
TEL AVIV UNIVERSITY
The Raymond & Beverly Sackler Faculty of Exact Sciences

The Blavatnik School of Computer Science

REGRET MINIMIZATION IN REINFORCEMENT
LEARNING

A thesis submitted toward the degree of

Doctor of Philosophy

by

Aviv Rosenberg

August 2022

TEL AVIV UNIVERSITY
The Raymond & Beverly Sackler Faculty of Exact Sciences

The Blavatnik School of Computer Science

REGRET MINIMIZATION IN REINFORCEMENT
LEARNING

A thesis submitted toward the degree of

Doctor of Philosophy

by

Aviv Rosenberg

This research was carried out at Tel Aviv University

in the Blavatnik School of Computer Science

The Raymond & Beverly Sackler Faculty of Exact Sciences

under the supervision of Prof. Yishay Mansour

August 2022

Acknowledgments

I would like to thank my partner, parents, family, and friends for their love and support. I
would like to attribute a special thanks to my advisor, Professor Yishay Mansour. Yishay is
the ultimate advisor and he has made my Ph.D. an unforgettable experience. His incredible
knowledge and inexhaustible creativity serve as a constant source of personal inspiration.
I enjoyed our joint work and I deeply appreciate your support in my research career (and
hopefully your future guidance). I also wish to express my deepest gratitude to all the
great students and researchers with whom I had the pleasure to collaborate during my
Ph.D. – Gal Chechik, Liyu Chen, Alon Cohen, Gal Dalal, Yonathan Efroni, Assaf Hallak,
Tiancheng Jin, Haim Kaplan, Tal Lancewicki, Haipeng Luo, Shie Mannor, and Lior Shani
– many thanks to all of you for giving me the opportunity to learn through our interaction.

Abstract
Reinforcement Learning (RL) studies the most basic question in Artificial Intelligence
(AI) – how can an agent learn to make good decisions through interaction with the envi-

ronment?

While RL has seen impressive empirical success in various settings, the performance
of RL algorithms changes dramatically between domains and they may even fail to learn
in certain environments. This could happen for many reasons but in this thesis we focus
on the following three fundamental reasons:

1. Exploration. Many popular algorithms rely on simple heuristics for exploration,
such as ε-greedy. Therefore, they might fail in environments where it is hard to
reach certain areas of the state space.

2. Non-stationary. The most popular model in RL is the Markov Decision Process
(MDP), which is entirely stochastic and does not change over time. However, in
many real-world applications, the environment is not stationary and changes even
throughout the learning process. Many algorithms fail to adapt to these changes.

3. Inaccurate Model. The RL literature mostly studies MDPs with the finite-horizon,
discounted return or average-reward performance criteria. However, many scenar-
ios (such as navigation and routing) do not fit into these frameworks. Thus, many
algorithms are not able to capture them adequately.

This thesis provides new algorithms and theory for tackling all of these issues. Our
algorithms face the challenges of exploration in several environments, and therefore their
success is measured by the regret – the difference between the cumulative cost of the agent
through the learning process and the expected cost of the best policy in hindsight.

The thesis consists of two main lines of research: adversarial MDPs and Stochastic

Shortest Path (SSP). After studying both models, we also study a new model, adversarial

SSP, which combines them to construct a much more robust and general model.

i

Adversarial MDPs aim to tackle non-stationary. As opposed to standard MDPs that are
stochastic and do not change over time, in adversarial MDPs the cost function can change
arbitrarily (while still assuming a fixed stochastic transition function). This model is much
more general than standard MDPs since it allows for the costs to be chosen by an adversary,
instead of just being drawn from some unknown distribution. In this work we significantly
advance our understanding of adversarial MDPs. We present the first high-probability
regret bounds for adversarial MDPs with unknown transitions and full-information feed-
back, where the agent observes the entire cost function after it has changed. Moreover,
we present the first regret bounds for the much more realistic model of adversarial MDPs
with unknown transitions and bandit feedback, where the agent observes only the costs
that she suffers. Our algorithms are built on entropic regularization methodologies, which
are known to be highly effective in practice.

