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Abstract

Function approximation has become an increasingly important topic in reinforcement learning
(RL), driven by advances in machine learning and the need to handle large, non-linear function
classes. Despite recent progress, no existing algorithms fully address this challenge efficiently.
This thesis explores way to improve RL’s effectiveness in common scenarios while maintaining
theoretical guarantees.

This work contributes with introducing the concept of the effective horizon, extending the
Eluder dimension to define the expected Eluder dimension, and leveraging multi-agent systems
and generative models.

Our results improve scalability, reduce sample complexity, and demonstrate regret bounds with
potentially lower dimensional dependence. These contributions collectively advance RL, making
it more efficient and applicable to real-world scenarios.



Contents

1 Introduction and Preliminary 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5
2.1 Reinforcement Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Function Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Key Concepts in Multi-Agent Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 9

3 Olive: Multi-Agent 11
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Contextual Decision Processes (CDPs) . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Section Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Olive: Multi-Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Iteration Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Sample Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Near optimality of πout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Complete The Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Olive-Generative: Multi-Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 The Many Faces of Eluder Dimension 23
4.1 Standard Definition of Eluder Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Distributional Eluder Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Functional Eluder Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Generalized Eluder Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Summary of Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Expected Eluder Dimension 25
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Effective Dimension Reduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.2 Practical Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.1 The Expected Eluder Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.2 The High Probability Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Improved Analysis of the GOLF Algorithm 43
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 ϵ-Optimality: Improved GOLF Sample Complexity and Regret Analysis . . . . . . . . . . . 45
6.3 Sections’ Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1



7 Opera Improving Sample Complexity 50
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Admissible Bellman Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3 Opera Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.4 Regret Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.5 ϵ-Optimality: Improved Opera Sample Complexity and Regret Analysis . . . . . . . . . . . 54
7.6 Sections’ Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

References 58

Hebrew Cover 62

2



1 Introduction and Preliminary

1.1 Introduction

Reinforcement Learning (RL) has emerged as a powerful framework for modeling and solving complex
decision-making problems. At its core, RL involves an agent interacting with an environment to learn
optimal behaviors through trial and error, guided by the maximization of cumulative rewards. This itera-
tive process of learning from feedback has seen remarkable successes in diverse applications ranging from
robotics (Kober et al., 2013) and game playing (Silver et al., 2016) to personalized recommendations (Zheng
et al., 2018) and autonomous driving (Kiran et al., 2021).

One of the cornerstone concepts in RL theory is the Markov Decision Process (MDP), which provides
a formalism for modeling sequential decision-making problems. MDPs are characterized by a state space,
action space, transition dynamics, and a reward function, serving as the basis for many RL algorithms
(Agarwal et al., 2021; Mannor et al., 2022; Puterman, 2014). The goal of reinforcement learning is to find
an optimal policy, which is a strategy that defines the action an agent should take in each state of a MDP to
maximize the expected cumulative reward over time.

Probably Approximately Correct (PAC) learning (Valiant, 1984) in supervised learning provides a frame-
work to evaluate the performance of learning algorithms by ensuring that, with high probability, the learned
hypothesis is approximately correct within a specified error margin. This approach offers theoretical guar-
antees on the number of samples needed to achieve a certain level of accuracy, making it a foundational
concept in the study of machine learning efficiency.

The definition of PAC in RL, following Kearns and Singh (1999), is similar to supervised learning.
An algorithm is designed to learn a policy that is approximately optimal with high probability while min-
imizing the number of samples. The primary goal is to ensure that after a polynomial number of samples.
The number of samples is relative to the relevant parameters of the MDP such as the size of the state and
action spaces, the horizon, and the approximation parameters. This framework is crucial for understand-
ing the sample efficiency of RL algorithms, as it provides bounds on the number of interactions with the
environment required to achieve near-optimal performance.

Function approximation for large MDPs (Sutton and Barto, 2018; Mannor et al., 2022; Agarwal et al.,
2021), mainly large state spaces, in reinforcement learning involves estimating the value function, on its
shapes, or the policy function using techniques such as linear models, neural networks, or kernel methods.
This approach enables RL algorithms to generalize from limited data to vast or continuous state-action
spaces, making it possible to handle large-scale or complex environments efficiently.

Sample-efficient RL algorithms (Chen et al., 2022; Jiang et al., 2017; Jin et al., 2021a; Agarwal et al.,
2022) aim to maximize learning performance while minimizing the number of interactions required with
the environment. These algorithms employ techniques such as efficient exploration strategies, function
approximation, and leveraging prior knowledge to achieve near-optimal policies with fewer samples, making
them suitable for real-world applications where data collection is costly or time-consuming.

In multi-agent reinforcement learning (MARL) (see, Busoniu et al. (2008); Zhang et al. (2021); Hernandez-
Leal et al. (2019); Foerster et al. (2018)), sample efficiency becomes even more critical as multiple agents in-
teract within a shared environment, each learning policies to optimize their individual or collective rewards.
Efficient MARL algorithms must account for the added complexity of agent interactions and coordination,
employing advanced strategies to ensure that all agents learn effectively with minimal samples.

This thesis makes several significant contributions to the field of reinforcement learning (RL), particu-
larly in the context of function approximation. By enhancing sample efficiency and practical implementation
through multi-agent systems and generative models, we advance the foundational algorithms in meaningful
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ways. The key contributions are as follows:

1. Improvement of Sample Efficiency:

• We introduce the concept of the effective horizon, a novel definition that refines the under-
standing of Iterations Complexity in RL problems. By utilizing this concept, we develop more
sample-efficient algorithms that require fewer interactions with the environment to achieve near-
optimal performance.

• We propose the expected Eluder dimension, extending the Eluder dimension framework to ac-
count common distributions. This new dimension provides a more nuanced measure of com-
plexity for function approximation in RL, leading to algorithms that are better at balancing
exploration and exploitation.

2. Multi-Agent Systems for Practical Implementability:

• We leverage multi-agent systems to enhance the practical implementability of RL algorithms.
By coordinating multiple agents within a shared environment, we develop algorithms that are not
only theoretically sound but also more realistic and applicable to complex real-world scenarios.

• Our multi-agent framework improves the scalability and robustness of RL algorithms, making
them suitable for tasks that involve cooperation or competition among multiple entities.

3. Generative Models for Enhanced Sample Efficiency:

• We employ the concept of generative models to further improve sample efficiency. Generative
models allow for the simulation of environment dynamics, enabling agents to learn optimal
policies with fewer real-world interactions.

• By integrating generative models into our RL algorithms, we demonstrate significant reductions
in sample complexity, making the learning process more efficient and feasible for practical ap-
plications.

Overall, the contributions of this thesis advance the fundamental algorithms in function approxima-
tion for reinforcement learning by introducing new theoretical concepts, leveraging multi-agent systems for
practical implementation, and utilizing generative models to achieve better sample efficiency. These ad-
vancements bring us closer to developing RL algorithms that are both highly efficient and applicable to a
wide range of real-life problems.

1.2 Related Work

The field of reinforcement learning (RL) has a rich theoretical foundation, particularly in the study of
Markov Decision Processes (MDPs) with small state spaces. Early works, such as those by Kearns and
Singh (2002), Brafman and Tennenholtz (2002), and Strehl et al. (2006), established PAC-MDP bounds that
are polynomial in the number of states S and actions A, focusing on sophisticated exploration techniques to
find near-optimal policies in a sample-efficient manner. However, extending these techniques to large state
spaces has proven challenging, as evidenced by the works of Kakade et al. (2003), Jong and Stone (2007),
and Pazis and Parr (2016), which often struggle to address the complexities of practical scenarios involving
high-dimensional sensory inputs.
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As RL research has evolved, there has been a growing emphasis on RL under nonlinear function approx-
imation to model complex function spaces, such as neural networks. This shift has led to the development
of rank-based measures that capture the hardness of RL in these settings, with frameworks like Bellman
rank (Jiang et al., 2017), low Eluder dimension (Wang et al., 2020), Bellman-Eluder dimension (Jin et al.,
2021a), and Bilinear classes (Du et al., 2021). These measures have paved the way for designing algorithms
that provide PAC guarantees, such as the OLIVE algorithm, which leverages Bellman rank, and the GOLF

algorithm, which incorporates the Bellman operator into complexity measures.
Eluder dimension, introduced by Russo and Van Roy (2013), and its various extensions have further

refined the understanding of informational independence among decisions, influencing the balance between
exploration and exploitation in RL. Notable contributions in this area include the Generalized Eluder dimen-
sion (Agarwal et al., 2022), which extends these concepts to broader function classes. When aiming to learn
PAC policies, it is crucial that the algorithm’s complexity is polynomial relative to the Bellman rank or the
Eluder dimension. Theoretical analyses of algorithms such as OPERA (Chen et al., 2022) have demonstrated
significant improvements in sample complexity, making RL more feasible for real-world applications where
data collection is costly or time-consuming.

In the context of multi-agent reinforcement learning (MARL), significant strides have been made, partic-
ularly in Markov Games (MGs), where research focuses on convergence to an equilibrium (Littman, 1994;
Jin et al., 2021b; Qiao and Wang, 2024). Decentralized MARL, which emphasizes independent learning and
convergence without central coordination, has also been extensively studied (Kretchmar, 2002; Zhang et al.,
2018; Zhuo et al., 2020; Zhang et al., 2021; Dubey and Pentland, 2021a; Mao et al., 2022). For instance,
works like Qi et al. (2021) have developed unified versions of TD and Q-learning, while Fan et al. (2022)
explored policy gradients with fault tolerance.

This thesis focuses on cooperative MARL, particularly in function approximation settings. Cooperative
MARL, where all agents collaborate to achieve a shared goal, represents a significant portion of MARL
research. In homogeneous settings, where the underlying MDP is the same for every agent, we explore
algorithms with low regret guarantees, extending beyond existing works that address non-stationary envi-
ronments and heterogeneity (Lowe et al., 2017; Yu et al., 2021; Kuba et al., 2022; Liu et al., 2022; Jin et al.,
2022; Dubey and Pentland, 2021b; Min et al., 2023).

Several key advancements have shaped our understanding of reinforcement learning and multi-agent
systems. Lancewicki et al. (2022) made notable contributions by addressing the challenges of fresh/non-
observations in tabular settings, which is crucial for cooperative multi-agent systems. In the realm of rare
policy switching (RPS), Zhao et al. (2023) extended the framework of the Generalized Eluder Dimension
(Agarwal et al., 2022), providing deeper insights into RPS complexities and its practical applications in RL.

Batch learning has also seen significant advancements, with Xiong et al. (2023) exploring the L2-
EC (Euclidean norm - Eluder Condition) and optimizing batch processing for better learning outcomes.
Moreover, asynchronous communication—a critical aspect of distributed systems—has been effectively ad-
dressed by Min et al. (2023), particularly in the context of linear function approximation, demonstrating
how asynchronous methods can maintain performance despite communication delays.

2 Preliminaries

In this section, we introduce the foundational concepts and formal definitions that are essential for under-
standing the reinforcement learning (RL) framework discussed in this thesis. We begin by defining the core
model used in RL, known as the Markov Decision Process (MDP). This model provides the mathematical
structure required to describe the environment in which an RL agent operates.
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2.1 Reinforcement Learning Model

To formalize the interaction between an agent and its environment, we use the concept of a Markov Decision
Process (MDP). The MDP framework encapsulates the dynamics of the environment, the actions available
to the agent, and the rewards the agent can receive.

Definition 1 (Markov Decision Process (MDP)). A Markov Decision Process (MDP) is a mathematical
framework used to describe an environment in reinforcement learning. An MDP is defined by a tuple
(S,A,P,R, γ), where:

• S is a finite set of states.

• A is a finite set of actions.

• P : S × A × S → [0, 1] is the state transition probability function, where P(s′|s, a) denotes the
probability of transitioning to state s′ from state s after taking action a.

• R : S × A → R is the reward function, where R(s, a) denotes the immediate reward received after
taking action a in state s.

• γ ∈ [0, 1] is the discount factor, which represents the difference in importance between future rewards
and immediate rewards.

The MDP framework serves as the basis for defining the optimal behavior of an RL agent. The goal of
the agent is to learn a policy that maximizes the expected cumulative reward over time.

Definition 2 (Policy in Reinforcement Learning). In reinforcement learning (RL), a policy is a strategy used
by an agent to determine its actions based on the current state of the environment. Formally, a policy π is a
mapping from states S to actions A. There are two main types of policies:

• Deterministic Policy: A deterministic policy maps each state to a specific action, i.e., π : S → A.
For any state s ∈ S, π(s) specifies the action to be taken when the agent is in state s.

• Stochastic Policy: A stochastic policy defines a probability distribution over actions for each state,
i.e., π(a|s) is the probability of taking action a when the agent is in state s. This allows for a ran-
domized decision-making process, which can be useful in environments with inherent uncertainty or
where exploration is necessary.

The goal of reinforcement learning is to find an optimal policy π⋆ that maximizes the expected cumula-
tive reward for the agent over time. The performance of a policy is typically evaluated using value functions,
such as the state-value function V π(s) or the action-value function Qπ(s, a), which estimate the expected
return starting from state s (and action a) and following policy π thereafter. Finding an optimal policy in-
volves solving the underlying Markov Decision Process (MDP) by optimizing these value functions through
various algorithms, such as policy iteration, value iteration, or actor-critic methods.

Bellman Equations The Bellman equations are fundamental to dynamic programming and reinforcement
learning. They describe the relationship between the value of a state and the values of its successor states.
There are two primary forms of the Bellman equation: the Bellman Expectation Equation and the Bellman
Optimality Equation. We will focus on the Bellman Optimality Equation.

6



Bellman Optimality Equation. The optimal value function V ∗(s) is defined as the maximum expected
cumulative reward that can be obtained from state s. The Bellman Optimality Equation for V ∗(s) is:

V ∗(s) = max
a

[
R(s, a) + γ

∑
s′

P(s′|s, a)V ∗(s′)

]
.

Similarly, the action-value function Q∗(s, a) is given by:

Q∗(s, a) = R(s, a) + γ
∑
s′

P(s′|s, a)max
a′

Q∗(s′, a′).

These equations form the basis for many RL algorithms some of them we will see in the next sections.

PAC Learning in Reinforcement Learning Probably Approximately Correct (PAC) learning is a frame-
work in reinforcement learning (RL) that provides theoretical guarantees on the performance of learning
algorithms. In PAC learning, an algorithm is designed to learn a policy that is approximately optimal with
high probability, within a specified number of samples. The primary goal is to ensure that, with probability
at least 1−δ, the learned policy’s performance is within ϵ of the optimal policy, after a polynomial number of
samples in terms of the relevant parameters such as the size of the state and action spaces, the horizon, 1/ϵ,
and 1/δ. This framework is crucial for understanding the sample efficiency of RL algorithms, as it provides
bounds on the number of interactions with the environment required to achieve near-optimal performance.

Recent advancements have extended PAC learning results to more complex settings, including function
approximation and multi-agent systems, demonstrating the robustness and applicability of PAC guarantees
in practical RL scenarios. These theoretical insights help in designing algorithms that are both effective and
efficient, ensuring that they can be applied to real-world problems where sample efficiency is paramount.

To further improve the sample efficiency and performance of RL algorithms, many approaches leverage
the concept of generative models. These models allow the agent to simulate interactions with the environ-
ment, providing additional samples without the need for real-world interactions. This concept is formalized
in the following definition:

Definition 3 (Generative Model). Assume we have access to a generative model or a sampler, which can
provide us with samples from the environment. Specifically, given any state-action pair (s, a), the generative
model can generate a next state ŝ ∼ P (·|s, a) and reward r̂ ∼ R(s, a) according to the transition dynamics
and reward function of the MDP. This capability allows the algorithm to perform planning and learning
with potentially fewer real-world interactions, significantly enhancing sample efficiency.

2.2 Function Approximation

Value-based RL and Function Approximation We consider value-based RL with function approxima-
tion. The agent is given a set of functions F ⊆ X × A → [0, 1] and uses it to approximate an action-value
function (or Q-value function). Without loss of generality, we assume that f(xH+1, a) ≡ 0.

For the purpose of presentation, we assume that F is a finite space with |F| = N < ∞ for beginning
and later from Section 4, we relax this assumption and allow infinite function classes with finite ϵ-cover
(Definition 10).

As in typical value-based RL, the goal is to identify f ∈ F which respects a particular set of Bellman
equations and achieves a high value with its greedy policy πf (x) = argmaxa∈A f(x, a). We next set up
the appropriate extensions of Bellman equations to MDPs and the optimal value V ⋆ through a series of
definitions. Unlike typical definitions in MDPs, these involve both the MDP and function approximator F .
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Definition 4 (Average Bellman error). Given any policy π : X → A and a function f : X × A → [0, 1],
the average Bellman error of f under roll-in policy π at level h is defined as

E(f, π, h) = E
[
f(xh, ah)− rh − f(xh+1, ah+1)

∣∣ a1:h−1 ∼ π, ah:h+1 ∼ πf
]
. (1)

In words, the average Bellman error measures the self-consistency of a function f between its predictions
at levels h and h+ 1 when all the previous actions are taken according to some policy π.

Next, we introduce the concept of Bellman factorization, which provides a structured way to analyze
the complexity of MDPs when using function approximation. This leads to the definition of Bellman rank,
a measure that captures the difficulty of learning in these settings.

Definition 5. (Bellman factorization and Bellman rank).
We say that a MDP (X , A,H, P ) and F ⊆ X ×A→ [0, 1] admit Bellman factorization with Bellman rank
d and norm parameter ζ, if there exists νh : F → Rd, ξh : F → Rd for each h ∈ [H], such that for any
f, f ′ ∈ F , h ∈ [H],

E(f, πf ′ , h) = ⟨νh(f ′), ξh(f)⟩, (2)

Where E(f, πf ′ , h) is the average Bellman error, and ∥νh(f ′)∥2 · ∥ξh(f)∥2 ≤ ζ <∞.

This factorization not only decomposes the average Bellman error into more manageable components
but also introduces the Bellman rank as a key parameter that influences the learning complexity in RL tasks.
A low Bellman rank indicates that the problem is easier to solve with fewer samples, making it an important
metric in designing efficient RL algorithms.

Finally, we formalize the notion of the validity of a function f with respect to the Bellman equation.
This concept is central to determining whether a function is a good fit for modeling the value function in an
MDP.

Definition 6 (Bellman equations and validity of f ). Given an (f, π, h) triple, a Bellman equation posits
E(f, π, h) = 0. We say f ∈ F is valid if the Bellman equation on (f, πf ′ , h) holds for every f ′ ∈ F , h ∈
[H].

Fact 7 (Q⋆ is always valid). Given an MDP and a space of functions F : S × [H] × A → [0, 1], if the
optimal Q-value function of the MDP Q⋆ lies in F , then in the corresponding MDP with X = S × [H], Q⋆

is valid.

The fact that Q⋆ is always valid within the function class F highlights the importance of selecting
a function class that includes Q⋆. This leads us to the assumption of realizability, which formalizes the
condition that such an optimal function exists within the chosen hypothesis class.

Assumption 8 (Realizability). For an MDP model M and a hypothesis class F , we say that the hypothesis
class F is realizable with respect to M if there exists a f∗ ∈ F such that for any h ∈ [H], Q∗

h(s, a) =
Qh,f∗(s, a). We call such f∗ an optimal hypothesis.

Realizability is a critical assumption that ensures the function class F is rich enough to include an
optimal hypothesis. However, for reinforcement learning algorithms to perform well, it’s not only important
that Q⋆ is realizable, but also that the function class F is closed under the Bellman operator. This leads to
the completeness assumption:

Assumption 9. [Completeness] For a Function class F , the completeness assumption define if for another
function class G, holds that F is closed under bellman operator. i.e. {g|g = T f ∀f ∈ F} ⊂ G
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To measure the capacity of the function class F , we introduce the concept of the ϵ-covering number,
which helps in quantifying the richness of the hypothesis space.

Definition 10 (ϵ-covering Number of Hypothesis Class). For any ϵ > 0 and a hypothesis class F , we use
NF (ϵ) to denote the ϵ-covering number, which is the smallest possible cardinality of (an ϵ-cover) Fϵ such
that for any f ∈ F there exists a f ′ ∈ Fϵ such that ρ(f, f ′) ≤ ϵ.

