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Abstract
An algorithm for the improvement of the speedup of TCP connections in
modern networks with multiple packet drops is proposed, studied, and ana-
lyzed. The modi�cation of the TCP protocol, is aimed to improve the conges-
tion control between TCP client and server. While numerous TCP improve-
ments algorithms and TCP modi�cations require to change both TCP client
and TCP server, our TCP Taba modi�cation changes only the TCP client,
which gives the possibility to implement it on the new-comming wireless
networks, which support smart-phones, PDA devices and laptop computers,
without need of altering existing TCP servers.

The implications of our modi�cation in the congestion control algorithm
is studied. We show that in order to best implement our modi�cation, the
TCP client needs to learn the status of the TCP server, and for this purpose
a �Slow-start server detector� is introduced.

We have implemented TCP Taba client on a Linux OS, and used it in
the evaluation of the TCP Taba performance. To facilitate the testing we
used a self-made Quality of Server (QoS) router, which allows us to simulate
tra�c with di�erent delay and loss rate. The problems of coexistence of our
TCP Taba client with di�erent Operation Systems is addressed, and our tests
show that the vast majority of Operation Systems work well with the TCP
Taba client.

Keywords: Computer network architecture, TCP protocol, Tahoe, Reno,
Vegas, ACK division, Daytona
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Chapter 1

Background

The Internet has changed dramatically during the last decade. Today pow-
erful mainframes and workstations can communicate with wireless smart-
phones, PDA devices and laptop computers not only via existing wired net-
works, but also via various wireless, radio or infrared networks. In spite of
the fact that underling physical protocols can be di�erent (for example Blue-
tooth, Wi-Fi, ZigBee or GPRS) the network layer for all of them uses the
same IP protocol.

TCP is the dominant protocol, which form the basis for the reliable com-
munication to the web browsing, and for the �le and email transfer. Ac-
cording to several researches [1] it takes about 90% of all Internet tra�c.
However, TCP protocol was designed [2] and later was modi�ed [3] assum-
ing wired connection in the network. Thus, the network congestion and
server overload was considered as the main reason for the packet losses. This
assumption is not true for the wireless networks, where due to the fading
channels and user mobility, transmission losses are much more frequent. The
current TCP implementations do not perform well in such environments since
these assumptions do not hold for such transmission-heterogeneous media.
One of the �rst researches analyzing these problems were made as early as
in 1995 [4]. At present this problem started to be of a great importance,
since the cost of the packet drops is much higher in the current high-speed
wireless networks. Numerous works [5] were done to make new client-server
extensions of TCP to answer this challenge.

The goal of this introduction is not to give a complete overview of the
fascinating area of computer communication; more detailed descriptions of
network architectures and protocols can be found in various textbooks such
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as: Stallings [6] (hardware signaling and networking concepts), Comer [7]
(general networking concepts), Stevens [8] (detailed description of the Inter-
net protocols). In this introduction we will focus on the background required
to introduce our ideas in TCP Taba.

1.1 TCP
The Transport Control Protocol, TCP, is a protocol that runs on the top of
the the IP network layer. In TCP, the receiver acknowledges all received data
with an ACK message, and the sender bu�ers the sent data until an ACK
packet is received. If no ACK packet is received, the sender retransmits the
data.

The TCP sender uses two parameters, also referred as �windows�, to con-
trol the send rate. Both parameters limit the number of the packets that may
be sent by the sender without receiving the acknowledgment. The sender uses
the minimal value which provides by these two parameters. One parameter is
the receiver-controlled o�ered window (also called advertised window), writ-
ten in the ACK packet, that tells the sender how many bytes can be sent
without over�owing the receivers bu�er. This parameter inhibits the sender
from �ooding the received bu�er of a slow receiver. (See Fig. 1.1).

The other parameter is the sender-controlled congestion window, which
limits the number of packets that may be sent by the sender without receiving
the acknowledgment. This parameter prevents network congestion.

The packet losses are detected in TCP by using a timer that triggers after
the time which is twice that network round-trip time. TCP protocol assumes
that losses are mainly due to congestion rather than to transmission errors
[9]. Therefore after detection of the packet losses, the sender voluntarily
reduces the congestion window, which in its turn decreases the transmission
rate avoiding in such a way a packet congestion. The senders decrease their
send rate in two ways. First, when a packet loss occurs, the congestion
window size is reduced to some threshold, and afterwards it increases slowly.
Second, for every consecutive loss, the retransmission interval is doubled, in
order to prevent the network from being �ooded by retransmissions.

Di�erent actual TCP implementations have various ways to increase the
window size again. The implementations are often named after their corre-
sponding BSD Unix releases, with names like Tahoe, Reno, or Vegas. The
di�erent versions work together, since the protocol does not require a partic-
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Figure 1.1: Slow start algorithm in TCP protocol. Above the sender increase
the window, every time ACK is arrived.
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ular sender behavior.

1.2 TCP congestion control
Let us de�ne the following TCP parameters in more details below, in order
to use them later in this section:

• a sender maximum segment size (smss) represents the maximum amount
of the data that can be sent in a single TCP segment, without including
the header.

• a sender window (swnd) represents the maximum number of bytes that
the can be sent. Its value is the lowest between receiver's window and
congestion window.

• a receiver's window (rwnd) is the latest window advertised by the re-
ceiver.

• a congestion window (cwnd) is a TCP state variable, limiting the
amount of the data that can be sent.

• a loss window (lw) is the value of the congestion window when a packet
loss has been detected.

• a slow-start threshold (ssthresh) is another TCP state variable that
determines which of the congestion control algorithms to be employed:
either the slow-start algorithm (if cwnd ≤ ssthresh) , or the conges-
tion avoidance algorithm(if cwnd ≥ ssthresh). The basic TCP con-
gestion control which uses the Slow-Start and Congestion Avoidance
algorithms, is based on the work initiated by Van Jacobson [9].

1.2.1 The TCP Slow-Start and Congestion Avoidance
Algorithms

The changes of congestion window in the TCP protocol is realized by use of
two algorithms, which control the amount of data sent over the network.

The word �slow� in the name of Slow-Start algorithm has a historical
base, and the algorithm is su�ciently fast; for example to reach 1Mbps (100
kBytes per second) it needs only 8 RTT packets (with a minimal default smss
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is equals to 512 bytes). The purpose of the Slow-Start algorithm is to �ll as
soon as possible the transmission channel up to the available maximum, with
fairness between the competing TCP streams. In the beginning of transmis-
sion or after detection of the multiple packet loss, the TCP entities use so
called �Slow start algorithm�, which actually increases exponentially fast the
size of the congestion window (See Fig. 1.1). The algorithm begins in the
exponential growth phase initially with 1 or 2 smss (depending on the TCP
implementation), and increases the congestion window size exponentially ev-
ery round trip time (cwnd = cwnd * 2 ) until a prede�ned ssthresh is reached
and cwnd ≤ ssthresh.

Once the ssthresh is reached, and cwnd ≥ ssthresh, the Congestion Avoid-
ance Algorithm is started and the congestion window size is increased linearly
(cwnd = cwnd + 1 ) after every RTT. When segment acknowledgements are
not received, the ssthresh is set to half of the current congestion window size
(cwnd), and the algorithm restarts. The Congestion Avoidance Algorithm
is used to control the congestion window, from the time when the available
maximum rate was reached.

1.2.2 The Fast Retransmission and The Fast Recovery
Algorithms

Implementing the TCP Slow-Start and Congestion Avoidance algorithms,
which were described in Section 1.2.1 creates new problems. The �rst one
is related to the packet loss detection. Normally, a packet loss is recognized
when the timeout of the retransmission timer is detected. This, however,
may lead to signi�cant delays in the data transmissions, so another way to
determine packet loss has been added to TCP. Under normal circumstances
the TCP entity must send an acknowledgment (ACK) for every received
data packet. It should also send ACK for every packet that arrives out of
sequence. But in this case the ACK contains the reference to the data, which
was received before the packet loss. A packet may be received out of sequence
due to packet duplication by the network, packet delays or packet loss.