Stochastic shortest path (SSP) is one of the most basic models in reinforcement learn-
ing. It includes the discounted return model and the finite-horizon model as special cases.
In SSP the goal of the agent is to reach a predefined goal state in minimum expected cost.
This setting captures a wide variety of realistic scenarios, such as car navigation, game
playing and drone flying; i.e., tasks carried out in episodes that eventually terminate. In
this work we present the first near-optimal regret bounds for SSP. Then, we develop an
improved algorithm based on a reduction to the finite-horizon setting, and prove that it
attains optimal regret (up to logarithmic factors).

ii

Table of Contents

1: Introduction 1

1.1 Regret Minimization in RL . 2

1.2 Our Contributions . 3

1.2.1 Adversarial MDP with Full-Information Feedback 3

1.2.2 Adversarial MDP with Bandit Feedback 3

1.2.3 Near-Optimal Regret for SSP 4

1.2.4 Minimax Optimal Regret for SSP 5

1.2.5 Adversarial SSP . 6

1.3 Prior Work . 7

1.4 Organization . 8

1.5 Excluded Work . 8

2: Model and Preliminaries 10

2.1 Finite-Horizon Markov Decision Processes 10

2.2 Stochastic Shortest Path . 12

2.3 Adversarial Markov Decision Processes 14

2.4 Reinforcement Learning . 14

1

iii

3: Learning Adversarial MDPs with Unknown Transition Function
and Full-Information Feedback 16

3.1 Occupancy Measures . 16

3.2 Reduction to Online Linear Optimization and the O-REPS Algorithm . . 17

3.3 Extending Occupancy Measures to Unknown Transitions 19

3.4 The UC-O-REPS Algorithm . 20

3.4.1 Confidence Sets . 20

3.4.2 Optimization Problem . 22

3.5 Analysis . 26

3.5.1 Bounding R̂APP
1:K . 26

3.5.2 Bounding R̂ON
1:K . 27

4: Learning Adversarial MDPs with Unknown Transition Function
and Bandit Feedback 29

4.1 The O-REPS Algorithm for Bandit Feedback 29

4.2 Our Algorithms for Bandit Feedback with Unknown Transitions 30

4.2.1 Bounded Bandit UC-O-REPS 30

4.2.2 Shifted Bandit UC-O-REPS . 31

4.3 Regret Analysis - Bounded Bandit UC-O-REPS 32

4.3.1 Bounding R̂APP
1:K . 33

4.3.2 Bounding R̂ON
1:K . 33

4.4 Regret Analysis - Shifted Bandit UC-O-REPS 35

5: Near-Optimal Regret for Stochastic Shortest Path 37

5.1 Regret Minimization in SSP . 37

5.2 Summary of Results . 38

5.3 Hoeffding-type Confidence Bounds . 40

5.3.1 Analysis . 42

5.3.2 Unknown Cost Bound . 45

iv

5.4 Bernstein-type Confidence Bounds . 45

5.4.1 Analysis . 47

5.5 Lower Bound . 50

6: Minimax Regret for Stochastic Shortest Path 52

6.1 Summary of Results . 52

6.2 A Black-Box Reduction from SSP to Finite-Horizon 54

6.2.1 Unknown expected optimal cost 57

6.3 Regret Analysis . 57

6.4 ULCVI: an admissible algorithm for finite-horizon MDPs 59

7: Learning Adversarial Stochastic Shortest Path 64

7.1 Problem Formulation . 64

7.2 Known Transition Function . 66

7.2.1 Online Mirror Descent for SSP 66

7.2.2 High Probability Regret Bound 68

7.3 Unknown Transition Function . 69

8: Conclusions and Future Work 74

References 76

Appendix A: Supplementary Material for Chapter 3 84

A.1 Proof of Theorem 3.4.2 Cont. 84

A.2 Proof of Theorem 3.5.2 . 87

Appendix B: Supplementary Material for Chapter 4 88

B.1 Efficient Implementation of "Bounded Bandit UC-O-REPS" 88

B.2 Pseudo-code for "Bounded Bandit UC-O-REPS" 91

B.3 Pseudo-code for "Shifted Bandit UC-O-REPS" 93

v

Appendix C: Supplementary Material for Chapter 5 94

C.1 Algorithm . 95

C.2 Proofs . 96

C.2.1 Proofs for Section 5.3.1 . 96

C.2.2 Proofs for Section 5.4.1 . 103

C.3 Lower Bound . 116

C.4 Concentration inequalities . 121

Appendix D: Supplementary Material for Chapter 6 124

D.1 Proofs for Section 6.3 . 124

D.1.1 Proof of Lemma 6.3.1 . 124

D.1.2 Proof of Lemma 6.3.2 . 126

D.1.3 Proof of Lemma 6.3.3 . 131

D.2 Proofs for Section 6.4 . 133

D.2.1 The good event, optimism and pessimism 133

D.2.2 ULCVI is admissible . 139

D.2.3 Proof of Theorem 6.4.1 . 140

D.2.4 Bounds on the cumulative bonuses 144

D.2.5 Bounds on the second moment 148

D.2.6 Useful results for reinforcement learning analysis 152

D.3 Extending the reduction to unknown B⋆ 155

D.3.1 Proof of Theorem D.3.2 . 158

D.4 Lower bound . 161

D.5 General useful results . 165

Appendix E: Supplementary Material for Chapter 7 166

E.1 Examples that illustrate some challenges in adversarial SSPs 166

E.1.1 Naive application of OMD fails in SSP 166

vi

E.1.2 The expected time of the best policy in hindsight might be Ω(D/cmin)167

E.1.3 A bound on the expected regret does not guarantee a high proba-
bility regret bound in SSP . 167