For example for model-free cases where f, g are value functions, ρ(f, g) = maxh∈[H] ∥fh − gh∥∞. For
model-based RL, where f and g represent transition probabilities, we adopt ρ(P,Q) = maxh∈[H]

∫
(
√
dPh−√

dQh)
2, which corresponds to the maximal (squared) Hellinger distance between two probability distribu-

tion sequences.
We now define the structure of the function class representation for the finite horizon setup, which is

essential for understanding how the learner approximates the optimal Q-value function over time.

Definition 11 (Function Class Representation). For finite horizon setup, the learner is given a function class
F = F1 × · · · × FH , where Fh ⊆ (S × A → [0, 1]) offers a set of candidate functions to approximate
Q⋆

h—the optimal Q-value function at step h. Since no reward is collected in the (H + 1)th steps, we always
set fH+1 = 0.

This representation ensures that the function class is appropriately structured to capture the value func-
tion across all time steps in the finite horizon setup, thereby enabling the learning algorithm to effectively
approximate the optimal policy.

2.3 Key Concepts in Multi-Agent Reinforcement Learning

In multi-agent reinforcement learning (MARL), multiple agents interact within a shared environment, learn-
ing to optimize their individual or collective rewards through cooperation or competition. This setting intro-
duces additional complexities beyond single-agent RL, such as coordinating actions, sharing information,
and ensuring that learning remains stable and efficient across all agents. In this subsection, we outline the
learning objectives in the multi-agent context and describe how agents interact within the environment.

Learning Objective Our goal is to achieve a PAC-guarantee while ensuring sample-efficient learning in
Markov Decision Processes (MDPs) where the value function can be approximated by a structured function
class. Specifically, we seek to find a policy π : S → A whose value function can be effectively represented
by a function approximator f ∈ F . The learning algorithm is designed to use a polynomial number of
trajectories, Poly(d,H,N, 1ϵ , δ), to identify an ϵ-suboptimal policy, where d is the dimension capturing
the complexity of F , H is the planning horizon, N is the cardinality of F , and δ represents the allowable
probability of failure.

Multi-Agent Interaction. A team I of m agents interacts with the Markov Decision Process (MDP)M
with the collective goal of optimizing a shared objective, such as maximizing the cumulative reward across
the team. At the beginning of each episode t, each agent Ai ∈ I selects a policy πt,i and begins in the initial
context xt1. At each time step h = 1, . . . ,H , every agent observes its current context xt,ih and selects an
action at,ih ∼ πt,i(·|xt,ih ), where the chosen action is based on the agent’s current policy and observed state.
The agents’ interactions and decisions influence the state transitions and the overall outcome, requiring co-
ordination and strategy to achieve the common goal effectively.
In the fresh randomness model, the next state is sampled independently for each agent, i.e., st,ih+1 ∼
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ph(·|st,ih , at,ih ). For non-fresh randomness, the next state st,ih+1 is the same for each state-action pair
Sk
h(s, a) ∼ ph(·|s, a) ahead of the episode, and then every agent i that takes action a in s at time h tran-

sitions to the same state Sk
h(s, a), i.e., st,ih+1 = Sk

h(s
t,i
h , at,ih ). Similarly, the reward Rt,i

h suffered by the
agent is either sampled independently when randomness is fresh, or sampled once for each state-action pair
(s, a) ahead of the episode when randomness is non-fresh. At the end of the episode, the team observes the

trajectories and costs of all agents
{
st,ih , at,ih , Rt,i

h

}H,m

h=1,i=1
.

Switching Cost The concept of switching cost is used to quantify the adaptability of reinforcement learn-
ing algorithms. The main focus of our work is the global switching cost, which counts the number of policy
changes in the running of the algorithm in K episodes, namely:

Nswitch ≜
K−1∑
k=1

I {πk ̸= πk+1} (3)

Rare Policy Switching (RPS) in RL refers to a strategy where the learning agent updates its policy in-
frequently and only under certain conditions, typically when enough significant data has been gathered to
justify a change. This approach is designed to limit the frequency of policy changes to reduce the compu-
tational and learning overhead associated with each switch, aiming to maintain a stable learning trajectory
over longer periods. The infrequency of the switches contributes to the switching cost, balancing the need
for policy improvement against the stability of the learning process. Rare policy switching is particularly
valuable in environments where the act of switching itself incurs a cost or when the learning algorithm
benefits from longer periods of consistent policy application to adequately assess performance.

Batch Learning [Multi-Batch] in the context of RL is a learning paradigm where the decision-making
agent divides the learning process into discrete, sequential segments called ”batches”. Within each batch, the
agent commits to a single policy, only updating or changing this policy at the conclusion of the batch. This
approach contrasts with more continuous learning strategies where policies may be updated more frequently.

The difference between the rare policy switch setting and batch learning setting is that, in the RPS
case, the algorithm can adaptively decide when to switch the policy based on the data, whereas in the batch
learning case, the episodes where the agent adopts a new policy are deterministically decided before the first
episode. In other words, in reinforcement learning with rare policy switches, we are confident to achieve
a sublinear Õ(

√
K) regret, e.g., using an online reinforcement learning algorithm that switches the policy

after each episode. The goal is to attain the desired regret with a small number of policy switches. In
contrast, in the batch learning setting, with B fixed, we aim to minimize the regret, under the restriction that
the number of policy switches is no more than B.

Problem Equivalence. We observed that Multi-Batch and Multi-Agent frameworks exhibit equivalent
characteristics, suggesting that a solution developed for one can be effectively adapted to address the other.
On the other hand, RPS aligns in parallel with these frameworks is still unknown. This complexity largely
stems from the integrated feedback gathered at the end of each episode, which directly influences policy
switch.
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Asynchronous Communication In the multi-agent setting, the agents need to communicate (i.e., share
data) to collaboratively learn the underlying optimal policy while minimizing the regret. Without commu-
nication, the problem would reduce to m separate single-agent MDP problems. In general case, this would
lead to a worst-case regret of order Õ(m

√
K/m), which suffers from an extra

√
m factor as compared to

the regret in the single-agent setting. In the following sections we will show that this extra factor can be
avoided at the cost of a small number of communication rounds.

3 Olive: Multi-Agent

3.1 Introduction

Building upon the pioneering work of Jiang et al. (2017) our exploration into the complexities of reinforce-
ment learning (RL) benefits significantly from their foundational contributions. They introduced Contex-
tual Decision Processes (CDPs), a sophisticated framework designed to navigate decision-making scenarios
where agents process complex, rich sensory information and historical context. Additionally, they developed
the Bellman factorization structure, a critical advancement that systematizes the decision-making process.
To solve the challenges posed by CDPs, they proposed the OLIVE algorithm, a novel approach that signif-
icantly enhances the understanding and application of reinforcement learning in environments laden with
intricate sensory inputs.

Our research extends their innovative work into new territories, specifically focusing on multi-agent
environments and the utilization of generative models, where the learner can query any state-action pair and
observe a next state and reward. By adapting the principles underlying CDPs and the Bellman factorization,
along with the foundational strategies of the OLIVE algorithm, we present novel contributions tailored for
the complexities of interacting agents and dynamic, generative settings. Our work not only demonstrates the
versatility and applicability of the framework in broader contexts but also showcases our advancements in
deploying these concepts to address and solve new, emergent challenges in reinforcement learning. Through
this, we aim to push the boundaries of what’s possible in RL, leveraging the solid foundation laid by to
explore and innovate within the realms of multi-agent systems and generative environments.

3.1.1 Contextual Decision Processes (CDPs)

A Contextual Decision Process s make minimal assumptions to capture a very general class of RL problems
and are defined as follows.

Definition 12 (Contextual Decision Process (CDP )). A (finite-horizon) Contextual Decision Process (CDP for
short) is defined as a tuple (X ,A, H, P ), where X is the context space, A is the action space, and H is the
horizon of the problem. P = (PΦ, P+) is the system descriptor, where PΦ ∈ ∆(X ) is a distribution over
initial contexts, that is x1 ∼ PΦ, and P+ : (X × A × R)∗ × X × A → ∆(R × X ) elicits the next reward
and context from the interactions so far x1, a1, r1, . . . , xh, ah:

(rh, xh+1) ∼ P+(x1, a1, r1, . . . , xh, ah).

In a CDP , the agent’s interaction with the environment proceeds in episodes. In each episode, the agent
observes a context x1, takes action a1, receives reward r1 and observes x2, repeating H times. A policy
π : X → A specifies the decision-making strategy of an agent, that is ah = π(xh), ∀h ∈ [H], and induces
a distribution over the trajectory (x1, a1, r1, . . . , xH , aH , rH , xH+1) according to the system descriptor P .
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The value of a policy, V π, is defined as

V π = EP

[∑H
h=1 rH

∣∣∣ a1:H ∼ π
]
, (4)

where a1:H ∼ π abbreviates for a1 = π(x1), . . . , aH = π(xH). Here, and in the sequel, the expectation
is always taken over contexts and rewards drawn according to the system descriptor P , so we suppress the
subscript P for brevity. The goal of the agent is to find a policy π that attains the largest value.

Below we show that CDPs capture classical RL models, including MDPs and POMDPs, and the optimal
policies can be expressed as a function of appropriately chosen contexts.

Example 13 (MDPs with states as contexts). Consider a finite-horizon MDP (S,A, H,Γ1,Γ, R), where
S is the state space, A is the action space, H is the horizon, Γ1 ∈ ∆(S) is the initial state distribution,
Γ : S × A → ∆(S) is the state transition function, R : S × A → ∆([0, 1]) is the reward function, and
an episode takes the form of (s1, a1, r1, . . . , sH , aH , rH). We can convert the MDP to a CDP (X ,A, H, P )
by letting X = S × [H] and xh = (sh, h), which allows the set of policies {X → A} to contain the
optimal policy (Puterman, 2014). The system descriptor is P = (PΦ, P+), where PΦ(x1) = Γ1(s1), and
P+(rh, xh+1 |x1, a1, r1, . . . , xh, ah) = R(rh|sh, ah) Γ(sh+1|sh, ah).

Besides this example, we refer readers to the paper for additional examples that demonstrate the flexi-
bility of keeping contexts separate from states. We will employ the realizabllity assumption, noting that, in
general, F may not contain Q∗ or any valid functions at all. It is desirable to have an algorithm that is robust
to such scenarios. Our improvement of the algorithm, like its predecessor, requires only an approximate
notion of validity, ensuring graceful degradation in the results.

Finally, we introduce a regularity assumption on the rewards.

Assumption 14 (Boundedness of rewards). We assume that regardless of how actions are chosen, for any
h = 1, . . . ,H , rh ≥ 0 and

∑H
h=1 rh ≤ 1 almost surely.

We aim to improve the dependency on H , by working on all the layers simultaneously. therefore we
will use the next definition:

Definition 15. Let η > 0, t ∈ [T ], we define ht to be the number of layers h ∈ [H] where |E(ft, πt, hj)| ≥ η.
In other words, denote Ht =

{
h|h ∈ [H] & |E(ft, πt, hj)| ≥ η

}
and define ht = |Ht|. In addition, let

denote h̃ = 1
T ×

∑T
t=1 h

t, the average amount of layers that have a large exception.

3.1.2 Section Overview

In this section we present two algorithms. The first, OLIV E−Multi−Agent, will use the power of multi
agent to improve simultaniously H layers. The second, OLIV E−Generative−Multi−Agent, will use
the generative model (Definition 3) to improve the sample complexity in multi agent.

In addition to OLIV E inputs, we have now a set I of agents and we will show how it is affect the
sample complexity. The algorithm OLIV E −Multi−Agent achieve sample complexity of:

Õ

(
Hd log(Hdζ/ϵ)

h̃
×
(
1 +

dh̃H2A

|I|ϵ2
log(HNζ/δ)

))
, (5)

per agent. Furthermore, the algorithm OLIV E − Generative −Multi − Agent which achieve a better
sample complexity per agent:

Õ
(
Hd log(Hdζ/ϵ)

h̃
×
(
1 +

dH2A

|I|ϵ2
log(Nζ/δ)

))
. (6)
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3.2 Olive: Multi-Agent

Theorem 16. For any ϵ, δ ∈ (0, 1), any CDP and function class F that admits a Bellman factorization with
parameters d, ζ, run OLIV E −Multi−Agent with I as set of agents and the following parameters:

ϕ =
ϵ

12H
√
d
, η = 5ϵ/8H, nest =

32

ϵ2
log(6N/δ),

neval =
288H2

ϵ2
log

(
12H2d log(6H

√
dζ/ϵ)

δ

)
,

ntrain =
4608H2dA

ϵ2
log

(
12NHd log(6H

√
dζ/ϵ)

δ

)
.

Then, with probability at least 1−δ, OLIV E−Multi−Agent halts and returns a policy πout that satisfies
Vπout ≥ V ⋆

F − ϵ, and the number of episodes required is at most

Õ

(
Hd

h̃
×
(
1 +

dh̃H2A

|I|ϵ2
))

, (9)

We split the proof into three parts:

1. Subsection 3.2.1, bound the number of phases the algorithm executes before termination.

2. Subsection 3.2.2, bound the number samples per agent in each phase.

3. Subsection 3.2.3, prove optimality of πout.

3.2.1 Iteration Complexity

In this subsection, our goal is to establish an upper limit on the number of phases the algorithm executes
before termination. In order to create a common language that will help us analyze the algorithm more
easily we will introduce the following term:

Definition 17. A layer h ∈ Ht is called corrected. (Recall that ht = |St|.)

Based on this definition, we make the following distinction:

Observation 18. In every phase t > 0, we corrected ht > 0 layers, or we terminate.

Therefore, we are left to understand how many times during the algorithm we make a correction to some
layer.

Lemma 19. Every layer h ∈ [H], can be corrected at most Õ(d) times.

The proof will be found in Lemma 26. Next we bound the iteration complexity of the OLIV E −
Multi−Agent:

Theorem 20. Algorithm OLIV E −Multi−Agent terminates after at most Õ(Hd
h̃
) phases.
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Algorithm 1 OLIVE-Multi-Agent(F , d, I, ζ, ϵ, δ)

1: Collect nest trajectories with actions taken in an arbitrary manner; save initial contexts {x(i)1 }
nest
i=1.

2: Estimate the predicted value for each f ∈ F : V̂f = 1
nest

∑nest
i=1 f(x

(i)
1 , πf (x

(i)
1 )).

3: F0 ← F .
4: for t = 1, 2, . . . do
5: Choose policy ft = argmaxf∈Ft−1

V̂f , πt = πft .
6: for Agent Ai ∈ [I] do
7: Collect n = ⌈neval

|I| ⌉ trajectories by following πt.

8: Add to data set: Dt
eval = Dt

eval
·∪ {(x(i)1 , a

(i)
1 , ri1, . . . , x

(i)
H , a

(i)
H , r

(i)
H )}ni=1.

9: Estimate ∀h ∈ [H],

Ẽ(ft, πt, h) =
1

|Dt
eval|

∑
i∈Dt

eval

[
ft(x

(i)
h , a

(i)
h )− r

(i)
h − ft(x

(i)
h+1, a

(i)
h+1)

]
. (7)

10: if (1/H)
∑H

h=1 |Ẽ(ft, πt, h)| ≤ η then
11: Terminate and output πout = πt.
12: else Define the setHt =

{
h|h ∈ [H] & |Ẽ(ft, πt, hj)| ≥ η

}
{Definition 15}

13: for Agent Ai ∈ [I] do
14: Sample uniformly at random hti ∈ Ht.
15: Collect N = ⌈h

tntrain log(H/δ)
|I| ⌉ trajectories by following

π
ht
i

t :=

{
πt : h ̸= hti
πUNIF : h = hti

. where πUNIF is the uniform distrubtion over actions

16: Add to data set: Dt
ht
i
= Dt

ht
i

·∪ {(x(i)1 , a
(i)
1 , r

(i)
1 , . . . , x

(i)

ht
i
, â

(i)

ht
i
, r̂

(i)

ht
i
, x̂

(i)

ht
i+1

)}ni=1.

17: Estimate ∀h ∈ Ht for which |Ẽ(ft, πt, h)| ≥ η: {One is guaranteed to exist }

Ê(f, πt, h) =
1

|Dt
h|
∑
i∈Dt

h

1[â
(i)
h = πf (x

(i)
h )]

1/A

(
f(x

(i)
h , â

(i)
h )− r̂

(i)
h − f(x̂

(i)
h+1, πf (x̂

(i)
h+1))

)
. (8)

18: Learn

Ft =

f ∈
⋂

h∈[H]

{
f ∈ Ft−1 :

∣∣∣Ê(f, πt, h)∣∣∣ ≤ ϕ
} .
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Proof. Let T be the number of phases until termination. By Lemma 19, each level h ∈ [H], we corrected it
at most d′ = Õ(d) times. Therefore, for any h:

T∑
i=1

I{|Ẽ(ft, πt, h)| > η} ≤ d′.

On the other hand, in phase t we improve ht layers simultaneously, and we get that:

T∑
i=1

ht =

T∑
i=1

∑
h∈[H]

I{|Ẽ(ft, πt, h)| > η} ≤ Hd′.

Finally, using the Definition 15 we get that:

T h̃ =

T∑
i=1

ht ≤ Hd′ =⇒ T ≤ Hd′

h̃
.

3.2.2 Sample Complexity

Theorem 21 (Sample Complexity Per Agent). The average sample complexity in each phase of the algo-
rithm, for an agent is given by:

Õ

((
1 +

dh̃H2A

|I|ϵ2
))

, (10)

where d is a Bellman rank dimensionality parameter, H is the horizon, A is the number of actions, |I| is the
number of agents, ϵ is the accuracy parameter, and δ is the confidence parameter.

Proof. According to the definition provided for Dt
eval within OLIV E −Multi − Agent, it is guaranteed

that the cardinality of Dt
eval as specified in line 7 is at least neval. Furthermore, in each round we sample

at least htntrain log(H/δ)
|I| . Therefore, using neval and ntrain as like in Theorem 16, we get that at the average

iteration t ∈ [T ], agent Ai ∈ [I] have a sample complexity of:

1

T

T∑
t=1

(
1 +

dhtH2A

|I|ϵ2

)
= Õ

(
1 +

dh̃H2A

|I|ϵ2

)
, (11)

Corollary 22. Therefore, using Theorem 21, Theorem 20, the sample complexity of the algorithm is the
number of samples in each episode time the amount of episode:

Õ

(
Hd

h̃
×
(
1 +

dh̃H2A

|I|ϵ2
))

,

which is what we had to proof in Theorem 16.
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3.2.3 Near optimality of πout

We left to show that with probability at least 1 − δ, OLIV E −Multi − Agent halts and returns a policy
πout that satisfies Vπ̂ ≥ V ⋆

F − ϵ.

Lemma 23 (Optimism drives exploration). Suppose f⋆ is never eliminated. Also, suppose the estimates V̂f

and Ẽ(ft, πt, h) in Line 2 and 9 always satisfy

|V̂f − Vf | ≤ ϵ/8, and |Ẽ(ft, πt, h)− E(ft, πt, h)| ≤
ϵ

8H
(12)

throughout the execution of the algorithm.
Then in any phase t, one of the following two statements holds:

(i) the algorithm does not terminate and for ht ∈ Ht holds that:

E(ft, πt, ht) ≥ η − ϵ

8H
=

ϵ

2H
, (13)

(ii) the algorithm terminates and the output policy πt satisfies Vπt ≥ V ⋆
F − ϵ.

Proof. If we do not terminate, the first claim follows from the algorithm and the assumption that |Ẽ(ft, πt, h)−
E(ft, πt, h)| ≤ ϵ

8H .
We now show that if the algorithm terminates after phase t, and outputs πout = πt, then it is a near

optimal policy. Recall that ft was the selected function approximation.

Vπt = Vft −
∑
h

E(ft, πt, h)

≥ V̂ft − ϵ/8−
∑
h

(Ẽ(ft, πt, h) + ϵ/8H)

≥ V̂ft − ϵ/8−Hη − ϵ/8

≥ V̂fmax − 7ϵ/8 (ft is the maximizer of V̂f )

≥ Vfmax − ϵ/8− 7ϵ/8

≥ V ⋆
F − ϵ.

The first identity is due to Lemma 27. The inequalities is based on Equation 12 and the termination criterion.
Since f⋆ is never eliminated, the optimisms guarantees that V̂fmax ≥ V̂f⋆ . The proof that f⋆ is never
eliminated is part of 26.