The Fast Retransmission algorithm assumes that a packet has been lost
when it receives 3 duplicate ACKs (namely 4 ACK packets which contains
same reference to the same data), before the timeout of the retransmission
timer. In this way valuable time is saved.

The second problem is related to a drastic decrease of the congestion
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window (cwnd) after the packet loss detection. In earlier versions of TCP,
if a packet is lost the value of cwnd is set to the value of the minimal cwnd
window (equals to 1 smss).

The Fast Recovery algorithm tackles this problem. If the packet loss is
detected according to the Fast Retransmission protocol, the new value of the
congestion window is set to ssthresh + 3*smss. This is called as arti�cial
in�ation of the congestion window. For every duplicate ACK the congestion
window (cwnd) is incremented by 1, when a new ACK is received the Fast
Recovery algorithm terminates, and the congestion avoidance algorithm is
continued.

1.3 TCP implementations
According to [10] the most popular TCP implementations today are the
following:

1. TCP Tahoe: includes Slow-Start, Congestion Avoidance and Fast Re-
transmit. The Tahoe implementation of TCP (1988) introduced signif-
icant improvements for working over a shared network. An algorithm
Slow Start (for congestion control) and multiplicative decrease (for con-
gestion avoidance) was introduce to control transmission following any
detected congestion.

2. TCP Reno: adds Fast Recovery to TCP Tahoe.

(a) The new algorithm (1990) prevents the communication path from
going empty after Fast Retransmit, thereby avoiding the need to
Slow-Start to re-�ll it after a single packet loss. Fast Recovery is
entered by a TCP client after receiving an initial threshold of du-
plicated ACKs. This threshold, is generally set to three. Once the
threshold of duplicated ACKs is received, the server retransmits
one packet and reduces its congestion window by one half.

(b) Instead of slow-starting after detection a packet loss, as is per-
formed by a TCP Tahoe server, the TCP Reno server uses ad-
ditional incoming duplicated ACKs to clock subsequent outgoing
packets. TCP Reno's Fast Recovery algorithm is optimized for
the case when a single packet is dropped during a window of data.
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The TCP Reno server retransmits at most one dropped packet
per round-trip time. TCP Reno signi�cantly improves upon the
behavior of TCP Tahoe when a single packet is dropped from a
window of data, but can su�er from performance problems when
multiple packets are dropped during a window of data.

3. TCP New-Reno[11]: enhanced TCP Reno using a modi�ed version
of Fast Recovery. Janey Hoe proposed a modi�cation to TCP Reno
usually called New-Reno, which addressed two problems in TCP Reno,
these ideas are gradually �nding acceptance within the IETF. First Hoe
noted that a smaller value for ssthresh causes premature termination
of the slow start phase and subsequent slow increase of the cwnd (i.e.
the linear increase phase). A larger value causes the sender to over-feed
packets to the network (i.e. , transmit too long a burst of data packets)
causing congestion. The second problem occures since most TCP ses-
sions last only for a short period of time, the initial slow start period
is signi�cant for the over all performance. Hoe proposed a method to
estimate an optimum ssthresh value by calculating the byte equivalent
of bandwidth delay product of the network, when a new connection is
made. The bandwidth is calculated using the Packet-Pair algorithm
(measuring the arrival time of closely spaced ACKs at the sender).

4. TCP Vegas: uses a smart �Additive Increase Multiplicative Decrease�
(AIMD) technique, was proposed by Lawrence Brakmo. This primarily
add rate control to avoid congestion (rather than react after detection
of congestion). Vegas has not been widely implemented and is not
universally accepted by the Internet community and is still a subject
of much controversy.

5. SACK (Selective acknowledgment): The probability of multiple pack-
ets loss in a window is much greater for a fast network, where many
more packets are in transmit. Although TCP is able to recovering
multiple packet losses without waiting for expiry of the retransmis-
sion timer, frequent packet loss may still not be e�ciently recovered.
The SACK extension (1996-98) improves TCP performance over such
a network, and has been included in some recent TCP implementa-
tions. The SACK option is triggered when the receiver bu�er holds
in-sequence data segments following a packet loss. The receiver then
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sends duplicate ACKs bearing the SACK option to inform the trans-
mitter which segments have been correctly received. When the third
duplicate ACK is received, a SACK TCP transmitter retransmits only
the missing packets starting with the sequence number acknowledged
by the duplicate ACKs, and followed by any subsequent unacknowl-
edged segments. The Fast Retransmission and Recovery algorithms
are also modi�ed to avoid retransmitting already SACKed segments.
The explicit information carried by SACKs enables the transmitter to
also accurately estimate the number of transmitted data packets that
have left the network (this procedure is known as Forward Acknowledg-
ment (FACK)), allowing transmission of new data to continue during
retransmission. The SACK option is able to sustain high throughput
over a network subject to high packet loss and is therefore desirable for
bulk transfers over a network. Optimization of the algorithms which
govern use of the SACK information are still the subject of research,
however the basic algorithms are now widely implemented.

Other current TCP optional implementations are Peach, ATCP etc. As we
can see, the di�erences between versions are related to the congestion control
algorithms involved. We can exploit this observation in order to determine
the TCP implementation on a certain machine. More information on the
di�erences between the versions is found in[12]. Table 1.1, describes TCP
versions used by di�erent Operation Systems:

We tested several operating systems in order to determine the TCP im-
plementation. Some old editions of tested systems used Reno (FreeBSD
3.5.1 and 4.2), while the latest versions evolved toward New Reno (FreeBSD
4.3, 4.4, 4.5, RedHat 7.2). Windows 95/NT Professional are currently using
Tahoe NoFR (Tahoe without Fast Retransmit).

1.4 Our Contribution
As it was said before one of the current challenges is to change TCP protocol
for wireless heterogeneous media. We propose a method and algorithms
which allows to improve dramatically the throughput over wireless media,
with only changes of the client side of the TCP protocol.

Our approach is di�erent from other attempts, mostly theoretical, which
try to change both server and client TCP stacks [13], or server TCP side
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OS TCP Implementation
FreeBSD 3.5.1 TCP Reno
FreeBSD 4.2 TCP Reno
FreeBSD4.3 TCP New Reno
FreeBSD 4.4 TCP New Reno
FreeBSD 4.5 TCP New Reno

Linux 2.4.9 (RedHat 7.2, 9.0) TCP New Reno
MS Windows 95 TCP Tahoe NoFR
MS Windows NT TCP Tahoe NOFR
MS Windows 98 TCP New Reno
MS Windows ME TCP New Reno
MS Windows 2000 TCP New Reno
MS Windows XP TCP New Reno

Table 1.1: TCP versions, on di�erent Operation Systems
NoFR - No Fast Recovery

only [14]. It is obvious that big companies, like eBAY or CNN use robust
and proved TCP stacks, which serves millions of �wired� connected users, and
will not change their servers because of the small amount wireless connected
clients. Thus there is only tiny probability that TCP server's software will
be changed in the near future especially to experimental and not-robust soft-
ware. On the other hand, TCP client's software on the new created devices
changed quicker. Almost every new device has its own modi�cation of the
TCP stack. Therefore, TCP stack on new-designed wireless devices such as
smart-phone or PDA will be changed rather easy.

In the present work the implication of this modi�cation in the congestion
control algorithm is studied. The status of the TCP server state machine
should be known to best implement our modi�cation only on TCP client.
Since there is no explicit noti�cation from the network about TCP server
state machine, implicitly detection of packets loss as congestion events was
introduced. We called this algorithm �Slow-start server detector� (See Sec-
tion: 3.1.1)

The majority of TCP modi�cation algorithms were studied previously
only in simulation. For our tests we implemented TCP Taba client on Linux
OS. To fusilitate the testing we use self-made QoS router (See Section: A.3),
which allow us to simulate tra�c with di�erent delay and loss rates. We
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point out the problems of coexistence of our TCP Taba client with di�erent
Operation Systems and show that the vast majority of them work well with
TCP Taba.

1.5 Related work
As it was said in Section 1.4 we are changing TCP client stack in order
to boost throughput over non-reliable physical media. Thus we can divide
the related work, into two parts: the �rst part of them, is general TCP
optimization research of the tra�c over non-reliable media, and the second
part is the research on algorithms for throughput optimization, by TCP
client.