E.2 Implementation details for SSP-O-REPS 170

E.2.1 Computing qk . 170

E.2.2 Computing the SSP-diameter and the fast policy 172

E.3 Pseudo-code for SSP-O-REPS . 173

E.4 Proofs for Section 7.2.1 . 174

E.4.1 Proof of Theorem 7.2.1 . 174

E.4.2 SSP-O-REPS picks proper policies 176

E.5 Pseudo-code for SSP-O-REPS2 . 177

E.6 Proofs for Section 7.2.2 . 178

E.6.1 Proof of Theorem 7.2.2 . 178

E.6.2 Proof of Theorem 7.2.3 . 178

E.7 Implementation details for SSP-O-REPS3 180

E.7.1 Computing qk . 180

E.7.2 Computing the optimistic fast policy 183

E.8 Pseudo-code for SSP-O-REPS3 . 184

E.9 Analysis of SSP-O-REPS3 (proofs for Section 7.3) 186

E.9.1 Overview . 186

E.9.2 Notations . 187

E.9.3 Properties of the learner’s policies 188

E.9.4 Regret decomposition . 189

E.9.5 Bounding the variance within an interval 192

E.9.6 Proof of Theorem 7.3.1 . 199

E.9.7 OMD analysis . 201

E.10 Estimating the SSP-diameter . 203

E.11 Zero costs . 208

E.12 Concentration inequalities . 210

vii

viii

1 Introduction

Reinforcement Learning (RL) is a branch of Machine Learning (ML) which studies se-
quential decision making under uncertainty. It provides a general framework for many
practical problems in Artificial Intelligence (AI). In the basic RL setup, an agent interacts
with an uncertain environment in order to perform a task by taking a sequence of actions.
More precisely, the agent needs to learn the optimal actions in order to maximize its long
term payoff, or equivalently, minimize its long term losses. Reinforcement Learning pro-
vides algorithmic tools to optimize the strategy of the agent.

There have been impressive empirical successes driven by Deep Learning (DL) that
demonstrate how Reinforcement Learning can solve challenging tasks. These include
playing a range of Atari video games [MKS+15], achieving human-level performance
in Go [SSS+17] and many more. However, the potential applications of RL go be-
yond games. It is a natural framework for optimizing recommender systems [LCLS10,
CBC+19], but also for optimizing adaptive treatments in health-care [LNSL+12], dialog
systems [SLKW02] and instruction schedules in intelligent tutoring systems [MLL+14].

The framework adopted in reinforcement learning is that of Markov Decision Pro-
cesses (MDP) [Put14]. In an MDP, also called an environment, there is an agent that
transitions between states by taking actions, and whose aim is to accumulate as little cost
as possible. Namely, the agent interacts with the environment with a sequence of actions
that allow the agent to visit different states and suffer costs. The objective is to accumulate
as little cost as possible – which can stand for financial loss, user dissatisfaction, energy
or time – and the plan or strategy to achieve this goal is called a policy. The “goodness”
of being in a particular state / position is represented by the value function, which is the
expected sum of future costs until the end of the interactions with the environment.

1

1.1 Regret Minimization in RL

The major focus of this dissertation is on the exploration problem, a fundamental dilemma
in RL that is absent in classical prediction-oriented machine learning. The exploration
problem arises whenever an RL agent needs to trade-off between exploiting the current
best policy and exploring uncertain policies. Playing an uncertain policy may temporarily
hurt the agent’s performance, yet this is crucial to find better actions to improve future
performance. In other words, the exploration problem refers to the process of consciously
taking potentially sub-optimal actions to learn more about the environment, and trade-off
a temporary decrease in performance for a potentially lower long-term accumulated cost.

A natural way to measure the agent’s performance is to look at the difference between
the expected costs accumulated by the agent throughout the learning process and those
accumulated by the best policy in hindsight, which we generally denote by π⋆. This is
called the regret of the agent.