The sample sizes of nest and neval were determined based on a deviation bound to ensure sufficient
statistical confidence in the observed outcomes for Equation 12.

3.2.4 Complete The Proof

To complete the proof we are left to show three things:

• f⋆ is never eliminated.

• Proof for Lemma 19 which bound the number of iteration we are doing.
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• Deviation bounds for all of our estimations.

We now proceed to examine the proof.

Lemma 24. [Algebraic Lemma] Given c,D > 0, and two sets V0, P ⊆ Rd such that maxp,v∈P,V0 ||pT v|| ≤
D. We define a game where for each round t > 0, the first player pick pt ∈ P s.t. ∃v ∈ Vt−1 s.t.
|pTt v| > c

√
d. The second player returns an ellipsoid Bt s.t. for Vt =

{
v ∈ Vt−1

∣∣|pTt v| ≤ c
}

, such that
Vt ⊂ Bt. Then we get that the process ends after T ≤ d log(D2c).

The proof for that base on Todd (1982), minimum volume enclosing ellipsoid(MVEE) convergence, and
on Lemma 11 in Jiang et al. (2017) which we add here for completeness:

Lemma 25. Consider a closed and bounded set V ⊂ Rd and a vector p ∈ Rd. Let B be any enclosing
ellipsoid of V that is centered at the origin, and we abuse the same symbol for the symmetric positive
definite matrix that defines the ellipsoid, i.e., B = {v ∈ Rd : v⊤B−1v ≤ 1}. Suppose there exists v ∈ V
with |p⊤v| ≥ κ and define B+ as the minimum volume enclosing ellipsoid of {v ∈ B : |p⊤v| ≤ γ}. If
γ/κ ≤ 1/

√
d, we have

vol(B+)

vol(B)
≤
√
d
γ

κ

(
d

d− 1

)(d−1)/2(
1− γ2

κ2

)(d−1)/2

. (14)

Therefore, using lemma 24, we can bound our iteration complexity finally, and furthermore, prove that
f⋆ is never eliminate.

Lemma 26 (Iteration complexity). For an arbitrary ht ∈ Ht, if Ê(f, πt, ht) in Eq. (8) always satisfies

|Ê(f, πt, ht)− E(f, πt, ht)| ≤ ϕ (15)

throughout the execution of the algorithm (ϕ is the threshold in the elimination criterion), then f⋆ is never
eliminated.
Furthermore, for any particular level h, if whenever h ∈ Ht we have (base on 13)

|E(ft, πt, h)| ≥ 6
√
dϕ, (16)

then the number of iterations that h ∈ Ht is at most d log
(

ζ
2ϕ

)
/ log 5

3 .

Proof. The first claim that f⋆ is never eliminated can be directly inferred from the condition |E(f, πt, ht)| =
0. The deviation bound in Lemma 31, which assume the high probability event of Claim 30, confirms that f⋆

always satisfies Equation 15 (w.p > 1− δ). Similar, the selection of the sample size ntrain is grounded on a
deviation bound that assures a high degree of statistical confidence in the outcomes relevant to Equation 15.
The second claim is a direct result of the Lemma 24 with the following parameters:

• p1, . . . , pT . pτ := νh(fiτ ) where νh(·) is given in Definition 6. Recall that fiτ is the optimistic
function used for exploration in iteration t = iτ .

• U(Fi0),U(Fi1), . . . ,U(FiT ). U(Fiτ ) = {ξh(f) : f ∈ Fiτ } where ξh(f) ∈ Rd is given in Defini-
tion 6.

• Ψ = supf∈F ∥νh(f)∥2, and Φ = supf∈F ∥ξh(f)∥2. By Definition 6, Ψ · Φ ≤ ζ.
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• V0, V1, . . . , VT . V0 := {v : ∥v∥2 ≤ Φ}, and Vτ := {v ∈ Vτ−1 : |p⊤τ v| ≤ 2ϕ+ θ + η}.

• B0, B1, . . . , BT . Bτ is a minimum volume enclosing ellipsoid (MVEE) of Vτ .

Lemma 27. [Bellman Decomposition] With Vf = E[f(x1, πf (x1))], we have

Vf − Vπf
=

H∑
h=1

E(f, πf , h). (17)

Proof. Recall from Definition 4 that the average Bellman errors are defined as

E(f, π, h) = E
[
f(xh, ah)− rh − f(xh+1, ah+1)

∣∣ a1:h−1 ∼ π, ah:h+1 ∼ πf
]
.

Expanding RHS of Eq. (17), we get

H∑
h=1

E
[
f(xh, ah)− rh − f(xh+1, ah+1)

∣∣ a1:h−1 ∼ πf , ah:h+1 ∼ πf
]
.

Since all H expected values share the same distribution over trajectories, which is the one induced by
a1:H ∼ πf , the above expression is equal to

H∑
h=1

E
[
f(xh, ah)− rh − f(xh+1, ah+1)

∣∣ a1:H ∼ πf
]

= E

[
H∑

h=1

(
f(xh, ah)− rh − f(xh+1, ah+1)

) ∣∣ a1:H ∼ πf

]
= E

[
f(x1, πf (x1))

]
− E

[
rh
∣∣ a1:H ∼ πf

]
= Vf − Vπf

.

Lemma 28 (Deviation Bound for V̂f ). With probability at least 1− δ,

|V̂f − Vf | ≤
√

1

2nest
log

2N

δ

holds for all f ∈ F simultaneously. Hence, we can set nest ≥ 32
ϵ2

log 2N
δ to guarantee that |V̂f − Vf | ≤ ϵ/8.

Proof. The bound follows from a straight-forward application of Hoeffding’s inequality and the union
bound, and we only need to verify that the Vf is the expected value of the V̂f , and the range of the ran-
dom variables is [0, 1].

Lemma 29 (Deviation Bound for Ẽ(ft, πt, h)). For any fixed ft, with probability at least 1− δ,

|Ẽ(ft, πt, h)− E(ft, πt, h)| ≤ 3

√
1

2neval
log

2H

δ

holds for all h ∈ [H] simultaneously. Hence, for any neval ≥ 288H2

ϵ2
log 2H

δ , with probability at least 1 − δ

we have |Ẽ(ft, πt, h)− E(ft, πt, h)| ≤ ϵ
8H .
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Proof. This bound is another straight-forward application of Hoeffding’s inequality and the union bound,
except that the random variables that go into the average have range [−1, 2], and we have to realize that
Ẽ(ft, πt, h) is an unbiased estimate of E(ft, πt, h).

Claim 30 (The High Probability Event). For all t ∈ [T ] and h ∈ [H] with high probability, |Dt
h| > ntrain.

In each round we sample at least htntrain log(HT/δ)
|I| and split them uniformly to {Dt

h}h∈Ht . Therefore,
We get that with a probability exceeding greater than 1 − δ,the cardinality of each Dt

h for every h ∈ Ht as
established in line 15, is greater than ntrain.

Lemma 31 (Deviation Bound for Ê(f, πt, htj)). Under the high probability event (of Claim 30), with prob-
ability at least 1− δ, for any fixed πt and for any h ∈ [H], s.t. |Ẽ(f, πt, h)| > η, we have

|Ê(f, πt, h)− E(f, πt, h)| ≤

√
8A log 2NH

δ

ntrain
+

2A log 2NH
δ

ntrain
(18)

holds for all f ∈ F and h ∈ [H] simultaneously. Hence, for any ntrain ≥ 32A
ϕ2 log 2NH

δ and ϕ ≤ 4, with

probability at least 1− δ we have |Ê(f, πt, h)− E(f, πt, h)| ≤ ϕ.

Proof. We first show that Ê(f, πt, h) is an average of i.i.d. random variables with mean E(f, πt, h). We will
show that for fix h ∈ [H], s.t. |Ẽ(f, πt, h)| > η the statement in Equation 18 hold, and with union bound
we conclude it for any h ∈ [H], s.t. |Ẽ(f, πt, h)| > η. We use µ as a shorthand for the distribution over
trajectories induced by a1, . . . , ah−1 ∼ πt, âh ∼ unif(A), which is the distribution of data used to estimate
Ê(f, πt, h). On the other hand, let µ′ denote the distribution over trajectories induced by a1, . . . , ah−1 ∼
πt, âh ∼ πf . The importance weight used in Eq. (8) essentially converts the distribution from µ to µ′, hence
the expected value of Ê(f, πt, h) can be written as

Eµ [A 1[ah = πf (xh)] (f(xh, ah)− rh − f(xh+1, πf (xh+1)))

= Eµ′ [f(xh, ah)− rh − f(xh+1, πf (xh+1))] = E(f, πt, ht).

Now, we apply Bernstein’s inequality. We first analyze the 2nd-moment of the random variable. Defining
Y (xh, ah, rh, xh+1) = f(xh, ah)− rh − f(xh+1, πf (xh+1)) ∈ [−2, 1], the 2nd-moment is

Eµ

[
(A1[ah = πf (xh)]Y (xh, ah, rh, xh+1))

2
]

= Pµ[ah = πf (xh)] · Eµ

[
(AY (xh, ah, rh, xh+1))

2
∣∣ ah = πf (xh)

]
+ Pµ[ah ̸= πf (xh)] · 0

≤ 1

A
Eµ

[
A2 · 4

∣∣ ah = πf (xh)
]
= 4A.

Next we check the range of the centered random variable. The uncentered variable lies in [−2A,A], and
the expected value is in [−2, 1], so the centered variable lies in [−2A − 1, A + 2] ⊆ [−3A, 3A]. Applying
Bernstein’s inequality, we have with probability at least 1− δ,

|Ê(f, πt, ht)− E(f, πt, ht)| ≤

√
2Var [A1[ah = πf (xh)]y(xh, ah, rh, xh+1)] log

2HN
δ

ntrain
+

6A log 2HN
δ

3ntrain

≤

√
8A log 2HN

δ

ntrain
+

2A log 2HN
δ

ntrain
. (variance is bounded by 2nd-moment)
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As long as 2A log 2HN
δ

ntrain
≤ 1, the above is bounded by 2

√
8A log 2HN

δ
ntrain

. The choice of ntrain follows from solving

2

√
8A log 2N

δ
ntrain

= ϕ for ntrain, which indeed guarantees that 2A log 2HN
δ

ntrain
≤ 1 as ϕ ≤ 4.

3.3 Olive-Generative: Multi-Agent

Improve Sample Complexity To achieve an improvement of h̃ in iteration complexity, we estimates
Ê(f, πt, ht) for any layer, as presented in Equation (8). That estimation correct ht layers every phase. We
want to achieve this improvement also in sample complexity. Naively, with sampling ntrain trajectories and
greedily trying to correct all the h ∈ Ht, could potentially reduce the sample complexity of each iteration
to neval + ntrain and spare the factor of h̃. The problem with this method is that Lemma 31 would yield
an estimate for Ê(f, πUNIF, ht), which is not what we needed. This estimation is bad because it does not
necessarily fall within the sets of interest indicated in Lemma 26 and therefore we won’t shrink the functions
class in the confidence set.

Thus, in this subsection 3.3, We propose a method that performs the correction in place while overcom-
ing the problem of wrong policy estimation and maintaining the current estimation accuracy. Specifically,
we sample all ntrain trajectories initially, and for each layer in Ht, we introduce uniformly sampled ntrain
new states. Then perform a backward estimation of Ê(f, πt, ht) for all f ∈ Ft. This approach allows us to
keep the previously sampled states from πt while limiting the number of new samples to Hntrain, thereby
maintaining our desired sample complexity.

We now turn to the main result, which guarantees that OLIVE-Generative-Multi-Agent PAC-learns Con-
textual Decision Processes with polynomial sample complexity.

Theorem 32. Running OLIVE-Generative-Multi-Agent with the same parameters as like in Theorem 16, we
get with probability at least 1− δ, OLIV E −Generative−Multi−Agent halts and returns a policy π̂
that satisfies Vπ̂ ≥ V ⋆

F − ϵ, and the number of episodes required is at most

Õ
(
Hd log(Hdζ/ϵ)

h̃
×
(
1 +

dH2A

|I|ϵ2
log(Nζ/δ)

))
. (21)

In this subsection as like previously, we get the iteration complexity and the optimality by the same
way. But in this case using Generative Model as defined in 3, we improves our sample complexity. This
improvement is effecting the amount of sample we need to re-estimate for correct a layer, as like in Line 9,
and change our deviation bound for Ê(f, πt, htj).

Lemma 33. Using neval and ntrain as like in Theorem 16, we get that for each agent Ai ∈ [I], the sample
complexity in each round t > 0 is:

Õ
((

1 +
dH2A

|I|ϵ2
log(Nζ/δ)

))
. (22)

Proof. Following Line 9 and Line 11 in OLIV E−Generative−Multi−Agent we use 2×max{1, ntrain
|I| } ≤

2 ×
(
1 + ntrain

|I|
)
, trajectories in each time step t > 0. And also, from the fact that neval ≤ ntrain, we

get that OLIV E − Generative − Multi − Agent sample complexity is ≤ Õ
(
3×

(
1 + ntrain

|I|
))

=

Õ
((

1 + dH2A
|I|ϵ2 log(Nζ/δ)

))
.
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Algorithm 2 OLIVE-Generative-Multi-Agent(F , d, I, ζ, ϵ, δ)

1: Collect nest trajectories with actions taken in an arbitrary manner; save initial contexts {x(i)1 }
nest
i=1.

2: Estimate the predicted value for each f ∈ F : V̂f = 1
nest

∑nest
i=1 f(x

(i)
1 , πf (x

(i)
1 )).

3: F0 ← F .
4: for t = 1, 2, . . . do
5: Choose policy ft = argmaxf∈Ft−1

V̂f , πt = πft .
6: for Agent Ai ∈ [I] do
7: Collect n = ⌈neval

|I| ⌉ trajectories by following πt.

8: Add to data set: Dt
eval = Dt

h[Ai]
·∪ {(x(i)1 , a

(i)
1 , ri1, . . . , x

(i)
H , a

(i)
H , r

(i)
H )}ni=1.

9: Collect n = ⌈ntrain
|I| ⌉ trajectories by following πt.

10: Add to data set: Dt
train = {(x(i)1 , a

(i)
1 , ri1, . . . , x

(i)
H , a

(i)
H , r

(i)
H )}ni=1.

11: Collect another n tuples there â
(i)
h is drawn uniformly at random for h = H, . . . , 1.

12: Add to data set: Dt
h = Dt

h
·∪ {x(i)h , â

(i)
h , r̂

(i)
h , x̂

(i)
h+1}

ntrain
i=1 , where x

(i)
h sampled in 9 and store on

Dt
train.

13: Estimate ∀h ∈ [H],

Ẽ(ft, πt, h) =
1

|Dt
eval|

∑
i∈Dt

eval

[
ft(x

(i)
h , a

(i)
h )− r

(i)
h − ft(x

(i)
h+1, a

(i)
h+1)

]
. (19)

14: if (1/H)
∑H

h=1 |Ẽ(ft, πt, h)| ≤ η then
15: Terminate and output πout = πt.
16: else ∀h ∈ [H] for which |Ẽ(ft, πt, h)| ≥ η: {One is guaranteed to exist }

Estimate

Ê(f, πt, h) =
1

|Dt
h|
∑
i∈Dt

h

1[â
(i)
h = πf (x

(i)
h )]

1/A

(
f(x

(i)
h , â

(i)
h )− r̂

(i)
h − f(x̂

(i)
h+1, πf (x̂

(i)
h+1))

)
. (20)

17: Learn

Ft =

f ∈
⋂

h∈[H]

{
f ∈ Ft−1 :

∣∣∣Ê(f, πt, h)∣∣∣ ≤ ϕ
} .
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Lemma 34 (Deviation Bound for Ê(f, πt, htj)). With probability at least 1− δ, for any fixed πt and for any
h ∈ [H], s.t. |Ẽ(f, πt, h)| > η, we have

|Ê(f, πt, htj)− E(f, πt, htj)| ≤

√
8A log 2NH

δ

ntrain
+

2A log 2NH
δ

ntrain

holds for all f ∈ F and h ∈ [H] simultaneously. Hence, for any ntrain ≥ 32A
ϕ2 log 2NH

δ and ϕ ≤ 4, with

probability at least 1− δ we have |Ê(f, πt, h)− E(f, πt, h)| ≤ ϕ.

Proof. We first show that Ê(f, πt, h) is an average of i.i.d. random variables with mean E(f, πt, htj). We will
show that for fix h ∈ [H], s.t. |Ẽ(f, πt, h)| > η the statement in Equation 18 hold, and with union bound we
conclude it for any h ∈ [H], s.t. |Ẽ(f, πt, h)| > η. In addition, we use µ as a shorthand for the distribution
over trajectories induced by a1, . . . , ah−1 ∼ πt, âh ∼ unif(A), which is the distribution of data used to
estimate Ê(f, πt, h). We sample âh using Generative model after we draw at first n trajectories following
πt. thus, we are indeed estimating Ê(·, πt, h) as required. On the other hand, let µ′ denote the distribution
over trajectories induced by a1, . . . , ah−1 ∼ πt, âh ∼ πf . The importance weight used in Eq. (20) essentially
converts the distribution from µ to µ′, hence the expected value of Ê(f, πt, h) can be written as

Eµ [A1[ah = πf (xh)] (f(xh, ah)− rh − f(xh+1, πf (xh+1)))]

= Eµ′ [f(xh, ah)− rh − f(xh+1, πf (xh+1))] = E(f, πt, ht).

Now, we apply Bernstein’s inequality. We first analyze the 2nd-moment of the random variable. Defining
y(xh, ah, rh, xh+1) = f(xh, ah)− rh − f(xh+1, πf (xh+1)) ∈ [−2, 1], the 2nd-moment is

Eµ

[
(A1[ah = πf (xh)]y(xh, ah, rh, xh+1))

2
]

= Pµ[ah = πf (xh)] · Eµ

[
(Ay(xh, ah, rh, xh+1))

2
∣∣ ah = πf (xh)

]
+ Pµ[ah ̸= πf (xh)] · 0

≤ 1

A
Eµ

[
A2 · 4

∣∣ ah = πf (xh)
]
= 4A.

Next we check the range of the centered random variable. The uncentered variable lies in [−2A,A], and
the expected value is in [−2, 1], so the centered variable lies in [−2A − 1, A + 2] ⊆ [−3A, 3A]. Applying
Bernstein’s inequality, we have with probability at least 1− δ,

|Ê(f, πt, ht)− E(f, πt, ht)| ≤

√
2Var [A1[ah = πf (xh)]y(xh, ah, rh, xh+1)] log

2HN
δ

ntrain
+

6A log 2HN
δ

3ntrain

≤

√
8A log 2HN

δ

ntrain
+

2A log 2HN
δ

ntrain
. (variance is bounded by 2nd-moment)

As long as 2A log 2HN
δ

ntrain
≤ 1, the above is bounded by 2

√
8A log 2HN

δ
ntrain

. The choice of ntrain follows from solving

2

√
8A log 2N

δ
ntrain

= ϕ for ntrain, which indeed guarantees that 2A log 2HN
δ

ntrain
≤ 1 as ϕ ≤ 4.
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4 The Many Faces of Eluder Dimension

This section explores various definitions of the Eluder Dimension, originally from Russo and Van Roy
(2013), and their respective utilities in different contexts of reinforcement learning theory. In general, Eluder
Dimensions quantify the informational independence among decisions, influencing the balance between
exploration and exploitation. From now on we will work with the next definition for value-based function
class.

Definition 35 (Function Approximation Representation). For finite horizon setups, the learner is given a
function class F = F1 × · · · × FH , where Fh ⊆ (S × A → [0, 1]) offers a set of candidate functions
to approximate Q⋆

h—the optimal Q-value function at step h. A function f ∈ F can be formalized as
f = (f1, . . . , fH). Since no reward is collected in the (H + 1)th step, we always set fH+1 = 0.

At the core of these definitions lies the concept of ϵ-independence between points.

Definition 36 (ϵ-independence between points). Let G be a function class defined on X , and z,x1, x2
,. . .,xn∈ X . We say z is ϵ-independent of {x1, x2, . . . , xn} with respect to G if there exist g1, g2 ∈ G such
that

√∑n
i=1(g1(xi)− g2(xi))2 ≤ ϵ, but |g1(z)− g2(z)| > ϵ.