TCP improvements algorithms for non-reliable media. There is
a lot of research in the recent years on this area. Some of them [15] are
focused on additive increase, and multiplicative decrease (AIMD) algorithms
and relate to TCP's congestion control mechanism. They suggest to change
congestion algorithm to return to a fair level quicker. Other research [16]
deal with changing of the Non-reliable Physical Layer in order to improve its
behavior by entering �TCP-look like� protocols.

TCP congestion control algorithms for speed boosting on TCP
Client Surprisingly the one of the interesting methods, which we used
for our optimization, was �discovered� by hackers, and analyzed in the fol-
lowing research work [17]. The authors studied the consequences of some
possible hacker attacks:

• ACK division - multiplexing of the ACK acknowledges to destroy fair-
ness between TCP connections.

• DupACK spoo�ng - algorithm arti�cially in�ate additional (more than
3) ACK acknowledges, to re�ect the additional segment to be sent.

• Optimistic ACKing - algorithm sends successful acknowledge to �ex-
pecting� segment, which is still not delivered.

They show that all attacks are possible on most TCP stacks, and suggest to
change future TCP stacks to minimize trust they place in the other parties.
Needless to say that our changes in TCP stack are build to preserve fairness.

Rev. 1.69, 2006/10/05 13:49:33



Chapter 2

TCP Taba1

2.1 Motivation
The mechanism of the TCP �ow control, which based on the TCP Slow Start
and Congestion � Avoidance algorithms (described in Chapter 1.2.1), was
introduced to optimize a tra�c load in the wired Internet. In conditions of the
wired network, the main reason of the packet loss, was related to overload of
the intermediate servers and routers in the network. This mechanism allows
to avoid server congestion, and additionally it shares fairly the available
bandwidth between �ows. The mechanism also provide an e�cient utilization
of the available capacity under a wide range of the dynamic tra�c loads. The
TCP �ow control mechanism uses a window and end-to-end acknowledgment
scheme to provide reliable data transfer across a network.

The sending host (server) maintains a congestion window, cwnd, which
places an upper limit on the number of segments that may be sent into the
network awaiting acknowledgment by the receiver. Upon receiving a data
packet the receiver (client) sends a cumulative acknowledgment, that covers
all continuously received packets.

The TCP �ow control needs a way to detect congestion. Since there
is no explicit noti�cation from the network it uses implicitily detection of
packets loss as congestion events. The packet loss is detected either through
a timeout of an unacknowledged packet, or the receipt of several duplicate
acknowledgments. The loss is assumed to be caused by a bu�er over�ow at

1TCP versions (TCP Tahoe, Reno, Vegas) have names, according to the famous casino
places. We call our �avor as TCP Taba
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the client or at some intermediate router due to o�ered tra�c exceeding the
available capacity on the end-to-end path of the connection.

Increasing and decreasing cwnd allows TCP better utilization of the avail-
able bandwidth on a given end-to-end path. The cwnd is increased by 1 smss
(normally 512 bytes) for each acknowledgment during the TCP Slow start
phase (see Figure: 1.1), and by a fraction 1/cwnd of a smss during the TCP
congestion avoidance phase; The cwnd is decreased to the ssthresh smss after
the detection of the packet loss.

While this mechanism works fairly well, especially in wired networks,
there is a problem in the case of the multiple packet drops (due, for exapmle,
to RF or wireless networks interference). When such drop happens, the
server initiates a Slow-Start phase, since obviously the server is unable to
recognize the reason for the drops. From the obsolete �wired� point of view,
the server believes that drop packets are due to the network congestion. In
the �wired� world the chance for such drop event was so low, that the protocol
designers didn't care about the consequences of such drops. In the �wireless�
world, there is a high probability of the multiple packet drops, especially
when wireless coverage is insu�cient. These drops obviously do not require
a decrease in the throughput (in other words, the congestion window should
not be changed). Nevertheless the actual e�ect for the wireless packet drops,
will cause the TCP to return to the Slow Start phase. This return will result
in a signi�cant decrease of overall network throughput.

Lets consider for example what happens after such a multiple packet drop
in a standard wireless networks. Say that we have a connection with a round
trip time (RTT) of a 200ms (say, from US to Europe) and a standard packet
size of 1500 bytes. For wireless bandwidth of 20Mbps the ideal congestion
window is of about 350 packets. Immediately after the detection of the
multiple packet drop, cwnd will be set to 1 smss, which is equivalent to
sending at 20 kbps. To reach the sending rate of 20Mbps again will take 8
round trip times, or about 1.6 seconds.

All the TCP algorithms (Tahoe, Reno, New Reno, or Vegas) are nega-
tively in�uenced by such a cwnd drop. However in the case of obsolete Tahoe
protocols, such a behavior will lead to espessialy low throughput utilization.
As one can see from the Table 1.1, there is still a signi�cant fraction of OS
that use it.

The �rst solution for multiple packet drop behavior is to classify the
packet drop reasons into two categories:
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1. bu�er over�ow on the client side or on the route, or

2. a noisy environment, or non-reliable media (such as wireless, RF, In-
frared, and so on)

To distinguish between the two categories requires changes in both server
and client network stacks; one of the solutions of such protocol changes is
ECN (Explicit Congestion Noti�cation). A second solution, is to change only
the server's part of the TCP stack[14], and to return to the previous cwnd
quicker. The main drawbacks of these schemes is the fact that they do not
work with existing the TCP servers.

We propose a third solution: �TCP Taba algorithm�, which requires a
change only in the TCP client stack, and works with the majority of the
available TCP servers. Following is the description of our algorithm.

2.2 TCP Taba Algorithm
TCP Taba changes the state machine of the client TCP implementation.
(The complete implementation details are given in Section A.1). The be-
havior of our client is di�erent and can be described by the following state
machine:
1: Upon receiving message M(s)
2: if SlowStartDetected then
3: START TCP Taba
4: else
5: RETURN to normal TCP (CongestionAvoidance)
6: end if
First we operate as usual, based on the current client TCP implementa-

tion. The changes starts, when we detect the Slow-Start mode on the server's
side. We know that the reason of the Slow-Start are multiple packet drops.
We also know that the server will increment its congestion window size, every
time when we send it an ACK. In order to return its window to the previous
value as soon as possible we send multiple ACKs to the server, based on the
single data packet we received. For example if we get 512 bytes of the data,
we can acknowledge them with two subsequent ACKs: the �rst on receiv-
ing 256 bytes, and the second on receiving the last 256 bytes of the data.
The sender, instead of receiving of one ACK and increasing the congestion
window once, receives two ACKs and therefore increases the window twice.
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Figure 2.1: TCP trace under ACK ampli�cation.

We call this phase an �ampli�cation� phase. During this phase TCP client
sends additional ACK packets. The ampli�cation phase ends when we detect
that the sender has entered the Congestion Avoidance mode on the server's
side. In such an event we know that the server reaches its previous window
size and we can return to the normal operation. (Algorithms for such a
detection are described in Section 2.4).

2.3 Correctness
Even minor changes to the TCP state machine can result in the loss of
utilization, increased congestion, or reduced fairness. Therefore we need to
analyze the consequences of the multiple ACKs.

First of all, it is legitimate from the formal point of the TCP protocol. We
can acknowledge the sender with the number, which is less than the packet
size length. Historically, it was used by the low-bu�ered TCP machine, to
indicate that the portion of the packet, was already received.

The second aspect of the ACK duplication, is a protocol behavior during
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the loss of the the duplicated packets. The TCP acknowledges stream of the
sequence numbers, rather the single packets. Therefore, if the �rst duplicated
packet is lost, any server TCP windows are not changed. The second ACK,
which successfully reach the sender, indicate to it that all data is received.
On the other hand, in case that all ACK are lost, sender will behave, exactly
as the one normal ACK is lost.

The only scenario with the di�erent TCP behavior, is the case when the
�rst ACK is delivered, and the second ACK is lost. In that case server
knows the data position, to continue the stream. It is not important if the
position indicates the �rst byte of the sent packet or not, since TCP works
with streams, rather with packets.