Throughout the dissertation, the regret will be our primary measure for the perfor-
mance of an agent; that is, we will seek to design agents capable of minimizing the re-
gret. We focus on two models that generalize standard MDPs: Adversarial MDPs and
Stochastic Shortest Path (SSP). These models tackle fundamental challenges that many
RL algorithms need to face in practice.

Adversarial MDPs aim to tackle non-stationarity, i.e., changes in the environment over
time. The most popular model in RL is the Markov Decision Process (MDP), which is en-
tirely stochastic and does not change over time. However, in many real-world applications,
the environment is not stationary and changes even throughout the learning process. Many
algorithms fail to adapt to these changes. As opposed to standard MDPs that are stochastic
and do not change over time, in adversarial MDPs the cost function can change arbitrar-
ily (while still assuming a fixed stochastic transition function). This model is much more
general than standard MDPs since it allows for the costs to be chosen by an adversary,
instead of just being drawn from some unknown distribution. In this work we significantly
advance our understanding of adversarial MDPs.

Stochastic shortest path (SSP) is one of the most basic models in reinforcement learn-
ing. It includes the discounted return model and the finite-horizon model as special cases.
Yet, the RL literature mostly studies MDPs with the finite-horizon, discounted return or
average-reward performance criteria, although many scenarios do not fit into these frame-
works. In SSP the goal of the agent is to reach a predefined goal state in minimum expected
cost. This setting captures a wide variety of realistic scenarios, such as car navigation,

2

game playing and drone flying; i.e., tasks carried out in episodes that eventually terminate.
In this work we present the first near-optimal regret bounds for SSP.

1.2 Our Contributions

1.2.1 Adversarial MDP with Full-Information Feedback

We present the first high-probability regret bounds for adversarial MDPs where the agent
does not know the transition function in advance and observes full-information feed-
back, i.e., the entire cost function is revealed after it changes. We bound the regret by
Õ(H2S

√
AK), where S is the number of states, A is the number of actions, H is the horizon

(i.e., episode length), and K is the number of episodes.

This improves upon the only previous regret bound for this setting [NGS12] by a factor
of
√

A (this regret bound only holds in expectation and not with high-probability). More-
over, it is larger than the currently best known lower bound of Ω(

√
H3SAK) [OVR16,

JAZBJ18] by a factor of only
√

HS (and logarithmic factors).

Our algorithm UC-O-REPS is built on entropic regularization methodology, which is
known to be highly effective in practice. Our main technical contribution here is a novel
method to combine the “optimism in face of uncertainty” principle, which helps us es-
timate the unknown transition function, with the online mirror descent (OMD) method,
which is a popular framework for handling adversarial cost functions in online learning.
While a naive combination of these two methods yields a non-convex optimization prob-
lem (making the computational complexity of the algorithm not polynomial), our method
manages to use a convex optimization problem which can be solved efficiently. Moreover,
we present a novel analysis to our methods which splits the regret into two separate terms:
one for the error in the transition function estimation, and the other for the regret caused
by the unknown sequence of cost functions chosen by the adversary.

1.2.2 Adversarial MDP with Bandit Feedback

We propose the first algorithms for the adversarial MDPs with bandit feedback and an
unknown transition function. Our algorithms are based on our UC-O-REPS algorithm, that
assumes unknown transition function but full-information feedback. Our first algorithm,
“Bounded Bandit UC-O-REPS”, assumes that any state is reachable under any policy with
probability β > 0 and achieves a regret bound of Õ(H2S

√
AK/β). Our second algorithm,

3

“Shifted Bandit UC-O-REPS”, removes this assumption and achieves a regret bound of
Õ(H2SA1/4K3/4).

Here our technical contributions are as follows. First, we show that the UC-O-REPS
algorithm can be extended efficiently to pick only policies that reach all states with prob-
ability at least β . Second, we highlight the unique challenge that appears only when both
the transition function is unknown and the feedback is bandit (and not full-information): it
is not possible to construct an unbiased estimator to the cost function. Third, we provide
a novel analysis that bounds the error that our biased estimator introduces. Finally, we
propose a novel method to generalize the case that there is a positive lower on β to the
general case: through a perturbation of the confidence sets and the estimator.

1.2.3 Near-Optimal Regret for SSP

Our first result in the SSP model is the first near-optimal regret bound. We improve upon
the work of [TGV+20], which is the only previous regret minimization algorithm specifi-
cally designed for SSP. First, we remove the dependency on cmin and allow for zero costs
while maintaining regret of Õ(

√
K). Second, we give a much simpler algorithm in which

the computation of the optimistic policy has a simple solution. Our main regret term is
Õ(B⋆S

√
AK), where B⋆ is an upper bound on the expected cost of the optimal policy (note

that B⋆ ≤ D). Moreover, we show that this is almost optimal by giving the first lower
bound for SSP. It scales as Ω(B⋆

√
SAK).