Intuitively, z is independent of {x1, x2, . . . , xn} means if that there exist two “certifying” functions g1
and g2, so that their function values are similar at all points {xi}ni=1, but the values are rather different at z.
This independence relation naturally induces the following complexity measure.

4.1 Standard Definition of Eluder Dimension

Definition 37 (Eluder dimension). Let G be a function class defined on X . The Eluder dimension d =
dimE(G, ϵ) is the length of the longest sequence {x1, . . . , xn} ⊂ X such that there exists ϵ′ ≥ ϵ where xi is
ϵ′-independent of {x1, . . . , xi−1} for all i ∈ [n].

Recall that a vector space has dimension d if and only if d is the length of the longest sequence of ele-
ments {x1, . . . , xd} such that xi is linearly independent of {x1, . . . , xi−1} for all i ∈ [n]. Eluder dimension
generalizes the linear independence relation in standard vector space to capture both nonlinear independence
and approximate independence, and thus is more general.

4.2 Distributional Eluder Dimension

The Distributional Eluder Dimension measures the uncertainty of functions whose values are random vari-
ables. In this context, the concept of ϵ-independence between points is adapted to accommodate the distri-
butional nature of the functions. This definitions shows in Jin et al. (2021a).

Definition 38 (ϵ-independence between distributions). Let G be a function class defined onX , and ν, µ1, . . . , µn

be probability measures over X . We say ν is ϵ-independent of {µ1, µ2, . . . , µn} with respect to G if there
exists g ∈ G such that

√∑n
i=1(Eµi [g])

2 ≤ ϵ, but |Eν [g]| > ϵ.

Definition 39 (Distributional Eluder (DE) dimension). Let G be a function class defined on X , and Π be a
family of probability measures over X . The distributional Eluder dimension dimDE(G,Π, ϵ) is the length
of the longest sequence {ρ1, . . . , ρn} ⊂ Π such that there exists ϵ′ ≥ ϵ where ρi is ϵ′-independent of
{ρ1, . . . , ρi−1} for all i ∈ [n].

23



Definition 38 and Definition 39 generalize Definition 36 and Definition 37 to their distributional ver-
sions, by inspecting the expected values of functions instead of the function values at points, and by restrict-
ing the candidate distributions to a certain family Π. The main advantage of this generalization is exactly in
the statistical setting, where estimating the expected values of functions with respect to a certain distribution
family can be easier than estimating function values at each point (which is the case for RL in large state
spaces).

It is clear that the standard Eluder dimension is a special case of the distributional Eluder dimension,
because if we choose Πdirac = {δx(·) | x ∈ X} where δx(·) is the dirac measure centered at x, then
dimE(G, ϵ) = dimDE(∆(G),Πdirac, ϵ) where ∆(G) = {g1 − g2 : g1, g2 ∈ G}.
Therefore we have this relation between the dimensions:

dimE(G, ϵ) ≥ min
Π

dimDE(∆(G),Π, ϵ). (23)

Bellman Eluder Dimension

Definition 40 (Bellman Eluder (BE) dimension). Let (I − Th)F := {fh − Thfh+1 : f ∈ F} be the set
of Bellman residuals induced by F at step h, and Π = {Πh}Hh=1 be a collection of H probability measure
families over S ×A. The ϵ-Bellman Eluder of F with respect to Π is defined as

dimBE(F ,Π, ϵ) := max
h∈[H]

dimDE

(
(I − Th)F ,Πh, ϵ

)
.

In short, Bellman Eluder dimension is simply the distributional Eluder dimension on the function class
of Bellman residuals, maximizing over all steps. In addition to function class F and error ϵ, Bellman Eluder
dimension also depends on the choice of distribution family Π. The GOLF algorithm (Jin et al., 2021a)
focused on the following two specific choices.

1. Π = DF := {DF ,h}h∈[H], where DF ,h denotes the collection of all probability measures over S ×A
at the hth step, which can be generated by executing the greedy policy πf induced by any f ∈ F , i.e.,
πf,h(·) = argmaxa∈A fh(·, a) for all h ∈ [H].

2. Π = D∆ := {D∆,h}h∈[H], whereD∆,h = {δ(s,a)(·)|s ∈ S, a ∈ A}, i.e., the collections of probability
measures that put measure 1 on a single state-action pair.

4.3 Functional Eluder Dimension

We introduce another complexity measure, shown in Chen et al. (2022). The functional eluder dimension,
which generalizes the concept of the Eluder dimension and its successors, capturing a broader class of
functions. Here, we present its definition:

Definition 41 (Functional Eluder Dimension). For a given hypothesis class F and a function G defined
on F × F , the functional eluder dimension (FE dimension) dimFE(F , G, ϵ) is the length of the longest
sequence f1, . . . , fn ∈ F satisfying for all t ≤ n, exists ϵt ≥ ϵ, such that there exists g ∈ F holding√∑t−1

i=1 (G(g, fi))
2 ≤ ϵt while |G(g, ft)| > ϵt. Function G is dubbed as the coupling function.

When the coupling function is simply G(f1, f2) = f1 − f2, we have dimDE(∆(F),Πdirac, ϵ) =
dimFE(F ,∆, ϵ). If the coupling function is chosen as the expected Bellman error GΠ

h (g, f) := Eπh,f∼Π(Qh,g−
ThQg,h+1), where Th denotes the Bellman operator, and we recover the definition of BE dimension (Jin et al.,
2021a), i.e., dimFE(F , G, ϵ) = dimBE(F ,Π, ϵ).
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4.4 Generalized Eluder Dimension

The previous definitions raise an important question: How do we determine if we have explored enough or
if more exploration is needed? The generalized Eluder dimension, defined in Agarwal et al. (2022); Zhao
et al. (2023), addresses this by extending previous definitions to weighted regression settings.

Definition 42 (Generalized Eluder dimension). Let λ > 0, a sequence of state-action pairs Z = {zi}i∈[T ]

and σ = {σi}i∈[T ] be given. The generalized Eluder dimension of a function class F : X × A → [0, L] is
given by dimα,λ(F) := supZ,σ:|Z|=T,σ≥α dim(F , Z, σ), where

dim(F , Z, σ) :=
T∑
i=1

min

(
1,

1

σ2
i

D2
F (zi; zi−1, σi−1)

)
,

where D2
F (z; z

′, σ′) := sup
f1,f2∈F

(f1(z)− f2(z))
2

sups∈[t−1]
1
σs

(f1(zs)− f2(zs))
2 + λ

.

Relation to standard Eluder dimension When σ ≡ 1, we have:

maxZ:|Z|=T dim(F , Z,1) ≤ dimE(F ,
√
λ/T ) + 1, (24)

where dimE(F , ϵ) is the standard Eluder dimension of F as defined in Russo and Van Roy (2013). We refer
to the paper for full proof.

4.5 Summary of Benefits

The Standard Eluder Dimension measures informational independence among decisions in reinforcement
learning, aiding the balance between exploration and exploitation. It provides a foundational tool for quanti-
fying information gain from exploring new actions and states. Building on this, the Bellman Eluder Dimen-
sion incorporates the Bellman operator to measure the complexity of value functions in MDPs, enhancing
sample efficiency evaluation. The Functional Eluder Dimension generalizes these concepts further, cap-
turing a broader class of functions and measuring the complexity of hypothesis classes in both model-free
and model-based RL, thus offering a more comprehensive framework. Lastly, the Generalized Eluder Di-
mension define to base on these previous definitions and generalize them by including weighted regression
settings, adding the benefit of quantifying exploration sufficiency, and providing practical guidance on the
need for further exploration. Each successive definition refines and extends its predecessor, broadening the
scope of applicable function classes and enhancing the measure’s utility in assessing exploration strategies
in reinforcement learning.

5 Expected Eluder Dimension

5.1 Introduction

In this section we will revisit the problem of Stochastic Contextual Bandits. Many modern applications
involve the presence of additional side information, or context, that impacts the environment. A naive
approach to handling the context is to extend the state space of the environment to include it. However, this
method increases the complexity of learning and policy representation.

In the Stochastic Contextual Bandits setting, a contextual model predicts the expected reward for differ-
ent actions based on the context available at the time of decision-making.
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Definition 43 (Contextual Models). A contextual model estimates the expected reward R for each action
A, given the observed context X . The agent’s goal is to select an action A from a set of possible actions,
conditioned on the context X , to maximize the expected reward.

Mathematically, this is represented as:

A∗ = argmax
A

E[R|X,A]

where X is the context, A is the action, and R is the reward.

Types of Contextual Models

1. Linear Models:
E[R|X,A] = θ⊤AX

where θA is a parameter vector for action A, and X is the context.
2. Non-linear Models: These can include neural networks, decision trees, or other non-linear mappings
from context to reward:

E[R|X,A] = f(X,A)

where f(X,A) is a non-linear function that predicts the reward based on context X and action A.

Components The model is time dependent, and the key components of a contextual model are:

• Context X : A set of contexts that describe the environment, Xt descibe it at time t.

• Action A: set of state-action pairs A := {(x, a) : x ∈ X , a ∈ A(x)}, and the set of available actions
to be At = {(Xt, a) : a ∈ A(Xt)}.

• Reward R: The outcome (or feedback) from taking action A in context X .

• Model f(X,A): A function that predicts the expected reward at time t is given by f(a,Xt).

Eluder Dimension in Contextual Models

One class of functions highly related to this section is the function class of Eluder dimension (see Defi-
nition 37). The role of the Eluder dimension in this work is to avoid direct dependence on the size of the
context space, which could be potentially large, while also maintaining computational efficiency.

Our objective is to extend the traditional framework of the Eluder dimension to incorporate probabilistic
elements that reflect the reality of sampling state-action pairs from a distribution. Specifically, we aim to
introduce a nuanced aspect to the Eluder dimension by considering not only the structure of the function
class, but also the context distribution.

We define the Expected Eluder Dimension to provide a more accurate representation of the Eluder Di-
mension in stochastic environments, where not all state-action pairs are equally likely or relevant.

Definition 44 (Eluder Predicate). Let G be a function class and Z a sequence of n-context and actions. For
I ⊆ [n], a subsequence of Z, we define a predicate EPG(I, j, ϵ), which returns 1 if (xj , aj) is ϵ-independent
from (xi1 , ai1), . . . , (xi|I| , ai|I|), respect to the function class G.
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Definition 45 (Expected Eluder dimension). Let ϵ > 0, and D a context distribution. Let G be a function
class defined on X . Let W be a random variable of a sequence of n contexts drawn from D. Given
a sequence Z = {(x1, a1), . . . , (xn, an)} and X(Z) = (x1, . . . , xn). The Expected Eluder dimension
d̃ = dimE(G, ϵ,Dn) is

EW∼Dn

[
max

Z:X(Z)=W
max
I⊆[n]

EPG(Z, I, ϵ)
]
, (25)

where EPG(Z, I, ϵ) :=
∑

j∈I EPG({zi1 , . . . , zij−1}, j, ϵ), and Dn =
n times

D × · · · × D

5.2 Effective Dimension Reduce

The main application of the Eluder dimension is to design algorithms and prove regret guarantees for con-
textual bandits and reinforcement learning. When the Eluder dimension first appeared, it was proposed to
handle Linear Bandits, as discussed in (Russo and Van Roy, 2013). They assume that the context follows
a time-dependent model that samples from a function class F , which holds the Eluder condition and has a
dimension d. We focus specifically on contextual bandits similar to (Russo and Van Roy, 2013), and (Foster
et al., 2020). The Eluder dimension is used to measure functions that take both contexts and actions as
parameters, and the definition of the Eluder dimension is tailored to the adversarial setup.

In contrast, we return to stochastic settings and challenge this assumption. In our framework, the context
is sampled from a distribution D, where F has an Eluder dimension d, but the key difference is that the
context is sampled from D, leading to an Expected Eluder dimension d̃ ≤ d. This distinction allows
us to model real-world scenarios more effectively, as it accounts for the stochastic nature of the context
distribution.

5.2.1 Applications

Scenario: Linear Functions with Distribution of One Dominant Context

Consider a linear function class F , where each function f maps features in Rd to real numbers (F : Rd →
R). For action set A, and context class X , we assume that ∃ϕ : X ×A → Rd, such that the input vector for
f ∈ F is ϕ(x, a).

Context and Setup

• Actions: Assume A = B(d, 1) is the unit ball in Rd.

• Probability Model: For the standard base in Rd, B = {e1, . . . , ed}, let the distribution D over X , be
define as follows, ∃δ > 0, i ∈ [d] s.t. ∀j ̸= i ∈ [d] for any context x hold :

x =

{
ei w.p. 1− δ

ej w.p. δ/d
.

• Function: We have a domain Θ ⊆ B(d, 1). Each function fθ ∈ F is index by some θ ∈ Θ. The
definition of fθ is as follows, fθ(x, a) = ⟨θ, ϕ(x, a)⟩.
And let ϕ(x, a) = x⊙ a element-wise product, i.e. ϕ(x, a)k = xk · ak.
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Eluder Dimension When ignoring the specific distribution, all entries have an impact on the value of
the functions in F . Therefore, the Eluder dimension in this scenario considers the entire function, context,
and action class, denoted as G = {F ,X ,A}. In general, this dimension can be expressed as d log(1/ϵ).
However, the number of contexts inherently limits the dimension. Since there are only d distinct contexts,
the Eluder dimension is trivially bounded, giving us dimE(G, ϵ) = d.

Expected Eluder Dimension Despite the general result that the Eluder dimension is bounded by d, it does
not necessarily scale significantly with d itself. Instead, the Eluder dimension depends on the actual number
of vectors or contexts that we encounter in practice. As the effective dimension is influenced by the specific
set of vectors used, it can often be much smaller than the theoretical bound, especially when the number of
relevant vectors is limited. This toy example highlights that the complexity of the problem is driven more
by the structure and quantity of the vectors rather than just the raw dimensionality d

Claim 46. The Expected Eluder dimension of this problem is δT .

Corollary 47. For δ = O( 1
T ), we dimE(F , ϵ,DT ) = O(1).

Proof. . Let δ > 0, and D the distribution as defined above. Let x be context sampled from D.

∀fθ ∈ F , a ∈ A, fθ(x, a) = ⟨θ, x⊙ a⟩ =

{
⟨θ, ei · a⟩ w.p. 1− δ

⟨θ, ej · a⟩ w.p. δ/d for j ∈ [d]

Denote Z = (w, a) : w ∼ DT , a ∈ AT , where DT defined in (25), and AT defined in the same way. For
any phase t ∈ [T ] and θ1, θ2 ∈ B(d, 1) :

Ew∼DT

[
max
AT

fθ1(w
t, at)− fθ2(w

t, at)

]
≤ Ew∼DT

[
d∑

i=1

1{ei ∈ w}

]
=

d∑
i=1

Ew∼DT [1{ei ∈ w}]

≤
d∑

i=1

min{TP(ei), 1} ≤ min{1 + Tδ, d}.

Therefore, dimE(F , ϵ,DT ) ≤ min{δT + 1, d} .

Scenario: Linear Functions with Exponentially Decaying Distribution

Consider a scenario where the dimensionality d is very large, such that for any possible number of samples
T , the ratio T/d < 1. This setup reflects a situation where the number of samples is significantly smaller
than the dimension of the space, which leads to interesting challenges in learning and generalization.

Consider a linear function class F , where each function f maps features in Rd to real numbers (F :
Rd → R). For action set A, and context class X , we assume that ∃ϕ : X × A → Rd, such that the input
vector for f ∈ F is ϕ(x, a).

Context and Setup

• Actions: Assume A = B(d, 1) is the unit ball in Rd.
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• Probability Model: For the standard base in Rd, B = {e1, . . . , ed}, let the distribution D over X , be
define as follows, ∀i ∈ [d] any context x hold :

x = ei w.p 2−i.

• Function: We have a domain Θ ⊆ B(d, 1). Each function fθ ∈ F is index by some θ ∈ Θ. The
definition of fθ is as follows, fθ(x, a) = ⟨θ, ϕ(x, a)⟩.
And let ϕ(x, a) = x⊙ a element-wise product, i.e. ϕ(x, a)k = xk · ak.

Eluder Dimension There are two natural bounds on the Eluder dimension in this setup: the number of
distinct contexts and the number of samples. Since the number of distinct contexts is d and the number of
samples is at most T , the Eluder dimension is bounded by both, resulting in dimE(G, ϵ) = min(d, T ).

Expected Eluder Dimension

Claim 48. The Expected Eluder dimension of this problem is dimE(F , ϵ,DT ) = log(T ).

Proof. Given a distribution D over a sequence x ∼ D, where each x takes the value ei with probability 2−i,
we want to compute the expected number of distinct elements observed in a sequence of T samples.

Denote Z = (w, a) : w ∼ DT , a ∈ AT . Let Ii = 1{ei ∈ w} be an indicator random variable that
equals 1 if the element ei appears at least once in the T samples, and 0 otherwise. The expected number of
distinct elements seen in the T samples is given by:

Ew∼DT

[ ∞∑
i=1

Ii

]
=

∞∑
i=1

Ew∼DT [Ii].

Since Ii is an indicator variable, Ew∼D[Ii] = P(Ii = 1), which is the probability that ei appears at least
once in the T samples.

The probability that ei does not appear in a single sample is 1− 2−i. Thus, the probability that ei does
not appear in all T samples is (1− 2−i)T . Consequently, the probability that ei appears at least once in the
T samples is:

P(Ii = 1) = 1− (1− 2−i)T .

Therefore, the expected number of distinct elements is:

Ew∼DT

[ ∞∑
i=1

Ii

]
=

∞∑
i=1

[
1− (1− 2−i)T

]
.

For large T , if 2−iT is small, we can use the approximation (1 − 2−i)T ≈ e−T2−i
. Therefore, the

probability that ei appears at least once becomes:

1− (1− 2−i)T ≈ 1− e−T2−i
.

Substituting this into the sum, we obtain:

Ew∼DT

[ ∞∑
i=1

Ii

]
≈

∞∑
i=1

(
1− e−T2−i

)
.
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• For small i where 2−iT is large, 1− e−T2−i ≈ 1. Thus, these terms contribute approximately 1 to the
sum.

• For large i where 2−iT is small, 1− e−T2−i ≈ T2−i, which decays exponentially with i.

The sum can be split into two parts based on an index k such that 2−kT ≈ 1. For i ≤ k, 1−e−T2−i ≈ 1.
For i > k, 1− e−T2−i ≈ T2−i. Thus,

Ew∼DT

[ ∞∑
i=1

Ii

]
= O

(
k +

∞∑
i=k+1

T2−i

)
.

Since
∑∞

i=k+1 T2
−i ≈ T2−k, and by choosing k ≈ log(T ), we get T2−k ≈ 1. Therefore, the expected

number of distinct elements is approximately:

Ew∼DT

[ ∞∑
i=1

Ii

]
= O (log(T )) .

Thus, the Expected Eluder dimension is the expected number of different x values observed in T samples
is approximately log(T ). This result indicates that the number of distinct elements grows logarithmically
with the number of samples T .

Scenario: Sparse Linear Regression with Gaussian Features

Consider a linear regression model in a high-dimensional setting where only a sparse subset of features is
non-zero. Each active feature is drawn from a Gaussian distribution.

Context and Setup

• Action Set: Let A = B(d, 1) denote the unit ball in Rd.

• Feature Representation: Define the context class X ⊆ Rd. Each function f ∈ F maps contexts in
Rd to real numbers.

• Sparsity of Features: At any given instance, only same r features (r ≪ d) are non-zero.

• Distribution of Active Features: The non-zero features are sampled from a Gaussian distribution
N (µ,Σ).

Eluder Dimension Since the context vectors can span the entire space B(d, 1), the Eluder dimension is
bounded by d log(1/ϵ).

Expected Eluder Dimension Given that only r features are likely to be non-zero with higher probability,
the effective dimension reduces to r log(1/ϵ).

Thus, the complexity of the learning problem depends primarily on r rather than the full dimensionality
d. For instance, if r = 1 and d = 100, the expected Eluder dimension simplifies to 1, analogous to a classic
stochastic bandit problem.
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Scenario: Sparse Linear Regression with Mixture of k Gaussians

Consider a linear regression model in a high-dimensional setting, where the non-zero features follow a
mixture of k Gaussian distributions. Each mixture component is defined with specific sparsity properties.

Context and Setup

• Action Set: Let A = B(d, 1) denote the unit ball in Rd.