The last aspect is a fairness. We obviously overrun other TCP �ows,
because we grow our window faster. But on the other hand, the reason for
applying TCP Taba protocol was existence of multiple drops, which results in
unfair TCP behavior. TCP Taba protocol stops when it reach the previous
window value, and therefore it doesn't take the share of the other TCP
streams. Its more accurate to say that we are fair �enough� to other TCP
streams, but we are not give them a chance to overrun us because of the drop
events.

2.4 Slow-start server detector
As we saw in the previous sections, our algorithm allows us to speed up the
TCP sessions. It is important during the packet losses and the slow-start pro-
cess. But this speedup process has its weakness: it generates additional ACK
messages, and therefore increase the total throughput. In order to minimize
this e�ect, we need to �nish acceleration process as soon as server reachs con-
gestion avoidance mode. The problem is to detect when this occurs, using
only information available to the client. Our proposal for detection of this
event is as follows:

First, lets analyze a typical sequence of packets that the client observes
during server's slow start mode. The server starts with a small value for cwnd
(typically between 1 and 4). After the client receives the data, and replies
with ACKs, next the batch of packets from the server arrives at the client
IP stack only after an RTT time. Due to the slow start mode the number
of packets in the batch increases exponentially. Now let's see the interarrival
times between packets - plotted Figure 2.2.
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Figure 2.2: The duration between consecutive packets arrival on client's TCP
stack.

As we can see the graph is a �decreasing exponent�, with the variance
which is caused by various components, such as the NIC adapter, the CPU or
the routers in the path. Our aim is to �nd the time, where inter-arrival time
between windows is roughly equals to the variance. TCP Taba algorithm
uses rtt estimation, based on Van Jacobson algorithm [9]. This algorithm
estimates the mean round trip time via the low-pass �lter, as follows:

srtti+1 = α ∗ srtti + (1− α) ∗ rtt

where srtt i is the estimate, rtt is the round trip time measurement from
the most recently acked data packet, and α is a �lter gain constant with a
suggested value of 0.9. Given the rtt time we can present our algorithms.

First we de�ne �oating-block size parameter (in our tests it was the 20
packets) and calculate local minimum and maximum for such block. Figure
2.3 shows maximum �oating delta times, and Figure 2.4 shows minimum
�oating delta times, where the RTT time for this speci�c capture, measured
on-line by the following algorithm based on the Van Jacobson algorithm as
was shown above. Second, when a packet is sent over the TCP connection,
the sender measures how long it takes for it to be acknowledged, producing
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Figure 2.3: Maximum times between consecutive packets arrival on client's
TCP stack.
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Figure 2.4: Minimum times between consecutive packets arrival on client's
TCP stack.
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a sequence, S, of the round-trip time samples: s1, s2, s3.... With each new
sample, si, the new ssum is computed by the formula:

ssumi+1 = α ∗ ssumi + (1− α) ∗ si+1

where ssumi is the previous estimation, ssum i+1 is the new estimation, and
α is a constant between 0 and 1 that controls how rapidly the ssum adapts
to the change. We used α=7/8 for our tests, which is similar to the value
proposed by Van Jacobson value.

Lets de�ne the local minimum for the block, which was decribed above
as MinFloat(), and the local maximum for the block as MaxFloat(). Putting
all together we are using the following algorithm to enable-acceleration:
1: if MinFloat() ' MaxFloat() then
2: RETURN to normal TCP
3: else
4: if MaxFloat() ≥ β ∗ ssum() then
5: START Taba TCP
6: else
7: RETURN to normal TCP
8: end if
9: end if
The maximum of the MaxFloat() is approximately the RTT time. The

minimum of the MaxFloat() is slightly above 0. Therefore the parameterβ
is a constant, which is set to a value between 0 up to 1. We tested this
parameter and found it to be optimal if we set β=0.6 for all �ows.
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Chapter 3

Results and Discussion

3.1 Wired networks results
This section gives the results of our experiments. In the tests TCP Taba
was tested and compared to standard TCP (RENO and new RENO) in real
network conditions. Packet delay and packet loss were emulated using of our
QoS router.

3.1.1 Slow start process acceleration
Our �rst goal was the creation of an environment, which emulates a long
Slow-Start phase. Such long phases exist in modern high-bandwidth and
high-latency links, and noisy wireless connections. Typical TCP stacks were
created for low-bandwidth, high-latency links and therefore are very conser-
vative in high-speed environments, and thus it takes for them a lot of time
to �ll in existing network pipe. We want to show that using TCP Taba tech-
nique we can achieve the saturation speed quicker, therefore boosting TCP
performance.
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3.1.1.1 Description of Testbed and the test procedure

Figure 3.1: WAN emulation connection scheme

In order to emulate a high-bandwidth and high-latency links, we create the
following setup: LinuxWorkstation with modi�ed TCP Taba stack connected
to QoS Router (for detailed explanation about QoS Router see Section A.3),
which connected to FreeBSD 3.0 FTP Server.

We choose FreeBSD 3.0 FTP server, to be assure that TCP stack on the
server part behave exactly according to widely used TCP New Reno protocol.
All tests which will be shown below support this suggestion. In our case
FreeBSD TCP stack increase cwnd, for every ACK received, according to
standard.

The use of Linux workstation gives us possibility to modify the kernel
and to perform changes. We also use special Linux programs to present the
TCP �ow results. TCPdump sni�er (see [18]) was connected to the same
network, to achieve OS independent logs. A schematic �gure of our setup is
presented in Figure 3.1.

Our QoS router emulates WAN links (it adds both delay and loss). There-
fore it was possible to produce all tests based on standard 100Mbps network,
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and not use physically high-latency links. The second reason for using of our
QoS router was possibility to create very simply di�erent bandwidth, latency
and loss rate conditions.

The disadvantage of using our QoS router is the nature of the losses and
delays it adds, which are slightly di�erent from the real ones. In section 3.2.3
we produce the real tests, and compare them to the emulated ones.

In our tests we de�ned the RTT time to be equal to 2 sec. We use
100Mbps local network, where latency was minimal and add a one second
delay from the QoS router to the client and one second delay from the QoS
router to the server.

For these tests we created two di�erent FTP sessions - one with standard
(new Reno) TCP stack on Linux, and the second session with TCP Taba
stack on Linux.

During the �rst session we expected to see regular slow-start progress,
i.e., doubling of window every RTT time. Because of the large RTT time,
we can easily detect each TCP window transfer.

During the second session we expected to see that the enhanced slow start
phase will increase the congestion window much faster.

3.1.1.2 Test results
First we tested the TCP sessions with de�ned RTT (2sec), and 200KB �le
transfer (which was approximately 150 packets) using TCP New Reno. As
expected, the window size during the slow start phase doubles after each
RTT.
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Figure 3.2: FTP session to FreeBSD FTP server with normal and TCP Taba
stack. Normal TCP packets are marked as black triangles, and TCP Taba
packets are marked as red triangles.

TCP starts with cwnd equals 1, and doubles cwnd every RTT time. In
Figure 3.2 one can see that after successful SYN, and SYN-ACK packets
(which don't carry data), therefore a �rst data packet was received after
them (2RTT times). Immediately after that Normal-TCP client sends ac-
knowledge, which results in three1 data packets after approximately RTT
time, sent by the server. From the third packet transfer cwnd doubles pre-
cisely twice every RTT time. In Figure 3.2 we show only 40 �rst data packets,
therefore window sizes are 1, 3, 6, 12, 18. 2.

The second experiment was done with TCP Taba stack, which sends two
acknowledges for every data packet received.

1This is a feature of FreeBSD TCP stack, to start TCP session with 3 data packets,
rather 2 data packets according to TCP New Reno

2In Slow start the number of data packets, sent by server is equal to the cwnd of the
previous step plus the number of currently received ACKs
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The �rst TCP data packet was received after SYN and SYN-ACK (2
RTT) time like in a normal TCP session. TCP acknowledged with 1 packets
like in normal session. After RTT time we receive 3 packets, which is the
expected response in a normal session. After this TCP Taba starts an accel-
eration phase, and therefore send 6 ACK packets to acknowledge the 3 data
packets, instead of required 3 by normal TCP protocol. We expected to see
9 packets after RTT time, which indeed happened. After 9 packets received,
TCP Taba sent 18 acknowledges, for the data packages, thus we expects 27
packets (9+18), in the next RTT, which is indeed what happened.