We obtain a major improvement in the regret bound through the use of confidence
sets that are based on Bernstein inequality [AOM17], that is highly sensitive to variance,
instead of Hoeffding inequality. In both our algorithm and the one of [TGV+20], the
regret scales with the square root of the total variance. When using Hoeffding-based
confidence sets, similarly to UCRL2 [JOA10], this variance is trivially bounded by B2

⋆

at each step, which leads to a regret of Õ(
√

B2
⋆T), where T is the number of time-

steps taken by the algorithm. However, the use of Bernstein inequalities enables us to
bound the total expected variance in a time interval, of roughly B⋆/cmin time-steps, by
an identical magnitude of O(B2

⋆). Therefore, the regret bound for our algorithm improves
upon the regret of [TGV+20] by a factor of

√
B⋆/cmin, that is, Õ(B⋆S

√
AK) compared to

Õ(D3/2S
√

AK/cmin), where D is the diameter of the SSP.

Our technical contribution is as follows. To better explain our main Bernstein-based
algorithm, we start by assuming that the costs are lower bounded by cmin and give an algo-
rithm based on Hoeffding inequalities that is simple to analyze and achieves a regret bound

4

of Õ(B3/2
⋆ S

√
AK/cmin). Note that this bound is comparable to the one of [TGV+20], yet

our algorithm and its analysis are significantly simpler and more intuitive. In addition, its
analysis contains many of the key ideas of the proof of the Bernstein-based algorithm, and
is much easier to follow. We subsequently present the Bernstein-based algorithm. This al-
gorithm is simpler than our first one mainly since picking the parameters of the optimistic
model is particularly easy. The analysis, however, is somewhat more delicate. Eventually,
we achieve our final regret bound by perturbing the instantaneous costs to be at least ε > 0.
The additional cost due to this perturbation has a small effect since the dependency of our
regret on cmin is additive and does not multiply any term depending on K.

1.2.4 Minimax Optimal Regret for SSP

Our first algorithm for regret minimization in SSP leaves a gap of
√

S between the upper
and lower bounds. Moreover, for simplicity, there we assumed that the cost function is
deterministic and known. Now we consider the case where the costs are i.i.d. and initially
unknown. We prove upper and lower bounds for this case, proving that the optimal regret
is of order Θ̃(

√
(B2

⋆+B⋆)SAK).

Both our first algorithm and that of [TGV+20] were based on a direct application of
the “Optimism in the Face of Uncertainty” principle to the SSP model, following the ideas
behind the UCRL2 algorithm [JOA10] for average-reward MDPs. Here we take a different
approach. We propose a novel black-box reduction to finite-horizon MDPs, showing that
the SSP problem is not harder than the finite-horizon setting assuming prior knowledge on
the expected time it takes for the optimal policy to reach the goal state. While the reduction
itself is simple, the analysis is highly nontrivial as one has to show that the goal state is
indeed reached in every episode without incurring excessive costs in the process.

The idea of reducing SSP to finite-horizon was previously used by [CLW21, CL21]
for SSP with adversarially changing costs. However, they run one finite-horizon episode
in every SSP episode and then simply try to reach the goal as fast as possible, while we
restart a new finite-horizon episode every H steps. This modification is what enables us to
obtain the optimal and improved dependence in the number of states.

In addition, we provide a new algorithm for regret minimization in finite-horizon
MDPs called ULCVI. We show that (for large enough number of episodes) its regret
depends polynomially on the expected cost of the optimal policy B⋆, and only logarith-
mically on the horizon length H. This implies that the correct measure for the regret is the
expected cost of the optimal policy and not the length of the horizon. We note that regret

5

with logarithmic dependence in the horizon H was also obtained by [ZJD21], yet they
make a much stronger assumption: that the cumulative cost of every trajectory is bounded
by 1. In contrast, we only assume that the expected cost of the optimal policy is bounded
by some constant B⋆, while other policies may suffer a cost of H.

Our reduction, when combined with our finite-horizon algorithm ULCVI, guarantees
SSP regret of Õ(

√
(B2

⋆+B⋆)SAK). This matches our first lower bound B⋆ ≥ 1 up to log-
arithmic factors. However, this lower bound does not hold for B⋆ < 1 suggesting that this
is not the correct rate in this case. Indeed, we prove a tighter lower bound of Ω(

√
B⋆SAK)

for B⋆ < 1, showing that our regret guarantees are minimax optimal in all cases.