• Feature Representation: Define the context class X ⊆ Rd. Each function f ∈ F maps contexts in
Rd to real numbers.

• Active Features: The non-zero features follow a mixture of k Gaussian distributions, G(µi,Σi) for
i ∈ [k]. For each Gaussian component i, the covariance matrix Σi has Rank(Σi) ≤ ri where ri ≪ d
for all i ∈ [k].

Eluder Dimension Since the context vectors can span the full space B(d, 1), the Eluder dimension is
initially bounded by d log(1/ϵ).

Expected Eluder Dimension When the non-zero features belong to a mixture of k Gaussians with low-
rank covariance matrices, the effective dimension is bounded by

∑k
i=1 ri log(1/ϵ). This bound captures the

sparsity within each Gaussian component and the overall mixture structure.
For a mixture of k-Gaussians {G(wi, µi,Σi)}ki=1, where wi are the component weights, we identify

non-zero features as those that, with high probability, exceed a threshold ϵ within T samples. Formally, for
any feature x, we define a condition based on w, µ,Σ, and T to determine if its absolute value is likely to
be greater than ϵ. For each Gaussian i, let ri represent the maximum number of independent features that
satisfy this condition.

Claim 49.

dimE(F , ϵ,GTk ) ≤
k∑

i=1

ri log(1/ϵ).

Remark 50. Sampling from a mixture of Gaussians is equivalent to selecting one Gaussian component
according to the mixture’s weights and then sampling from that component. This property allows the analysis
of the mixture model by considering each Gaussian’s contribution separately and summing their effects.

Proof. Let F be a linear function class as defined previously, and letD = Gk be the mixture of k Gaussians.
Assume, for simplicity, that all Gaussians have {ej}dj=1 as eigenvectors for its covariance matrix. Let i ∈ [k]
denote the Gaussian component with weight wi. For each feature j ∈ [d], let ej be an eigenvector of Σi with
eigenvalue vj .

Let j ∈ [d] such that vj ≤ δ and |µi[j]| = εj ≤ ϵ, if
√
2δj ln(2wiT ) + εj < ϵ, we will show that the

expected number of steps, in a sequence of T samples, where the j-th coordinate exceeds ϵ is less than 1.
Therefore, for any feature x ∼ GTk , such that does not holds the condition above, for any pair of functions
fθ1(·, ·), fθ2(·, ·) ∈ F , we have

Ex∼GT
k
max
A
{fθ1(x, a)− fθ2(x, a)} ≤ ϵ.
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Therefore, covering the sub-space that the k-Gaussians are spans by those features who exceed the threshold
ϵ within T samples, i.e. for each Gaussian this amount is

ri =

∣∣∣∣{j :√2δj ln(2wiT ) + εj > ϵ

}∣∣∣∣ , (26)

This way measures the effective dimensionality influenced by the mean, the eigenvalues and the Gaussian
mixture weights. Thus, implying that

dimE(F , ϵ,GTk ) ≤
k∑

i=1

ri log(1/ϵ).

Now we will see that the condition in Eq (26) indeed says that. Given ej as an eigenvector of the
covariance matrix Σi with eigenvalue δ, the probability that one of the T independent samples from a
Gaussian component with weight wi deviates from the mean by more than ϵ can be bounded using Gaussian
tail bounds. For a single sample:

P(|x− µi[j]| > ϵ− ε) ≤ 2 exp

(
−(ϵ− ε)2

2δ

)
.

Including the component weight wi, this probability becomes:

P(|x− E[x]| > ϵ) ≤ 2wi exp

(
−(ϵ− ε)2

2δ

)
.

Using the union bound for T samples, the probability that at least one sample exceeds ϵ is:

P

(
T⋃
i=1

|xi| > ϵ− ε

)
≤ 2wiT exp

(
−(ϵ− ε)2

2δ

)
.

We want this probability to be less than 1:

2wiT exp

(
−(ϵ− ε)2

2δ

)
< 1.

Taking the natural logarithm of both sides:

ln(2wiT )−
(ϵ− ε)2

2δ
< 0.

Rearranging the inequality:
(ϵ− ε)2

2δ
> ln(2wiT ),

which gives us √
2δ ln(2wiT ) + ε < ϵ

Therefore, the probability that at least one of the T samples deviates from the mean by more than ϵ is
less than 1 if δ < (ϵ−ε)2

2 ln(2wiT ) .

This result implies that the complexity of the learning problem is primarily influenced by the total rank
of the mixture components,

∑k
i=1 ri, rather than the full dimensionality d.
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Implications for Learning The reduced expected Eluder dimension allows the learning algorithm to focus
on the relevant subspaces defined by the mixture of Gaussian components. This focus accelerates learning,
improves data efficiency, and reduces computational costs, especially in cases where the mixture compo-
nents have significantly lower ranks compared to the overall dimensionality d.

5.2.2 Practical Implications

Personalized Medicine Consider the application of this model in personalized medicine, where predictive
models are used to tailor treatments based on genetic information. Typically, only a small subset of genetic
markers (features) might be relevant for predicting the efficacy of a specific treatment, despite the presence
of thousands of possible genetic markers. Efficiently identifying and focusing on these relevant markers
using a model with a reduced Expected Eluder Dimension can significantly improve the speed and accuracy
of personalized treatment plans.

Predictive Financial Modeling In finance, predictive models for stock returns can focus on a small subset
of economic indicators and financial metrics, streamlining the analysis and improving forecast accuracy by
concentrating on features with the highest predictive power.

Recommendation Systems In recommendation systems, leveraging a sparse feature model allows for
efficiently predicting user preferences by concentrating on a small subset of user and item features that have
the highest predictive power. This approach enhances the accuracy and efficiency of recommendations,
particularly in systems with vast numbers of users and items.

In practical terms, if you are developing or analyzing algorithms for contextual bandits, considering
the Eluder dimension can lead to more robust algorithms that handle the exploration-exploitation trade-off
more effectively. It allows for a more nuanced understanding of how algorithm performance scales with
the complexity of the environment and the diversity of contexts encountered. A more precise estimation of
the Eluder dimension helps optimize our exploration strategy, potentially leading to an improved balance
on the bias-variance trade-off. By accurately determining the necessary level of exploration, we can avoid
overfitting and underfitting, enhancing the overall performance of learning algorithms.

5.3 The Algorithm

The LinUCB Algorithm for Contextual Bandits The Linear UCB (Upper Confidence Bound) algorithm
is a popular method for solving contextual bandit problems with linear reward functions. It extends the
classical UCB approach to contexts, balancing exploration and exploitation by maintaining uncertainty es-
timates for each action’s expected reward. LinUCB assumes that the expected reward for each action is a
linear function of the context.
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Algorithm Outline

Algorithm 3 Linear UCB
Initialize: Select d linearly independent actions.

1: for t = 1, 2, . . . do
2: Update Statistics:

θ̂t ← min
θ

t−1∑
k=1

∥fθ(ak, xk)− rk∥2

Φt ←
t−1∑
k=1

ϕ(ak, xk)ϕ(ak, xk)
⊤

Θt ←
{
ρ :
∥∥∥ρ− θ̂t

∥∥∥
Φt

≤ β
√
d log t

}
3: Select Action:

1. Observe the context xt ∈ Rd.

2. Select the action at that maximizes r̂a(t):

at ∈ argmax
a∈A

{
max
ρ∈Θt

⟨ϕ(a, xt), ρ⟩
}

3. Observe the reward rt(at) for the chosen action at.

LinUCB uses a confidence-bound approach where actions with higher uncertainty in their reward esti-
mates are more likely to be selected. The parameter α controls how much weight is given to this uncertainty,
balancing exploration (trying less certain actions) and exploitation (choosing actions with high expected re-
wards).

The linear assumption allows the algorithm to efficiently update the model after observing each reward,
making it computationally efficient even in high-dimensional spaces, especially when combined with di-
mension reduction techniques.

5.3.1 The Expected Eluder Dimension

Theorem 51. Given ϵ > 0, and D a context distribution. For a sequence of confidence sets {Ft : t ∈ N}
used in LinUCB algorithm, if actions are selected such that At ∈ argmaxa∈A

{
supf∈Ft

f(a)
}

at each time
t, then the regret is bounded by

O
(√

dimE(F , ϵ) log (N (F, ϵ, ∥ · ∥∞))T
)

Here, dimE denotes the expected eluder dimension respect to the distribution the context samples from (D),
and N denotes the covering number.
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Definition 52 (Set Widths). Define the width of a subset F̄ ⊂ F at an action a ∈ A by

w(F̄ , a) = sup
f,f ′∈F̃

(f(a)− f ′(a)). (27)

This is a worst-case measure of the uncertainty about the payoff fθ(a) at a given that fθ ∈ F̄ . We
would like to look on F̄ = Ft := {f ∈ F̃ : ∥f − f̂LS

t ∥2,Et ≤
√
βt} where βt is an appropriately chosen

confidence parameter, and the empirical 2-norm ∥·∥2,Et is defined by

∥g∥22,Et
=

t−1∑
t=1

g2(Ak). (28)

Hence ∥f − fθ∥22,Et
measures the cumulative discrepancy between the previous predictions of f and fθ.

Regret Decomposition

Proposition 53. Fix any sequence {Ft : t ∈ N}, where Ft ⊂ F̃ is measurable with respect to σ(Ht). Then
for any T ∈ N, with probability 1,

R(T, πF1:T ) ≤
T∑
t=1

[wt(Ft, At) + CI{fθ /∈ Ft}] (29)

E[R(T, πF1:T )] ≤ E

[
T∑
t=1

wt(Ft, At)

]
+ CI{fθ /∈ Ft}. (30)

Bounding the sum of widths To clarify the proof, we adopt a broader representation: for all t > 0, we let
At = ⟨xt, at⟩, as defined in Definition 43.

Claim 54. Let B be a ϵ-independent sequence of context and actions, B = {⟨x1, a1⟩, . . . , ⟨xn, an⟩}. Then
B holds that, EP(B, ϵ) = |B| = n.

Proof. Assume that B is ϵ-independent sequence of context and actions. We prove that EP(B, ϵ) = |B| by
induction.

Statement: For any sequence with ϵ-eluder predicate valued n, if we add one ϵ-independent element to
the sequence, the eluder predicate of the group becomes n+ 1.

Base Case: The base case is trivial.
Inductive Step: Assume that the statement is true for a ϵ-independent sequence of size n. That is, when

we add n ϵ-independent element in a sequence the eluder predicate of the sequence becomes n (inductive
hypothesis). Now consider a ϵ-independent sequence length n + 1. We need to show that a ϵ-independent
sequence results eluder predicate value n+1. By our inductive hypothesis, for this sequence a prefix length
n is still ϵ-independents sequence, then by the inductive hypothesis the value of ϵ-eluder predicate for that
sequence is n. Then by adding an ϵ-independent element we get that the eluder predicate becomes n + 1.
Finally we get that EP(B, ϵ) = |B|.

Claim 55. Let T > 0 and x ∼ DT . For a sequence of T pairs of context and action {⟨x1, a1⟩, . . . ,
⟨xT , aT ⟩}. ,the largest cardinality of subsequence B of ϵ-independent pairs, Ex∼DT |B| ≤ d̃.
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Proof. Let T > 0 and let x ∼ DT we define

Ãx = {Ã1, . . . , ÃT } : Ãx
t = ⟨xt, αt⟩ s.t. Ãx = argmaxA:X(A)=xEP(A, ϵ).

Where Eluder Predicate denote: EP(A, ϵ) := maxI⊆[n] EP(A, I, ϵ).
Fix j > 0 a set of j indexes J ⊂ [T ]. Let B ⊆ Ãx, then ∃J ⊆ [T ] : Ãx[J ] = ⟨Ãi⟩i∈J =

Bx,J . Therefore, EP(B, ϵ) = maxK⊆J EP(B,K, ϵ) = EP(Ãx,K, ϵ) ≤ maxI⊆[T ]:|I|=|K| EP(Ãx, I, ϵ) ≤
maxI⊆[T ] EP(Ãx, I, ϵ). Thus we get that for any subsequence we get that EP(B, ϵ) ≤ EP(Ãx, ϵ). Next,
assume that B is ϵ-independent subset of Ãx. We proved in Claim 54 that,

EP(B, ϵ) = max
K⊆J

EP(B,K, ϵ) = EP(B, J, ϵ) = |B|.

As a conclusion, we have for any subsequence B ⊆ Ãx that is ϵ-independent, that |B| = EP(B, ϵ) ≤
EP(Ãx, ϵ).
Then we get our claim Ex∼DT |B| = Ex∼DT |Bx,J | ≤ Ex∼DT EP(Ãx, ϵ) = Ex∼DT [maxA:X(A)=x EP(A, ϵ)]
= d̃

Proposition 56. Let i > 0, xi ∼ DT , a sequence of T contexts that sample in run i. The expected regret
over the runs of the algorithm is:

EiR(T, πi
F1:T ) = Ex∼DTR(T, πF1:T )

where, πF1:T is the expected policies respect to the expected x ∼ DT .

Corollary 57. E[R(T, πF1:T )] = Ex∼DT [R(T, πF1:T )] ≤ Ex∼DT

[∑T
t=1wt(Ft, At)

]
+ CI{fθ /∈ Ft}.

Lemma 58 (Bounding the number of large widths). If (βt ≥ 0|t ∈ N) is a non-decreasing sequence and
Ft := {f ∈ F̃ : ||f − fLS

t ||2,Et ≤
√
βt} then

Ex∼DT

[ T∑
t=1

I(w(Ft, At) > ϵ)
]
≤
(
4βT
ϵ2

+ 1

)
dimE(F , ϵ)

for all T ∈ N and ϵ > 0.

Proof. We begin by denote A = (A1, . . . , AT ) and showing that if wt := w(Ft, At) > ϵ then At is ϵ-
dependent on fewer than 4βT /ϵ

2 disjoint subsequences of (A1, . . . , At−1) for T > t. To see this, note that if
wt(At) > ϵ there are f, f ′ ∈ Ft, such that f(At)− f ′(At) > ϵ. By definition, since f(At)− f ′(At) > ϵ, if
At is ϵ-dependent on a subsequence (Ai1 , . . . , Aik) of (A1, . . . , At−1) then

∑k
j=1(f(Aij )−f ′(Aij ))

2 > ϵ2.
It follows that, if At is ϵ-dependent on K disjoint subsequences of (A1, . . . , At−1) then ||f−f ′||2,Et ≥ Kϵ2.
By the triangle inequality, we have

||f − f ′||2,Et ≤ ||f − fLS
t ||2,Et + ||f ′ − fLS

t ||2,Et

≤ 2
√
βt ≤ 2

√
βT .

and it follows that K < 4βT /ϵ
2.

Next, we show that for sequence of context (x1, . . . , xT ) and in any action sequence (a1, . . . , aT ), there
is some element ατ = ⟨xτ , aτ ⟩ that is ϵ-dependent on at least ⌊τ/d̃⌋ disjoint subsequences of (α1, . . . , ατ−1),
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where d̃ := dimE(F , ϵ). Now to show this, for an integer K satisfying Kd̃+1 ≤ T ≤ Kd̃+ d̃, we will con-
struct K disjoint subsequences B1, . . . , BK . First let Bi = (αi) for i = 1, . . . ,K. If αK+1 is ϵ-dependent
on each subsequence B1, . . . , BK , our claim is established. Otherwise, select a subsequence Bi such that
αK+1 is ϵ-dependent and append αK+1 to Bi. Repeat this process for elements with indices j > K + 1
until αj is ϵ-dependent on each subsequence or αT is. In the latter scenario when

∑K
i=1 |Bi| ≥ Kd̃, we

will denote each Bi respect to the indexes of A. Thus for any i ≤ K ∃Ii ⊆ [T ] s.t. Bi = ⟨Aj⟩j∈Ii , we
will denote each of these subsequnce according to that Bx,Ii = Bi, where x is T contexts that sample in he
algorithm. Since each element of a subsequence Bx,Ii is ϵ-dependent of its predecessors, we have:

|Bx,Ii | = EP(Bx,Ii , ϵ).

Therefore we have:
K∑
i=1

|Bx,Ii | ≤
K∑
i=1

EP(Bx,Ii , ϵ) ≤ K · EP(A, ϵ)

Eventually, we can see that the expected amount of elements in these subsequences is:

Ex∼DT

[ K∑
i=1

|Bx,Ii |
]
≤ K · Ex∼DT

[
EP(A, ϵ)

]
= Kd̃. (31)

Now consider taking (α1, . . . , αT ) to be the sequence (Aτ1 , . . . , AτT ) of (A1, . . . , AT ) consisting of
elements At for which wt(At) > ϵ. As we have established earlier, αt is ϵ-dependent on fewer than 4βT /ϵ

2

disjoint subsequences of (Aτ1 , . . . , Aτt−1). It follows that each αj is ϵ-dependent on fewer than 4βT /ϵ
2

disjoint subsequences of (α1, . . . , αj−1). Combining this with the fact we have established that there is αj

that is ϵ-dependent on at least τ/d̃−1 disjoint subsequences of (a1, . . . , aj−1), we have T/d̃−1 ≤ 4βT /ϵ
2.

It follows that T ≤ (4βT /ϵ
2 + 1)d̃, which is our desired result.

Lemma 59 (Bounding the sum of widths). If (βt ≥ 0|t ∈ N) is a nondecreasing sequence and Ft := {f ∈
F̃ : ||f − fLS

t ||2,Et ≤
√
βt} then with probability 1,

Ex∼DT

[ T∑
t=1

wt(Ft, At)
]
≤ Tϵ+min {dimE(F , ϵ), T}C + 4

√
dimE(F , ϵ)βTT (32)

for all T ∈ N.

Proof. Let x ∼ DT , to reduce notation, write A = (A1, . . . , AT ), dx,ϵ = EP(A, ϵ) and wt = w(Ft, At).
Rearrange the sequence (w1, . . . , wT ) so that wi1 ≥ wi2 ≥ . . . ≥ wiT . We have

T∑
t=1

wt(Ft, At) =

T∑
t=1

wit =

T∑
t=1

wit1{wit ≤ ϵ}+ E
[ T∑
t=1

wit1{wit > ϵ}

≤ T · ϵ+
T∑
t=1

wit1{wit > ϵ}

Now, we know wit ≤ C. In addition, wit > α ⇒
∑T

t=1 1(w(Ft, Ak) > α) ≥ t. By Proposition 3,
this can only occur if t < (4βT

α2 + 1)dx,α. For α ≥ ϵ, dx,α ≤ dx,ϵ, since EP(A, ·) is nonincreasing in ϵ.
Therefore, when wit > α ≥ ϵ, t ≤ (4βT

α2 + 1)dx,ϵ which implies

α ≤

√
4βTdx,ϵ
t− dx,ϵ

.
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This shows that if wit > α, then wit ≤ min{C, 4βT dx,ϵ
T−t+dx,ϵ

}. Therefore,

T∑
t=1

wit1{wit > α} =
T∑
t=1

wit1{wit > ϵ} ≤ dx,ϵC +
T∑

t=d̃+1

√
4βTdx,ϵ
t− dx,ϵ

≤ dx,ϵC + 2
√
βTdx,ϵ

(
T∑
t=0

1√
t

)
= dx,ϵC + 2

√
βTdx,ϵT .

To complete the proof, we will see that the expected regret respect to x is:

Ex∼DT

[ T∑
t=1

wit1{wit > ϵ}
]
≤ Ex∼DT

[
dx,ϵC + 2

√
βTdx,ϵT

]
= d̃C + 2

√
βT d̃T .

We combine this with the fact that the sum of widths is always bounded by CT . This implies:

Ex∼DT

[ T∑
t=1

wit

]
≤ min

{
TC, Tϵ+ d̃C + 2

√
d̃βTT

}
≤ Tϵ+min{dimE(F , ϵ), T}C + 2

√
dimE(F , ϵ)βTT .

5.3.2 The High Probability Dimension

Another option to define the Eluder dimension in stochastic setting, is if we have a set of contexts that
received most of the time and they induce a smaller dimension. Therefore we will look on the next definition.