We can conclude that we receive the empirical results about Normal-TCP
and TCP Taba behavior, which fully supports our theoretical expectations.
The ampli�cation of TCP Taba protocol is considerably faster then Normal-
TCP in �Slow-Start� part of TCP protocol.

3.1.2 Ampli�cation parameter e�ect
Our second goal was compare di�erent parameters of the TCP Taba protocol,
where we use di�erent ampli�cation parameters, to send acknowledges to the
server.

3.1.2.1 Description of Testbed and the test procedure
We use the same setup as in previous experiment, and captured all results
with a sni�er. We expected to get di�erent acceleration speed, using di�erent
ampli�cation parameters.

The test procedure was following: we de�ned the RTT time to be equal
to 2 sec. We use 100Mbps local network, where latency was minimal and
added one second delay in the QoS router to the client and one second delay
in QoS router to server.

For these tests we made 4 di�erent FTP sessions - one with a Normal TCP,
and three others with a TCP Taba modi�ed stack on the Linux Workstation.

The �rst 2 tests were exactly the same, as in Section 3.1.1 - Normal TCP
FTP transfer, and TCP Taba FTP transfer, where TCP Taba sent twice the
ACK packets of a normal-TCP.

The third and the fourth tests were made with di�erent ampli�cation
parameters (the third test with 3 ACK per packet, and the fourth test with
4 ACK per packet)
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TCP \ Window srv 1st client 1st srv 2nd client 2nd srv 3rd client 3rd
Normal 1 1 3 3 6 6

TABA parameter 2 1 1 3 6 9 18
TABA parameter 3 1 1 3 9 12 36
TABA parameter 4 1 1 3 12 15 60

Table 3.1: TCP behavior due to TCP Taba ampli�cation parameters. All
tests were done with di�erent TCP Taba ampli�cation parameters (Normal,
2, 3, 4). Result TCP window sizes on Client (client) and Server (srv) are
shown respectively.

We expect to see TCP speed improvements for higher ampli�cation, and
obviously that the results of ampli�cation parameter 4 are better than am-
pli�cation parameter 3 and ampli�cation parameter 3 is better then ampli�-
cation parameter 2.

3.1.2.2 Test results
Our results, show the acceleration speed for di�erent ampli�cation parameter
(e.g. Normal, 2, 3, 4) .

Let us start with Table 3.1, which shows the di�erence in TCP window
due to the di�erence between various ampli�cation parameters. Please note
that we start acceleration phase only after SYN, and SYN-ACK (2 RTT)
data packets receive, therefore all types of TCP acknowledge with one ACK
packet, after receiving one data packet. As shown, the result were as we
predicted.

The sequence-time graph in Figure 3.3, shows normal TCP and TCP
Taba with ampli�cation parameter equal 2, 3, and 4. It it easy to see that
ampli�cation parameter 4 is better than, ampli�cation parameter 3, and
ampli�cation parameter 3 is better than ampli�cation parameter 2. All am-
pli�cations parameter were better than Normal-TCP.
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Figure 3.3: FTP session to FreeBSD with TCP Taba stack (Normal, param-
eter 2, parameter 3, parameter 4). Normal TCP data packets are marked as
black triangles, ampli�cation parameter 2 packets are marked as red circles,
ampli�cation parameter 3 packets are marked as green triangles, ampli�ca-
tion parameter 4 packets are marked as pink triangles.

3.1.2.3 Remarks
There are two considerations, we made during these tests that should be
mentioned:

The �rst observation is an interesting behavior, which was found during
WinXP-SP2 tests. WinXP SP2 limits the number of �growth�, for every RTT
time. Table 3.2, is compares various ampli�cation TCP Taba parameters
(Normal, 2, 3 and 4) under Windows XP-SP2. From the table we can see
that WinXP SP2 limits the growth with the ampli�cation parameters.

The second observation is growth limitation phenomena due to reach-
ing congestion avoidance phase after some time. Almost all OS systems we
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TCP 1 Data 1 ACK 2 Data 2 ACK 3 Data-Exp 3 Data-Real Limit
Normal 2 2 4 4 8 8 no

TABA param 2 2 4 6 12 18 18 no
TABA param 3 2 6 8 24 32 22 10
TABA param 4 2 8 10 40 50 28 22
TABA param 5 2 10 12 60 76 36 40

Table 3.2: WinXP limiting barriers. Data - actually received data packets
(and equals the expected); ACK - expected and actually received ACK pack-
ets; Data-Exp - expected data packets; Data-Real - actually received data
packets

checked still don't have scale-parameter for window size and are limited by
a bu�er size of 64KB.

In Figure 3.4, we can see that the fast window growth of TCP Taba with
parameter 2 stops after the �fth RTT. The window rapid growth terminates
after 11 packets received, and continue to grow slowly one packet per RTT.
This imply that the server enters the congestion avoidance phase. In the
congestion-avoidance phase, we resume the normal TCP.

The reason to return to the normal TCP is following: during congestion-
avoidance phase of TCP session, the e�ect of the acceleration process is
minor. We can't accelerate the growth of the window much by duplicating
ACK packets. Moreover, we are consuming bandwidth with every additional
ACK packet we send. Therefore we need to limit acknowledge packets in
congestion-avoidance phase. (A detailed explanation of the reason to return
to Normal TCP is found in Section 2.2). Thus, in congestion avoidance phase
the behavior of parameter 2 and Normal Taba clients is similar.

How can we solve the short �slow-start� phenomena? One way is to
increase the sender bu�er size on Server's TCP/IP stack, which is impossible
in our model, since we limit the change to the client TCP connection.

A second way to solve it, is to make sure that �window-scaling� factor is
enabled, and was negotiated during TCP session handshake. We can make
client's TCP stack aware, and expect that Server's TCP stack has �window-
scaling� factor enabled.
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Figure 3.4: Congestion avoidance limit on FTP session to FreeBSD with
TCP Taba stack (Normal and parameter 2). Slow start �nishes after 5 RTT

3.1.3 OS Behavior
Our third goal was compare di�erent Operation System behavior as Server
OS, working with our TCP Taba client .

3.1.3.1 Description of Testbed and the test procedure
We use the same setup as in previous experiment, and capture all results
with a sni�er. We expect to get di�erent TCP behavior, using di�erent OS
systems. Regarding vast majority of Operational Systems (See Table 1.1),
our algorithm works well.

Some of new OS have �TCP Taba� protection. They ignore additional
ACK packets - and count both packet sizes and number of packets during a
period of RTT time. Therefore we cannot achieve any acceleration in these
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cases.
The test procedure was following: we de�ned the RTT time to be equal

to 2 sec. We use 100Mbps local network, where latency was minimal and
add one second delay from QoS router to client and one second delay from
QoS router to server. We use TCP Taba FTP transfer, where TCP Taba
used ampli�cation parameter 2.

For these tests we made 2 di�erent FTP sessions - the �rst one with
WinXP SP2, and second one with SUSE Linux based on kernel 2.6.5

We expect to see TCP speed improvements for WinXP, similar to the
results of FreeBSD 3.0. We also expected to see that Linux Workstation with
Kernel 2.6 will ignore additional ACK packages, and that the performance
of Normal TCP and TCP Taba would be identical.

3.1.3.2 Test results
The results of the test show us, that we can classify the Operation Systems
(See Table: 1.1) into three categories:

1. Standard TCP Tahoe, TCP Reno, TCP New Reno - majority of Oper-
ation Systems, like FreeBSD 3.0, work well with TCP Taba, and have
no limits on window growth. We use this OS in tests we described
above. (In Figure 3.2 there is example of such an acceleration ).