1.2.5 Adversarial SSP

We present the adversarial SSP model that introduces adversarially changing costs to the
classical SSP model. Formally, the agent interacts with an SSP instance for K episodes,
and the cost function changes arbitrarily between episodes. The agent’s objective is to
reach the goal state in all episodes while minimizing its total expected cost.

As pointed out by [TGV+20], in the general SSP problem we face new challenges
that do not arise in the loop-free version (i.e., finite-horizon MDPs). Notably, it features
two possibly conflicting objectives – reaching the goal vs minimizing cost; and it requires
handling unbounded value functions and episode lengths. In the adversarial SSP model,
these difficulties are further amplified as the adversary might encourage the learner to use
“slow” policies and then punish her with large costs.

We propose the first algorithms for regret minimization in adversarial SSPs without
any restrictive assumptions (namely, loop-free assumption). While we leverage algorith-
mic and technical tools from both SSP and finite-horizon adversarial MDP, tackling the
general SSP problem in the presence of an adversary requires novel techniques and careful
analysis. Our algorithms are based on the popular online mirror descent (OMD) frame-
work for online convex optimization (OCO). However, naive application of OMD to SSP
cannot overcome the challenges mentioned above as we show, and we use carefully de-
signed mechanisms to establish our theoretical guarantees.

Our main contributions are as follows. First, we formalize the adversarial SSP model
and define the notion of learning and regret. Second, we establish an efficient implemen-
tation of OMD in the SSP model with known transitions and study the conditions under
which it guarantees near-optimal

√
K expected regret, showing that some modifications are

necessary. Then, we illustrate the challenge of obtaining regret bounds in high-probability

6

in adversarial SSPs, and present a novel method that allows OMD to obtain its regret with
high-probability. Finally, we tackle unknown transitions. We describe the crucial adapta-
tions that allow OMD to be combined with optimistic estimates of the transition function
and guarantee

√
K regret when all costs are strictly positive, and K3/4 regret in the general

case.

1.3 Prior Work

Regret Minimization in Stochastic MDP. The works of [JOA10, BT09] initiated the
study on regret minimization in MDPs. They prove regret bounds of Õ(H2S

√
AK), and

their algorithms use the “optimism in face of uncertainty” principle, which proves to be
highly useful in adversarial environments as well. Later, the works of [AOM17, ZB19,
EMGM19, DLWB19] managed to design improved algorithms, based on similar princi-
ples, that attain the optimal regret of Õ(

√
H3SAK) (ignoring logarithmic factors). While

all previous algorithms are model-based, [JAZBJ18] presented an optimistic version of the
popular model-free algorithm Q-learning with similar regret guarantees. The lower bound
of Ω(

√
H3SAK) is due to [JOA10, OVR16, JAZBJ18].

Regret Minimization in Adversarial MDP. The work of [EKM09], which presented
the adversarial MDP model, assumes full knowledge of the transition function and full-
information feedback about the losses. They propose an algorithm, MDP-E, which uses
an experts algorithm in each state and achieves O(τ

√
T logA) regret, where τ is a bound

on the mixing time of the MDP and T is the number of time steps. Another early work
in this setting, by [YMS09], achieves an Õ(T 2/3) regret. In the bandit setting, but still
assuming full knowledge of the transition function, the work of [NGS10] achieves an
Õ(H2

√
AK/α) regret, where α > 0 is a lower bound on the probability to reach some

state s under some policy π . Later [NGSA14] eliminate the dependence on α but achieve
only Õ(K2/3) regret. A later work, by [ZN13], proposed the O-REPS algorithm which
guarantees an Õ(H

√
SAK) regret. The setting where the transition function is unknown

is much more challenging and only one algorithm was previously presented for it, and
assumed full-information feedback. The FPOP algorithm [NGS12] achieves Õ(H2SA

√
K)

regret.

SSP. Early work by [BT91] studied the problem of planning in SSPs, that is, comput-
ing the optimal strategy efficiently in a known SSP instance. They established that, under

7

certain assumptions, the optimal strategy is a deterministic stationary policy (a mapping
from states to actions) and can be computed efficiently using standard planning algorithms,
e.g., Value Iteration or Policy Iteration. The only regret minimization algorithm specifi-
cally designed for SSP is that of [TGV+20] that assumes that all costs are bounded away
from zero (i.e., there is a cmin > 0 such that all costs are in the range [cmin,1]). They show
a regret bound that scales as Õ(D3/2S

√
AK/cmin), where D is the minimum expected time

of reaching the goal state from any state. In addition, they show that the algorithm’s regret
is Õ(K2/3) when the costs are arbitrary (namely, may be zero).