Definition 60 (high-probability Eluder dimension). Let ϵ, δ > 0, and D a context distribution. Let G be a
function class defined on X . Let W be a random variable of a sequence of n contexts drawn from D. Given
a sequence Z = {(x1, a1), . . . , (xn, an)} and X(Z) = (x1, . . . , xn). We define a predicate EPG(Z, i, ϵ),
which returns 1 if (xi, ai) is ϵ-independent from (x1, a1), . . . , (xi−1, ai−1). The high-probability Eluder
dimension d̃ = dimhp

E (G, ϵ, δ) is
min
N (U)

max
Z:X(Z)⊆U

EP (Z, ϵ), (33)

where D(U) ≥ 1− δ, and N denotes the covering number.

Claim 61. Let ϵ, δ, n > 0, and D a context distribution.

d = dimE(G, ϵ) ≥ dimhp
E (G, ϵ, δ) = d̃hp

d = dimE(G, ϵ) ≥ dimE(G, ϵ,Dn) = d̃

Proof.

• dimE(G, ϵ) ≥ dimhp
E (G, ϵ, δ): This inequality is easy to see due to U ⊆ X .
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• dimE(G, ϵ) ≥ dimE(G, ϵ):

dimE(G, ϵ) = max
Z

∞∑
i=1

EP(Z, i, ϵ)

≥ max
Z

n∑
i=1

EP(Z, i, ϵ) ≥ max
Z

max
I⊆[n]

EP(Z, I, ϵ)

≥ EW∼Dn

[
max

Z:X(Z)=W
max
I⊆[n]

EP(Z, I, ϵ)
]
= dimE(G, ϵ).

Note that if the support ofD contains sequences with Eluder dimension d, then as n→∞, the Expected
Eluder dimension will converge to d̃. Then d̃ ≥ ˜dhp, and it may be more effective to bound our regret with
the high-probability version.

Theorem 62. Given confidence parameter δ > 0, ϵ > 0, and D a context distribution. For a sequence of
confidence sets {Ft : t ∈ N} used in UCB algorithm, if actions are selected such that At ∈ argmaxa∈A

{
supf∈Ft

f(a)
}

at each time t, then the regret is bounded by

O

(√
min

{
dimhp

E (F , ϵ, δ), dimE(F , ϵ)
}
log (N (F, ϵ, ∥ · ∥∞))T + δT + ϵT

)

Here, dimhp
E denotes the high probability eluder dimension respect to the distribution the context samples

from, and N denotes the covering number.

Definition 63 (Effective Class). Given distribution D : X → R Define the set

F̃δ = {fxi ∈ F|min
n
D(

n⋃
i=1

Bi) > 1− δ s.t. Bi = Ball(xi, ϵ, ∥ · ∥∞)}, (34)

as the Effective class of F respect to D.

For clearness we will denote F̃ := F̃δ.

Claim 64. The Effective Class eluder dimension is equal to the high probability eluder dimension of the
class.

dimhp
E (F , ϵ, δ) = dimE(F̃δ, ϵ). (35)

Proof Outlines We will bound our regret on two disjoint subset of [T ], the good iteration GT = {t ≤
T |θt ∈ F̃} and the bad iterations BT = {t ≤ T |θt /∈ F̃}. Its worth to noting that P(t ∈ Gt) = P(θt ∈
F̃) > 1−δ. A key to our analysis is recent observation that the regret of UCB algorithm can be decomposed
in terms of confidence sets.

Definition 65 (Set Widths). Define the width of a subset F̄ ⊂ F at an action a ∈ A by

w(F̄ , a) = sup
f,f ′∈F̃

(f(a)− f ′(a)). (36)

This is a worst-case measure of the uncertainty about the payoff fθ(a) at a given that fθ ∈ F̄ . We would
like to look on F̄ = F̃ .
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Regret Decomposition

Proposition 66. The total regret of the algorithms is

R(T, πF1:T ) = R(T, πF1:T |GT ) +R(T, πF1:T |BT )

We can bound R(T, πF1:T |BT ) ≤
∑T

t=1CI{θt /∈ F̃} ≤ CTδ.

Proposition 67. Fix any sequence {Ft : t ∈ N}, where Ft ⊂ F̃ is measurable with respect to σ(Ht). Then
for any T ∈ N, with probability 1,

R(T, πF1:T |GT ) ≤
T∑
t=1

[wt(Ft, At) + CI{fθ /∈ Ft}] (37)

E[R(T, πTS)|GT ] ≤ E

[
T∑
t=1

wt(Ft, At)

]
+ CI{fθ /∈ Ft}. (38)

Bounding the sum of widths The abstract confidence sets we construct are centered around least squares
estimates f̂LS

t ∈ argminf∈F̃ L2,t(f) where L2,t(f) =
∑t−1

t=1(f(At) − Rt)
2 is the cumulative squared

prediction error. The sets take the form Ft := {f ∈ F̃ : ||f−f̂LS
t ||2,Et ≤

√
βt}where βt is an appropriately

chosen confidence parameter, and the empirical 2-norm || · ||2,Et is defined by ||g||22,Et
=
∑t−1

t=1 g
2(Ak).

Hence ||f − fθ||22,Et
measures the cumulative discrepancy between the previous predictions of f and fθ.

Lemma 68 (Bounding the number of large widths). If (βt ≥ 0|t ∈ N) is a non-decreasing sequence and
Ft := {f ∈ F̃ : ||f − fLS

t ||2,Et ≤
√
βt} then

T∑
t=1

I(w(Ft, At) > ϵ) ≤
(
4βT
ϵ2

+ 1

)
dimhp

E (F , ϵ, δ)

for all T ∈ N and ϵ > 0.

Proof. We begin by showing that if wt := w(Ft, At) > ϵ then At is ϵ-dependent on fewer than 4βT /ϵ
2

disjoint subsequences of (A1, . . . , At−1) for T > t. To see this, note that if wt(At) > ϵ there are f, f ′ ∈ Ft,
such that f(At)−f ′(At) > ϵ. By definition, since f(At)−f ′(At) > ϵ, if At is ϵ-dependent on a subsequence
(Ai1 , . . . , Aik) of (A1, . . . , At−1) then

∑k
j=1(f(Aij )− f ′(Aij ))

2 > ϵ2. It follows that, if At is ϵ-dependent
on K disjoint subsequences of (A1, . . . , At−1) then ||f − f ′||2,Et ≥ Kϵ2. By the triangle inequality, we
have

||f − f ′||2,Et ≤ ||f − fLS
t ||2,Et + ||f ′ − fLS

t ||2,Et

≤ 2
√
βt ≤ 2

√
βT .

and it follows that K < 4βT /ϵ
2.

Next, we show that in any action sequence (a1, . . . , aT ), there is some element aj that is ϵ-dependent on
at least τ/d̃ − 1 disjoint subsequences of (a1, . . . , aj−1), where d̃ := dimE(F , ϵ). By Claim 64, we have,
d̃ = dimhp

E (F , ϵ, δ). Now to show this, for an integer K satisfying Kd̃+1 ≤ T ≤ Kd̃+ d̃, we will construct
K disjoint subsequences B1, . . . , BK . First let Bi = (ai) for i = 1, . . . ,K. If aK+1 is ϵ-dependent on each
subsequence B1, . . . , BK , our claim is established. Otherwise, select a subsequence Bi such that aK+1 is
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ϵ-dependent and append aK+1 to Bi. Repeat this process for elements with indices j > K + 1 until ai is
ϵ-dependent on each subsequence or aT is. In the latter scenario

∑K
i=1 |Bi| ≥ Kd̃, and since each element

of a subsequence Bi is ϵ-dependent of its predecessors, and each element that take in count if it from the
interval GT , we have |Bi| = d̃. In this case, aT must be ϵ-dependent on each subsequence, by the definition
of dimhp

E (F , ϵ, δ).
Now consider taking (a1, . . . , aT ) to be the subsequence (A1, . . . , AT ) of (A1, . . . , AT ) consisting of

elements At for which wt(At) > ϵ. As we have established earlier, at is ϵ-dependent on fewer than 4βT /ϵ
2

disjoint subsequences of (A1, . . . , At−1). It follows that each aj is ϵ-dependent on fewer than 4βT /ϵ
2

disjoint subsequences of (a1, . . . , aj−1). Combining this with the fact we have established that there is
some aj that is ϵ-dependent on at least τ/d̃−1 disjoint subsequences of (a1, . . . , aj−1), we have T/d̃−1 ≤
4βT /ϵ

2. It follows that T ≥ 4βT /ϵ
2 + d̃, which is our desired result.

Lemma 69 (Bounding the sum of widths). If (βt ≥ 0|t ∈ N) is a nondecreasing sequence and Ft := {f ∈
F̃ : ||f − fLS

t ||2,Et ≤
√
βt} then with probability 1,

T∑
t=1

wt(Ft, At) ≤ ϵT +min
{
dimhp

E (F , α, δ), T
}
C + 4

√
dimhp

E (F , α, δ)βTT (13)

for all T ∈ N.

Proof. To reduce notation, write d̃ = dimhp
E (F , ϵ, δ) and wt = w(Ft, At). Reorder the sequence (w1, . . . , wT )

so that wi1 ≥ wi2 ≥ . . . ≥ wiT . We have

T∑
t=1

wt(Ft, At) =
T∑
t=1

wit =
T∑
t=1

wit1{wit ≤ α}+
T∑
t=1

wit1{wit > α}

≤ ϵT +
T∑
t=1

wit1{wit > α}.

The final step in the above inequality uses that either wiT = ϵ and
∑T−1

t=1 wit = ϵT or wiT is set below
the smallest possible width and hence 1{wit ≤ α} never occurs.

Now, we know wit ≤ C. In addition, wit > ϵ ⇒
∑T

t=1 1(w(Ft, Ak) > ϵ) ≥ t. By Proposition 3, this
can only occur if t < (4βT

ϵ2
+ 1) dimhp

E (F , ϵ, δ). For t ≤ α, dimhp
E (F , ϵ, δ) ≤ dimhp

E (F , α, δ) = d̃, since

dimhp
E (F , ϵ, δ) is nonincreasing in ϵ′. Therefore, when wit > ϵα, t ≤ (4βT

ϵ2
+ 1)d̃ which implies t ≤ 4βT d̃

ϵ2
.

This shows that if wit > α, then wit ≤ min{C, 4βT d̃

T−t+d̃
}. Therefore,

T∑
t=1

wit1{wit > α} ≤ dC +

T∑
t=d̃+1

4dβT

T − t− d̃
+ 2
√

βT

√
T∑

t=0

1√
t

≤ d̃C + 4
√
βT

√
T∑

t=0

1√
t

 = d̃C + 4
√
βTT .
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To complete the proof, we combine this with the fact that the sum of widths is always bounded by CT .
This implies:

T∑
t=1

wt(Ft, At) ≤ min

{
TC,

1

T
+ dimhp

E (F , α, δ)C
}
+ 4

√
dimhp

E (F , α, δ)βTT

≤ ϵT +min{dimhp
E (F , α, δ), TC}+ 4

√
dimhp

E (F , α, δ)βTT .

Confidence Bound The development of the confidence bound in this proof follows the approach presented
in (Russo and Van Roy, 2013). For further details and a comprehensive explanation of the underlying
principles, the reader is referred to that work.
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6 Improved Analysis of the GOLF Algorithm

Bellman Eluder dimension a new complexity measure for reinforcement learning. A notable contribution
to sample complexity, provides a unified complexity measure that subsumes many previously studied RL
problems, including those characterized by low Bellman rank and low Eluder dimension which presented
in the previous sections (3, 5). The paper demonstrates that RL problems with a low BE dimension can be
addressed efficiently, subsuming a majority of existing tractable RL problems such as tabular MDPs, linear
MDPs, and reactive POMDPs. Additionally, the authors propose a new optimization-based algorithm called
GOLF and reanalyze OLIVE (Jiang et al. (2017)). Both algorithms are proven to learn near-optimal policies
for low BE dimension problems with a sample complexity that is polynomial in relevant parameters but
independent of the state-action space size. This characteristic ensures their applicability to a broad range of
RL settings, providing improved regret and sample complexity results compared to existing methods.

Building on this foundational work, our paper aims to further improve the sample complexity for RL
problems characterized by a low BE dimension. We refined Theoretical Analysis and provide a comprehen-
sive theoretical analysis of GOLF, establishing improved regret and sample complexity bounds.

6.1 Introduction

Algorithm 4 GOLF (F ,G,K, β) — Global Optimism based on Local Fitting

1: Initialize: D1, . . . ,DH ← ∅, B0 ← F .
2: for episode k from 1 to K do
3: Choose policy πk = πfk , where fk ∈R

{
f ∈ Bk−1

∣∣maxf ′∈Bk−1 f ′(s1, πf ′(s1))− f(s1, πf (s1)) ≤
max{2ϵ, βk}

}
.

4: Collect a trajectory (s1, a1, r1, . . . , sH , aH , rH , sH+1) by following πk.
5: Augment Dh = Dh ∪ {(sh, ah, rh, sh+1)} for all h ∈ [H].
6: Update

Bk =

{
f ∈ F : LDh

(fh, fh+1) ≤ inf
g∈Gh

LDh
(g, fh+1) + β for all h ∈ [H]

}
,

where LDh
(ξh, ζh+1) =

∑
(s,a,r,s′)∈Dh

[ξh(s, a)− r −max
a′∈A

ζh+1(s
′, a′)]2. (39)

7: Output πout sampled uniformly at random from {πk}Kk=1.

The GOLF algorithm 4, introduced by Jin et al. (2021a), has garnered attention for its simplicity
and efficiency. In their innovative work presented the GOLF algorithm, showcasing a regret guarantee of

O
(
H
√
K · dimBE(F ,

√
1/K) log[KHNF∪G(1/K)/δ]

)
, where dimBE represents the Bellman-Eluder

dimension (see definition 40) of the function class F , K is the number of episodes, and NF∪G(1/K) de-
notes the size of the 1/K-covering number(see definition 10) of F and G. Note that the algorithm assume
completeness, i.e, completeness requires the function class F to be closed under the Bellman operator and
G is the completeness (see definition 9). We consider the function class F = F1 × · · · × FH , and also
assuming realizability (see Assumption 8).

The regret analysis can be separated to two main steps:
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Step 1. Bounding the regret by Bellman error: Upper bound to the cumulative regret by the summation
of Bellman error, with probability at least 1− δ:

K∑
k=1

(
V ⋆
1 (s1)− V πk

1 (s1)
)
≤

K∑
k=1

(
max
a

fk
1 (s1, a)− V πk

1 (s1)
)

(i)
=

K∑
k=1

H∑
h=1

E(fk, πk, h), (40)

where (i) follows from standard policy loss decomposition (see [Lemma 1 in Jiang et al. 2017]).

Step 2. Bounding cumulative Bellman error using DE dimension: Focus on a fixed step h and bound
the cumulative Bellman error

∑K
k=1 E(fk, πk, h).

The following the main lemma that used in [Appendix D in Jin et al. 2021a, “Proofs for GOLF”]:

Lemma 70. Given a function class Φ defined on X with |ϕ(x)| ≤ C for all (ϕ, x) ∈ Φ × X , and a family
of probability measures Π over X . Suppose sequence {ϕk}Kk=1 ⊂ Φ and {µk}Kk=1 ⊂ Π satisfy that for all
k ∈ [K],

∑k−1
t=1 (Eµt [ϕk])

2 ≤ β. Then for all k ∈ [K] and ω > 0,

k∑
t=1

|Eµt [ϕt]| ≤ O
(√

dimDE(Φ,Π, ω)βk +min{k,dimDE(Φ,Π, ω)}C + kω
)
.

Lemma 70 focuses on a fixed step h and bounds the cumulative Bellman error
∑K

k=1 E(fk, πk, h) using
Lemma 77, which proves the condition

∑k−1
t=1 (Eµt [ϕk])

2 ≤ β. The bound on the accumulating rate of
Bellman error in Lemma 70 can be divided into two main components:

•
√
dimDE(Φ,Π, ω)βk +min{k, dimDE(Φ,Π, ω)}C

• kω

The first component addresses the error when the chosen policy incurs a large error (> ω). The second
component applies when the error is small (≤ ω). For instance, if the algorithm consistently selects a good
policy for step h with no errors, the regret for this step is bounded by

∑k
t=1 |Eµh,t

[ϕh,t]| ≤ O(Kω).

Sample Complexity

Remark 71 (From average regret to PAC guarantees and optimal policies.). There is some intimate connec-
tion between regret bounds and PAC guarantees that has been pointed out previously by Jin et al. (2018).
For instance, by fixing the initial state distribution to be identical (e.g., s(n)1 = s for all 1 ≤ n ≤ K) and
choosing the output policy π̂ uniformly at random from {π(n)|1 ≤ n ≤ N}, one can easily verify that this
output policy π̂ is ϵ-optimal for state s, as long as 1

K Regret(K) ≤ ϵ.

Following this approach, the algorithm guarantees that the resulting output will be an ϵ-optimal policy
if we perform at least K ≥ H2dβ

ϵ2
phases. Furthermore, after K = H2dβ

ϵ2
episodes, the regret will be:

R(K) = O
(
H2dβ

ϵ

)
. (41)

In our work, we present a refined analysis of the GOLF algorithm, aiming to refine the regret guar-
antee to achieve an ϵ-optimal policy, providing enhancement in performance evaluation and robustness of
the algorithm. We are also improving the guarantee to get such policy. We will work on all the layers
simultaneously, and we will use the next definition:
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Definition 72. Let ϵ > 0, t ∈ [K], we define ht to be the number of layers h ∈ [H] where |E(f t, πt, h)| ≥ ϵ.
In other words, hϵt =

∑
h∈[H] I{|Eµ{h,t} [ϕ{h,t}]| > ϵ}.

In our case, ∀t, h : µ{h,t} is present the probability induced by the policy πt
h, and ϕ{h,t} presenting

f t
h − T f t

h+1, which is the bellman error.
Driven form it we will define also the average amount of layers that have a large error:

Definition 73. Let mark in h̃ = 1
|T ϵ| ×

∑K
t=1 h

ϵ
t , the average amount of layers that have a large exception,

where T ϵ = {t ∈ [K] | hϵt > 0} set of the phases where there is at least one large exception.

We know that every round the error is scaling down as function of ε ≤
√

dβ
t−d as shows in equation 45,

that’s give us the motivation for Lemma 74 presents in the next subsection. And as a conclusion from this
lemma (74) and definition 73 we get that:

|T | ≤ O
(
H

h̃

β

ϵ2
· dimBE(F ,DF , ϵ)

)
.

Following this approach, we develop the regret over the average h̃, as detailed in Lemma 75. Summing
the errors over |T | episodes, Theorem 76 presents a significant improvement in the regret bounds of the
GOLF algorithm. By setting K = O(|T |), it guarantees that there exists a time step t ∈ [K] such that the
Bellman error of the policy πt is bounded by ϵ for all steps h ∈ [H]. Furthermore, the total regret of the
algorithm is bounded by:

R(K) =
H∑

h=1

K∑
t=1

|Eµ{h,t} [ϕt]| ≤ O
(
H2

h̃
dimDE(Φ,Π, ϵ)β

1

ϵ

)
.

This result not only provides a tighter bound on the regret but also demonstrates the effectiveness of the
GOLF algorithm in minimizing the cumulative Bellman error. By leveraging the structure of the Bellman
Eluder dimension and optimizing the parameter settings, this theorem ensures that the GOLF algorithm
achieves near-optimal performance with improved sample efficiency.

6.2 ϵ-Optimality: Improved GOLF Sample Complexity and Regret Analysis

According to the Bellman-Eluder dimension, we aspire to develop an algorithm that optimize the policy
selection based on picking the best function in each dimension. GOLF eliminate the functions that have a
high Bellman error and we expect to get functions that are ϵ-independent and therefore we will suffer a big
error for them.

Fortunately, we won’t get a large error many times, furthermore, we can bound the occurs of it by tϵ and
with Proposition 79 we would bound this amount and get that:

tϵ =

(
β

ϵ2
+ 1

)
× dimDE(Φ,Π, ϵ). (42)

Therefore, we will have the following lemma regarding the total amount of errors that we get, using defini-
tion 72:

Lemma 74. Let ϵ > 0. Then,
∑K

t=1 h
ϵ
t ≤ H ×

(
β
ϵ2

+ 1
)
× dimDE(Φ,Π, ϵ).
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As demonstrated in Lemma 70, the cumulative error can be divided into two parts: cases of large errors
and cases of small errors. There is two crucial ideas to minimize. The first, number of episodes with large
errors, the second, the amount of phases the algorithm need to run in order to get near-optimal policy.
Lemma 74 assists in achieving this by bounding the number of episodes that have large errors.