2. Proprietary modi�ed TCP stacks - Windows based Operation Systems,
like WinXP SP2, work well with TCP Taba, but have some limits on
window growth. (See Figure 3.5 gives a comparison between WinXP
SP2 workstation and Linux Workstation with Kernel 2.6).

3. New-coming Linux and *BSD stacks, like SUSE 10, with di�erent levels
of protection, to prevent our acceleration technique. (See Figure 3.5
for an example of such a protection.)

The conclusion, from the last set of experiments is that Linux 2.6.5 work-
station, which operates as TCP server, doesn't allow us to accelerate the
protocol. TCP behavior is similar for New-Reno and TCP Taba protocols.
WinXP, as it was shown above, allows us to accelerate TCP tra�c.
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Figure 3.5: Comparisson of FTP sessions between WinXP SP2 and Linux
2.6.5 with normal and modi�ed TCP Taba (parameter 2)

Rev. 1.69, 2006/10/05 13:49:33



TCP Taba thesis 30

3.2 Packet losses
Most interesting part of our tests is the analysis of TCP Taba performance
when there is packet loss. As we mentioned before, standard TCP servers
(Reno, New Reno) signi�cantly decreases congestion window after multiple
packet losses, and therefore our bene�t should be larger, as we with increase
loss rate.

The tests are divided into three parts: random packet loss simulation,
burst packet loss simulation, and real network tests.

3.2.1 Random Packet Loss Simulation
3.2.1.1 Description of Testbed and the test procedure
We use our QoS router (see Section A.3) to simulate multiple random losses.
We expect to see the di�erences between our TCP stack and normal stack
behavior, because of the quicker return from Slow start.

We made several experiments using di�erent loss ratios. The range of
loss ratios was chosen between 0.5 to 5 percent. In experiments with larger
random loss rate (more then 5%) the congestion window is almost always at
its minimum size, and therefore the actual throughput is dominated by RTT
time. Our QoS router allows us to set di�erent loss ratios in each direction,
therefore, another goal of our research was the e�ect of the loss ratio in
di�erent directions. We call the loss from Server to Client �data losses�, and
loss from Client to Server �ACK losses�.

The test procedure of the experiments was as follows: we choose network
delay between the TCP nodes (100 msec), we set the loss ratio for each direc-
tion, and TCP connection client type (TCP New Reno and TCP Taba). All
tests were performed at least 3 times, and we report the average throughput.

We expect that TCP Taba accelerate tra�c during Slow-Start phase, to
enter �stop ACK duplication� during congestion avoidance phase, and there-
fore we expect to see the improvements of the TCP Taba protocol only during
Slow Start phase. Also, we expect di�erences in the results due to RTT time,
because relatively large RTT time causes every loss to have signi�cant im-
pact and prevent TCP to increase the congestion window quickly. It was
expected that TCP Taba gives signi�cant gains at high random loss rates
and smaller gains at low random loss rates. We also expect that data-losses
reduce the throughput signi�cantly. In contrast ACK-losses only slightly
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Num Data loss (%) ACK loss (%) New Reno (kB/s) TCP Taba (kB/s)
1 0 0 338 357
2 0.5 0 148 164
3 0 0.5 334 355
4 0 1.0 330 355
5 0.5 0.5 146 164
6 1.0 0 115 132
7 5.0 0 54 54

Table 3.3: Random losses test results; measured in kB/sec throughput, with
FreeBSD 3.0 TCP stack; congestion window is 64KB; where RTT is 100msec
during all tests; loss ratio from Client to Server (so-called ACK-loss), loss
ratio from Server to Client (so-called data-loss).

reduce the throughput. Thus we expect that the performance of TCP Taba
using combined data-losses, and ACK-losses would be similar to the e�ect
of only data-losses.

3.2.1.2 Test results
In Table 3.3 we show the results of the di�erence between the behavior of
normal TCP New Reno and TCP Taba with ampli�cation parameter equals
to 2. We use FTP transfer of the �le with size is 3.81MB, delay of 100 msec,
with di�erent packet losses for each direction.

The �rst test has no-loss. It gave us the baseline for the following mea-
surements, and also shows the basic advantage of the TCP Taba due to
acceleration during the Slow Start phase.

The second test has data-loss of 0.5%. As expected, we see signi�cant
throughput fall (more then a half) during these tests. We can also see that
TCP Taba gains are signi�cant (approximately 10% in second test compared
to 4% in �rst test), which show that TCP Taba returns to the congestion
avoidance phase quicker than TCP New Reno.

The third and fourth tests have no data loss, and ACK-loss of 0.5%
and 1.0% respectively. In general the results are similar to the �rst test
results, with a very slight throughput decrease. We can also see the di�erence
between the TCP Taba and TCP New Reno, because of the fact, that TCP
Taba makes additional ACKs during Slow start phase, and therefore loss of
such ACK packets are less in�uential than loss of the ACK packets during
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TCP New Reno operation.
The �fth test has combined loss of 0.5% for data-loss and ACK-loss. As

expected we can see that results are similar to the second test (data loss
only).

The sixth test has 1% data loss and no ACK-loss. Degradation of the
throughput after additional 0.5% of losses is less signi�cant than after the �rst
0.5%. This is happens because of the fact that maximum TCP throughput
degradation starts after �rst data-loss. We can see that TCP Taba gain 13%,
which is slightly more them 10% with 0.5%loss, and much larger then 4%
without loss.

Approximately at 5% loss ratio (seventh test) the throughput reaches its
minimal level. This is due to cwnd window being at the minimal value most
of the time. We note that TCP Taba results at loss ratio, above 5% are
similar, to the TCP New Reno results, because of the collapse of the cwnd
window to the minimal value. We want to mention that such high random
loss rates are really rare in the real world.

3.2.2 Burst packet loss simulation
3.2.2.1 Description of Testbed and the test procedure
A burst loss is a sequential packet drop. Such drops can occurs due to lack
of memory CPU resources, or due to physical media instability (wireless or
radio networks). A burst loss is characterized by two parameters: the burst
duration (# of consecutive packet loss), and the frequency of bursts.

We use our QoS router (see Section A.3) to simulate the burst losses. We
expect to see the di�erences between our TCP Taba and normal TCP New
Reno behavior, because of the quicker return from Slow start phase in TCP
Taba.

There is a signi�cant di�erence between �random� and �burst� losses,
especially when considering the number of sequential packet drop. In Section
3.2.1 we varied loss ratio between 0.5% up to 5% losses. Even in case of 5%
losses, the chance to �nd two sequential lost packet is only 0.25%. In case
of burst losses the probability of sequential packet losses is very high. Recall
that TCP is sensitive to sequential losses of packets. When the burst loss
causes a timeout, the TCP connection starts new Slow Start Phase. We
expect to see similar results to that of the Slow Start acceleration tests (See
3.1.1). Since such burst losses results in Slow Start initiation. As we see in
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previous experiments, TCP Taba returns to the previous throughput quicker,
and therefore has a signi�cant throughput advantage in this case.

3.2.2.2 Test results
The explained results were in line with our predictions. Our burst duration
is 5 RTT times (approximately 1 second), and burst frequency is 4 seconds,
which mean 3 seconds between loss sequences. Such burst losses results
in immediate Slow Start initiation. Various estimations of fade e�ects, talk
about seconds of inactivity time, and therefore it is good estimation to predict
at least 5 RTT of loss. In case of large losses (hundreds of packets) typical
TCP Servers, and even more important, Application servers, close all TCP
connections, in which case our improvement is not useful.
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Figure 3.6: TCP session with 200 msec RTT, burst duration equals to 1 sec,
no-burst duration equals to 3 sec.

Figure 3.6, shows the behavior of TCP Taba and TCP New Reno stacks
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with 1 second loss out of a 4 second cycle. TCP Taba recovers quicker from
the losses and therefore �nishes the TCP tranfer before the TCP New Reno.
Burst losses ends after 80 RTT, and we see return to normal TCP behaviour.

3.2.3 Real network tests
3.2.3.1 Description of Testbed and the test procedure
We use standard Bluetooth LAN PCMCIA Card and Bluetooth Access Point
as wireless networks, and produce multiple losses by decreasing the signal
strength between two Bluetooth peers.

First set of experiments was done using following setup.