1.4 Organization

Chapter 2 covers some background on Markov decision processes and reinforcement learn-
ing. It defines formally all the models and notations used throughout this thesis, and
presents some fundamental algorithms and results.

Chapters 3 and 4 present our results on adversarial MDPs. They are based on the papers
[RM19a] and [RM19b], respectively. Chapter 3 considers the model of full-information
feedback, while Chapter 4 focuses on the model of bandit feedback.

Chapters 5 and 6 present our results on SSPs. They are based on the papers [RCMK20]
and [CEMR21], respectively. Chapter 5 presents the first near-optimal regret for SSP
and the first lower bound, while Chapter 6 presents an improved algorithm that achieves
optimal regret guarantees.

Chapter 7 presents our results on adversarial SSPs, and is based on the paper [RM21b].

1.5 Excluded Work

This dissertation contains my main lines of work. I have contributed to other works during
my PhD studies which are to varying extent beyond this scope. These works are:

• Yonathan Efroni, Lior Shani, Aviv Rosenberg, and Shie Mannor. Optimistic Pol-
icy Optimization with Bandit Feedback. In Proceedings of the 37th International

Conference on Machine Learning, ICML 2020.

• Aviv Rosenberg and Yishay Mansour. Oracle-Efficient Regret Minimization in Fac-
tored MDPs with Unknown Structure. In Advances in Neural Information Process-

ing Systems, NeurIPS 2021.

8

• Tal Lancewicki, Aviv Rosenberg and Yishay Mansour. Learning Adversarial Markov
Decision Processes with Delayed Feedback. In Proceedings of the 35th AAAI Con-

ference on Artificial Intelligence, AAAI 2022.

• Liyu Chen, Haipeng Luo and Aviv Rosenberg. Policy Optimization for Stochastic
Shortest Path. In Proceedings of the Conference on Learning Theory, COLT 2022.

• Tal Lancewicki, Aviv Rosenberg and Yishay Mansour. Cooperative Online Learn-
ing in Stochastic and Adversarial MDPs. In Proceedings of the 39th International

Conference on Machine Learning, ICML 2022.

• Tiancheng Jin, Tal Lancewicki, Haipeng Luo, Yishay Mansour and Aviv Rosen-
berg. Near-Optimal Regret for Adversarial MDP with Delayed Bandit Feedback. In
Advances in Neural Information Processing Systems, NeurIPS 2022.

• Aviv Rosenberg, Assaf Hallak, Shie Mannor, Gal Chechik and Gal Dalal. Planning
and Learning with Adaptive Lookahead. In Proceedings of the 36th AAAI Confer-

ence on Artificial Intelligence, AAAI 2023.

9

2 Model and Preliminaries

2.1 Finite-Horizon Markov Decision Processes

Markov Decision Processes (MDPs) [Put14, Ber95] are one of the most important and
well-known frameworks for stochastic decision making. In this thesis, we supply results
on both finite-horizon MDPs which are defined as follows and goal-oriented MDPs, i.e.,
Stochastic Shortest Path (SSP), which are defined in the following section.

A finite-horizon MDP M is defined by the tuple (S ,A ,P,c,H). S and A are finite
state and action spaces. Their sizes are denoted by |S | = S and |A | = A, respectively.
The parameter H represents the horizon, i.e., the length of the interaction. P = {Ph :
S ×A → ∆S}H

h=1 is the transition model. It is a collection of H mappings from a state-
action pair (s,a)∈S ×A to a probability distribution over S , denoted by ∆S. We denote
by Ph(s′ | s,a) the probability to transition to state s′ when taking action a in state s at the
h-th time step. c = {ch : S ×A → R}H

h=1 is the reward model, which is bounded in [0,1].