To clarify this concept, we remind T from definition 73, the set T ϵ = {t ∈ [K] | hϵt > 0}. This
including Lemma 74 implies:

|T ϵ| =
∑

t ht

h̃
≤ O

(
H

h̃

β

ϵ2
· dimBE(F ,DF , ϵ)

)
. (43)

Equipped with this we can present an improved Lemma 70.

Lemma 75. Given a function class Φ defined on X with |ϕ(x)| ≤ C for all (ϕ, x) ∈ Φ × X , and a family
of probability measures Π over X . Suppose sequence {ϕk}Kk=1 ⊂ Φ and {µk}Kk=1 ⊂ Π satisfy that for all
k ∈ [K], h ∈ [H],

∑k−1
t=1 (Eµ{h,t} [ϕk])

2 ≤ β. Then for all k ∈ [K] and ω > 0 and tω(42),

H∑
h=1

k∑
t=1

|Eµ{h,t} [ϕt]| ≤ O
(
H
√
dimDE(Φ,Π, ω)βmin{k, tω}+min{k,dimDE(Φ,Π, ω)}HC +Hkω

)
.

And for K big enough, and with tω from (42), our regret, as function of ω, is

H∑
h=1

K∑
t=1

|Eµ{h,t} [ϕt]| ≤ O
(
H dimDE(Φ,Π, ω)β

1

ω
+HKω

)
.

Therefore, we get our main result, the regret bound is as follow:

Theorem 76 (Effective Horizon Regret Bound For PAC Guarantee). By setting ω = ϵ and K = O
(
|T ϵ|

)
,we

have , ∃t ∈ [K], s.t. BE(πt) ≤ ϵ ,∀h ∈ [H].
Furthermore, the total regret of the algorithm:

R(K) =

H∑
h=1

K∑
t=1

|Eµ{h,t} [ϕt]| ≤ O
(
H2

h̃
dimDE(Φ,Π, ϵ)β

1

ϵ

)
. (44)

This theorem presents a significant improvement in the regret bounds of the GOLF algorithm. By setting
K = O(|T |), it guarantees that there exists a time step t ∈ [K] such that the Bellman error of the policy
πt is bounded by ϵ for all steps h ∈ [H]. Furthermore, the total regret of the algorithm, for such policy, is
effective horizon dependent and bounded by:

R(K) ≤ O
(
H2

h̃
dimDE(Φ,Π, ϵ)β

1

ϵ

)
.

This result not only provides a tighter bound on the regret but also demonstrates the effectiveness of the
GOLF algorithm in minimizing the cumulative Bellman error. By leveraging the structure of the Bellman
Eluder dimension and optimizing the parameter settings, this theorem ensures that the GOLF algorithm
achieves near-optimal performance with improved sample efficiency.
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Proof. In equation (40) we bound the regret as follows,

R(K) =
K∑
k=1

(
V ⋆
1 (s1)− V πk

1 (s1)
)
≤

K∑
k=1

(
max
a

fk
1 (s1, a)− V πk

1 (s1)
)
=

K∑
k=1

H∑
h=1

E(fk, πk, h),

We invoke Lemma 77 (a) and Lemma 75 with
ρ =

1

K
, ω = ϵ, C = 1,

X = S ×A, Φ = (I − Th)F , Π = DF ,h,

ϕk = fk
h − Thfk

h+1 and µk = Pπk
(sh = ·, ah = ·),

and we obtain
k∑

t=1

H∑
h=1

E(f t, πt, h) ≤O
(
H dimDE(Φ,Π, ϵ)β

1

ϵ
+H

H

h̃ϵ2
dimDE(Φ,Π, ϵ)βϵ

)
≤O

(
H2

h̃
dimDE(Φ,Π, ϵ) log[KHNF∪G(1/K)/δ]

1

ϵ

)
.

Due to the fact that we run the algorithm for K = O(|T ϵ|) phases, we know that one of the following two
holds:

• We finish the exploration.

• We expected to run a policy that had no-contribute to increase h̃, and therefore it is ϵ-optimal policy.

Thus, in both cases we have policy that is ϵ-optimal.

6.3 Sections’ Proofs

Lemmas from GOLF without proof In this section, we quote several key lemmas from the GOLF paper,
which will be used later in our proofs.

Lemma 77. Let ρ > 0 be an arbitrary fixed number. If we choose β = c
(
log[KHNF∪G(ρ)/δ] +Kρ

)
with

some large absolute constant c in Algorithm 4, then with probability at least 1−δ, for all (k, h) ∈ [K]×[H],
we have

(a)
∑k−1

i=1 E[
(
fk
h (sh, ah)− (T fk

h+1)(sh, ah)
)2 | sh, ah ∼ πi]≤O(β).

(b)
∑k−1

i=1

(
fk
h (s

i
h, a

i
h)− (T fk

h+1)(s
i
h, a

i
h)
)2≤O(β),

where (si1, a
i
1, . . . , s

i
H , aiH , siH+1) denotes the trajectory sampled by following πi in the ith episode.

The second lemma guarantees that the optimal value function is in the confidence set, with high proba-
bility. As a result, the selected value function fk, in each iteration k, shall be an upper bound of Q⋆, with
high probability.

Lemma 78. Under the same condition of Lemma 77, with probability at least 1− δ, we have Q⋆ ∈ Bk for
all k ∈ [K].

The proof of Lemma 77 and 78 relies on standard martingale concentration (e.g., Freedman’s inequality)
and can be found in Appendix D.3 in Jin et al. (2021a).

The next lemmas are highly-relevant to our work so we add their proofs for completeness.
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Proof of Lemma 70 The proof in this subsection basically follows the same arguments as in Appendix
C of Russo and Van Roy (2013), and as in Appendix D of Jin et al. (2021a) We firstly prove the following
proposition which bounds the number of times |Eµt [ϕt]| can exceed a certain threshold.

Proposition 79. Given a function class Φ defined on X , and a family of probability measures Π over X .
Suppose sequence {ϕk}Kk=1 ⊂ Φ and {µk}Kk=1 ⊂ Π satisfy that for all k ∈ [K],

∑k−1
t=1 (Eµt [ϕk])

2 ≤ β.
Then for all k ∈ [K],

k∑
t=1

1
{
|Eµt [ϕt]| > ϵ

}
≤ (

β

ϵ2
+ 1) dimDE(Φ,Π, ϵ) = tϵ.

Proof of Proposition 79. We first show that if for some k we have |Eµk
[ϕk]| > ϵ, then µk is ϵ-dependent on

at most β/ϵ2 disjoint subsequences in {µ1, . . . , µk−1}. By definition of DE dimension, if |Eµk
[ϕk]| > ϵ and

µk is ϵ-dependent on a subsequence {ν1, . . . , νℓ} of {µ1, . . . , µk−1}, then we should have
∑ℓ

t=1(Eνt [ϕk])
2 ≥

ϵ2. It implies that if µk is ϵ-dependent on L disjoint subsequences in {µ1, . . . , µk−1}, we have

β ≥
k−1∑
t=1

(Eµt [ϕk])
2 ≥ Lϵ2

resulting in L ≤ β/ϵ2.
Now we want to show that for any sequence {ν1, . . . , νT } ⊆ Π, there exists j ∈ [T ] such that νj is

ϵ-dependent on at least L = ⌈(T − 1)/dimDE(Φ,Π, ϵ)⌉ disjoint subsequences in {ν1, . . . , νj−1}. We argue
by the following mental procedure: we start with singleton sequences B1 = {ν1}, . . . , BL = {νL} and
j = L + 1. For each j, if νj is ϵ-dependent on B1, . . . , BL we already achieved our goal so we stop;
otherwise, we pick an i ∈ [L] such that νj is ϵ-independent of Bi and update Bi = Bi ∪ {νj}. Then we
increment j by 1 and continue this process. By the definition of DE dimension, the size of each B1, . . . , BL

cannot get bigger than dimDE(Φ,Π, ϵ) at any point in this process. Therefore, the process stops before or
on j = LdimDE(Φ,Π, ϵ) + 1 ≤ T .

Fix k ∈ [K] and let {ν1, . . . , νT } be subsequence of {µ1, . . . , µk}, consisting of elements for which
|Eµt [ϕt]| > ϵ. Using the first claim, we know that each νj is ϵ-dependent on at most β/ϵ2 disjoint sub-
sequences of {ν1, . . . , νj−1}. Using the second claim, we know there exists j ∈ [T ] such that νj is ϵ-
dependent on at least (T/ dimDE(Φ,Π, ϵ)) − 1 disjoint subsequences of {ν1, . . . , νj−1}. Therefore, we
have T/ dimDE(Φ,Π, ϵ)− 1 ≤ β/ϵ2 which results in

T ≤ (
β

ϵ2
+ 1) dimDE(Φ,Π, ϵ)

and completes the proof.

Proof of Lemma 74

Proof. Recall Proposition 79:
For given h ∈ [H], given a function class Φ defined on X , and a family of probability measures Π over X .
Suppose sequence {ϕh,k}Kk=1 ⊂ Φ and {µh,k}Kk=1 ⊂ Π satisfy that for all k ∈ [K],

∑k−1
t=1 (Eµh,t

[ϕh,t])
2 ≤ β.

Then for all k ∈ [K],
k∑

t=1

1
{
|Eµh,t

[ϕh,t]| > ϵ
}
≤ (

β

ϵ2
+ 1) dimDE(Φ,Π, ϵ).
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Recall the definition of ht (definition 72) and sum over h ∈ [H],

k∑
t=1

ht =
H∑

h=1

k∑
t=1

1
{
|Eµh,k

[ϕh,k]| > ϵ
}
≤ H(

β

ϵ2
+ 1) dimDE(Φ,Π, ϵ),

which completes the proof.

Proof of Lemma 75

Proof. Fix k ∈ [K]; let d = dimDE(Φ,Π, ω). Sort the sequence {|Eϕ1 [ϕ1]|, . . . ,
|Eµk

[ϕk]|} in a decreasing order and denote it by {e1, . . . , ek} (e1 ≥ e2 ≥ · · · ≥ ek).

k∑
t=1

|Eµt [ϕt]| =
k∑

t=1

et =
k∑

t=1

et1
{
et ≤ ω

}
+

k∑
t=1

et1
{
et > ω

}
≤ kω +

k∑
t=1

et1
{
et > ω

}
.

For t ∈ [k], we want to prove that if et > ω, then we have et ≤ min{
√

dβ
t−d , C}. Assume t ∈ [k] satisfies

et > ω. Then there exists α such that et > α ≥ ω. By Proposition 79, we have

t ≤
k∑

i=1

1
{
ei > α

}
≤
( β
α2

+ 1
)
dimDE(Φ,Π, α) ≤

( β
α2

+ 1
)
dimDE(Φ,Π, ω),

which implies:

α ≤
√

dβ

t− d
. (45)

Besides, recall et ≤ C, so we have et ≤ min{
√

dβ
t−d , C}. Also, we use Proposition 79 from the other way,

k∑
t=1

1
{
|Eµh,k

[ϕh,k]| > ω
}
= 1

{
et > ω

}
≤ tω.

Therefore, for Kω = min{k, tω}, we have

k∑
t=1

et1
{
et > ω

}
=

Kω∑
t=1

et1
{
et > ω

}
≤ min{d,Kω}C +

Kω∑
t=d+1

√
dβ

t− d
≤ min{d,Kω}C +

√
dβ

∫ Kω

0

1√
t
dt

≤ min{d,Kω}C + 2
√

dβKω = min{d, k}C + 2
√
dβmin{k, tω},

which completes the proof.
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7 Opera Improving Sample Complexity

7.1 Introduction

Reinforcement Learning (RL) has made significant strides in recent years, particularly with the development
of algorithms capable of efficiently handling large state and action spaces. A notable contribution to this field
is the framework proposed by Chen et al. in their paper ”A General Framework for Sample-Efficient Func-
tion Approximation in Reinforcement Learning” Chen et al. (2022). This framework unifies model-based
and model-free approaches through the Admissible Bellman Characterization (ABC) class and introduces
the functional eluder dimension 41, a novel complexity measure that generalizes the eluder dimension from
bandit literature.

The ABC class encompasses nearly all Markov Decision Process (MDP) models considered tractable
for RL, providing a versatile platform for both theoretical analysis and practical algorithm design. The
functional eluder dimension serves as a critical tool in assessing the sample complexity of RL algorithms,
which is pivotal for developing methods that can efficiently learn in high-dimensional spaces.

Building on this foundation, the OPtimization-based ExploRation with Approximation (OPERA) algo-
rithm proposed by Chen et al. demonstrates superior sample efficiency and improved regret bounds.The
OPERA algorithm leverages an optimization-based approach to exploration, characterized by decompos-
able structural properties in the estimation functions, enabling more effective navigation through large state-
action spaces.

Figure 1: Venn-Diagram Visualization of Prevailing Sample-Efficient RL Classes. As by far the richest
concept, the DEC framework is both a necessary and sufficient condition for sample-efficient interactive
learning. BE dimension is a rich class that subsumes both low Bellman rank and low eluder dimension
and addresses almost all model-free RL classes. The generalized Bilinear Class captures model-based RL
settings including KNRs, linear mixture MDPs and low Witness rank MDPs, yet precludes some eluder-
dimension based models. Bellman Representability is another unified framework that subsumes the vanilla
bilinear classes but fails to capture KNRs and low Witness rank MDPs. Our ABC class encloses both
generalized Bilinear Class and Bellman Representability and subsumes almost all known solvable MDP
cases, with the exception of the Q⋆ state-action aggregation and deterministic linear Q⋆ MDP models,
which neither Bilinear Class nor our ABC class captures.
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7.1.1 Assumptions

In this section in compare to the previous section the relevant assumptions are realizability Assumption 8,
and a finite ϵ-cover (10). In addition we will use a Lipschitz assumption (Assumption 83) that will define
later. We will assume that our hypothesis class has such function D, and a bounded Functional Eluder
Dimension. For that, recall Functional Eluder Dimension definition 41.

Definition 80 (Functional Eluder Dimension). For a given hypothesis class F and a function D defined
on F × F , the functional eluder dimension (FE dimension) dimFE(F ,D, ϵ) is the length of the longest
sequence f1, . . . , fn ∈ F satisfying for all t ≤ n, exists ϵt ≥ ϵ, such that there exists g ∈ F holding√∑t−1

i=1 (D(g, fi))
2 ≤ ϵt while |D(g, ft)| > ϵt.

Such function D is dubbed as the coupling function.

7.2 Admissible Bellman Characterization

Given an MDP M , a sequence of states and actions s1, a1, . . . , sH , two hypothesis classesF and G satisfying
the realizability assumption (8), and a discriminator function class V = {v(s, a, s′) : S × A × S → R},
the estimation function ℓ = {ℓh,f ′}h∈[H],f ′∈F is an Rds-valued function defined on the set consisting of
oh := (sh, ah, sh+1) ∈ S × A × S, f ∈ F , g ∈ G and v ∈ V and serves as a surrogate loss function of the
Bellman error. Note that our estimation function is a vector-valued function, and is more general than the
scalar-valued estimation function (or discrepancy function) used in Foster et al. (2023); Du et al. (2021). The
discriminator v originates from the function class the Integral Probability MetriScal (IPM) Müller (1997) is
taken with respect to (as a metric between two distributions), and is also used in the definition of Witness
rank Sun et al. (2019). We use a coupling function Dh,f⋆(f, g) defined on F × F to characterize the
interaction between two hypotheses f, g ∈ F . The subscript f⋆ is an indicator of the true model and is by
default unchanged throughout the context. When the two hypotheses coincide, our characterization of the
coupling function reduces to the Bellman error.

Definition 81 (Admissible Bellman Characterization). Given an MDP M , two hypothesis classes F ,G
satisfying the realizability assumption andF ⊂ G, an estimation function ℓh,f ′ : (S×A×S)×F×G×V →
Rds and a constant κ ∈ (0, 1], we say that D is an admissible Bellman characterization of (M,F ,G, ℓ) if
the following conditions hold:

(i) (Dominating Average Estimation Function) For any f, g ∈ F

max
v∈V

Esh∼πg ,ah∼πg∥Esh+1
[ℓh,g(oh, fh+1, fh, v) | sh, ah]∥2 ≥ (Dh,f⋆(f, g))2 .

(ii) (Bellman Dominance) For any (h, f) ∈ [H]×F ,

κ ·
∣∣Esh,ah∼πf

[Qh,f (sh, ah)− r(sh, ah)− Vh+1,f (sh+1)]
∣∣ ≤ |Dh,f⋆(f, f)| .

We further say (M,F ,G, ℓ,D) is an ABC class if D is an admissible Bellman characterization of (M,F ,G, ℓ).

Decomposable Estimation Function. Now we introduce the concept of decomposable estimation func-
tion, which generalizes the Bellman error in earlier literature and plays an essential role in our algorithm
design and analysis.
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Definition 82 (Decomposable Estimation Function). A decomposable estimation function ℓ : (S×A×S)×
F × G × V → Rds is a function with bounded ℓ2-norm such that the following two conditions hold:

(i) (Decomposability) There exists an operator that maps between two hypothesis classes T (·) : F → Gsuch
that for any f ∈ F , (h, f ′, g, v) ∈ [H]×F × G × V and all possible oh

1

ℓh,f ′(oh, fh+1, gh, v)− Esh+1

[
ℓh,f ′(oh, fh+1, gh, v) | sh, ah

]
= ℓh,f ′(oh, fh+1, T (f)h, v).

Moreover, if f = f⋆, then T (f) = f⋆ holds.

(ii) (Global Discriminator Optimality) For any f ∈ F there exists a global maximum v⋆h(f) ∈ V such that
for any (h, f ′, g, v) ∈ [H]×F × G × V and all possible oh

∥Esh+1

[
ℓh,f ′(oh, fh+1, fh, v

⋆
h(f)) | sh, ah

]
∥ ≥ ∥Esh+1

[
ℓh,f ′(oh, fh+1, fh, v) | sh, ah

]
∥.

Assumption 83 (Lipschitz Estimation Function). There exists a L > 0, under a well-defined metric ρ, such
that for any (h, f ′, f, g, v) ∈ [H]×F ×F × G × V , (f̃ , g̃, ṽ, f̃ ′) ∈ F × G × V × F and all possible oh,∥∥∥ℓh,f ′(·, f, g, v)− ℓh,f ′(·, f̃ , g, v)

∥∥∥
∞
≤ Lρ(f, f̃),

∥∥ℓh,f ′(·, f, g, v)− ℓh,f ′(·, f, g̃, v)
∥∥
∞ ≤ Lρ(g, g̃),∥∥ℓh,f ′(·, f, g, v)− ℓh,f ′(·, f, g, ṽ)

∥∥
∞ ≤ L ∥v − ṽ∥∞ ,

∥∥∥ℓh,f ′(·, f, g, v)− ℓh,f̃ ′(·, f, g, v)
∥∥∥
∞
≤ Lρ(f ′, f̃ ′).

Note that we have omitted the subscript h of hypotheses in Assumption 83 for notational simplicity.
We further define the induced estimation function class as L = {ℓh,f ′(·, f, g, v) : (h, f ′, f, g, v) ∈ [H] ×
F × F × G × V}. We can show that under Assumption 83, the covering number of the induced estimation
function class L can be upper bounded as

NL(ϵ) ≤ N2
F (

ϵ

4L
)NG(

ϵ

4L
)NV(

ϵ

4L
), (46)

where NF (ϵ), NG(ϵ), NV(ϵ) are the ϵ-covering number of F , G and V , respectively.

7.3 Opera Algorithm

We first present the OPtimization-based ExploRation with Approximation (OPERA) algorithm in Algo-
rithm 5, which finds an ϵ-optimal policy in polynomial time. Following earlier algorithmic art in the same
vein e.g., GOLF Jin et al. (2021a), the core optimization step of OPERA is optimization-based exploration
under the constraint of an identified confidence region; we additionally introduce an estimation policy πest
sharing the similar spirit as in Du et al. (2021).