Figure 3.7: Real wireless connection scheme (fading e�ects)

The distance between source and destination was changed. Such a change
results in immediate signal strength loss, add multiple losses and a TCP Slow
Start initiation. During a single FTP session we kept unchanged distance be-
tween peers, and measured the session throughput (3 times each series). We
made measurements using standard TCP client, and our TCP Taba client.

We choose FreeBSD 3.0 FTP server, to be assure that TCP stack on
the server part behaves exactly according to widely used TCP New Reno
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Num Distance(m) Noise (dB) New Reno (kB/s) TCP Taba (kB/s)
1 <1 0 53.36 58.7
2 4 -5 29.9 35.5
3 6 -9 23.06 31.7
4 8 -12 8.97 11.2
5 10 -16 3.35 3.64

Table 3.4: Real Bluetooth connection test results; measured in KBpsec
throughput, with FreeBSD 3.0 TCP stack; congestion window is 64KB; Dis-
tance is measured in meters, and signal strength in dB.

protocol. In our case FreeBSD TCP stack increase, cwnd, for every ACK
received, according to the standard.

In our tests we made FTP download a �le of 3,999,607 Bytes, and we
report the average throughput.

3.2.3.2 Test results
In Table 3.4 we show the results of the di�erence between the behavior of
normal TCP New Reno and TCP Taba with ampli�cation parameter equals
to 2.

The �rst test has no-loss. It gave us the baseline for the following mea-
surements, and also shows the basic advantage of the TCP Taba due to
acceleration during the Slow Start phase.

The second test has signal strength at -5dB. As expected, we see signif-
icant throughput fall (more then a half) during these tests. We can also
see that TCP Taba gains are signi�cant (approximately 19% in second test
compared to 10% in �rst test), which show that TCP Taba returns to the
congestion avoidance phase quicker than TCP New Reno.

The third test has signal strength of -9 dB. We see additional di�erence
between TCP stacks due to increase number of errors during the session.

The forth test, has signal strength as -12dB. We see major degradation
for both TCP stacks.

Approximately at -16dB (the �fth test) the throughput reaches its min-
imal level. This is due to cwnd window being at the minimal value most of
the time. We note that TCP Taba results at signal strength, above 16dB are
similar, to the TCP New Reno results, because of the collapse of the cwnd
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window to the minimal value. Such high noise ratio also results in regular
Bluetooth disconnects, which prevent us from running consecutive tests.
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Appendix A

Detailed description of TCP Taba

Our algorithm was implemented in the network stack of the Linux 2.4.24
kernel. Our TCP patch adds the congestion window algorithm changes,
which operates only in the client , without interference with the server TCP
stack. We use User Mode Linux, which is a version of the Linux kernel that
runs as a process on top of Linux and VmWare, for rapid development. It
gives us a full (although slow) Linux systems. We use ethereal and tcpdump
packages for network capture, and tcptrace package for TCP data analysis.

A.1 Our changes in Linux Stack
As it was described in Section 2.2 we need to divide a single acknowledge
into a few other ones, which every one of them will acknowledge the previous
one, and the last will acknowledge the original data segment.

A.1.1 Enable/Disable TCP Taba
We need a e�ective way to enable and disable such improvement, and use
proc �le system (see Section B.4.4) as a trigger for that operation. We added
new TCP parameter:

tcp_taba - How many times TCP will multiply outgoing ACK messages.
The default is 0 - disable;

Important to note that we can change proc parameters even for the same
TCP session, therefore making possible to change the way we're dealing with
acknowledges without closing the session.
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A.1.2 Changes in TCP core
We need to change original TCP stack, according to our algorithm. We
already have enable/disable mechanism, and we need now to hook incoming
TCP packages, wait until TCP is ready to acknowledge data, and instead of
sending ACK, send multiple ACKs.

As it was described in Section B.4.3 we are waiting for the ACK, which
generates by Linux stack, in tcp_send_ack routine. If all conditions are
successfully, we should have:

• tp->rcv_nxt - the �nal ACK number we need to acknowledge.

• last_int_ack - the last acknowledged number for the same session.

All we need to do now, is to divide the number of unacknowledged bytes
(tp->rcv_nxt- last_int_ack ) by the tcp_taba ampli�cation factor, and to
create relevant ACK messages.

If tcp_taba is disabled, or we do not have enough unacknowledged bytes,
we proceed with the original TCP �ow.

A.2 Visualizing TCP protocol
There are several excellent tools, which helps to build readable TCP traces,
and analyze its behavior. But the classical one is TCPdump[18], TCPtrace[19],
Xplot [20] sequence, where TCPdump make capture, TCPtrace divide cap-
ture into TCP �ows, and creates vector graphs, about almost all interesting
TCP parameters, and Xplot display them.

A.3 QoS Server
One of the challenges we have to solve is how to simulate high latency, high
bandwidth links without the need of expensive hardware. The solution was
to use a Linux Workstation, with kernel 2.6.8, and enabled module of tra�c
shaper, and netem (NETwork EMulator) [21].
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A.3.1 Emulating wide area network delays
This is the simplest example, it just adds a �xed amount of delay to all
packets going out of the local Ethernet.

# tc qdisc add dev eth0 root netem delay 100ms
Now a simple ping test to host on the local network should show an increase of
100 milliseconds. Later examples just change parameters without reloading
the qdisc.

A.3.1.1 Delay distribution
Typically, the delay in a network is not uniform. It is more common to use a
something like a normal distribution to describe the variation in delay. The
netem discipline can take a table to specify a non-uniform distribution.

# tc qdisc change dev eth0 root netem delay 100ms 20ms distribution normal

A.3.2 Packet loss
Random packet loss is speci�ed in the 'tc' command in percent. The smallest
possible non-zero value is: .0000000232%

# tc qdisc change dev eth0 root netem loss .1%
A correlation value can also be speci�ed.

A.3.3 Packet duplication
Packet duplication is speci�ed the same way as packet loss.

# tc qdisc change dev eth0 root netem duplicate 1%

A.3.4 Packet re-ordering
Packet re-ordering causes 1 out of N packets to be delayed.

# tc qdisc change dev eth0 root netem gap 5 delay 10ms
So the 5th (10th, 15th, ...) packet will get delayed by 10ms and the others
will pass straight out.
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Appendix B

Development environment.

B.1 Basic system.
B.1.1 The Linux kernel.
Linux is a free Unix-like operating system kernel originally created by Linus
Torvalds who was later assisted by developers around the world. The source
code for Linux is freely available to everyone under the GNU General Public
License. Linux was chosen as a base for the implementation for the following
reasons:

• free source code

• availability of extensive documentation

• existence of an extremely active community of developers and users
around the world

• pre-dominance in the research community - others could use my code

The last stable version of the Linux kernel at the time was 2.4.24 and this
version has been used for the project. There are some di�erences in the net-
working stack implementation between 2.2.x and 2.4.x kernels. Nevertheless,
it should be easy to port the implementation to 2.2.x and possibly to the
newest series of 2.6.x kernels.
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B.1.2 Operating system.
Since Linux is only a kernel (often mistakenly called an operating system),
it doesn't provide any user interface. A set of tools, utilities and libraries
working together with the kernel make a usable operating system. These
tools are mostly provided by the GNU project and every Linux distribution
is built on top of them. The operating system used for this project was Red
Hat v.9.0., but any distribution able to work with 2.4.x kernels could be used.

B.2 Development tools.
B.2.1 Basic tools.

• gcc GNU project C compiler was used along with make and other com-
mon development utilities.

• vim (vi clone improved) was used as an editor.

B.2.2 Advanced tools.
• VmWare [22]- Intel x86-based virtual machine. It gives an OS the

illusion of running on standard PC hardware, but it isolates it from
the real hardware and from other activities of the host OS. This setup
allows for testing newly compiled kernels without re-booting the PC
itself (normally a kernel can be loaded only during the boot process)
thus making the development cycle shorter. Nevertheless, to 'boot' the
VmWare virtual machine takes about as much time as to boot the PC
itself. VmWare is a commercial product. The version used here was
4.52.

