are equal to each other. The following guarantee holds for the boosting procedure.

Lemma 7.15 Let S = {(xi, yi)}mi=1, T = O
⇣

1

�2 log(m)

⌘
. Let f̂1, . . . , f̂T and ↵1, . . . ,↵T be the functions and

coefficients returned from the median boosting procedure with changing cut-offs (Step 2 in Algorithm 9). For any i 2
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{1, . . . ,m} it holds that

max

n���Q+

�/2
(f̂1, . . . , f̂T ;↵1, . . . ,↵T ))(xi)� yi

��� ,
���Q�

�/2
f̂1, . . . , f̂T ;↵1, . . . ,↵T )(xi)� yi

���
o
  (x, y) + 2↵.

Sparsification.

Lemma 7.16 Choosing

n = ⇥

✓
1

�2
fat

⇤
(F , c↵) log2(fat⇤(F , c↵) /↵)

◆

in Step 3 of Algorithm 9, we have for all (x, y) 2 S |Median(fJ1(x), . . . , fJn(x))� y|   (x, y) + 3↵, where c > 0

is a universal constant.
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