Pertinent to the constrained optimization subproblem in Eq. (47) of Algorithm 5, we adopt the confi-
dence region based on a general DEF, extending the Bellman-error-based confidence region used in Jin et al.
(2021a). As a result of such an extension, our algorithm can deal with more complex models such as low
Witness rank and KNR. We avoid unnecessary complications by forgoing the discussion on the computa-
tional efficiency of the optimization subproblem, aligning with recent literature on RL theory with general
function approximations.

1The decomposability item (i) in Definition 82 directly implies that a Generalized Completeness condition similar to Complete-
ness assumption in GOLF holds(Assumption 14 of Jin et al. (2021a)).
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Algorithm 5 OPtimization-based ExploRation with Approximation (OPERA)
1: Initialize: Dh = ∅ for h = 1, . . . ,H
2: for iteration t = 1, 2, . . . , T do
3: Set πt := πf t where f t is taken as argmaxf∈F Qf,1(s1, πf (s1)) subject to

max
v∈V

{
t−1∑
i=1

∥ℓh,f i(oih, fh+1, fh, v)∥2 − inf
gh∈Gh

t−1∑
i=1

∥ℓh,f i(oih, fh+1, gh, v)∥2
}
≤ β for all h ∈ [H]

(47)

4: For any h ∈ [H], collect tuple (rh, sh, ah, sh+1) by executing sh, ah ∼ πt

5: Augment Dh = Dh ∪ {(rh, sh, ah, sh+1)}
6: Output: πout uniformly sampled from {πt}Tt=1

7.4 Regret Bounds

We are ready to present the main theoretical results of our ABC class with low FE dimension:

Theorem 84 (Regret Bound of OPERA). For an MDP M , hypothesis classes F ,G, a Decomposable Esti-
mation Function ℓ satisfying Assumption 83, an admissible Bellman characterization G, suppose (M,F ,G, ℓ, G)
is an ABC class with low functional eluder dimension. For any fixed δ ∈ (0, 1), we choose β = O (log(THNL(1/T )/δ))
in Algorithm 5, whereNL defined as in Equation 46. Then with probability at least 1− δ, the regret is upper
bounded by

Regret(T ) = O
(
H

κ

√
T · dimFE

(
F , G,

√
1/T

)
· β
)
.

Proof Overview We recall that the objective of an RL problem is to find an ϵ-optimal policy satisfying
V ⋆
1 (s1)−V πt

1 (s1) ≤ ϵ. Moreover, the regret of an RL problem is defined as
∑T

t=1 V
⋆
1 (s1)−V πt

1 (s1), where
πt is the output policy of an algorithm at time t.

Step 1: Feasibility of f⋆. First, we show that the optimal hypothesis f⋆ lies within the confidence re-
gion defined by Eq. (47) with high probability. Given parameters ρ > 0 and δ > 0, choosing β =
c(log(THNL(ρ)/δ) + Tρ) ensures that f⋆ stays within the defined confidence region.

Step 2: Policy Loss Decomposition. We upper bound the regret by the summation of Bellman errors using
a policy loss decomposition lemma. This lemma helps in breaking down the policy loss into manageable
components.

Step 3: Small ABC Value in the Confidence Region. We control the cumulative square of the Admissible
Bellman Characterization (ABC) function. This ensures that the cumulative ABC value stays within the
confidence region, using Freedman’s inequality.

Step 4: Bounding the Cumulative Bellman Error by Functional Eluder Dimension. We translate the
upper bound of the cumulative squared ABC to an upper bound of the cumulative ABC, using properties of
the functional eluder dimension.
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Step 5: Combining Everything. Finally, we combine the regret bound decomposition, the cumulative
ABC bound, and the Bellman dominance property to derive our final regret guarantee. With high probability,
the regret is bounded as:

T∑
t=1

V ⋆
1 (s1)− V πt

1 (s1) ≤ O

(
H

κ

√
T · dimFE

(
F ,D,

√
1/T

)
log (THNL(1/T )/δ)

)
.

7.5 ϵ-Optimality: Improved Opera Sample Complexity and Regret Analysis

We present an advanced analysis of the Opera algorithm, aiming to refine the regret guarantee to achieve
an ϵ-optimal policy, providing enhancement in performance evaluation and robustness of the algorithm. We
are also improving the guarantee to get such policy. We will work on all the layers simultaneously, and we
will refine the Definition 72 of corrected layers.

Definition 85. Let ϵ > 0, t ∈ [K], For given decoupling function D, we define ht to be the amount of layers
h ∈ [H] where |D(f t

h, g
t
h)| ≥ ϵ. In other words, hϵt =

∑
h∈[H] I{|D(f t

h, g
t
h)| > ϵ}.

Here as well we won’t get a large error many times. Bounding the occurs of it by tϵ and with Proposi-
tion 93 we would bound this amount and get that:

tϵ =

(
β

ϵ2
+ 1

)
× dimFE (F ,D, ϵ) . (48)

Now bounding the amount of errors we have:

Lemma 86. Let ϵ > 0, and given coupling function D, we have
∑K

t=1 h
ϵ
t ≤ H×

( β
ϵ2
+1
)
×dimFE (F ,D, ϵ).

As we saw in the previous section in Lemma 70, the cumulative error can be separate to two parts, where
we have a big error, and when we got a small error. This is relevant for this section also and we can see
it in Lemma 92, in the next subsection. Therefore, We are very interested to bound as low as possible the
amount of episode with big error, and keep the error low as possible. Here Lemma 86 comes to assist us, we
will bound the number of episode that have big error. We will adapt the Definition 73 of T ϵ, we will denote
h̃ = 1

|T | ×
∑K

t=1 ht, the average amount of layers that have a large exception, which implies in this case:

|T ϵ| ≤ O
(
H

h̃

β

ϵ2
· dimFE (F ,D, ϵ)

)
. (49)

Bounding the Cumulative Bellman Error by Functional Eluder Dimension. Using the upper bound
that we have from Step 3 (in subsection 7.4),

t−1∑
i=1

(
Dh,f∗(f t, f i)

)2 ≤ O(β), (50)

which will present in Lemma 91. We aim to translate the upper bound of the cumulative squared ABC
at (f t, f i) in Eq. (54) to an upper bound of the cumulative ABC at (f t, f t). The following Lemma 87
is adapted from Lemma 75, which base on Lemma 70 both from Section 6, and similar to Lemma 58 in
Section 5. Lemma 87 combine the previous properties we saw using Eq. (49) and controls the sum of ABC
functions by properties of the functional eluder dimension.
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Lemma 87. For a hypothesis class F and a given coupling function D(·, ·) : F × F → R with bounded
image space |D(·, ·)| ≤ C. For any pair of sequences {ft}t∈[T ], {gt}t∈[T ] ⊆ F satisfying for all t ∈ [T ],∑t−1

i=1(D(ft, gi))
2 ≤ β, the following inequality holds for all t ∈ [T ] and ω > 0, and tω (Eq. 48) :

H∑
h=1

t∑
i=1

|D(fi, gi)| ≤ O
(
H
√
dimFE(F ,D, ω)βmin{t, tω}+HC ·min{t,dimFE(F ,D, ω)}+Htω

)
.

And for big enough k, and with tω from (48), our regret, as function of ω, is

H∑
h=1

K∑
t=1

|D(fi, gi)| ≤ O
(
H dimFE (F ,D, ϵ)β

1

ω
+HKω

)
.

Therefore, we get our main result, the regret bound is as follow:

Theorem 88 (Effective Horizon Regret Bound For General Eluder with PAC Guarantee). By setting ω = ϵ
and K = O

(
|T |
)
, we have , ∃t ∈ [K], s.t. BE(πt) ≤ ϵ ,∀h ∈ [H].

Furthermore, the total regret of the algorithm:

R(K) =
H∑

h=1

K∑
t=1

|Eµ{h,t} [ϕt]| ≤ O
(
H2

h̃κ
dimFE (F ,D, ϵ)β

1

ϵ

)
. (51)

Proof. In Lemma (90) we bound the regret as follows,

R(K) =
K∑
k=1

(
V ⋆
1 (s1)− V πk

1 (s1)
)
≤

K∑
k=1

(
max
a

fk
1 (s1, a)− V πk

1 (s1)
)
=

K∑
k=1

H∑
h=1

E(fk, πk, h).

With the Bellman dominance property Definition 81 property (ii), we have that:

K∑
k=1

H∑
h=1

E(f t, πt, h) ≤ 1

κ

H∑
h=1

K∑
k=1

|D(fi, gi)|

Combine the regret bound decomposition argument Lemma 87, the cumulative ABC bound, derive our
regret guarantee with probability at least 1− δ,

R(K) ≤ 1

κ

H∑
h=1

K∑
k=1

|D(fi, gi)|

≤ 1

κ
O
(
H dimFE (F ,D, ϵ)β

1

ϵ
+H

H

h̃ϵ2
dimFE (F ,D, ϵ)βϵ

)
≤ O

(
H2

h̃κ
dimFE (F ,D, ϵ) log[KHNL(1/K)/δ]

1

ϵ

)
.

Due to the fact that we run the algorithm for K = O(|T ϵ|) phases, we know that one of the following two
holds:

• We finish the exploration.

• We expected to run a policy that had no-contribute to increase h̃, and therefore it is ϵ-optimal policy.

Thus, in both cases we have policy that is ϵ-optimal.
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7.6 Sections’ Proofs

In this subsection we will shows the proofs for the lemmas we used in order to prove our main theorem. The
proof steps generalizes those who presented previously in 6.3 but admits general DEF and ABCs.

Lemmas from OPERA without proof In this section, we quote several key lemmas from the GOLF
paper, which will be used later in our proofs. Our first lemma is to show that the optimal hypothesis f⋆ lies
within the confidence region defined by Eq. (47) with high probability:

Lemma 89 (Feasibility of f⋆ - Lemma 21 in Chen et al. 2022). In Algorithm 5, given ρ > 0 and δ > 0 we
choose β = c(log (THNL(ρ)/δ) + Tρ) for some large enough constant c. Then with probability at least
1− δ, f⋆ satisfies for any t ∈ [T ]:

max
v∈V

{
t−1∑
i=1

∥ℓh,f i
h
(oih, f

⋆
h+1, f

⋆
h , v)∥2 − inf

gh∈Gh

t−1∑
i=1

∥ℓh,f i
h
(oih, f

⋆
h+1, gh, v)∥2

}
≤ O(β).

Lemma 89 shows that at each round of updates the optimal hypothesis f⋆ stays in the confidence region
depicted by Eq. (47) with radius O(β). We refer to the proof of Lemma 89 to Lemma 21 in appendix F.2 in
Chen et al. 2022. Together with the optimism procedure Line 3 of Algorithm 5 implies an upper bound of
V ⋆
1 (s1)− V πt

1 (s1) with probability at least 1− δ as follows:

V ⋆
1 (s1)− V πt

1 (s1) ≤ V1,f t(s1)− V πt

1 (s1). (52)

The second lemma we will present here is a upper bound the regret by the summation of Bellman errors.
We apply the policy loss decomposition lemma in Jiang et al. (2017).

Lemma 90 (Regret Decomposition - Lemma 1 in Jiang et al. 2017). ∀f ∈ H,

V1,f t(s1)− V πt

1 (s1) =
H∑

h=1

Esh,ah∼πt

[
Qh,f t(sh, ah)− rh − Vh+1,f t(sh+1)

]
.

Combining Lemma 90 with Eq. (52) we have the following:

V ⋆
1 (s1)− V πt

1 (s1) ≤ V1,f t(s1)− V πt

1 (s1) =

H∑
h=1

Esh,ah∼πt

[
Qh,f t(sh, ah)− rh − Vh+1,f t(sh+1)

]
. (53)

The third (and last) lemma we only quoting is devoted to controlling the cumulative square of Admissible
Bellman Characterization function. Recalling that the ABC function is upper bounded by the average DEF,
where each feasible DEF stays in the confidence region that satisfies Eq. (47), we arrive at the following
Lemma 91:

Lemma 91 (Confidence Bound - Lemma 23 in Chen et al. 2022). In Algorithm 5, given ρ > 0 and δ > 0 we
choose β = c(log (THNL(ρ)/δ) + Tρ) for some large enough constant c. Then with probability at least
1− δ, for all (t, h) ∈ [T ]× [H], we have

t−1∑
i=1

(
Dh,f⋆(f t, f i)

)2 ≤ O(β). (54)
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The proof of Lemma 91 makes use of Freedman’s inequality (the precise version as in Agarwal et al.
(2014)) and we refer for Lemma 23 in Appendix F.1 in Chen et al. 2022.

Lemma 92. For a hypothesis class F and a given coupling function D(·, ·) : F × F → R with bounded
image space |D(·, ·)| ≤ C. For any pair of sequences {ft}t∈[T ], {gt}t∈[T ] ⊆ F satisfying for all t ∈ [T ],∑t−1

i=1(D(ft, gi))
2 ≤ β, the following inequality holds for all t ∈ [T ] and ω > 0:

t∑
i=1

|D(fi, gi)| ≤ O
(√

dimFE(F ,D, ω)βt+ C ·min{t,dimFE(F ,D, ω)}+ tω
)
.

The proof defer for Lemma 24 in Chen et al. 2022.

proof for Lemma 87

Proof of Lemma 87. The proof basically follows Appendix C of Russo and Van Roy (2013) and Appendix
D of Jin et al. (2021a). We first prove that for all t ∈ [T ],

Proposition 93. For a hypothesis class F and a given coupling function D(·, ·) : F × F → R. For any
pair of sequences {ft}t∈[T ], {gt}t∈[T ] ⊆ F satisfying for all t ∈ [T ],

∑t−1
k=1(D(ft, gk))

2 ≤ β, Then for all
k ∈ [K],

t∑
k=1

1(|D(fk, gk)| > ϵ) ≤ (β/ϵ2 + 1) dimFE(F ,D, ϵ). (55)

Proof. Let m :=
∑t

k=1 1(|D(fk, gk)| > ϵ), then there exists {s1, . . . , sm} which is a subsequence of [t]
such that D(fs1 , gs1), . . . ,D(fsm , gsm) > ϵ.

We first show that for the sequence {fs1 , . . . , fsm} ⊆ F , there exists j ∈ [m] such that fsj is ϵ-
independent on at least L = ⌈(m − 1)/dimFE(F ,D, ϵ)⌉ disjoint sequences in {fs1 , . . . , fsj−1} (Russo
and Van Roy, 2013). We will prove this by following procedure. Starting with singleton sequences B1 =
{fs1}, . . . , BL = {fsL} and j = L + 1. For each j, if fsj is ϵ-dependent on B1, . . . , BL we already
achieved our goal and the process stops. Otherwise, there exist i ∈ [L] such that fsj is ϵ-dependent of Bi

and update Bi = Bi ∪ {fsj}. Then we add increment j by 1 and continue the process. By the definition of
FE dimension, the cardinally of each set B1, . . . , BL cannot larger than dimFE(F ,D, ϵ) at any point in this
process. Therefore, by pigeonhole principle the process stops by step j = LdimFE(F ,D, ϵ) + 1 ≤ m.

Therefore, we have proved that there exists j such that |D(fsj , gsj )| > ϵ and fsj is ϵ-independent with
at least L = ⌈(m− 1)/ dimFE(F ,D, ϵ)⌉ disjoint sequences in {fs1 , . . . , fsj−1}. For each of the sequences
{f̂1, . . . , f̂l}, by definition of the FE dimension in Definition 37 we have that

l∑
k=1

(
D(f̂k, gsj )

)2 ≥ ϵ2. (56)

Summing all of bounds (56) for L disjoint sequences together we have that

sj−1∑
k=1

(
D(ft, gsj )

)2 ≥ Lϵ2 = ⌈(m− 1)/ dimFE(F ,D, ϵ)⌉ · ϵ2. (57)

The left hand side of (57) can be upper bounded by β2 due to the condition of lemma. Therefore, we have
proved that β2 ≥ ⌈(m− 1)/dimFE(F ,D, ϵ)⌉ · ϵ2 which completes the proof of (93).
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Now let d = dimFE(F ,D, ω) and sort |D(f1, g1)|, . . . , |D(ft, gt)| in a nonincreasing order, denoted
by e1, . . . , et. Then we have that

t∑
k=1

|D(fk, gk)| =
t∑

k=1

ek =

t∑
k=1

ek1(ek ≤ ω) +

t∑
i=1

ek1(ek > ω) ≤ tω +

t∑
i=1

ek1(ek > ω). (58)

For k ∈ [t], we want to give an upper bound for those ek1(ek > ω). Assume ek > ω, then for any α such
that ek > α ≥ ω, by (55), we have that

k ≤
t∑

i=1

1(ei > ω) ≤ (β/α2 + 1) dimFE(F ,D, α) ≤ (β/α2 + 1)d,

which implies that α ≤
√
dβ/(k − d). Taking the limit α→ e−k , we have that ek ≤ min{

√
dβ/(k − d), C}.

Also, we use Proposition 93 from the other way,

k∑
t=1

1
{
|D(ft, gt)| > ω

}
= 1

{
et > ω

}
≤ tω.

Therefore, for Kω = min{k, tω}, we have

k∑
t=1

et1
{
et > ω

}
=

Kω∑
t=1

et1
{
et > ω

}
≤ min{d,Kω}C +

Kω∑
t=d+1

√
dβ

t− d

≤ min{d,Kω}C +
√
dβ

∫ Kω

0

1√
t
dt ≤ min{d,Kω}C + 2

√
dβKω

= min{d, k}C + 2
√
dβmin{k, tω},

(59)

which completes the proof. Plugging (59) into (58) completes the proof.

proof for Lemma 86

Proof. Recall Proposition 93:
For a hypothesis class F and a given coupling function D(·, ·) : F × F → R. For any pair of sequences
{ft}t∈[T ], {gt}t∈[T ] ⊆ F satisfying for all t ∈ [T ],

∑t−1
k=1(D(ft, gk))

2 ≤ β, Then for all k ∈ [K],

k∑
t=1

1
{
|D(ft, gt)| > ϵ

}
≤ (

β

ϵ2
+ 1) dimFE(F ,D, ϵ).

Recall the definition of ht (definition 72) and sum over h ∈ [H],

k∑
t=1

ht =

H∑
h=1

k∑
t=1

1
{
|D(ft, gt)| > ϵ

}
≤ H(

β

ϵ2
+ 1) dimFE(F ,D, ϵ),

which completes the proof.
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 תמצית

  בזכות , יםחיזוק מ הבלמיד ויותר יותר חשוב לנושא הפך  פונקציות  קירוב

ל  ש גדולות   מחלקות  עם להתמודד והצורך מכונה בלמידת  התקדמות ה

 אלגוריתםלהדרישה , זאת ההתקדמות בשל . ליניאריות  לא פונקציות 

 . גברה יעיל באופן הזה  האתגר  את  פותרה

  בתרחישים  חיזוק למידת  של היעילות  את  לשפר דרכים בוחנת  זו עבודה

 .קיום חסמים תיאורתים על  שמירה תוך נפוצים

,  האפקטיבי  האופק המושג הצגת   באמצעות ומחדשת  תורמת  זו עבודה

 האלודר ממדומגדירה את  הנודע  האלודר  ממדיתרה על כך מרחיבה את 

 .גנרטיביים ובמודלים סוכנים מרובות   במערכות  וסף משתמשים. בנהצפוי

  מצמצמות , מחקלות ות בפני גודל ההעמיד את  משפרות בעבודה    התוצאות 

  נמוכה פוטנציאלית  תלות   עם חרטהמי חס ומציגות , הדגימה מורכבות  את 

 .  קובמקדם האופ בממד יותר

,  פרקטי ישוםיאת קרמחיזוקים צעד נוסף ל הלמיד את מקדמות  אלו תרומות 

 .מציאותיים בתרחישים יותר וישימה  ליעילה אותה הופךו

 

63



 

 קירוב על - יםיזוקה מח למידתיאוריה ב 

מחלקות על סוכנים ובריבוי פונקציות 

 אפקטיביות

 

כחלק מוגשת  עבודת גמר לתואר מוסמך במדעים

ריסטה"  בני "מוסמך או ראהתומהדרישות לשם קבלת 

 ת תל אביב. באוניברסיט

 על ידי מוגש 

 דולב דנינו

 

 וצעה בהנחיית  עבודת המחקר ב

 שי מנצור פרופסור י

 

 

 . 2024פטמבר ס –"ד אלול תשפ

 אוניברסיטת תל אביב הפקולטה למדעים מדויקים על שם ריימונד ובברלי סאקלר
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