• UML (User-Mode Linux)[23]. It is essentially a kernel patch that al-
lows for compiling a Linux kernel as an executable and running it as a
process. This creates a great opportunity for using standard debugging
tools (like gdb) on a kernel. It is also a safe way of performing any tests,
because the kernel runs as a process with user privileges, thus prevent-
ing damage to hardware and software. To make use of it a loop-back
�le system was created and RedHat 9.0 was installed inside, thus mak-
ing the complete GNU/Linux system running as a regular process. The
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loop-back �le-system is a �le-system created inside a regular �le with
the mkfs command and then mounted with the mount command with
-o loop option speci�ed. Various virtual-devices (such as hard-drives)
can be speci�ed from the UML command line. UML will access them
through standard system calls. The boot process is very quick and
takes less than 10 seconds on an Intel 2.4GHz, 512MB ram, IDE HDD.
User-Mode Linux and all the supporting documentation is available for
free under the GPL license.
Setting up User-Mode Linux for purposes of kernel develop-
ment:

1. Get the Linux kernel sources of your choice ([24]).
2. Download the User-Mode patch for the appropriate version of

Linux kernel, root-�le-system to boot it on and documentation[23]
3. Follow the User-Mode documentation. You will basically have

to patch your kernel sources, compile them, create a loop-back
�le-system and install some Linux distribution on it (Slackware is
recommended) and �nally boot your kernel with this �le-system as
a root-�le-system. All these steps are covered by documentation
available from the User-Mode Linux website.

4. Run a compiled kernel passing as an argument the �le-system cre-
ated above (do not run it as root):

$ ./linux ubd0=<file-system's path> eth0=tuntap�,192.168.0.1

ubd0 will become a �rst hard-drive; eth0 will be �rst ethernet adapter
If run under X-Windows, User-Mode linux will use xterms as consoles.
To control the number of consoles edit /etc/inittab �le. Once xterms
with login prompt show up, you can log-in and run programs from the
shell-prompt as usual.
From our experience User-Mode Linux is a better solution for this
project than VmWare for the following reasons:

• much faster boot process
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� a very unique possibility of debugging the kernel with gdb
∗ less resource-intensive solution (VmWare runs several dae-

mons and a GUI front-end, User-Mode Linux uses 2 xterms)
∗ ability to run with non-root privileges
∗ it is not necessary to re-install the kernel using lilo after each

re-compilation (because it is just a regular executable)

From the other side VmWare is better than UML in the following cases:

• ability to work with real ethernet driver, in bridge mode, which operates
network tra�c without network latency, faster than on UML machine.

• User-Mode Linux handle of a large amount of debugging information,
which was sent to the klogd (Kernel Log Daemon). In extreme cases
some of our output was lost, whereas it was always saved properly by
VmWare.

Network tools.

• Ethereal[25]- Network sni�er and analyzer.

• Tcptrace [19] - TCP analyzer

B.3 Testing environment.
In order to test protocol we added TCP Taba code into the networking part
of Linux kernel.
The development cycle basically consists of:

1. Writing the code and compiling the kernel.

2. Running the kernel (either by installing it with lilo and rebooting the
machine/VmWare or by running User-Mode Linux).

3. Starting ethereal in capture mode

4. Running the test application in one of the scenarios. Scenarios are as
follows (client always initiate the connection):
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(a) server sends data, client receives, server closes �rst

5. Analyzing TCP data with tcptrace and plotting it with xplot

6. Reading the debugging info stored by klogd in '/var/log/messages'.
One can run the User-Mode Linux in the 'debugging' mode

$ ./linux ubd0=<root_fs> debug
in which case an additional xterm will show up with gdb
launched. gdb can be used as usual; the advanced debugging
issues (debugging the kernel threads) are described in the
User-Mode Linux documentation.

B.4 Basic structure of the Linux networking
stack.

B.4.1 Sources arrangement.
The majority of the sources related to networking is located in the net/ sub-
directory of the main source tree. net/core contains some generic routines
(like generic socket support) while net/ipv4 contains all the network and
above layer's protocols built on top of IP v.4. Appropriate header �les can
be found in include/net directory. Device drivers for network interfaces are
located in drivers/net directory.

B.4.2 Process of receiving the packet from the network
and delivering it to the user space.

• Device receives a packet and generates an interrupt.

• Device driver adds the packet to the global receiving queue (so it can
be handled later on) and raises the software interrupt (so the data can
be processed by any CPU later on).

• Software interrupt handler calls the appropriate network-protocol han-
dler for the packet (here - IP).
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• IP makes some checks, including recognition of the higher level proto-
col's id and calls the appropriate transport-level handler for the packet.

• Transport protocol eventually delivers the data to the user space (a
socket).

B.4.3 Process of building TCP ACK and scheduling it
into the queue

• Each element in Linux stack is a pointer to the struct sk_bu� struc-
ture, which contains �elds for various elements of the packet (like link,
network and transport layer header). This struct is �lled in by a device
driver.

struct sk_buf is defined in include/linux/skbuff.h

• As we said above, interrupt function calls the protocol handler (using
�func� pointer mentioned in (a) above) on a packet. The function reg-
istered for IP happens to be ip_rcv, de�ned in net/ipv4/ip_input.c
as:

int ip_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt)

• ip_rcv is a main IP-handling function. It �rst makes some general
checks on a packet and drops it if something is wrong.

• The packet is passed to a higher level protocol by extracting the appro-
priate protocol id from the packet and then calling ipprot->handler(skb)
in the ip_local_deliver_�nish. All the constants for protocols' ids
(like IPPROTO_TCP=6, or IPPROTO_UDP=17) are de�ned in in-
clude/linux/in.h, according to RFC 790. It's a place where one could
add a new protocol number. Now, before this could happen, the trans-
port protocols must have been registered. This is done by inet_init
function, called at the kernel's start-up.

net/ipv4/af_inet.c : static int __init inet_init(void)
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• This function adds all the transport protocols to the list, calls initial-
ization functions for IP, ARP, ICMP, creates /proc entries, etc. This
is the place where stack receives TCP Taba initialization parameters.

• Data delivered to tcp handler, and after a while outgoing ACK is build:

net/ipv4/tcp_output.c : void tcp_send_ack(struct sock *sk)
The tcp_send_ack creates the ACK packet, �nds a socket for it
and queues the packet on the socket's receiving queue (so it can
be picked next time the user process is woken). Here is the
place, where we can add our ampli�cation routines.

B.4.4 Proc �le system
The proc �le system acts as an interface to internal data structures in the
kernel. It can be used to obtain information about the system and to change
certain kernel parameters at runtime (sysctl).

A very interesting part of /proc is the directory /proc/sys. This is not
only a source of information, it also allows you to change parameters within
the kernel. To change a value, simply echo the new value into the �le.

An example how to change IP TTL is given below in the section on the
�le system data. You need to be root to do this. You can create your own
boot script to perform this every time your system boots.

#echo �205� > /proc/sys/net/ipv4/ip_default_ttl
$ ping localhost
PING localhost(127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=205 time=0.058 ms
64 bytes from localhost (127.0.0.1): icmp_seq=2 ttl=205 time=0.057 ms

The �les in /proc/sys can be used to �ne tune and monitor miscellaneous
and general things in the operation of the Linux kernel. The interface to the
networking parts of the kernel is located in /proc/sys/net.

We will concentrate on TCP networking here.

1. tcp_ecn - Enable ECN after RFC2481

2. tcp_keepalive_time - How often TCP sends out keep alive messages,
when keep alive is enabled. The default is 2 hours.
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3. tcp_sack - Enable select acknowledgments after RFC2018.

4. tcp_timestamps - Enable timestamps as de�ned in RFC1323.

5. tcp_stdurg - Enable the strict RFC793 interpretation of the TCP ur-
gent pointer �eld. The default is to use the BSD compatible interpre-
tation of the urgent pointer pointing to the �rst byte after the urgent
data. The RFC793 interpretation is to have it point to the last byte of
urgent data. Enabling this option may lead to interoperability prob-
lems. Disabled by default.

6. tcp_window_scaling - Enable window scaling as de�ned in RFC1323.
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