A policy π = {πh : S → ∆A}H
h=1 is a collection of H mappings from the state space

to a probability distribution over actions. We denote by πh(a | s) the probability to take
action a in state s at the h-th time step, when playing the policy π . When the policy π is
deterministic, we often denote by πh(s) the action a for which πh(a | s) = 1. The expected
cost of policy π from an initial state s ∈S in time step h, referred to as the value function,
is defined as follows:

V π
h (s;c,P) = E

[
H

∑
h′=h

ch′(sh′,ah′) | sh = s,π,P

]
, (2.1)

where the expectations is taken w.r.t. to all existing randomness (the transition model and
the policy). When clear from context, we sometimes omit the notations of c and P in the
value function, i.e., we use V π

h (s) or V π
h (s;c). The following linear equations hold for the

10

Algorithm 1 Value Function Computation

init: V π
H+1(s) = 0 ∀s ∈S .

for h = H,H−1, . . . ,1 do
∀s ∈S , V π

h (s)← ∑a∈A πh(a | s)
(
ch(s,a)+∑s′∈S Ph(s′ | s,a)V π

h+1(s
′)
)
.

end for
return: V π .

value function:

∀s ∈S ∀h ∈ [H], V π
h (s) = ∑

a∈A
πh(a | s)

(
ch(s,a)+ ∑

s′∈S
Ph(s′ | s,a)V π

h+1(s
′)

)
. (2.2)

Thus, computing the value function can be done in O(S2AH) time via dynamic program-
ming (see Algorithm 1).

In many cases we are not only interested in estimating the expected value of a policy,
but also want to optimize over it. That is, we want to find the optimal policy of an MDP.
It is well known that the optimal strategy is a deterministic policy that does not depend on
the initial state [Put14, Ber95]. We define it as the policy which minimizes the value V π

h (s)

for every h ∈ [H] and s ∈S , where [H] = {1,2, . . . ,H}, and denote it by π⋆ = {π⋆
h}H

h=1.
The value of the optimal policy is called the optimal value function and denote by V ⋆.
Concretely,

π
⋆ ∈ argmin

π
V π

V ⋆ = min
π

V π .

It is well known that the optimal value function satisfies the Bellman equations [Put14]:

∀s ∈S ∀h ∈ [H], V ⋆
h (s) = min

a∈A
ch(s,a)+ ∑

s′∈S
Ph(s′ | s,a)V ⋆

h+1(s
′), (2.3)

and that the optimal policy can be extracted from the optimal value by

∀s ∈S ∀h ∈ [H], π
⋆
h (s) ∈ arg min

a∈A
ch(s,a)+ ∑

s′∈S
Ph(s′ | s,a)V ⋆

h+1(s
′). (2.4)

Similarly to value computation, we can compute the optimal policy using the Value Itera-
tion (VI) algorithm (Algorithm 2) in O(S2AH) computational complexity.

11

Algorithm 2 Value Iteration

init: V ⋆
H+1(s) = 0 ∀s ∈S .

for h = H,H−1, . . . ,1 do
∀s ∈S , V ⋆

h (s)←mina∈A ch(s,a)+∑s′∈S Ph(s′ | s,a)V ⋆
h+1(s

′).
∀s ∈S , π⋆

h (s)← argmina∈A ch(s,a)+∑s′∈S Ph(s′ | s,a)V ⋆
h+1(s

′).
end for
return: π⋆,V ⋆.

2.2 Stochastic Shortest Path

An instance of the stochastic shortest path (SSP) problem is a Markov decision process
(MDP) M = (S ,A ,P,c,sinit,g) where S is the state space and A is the action space.
The agent begins at the initial state sinit, and ends her interaction with M by arriving
at the goal state g (where g ̸∈ S). Whenever she plays action a in state s, she pays a
cost c(s,a) ∈ [0,1] and the next state s′ ∈ S is chosen with probability P(s′ | s,a). To
simplify the presentation we avoid addressing the goal state g explicitly – we assume that
the probability of reaching the goal state by playing action a at state s is 1−∑s′∈S P(s′ |
s,a).

We now review planning in a known SSP instance. Under certain assumptions that we
shall briefly discuss, the optimal behaviour of the agent, i.e., the policy that minimizes the
expected total cost of reaching the goal state from any state, is a stationary, deterministic
and proper policy. A stationary and deterministic policy π : S → A is a mapping that
selects action π(s) whenever the agent is at state s. A proper policy is defined as follows.

Definition 2.2.1 (Proper and Improper Policies). A policy π is proper if playing π reaches
the goal state with probability 1 when starting from any state. A policy is improper if it is
not proper.

Any policy π induces a cost-to-go function V π : S → [0,∞] defined as:

V π(s) = lim
T→∞

Eπ

[T

∑
t=1

c(st ,at) | s1 = s
]
,

where the expectation is taken w.r.t the random sequence of states generated by playing
according to π when the initial state is s. For a proper policy π , since the number of states
S is finite, it follows that V π(s) is finite for all s ∈ S. However, note that V π(s) may be
finite even if π is improper. We additionally denote by T π(s) the expected time it takes
for π to reach g starting at s; in particular, if π is proper then T π(s) is finite for all s, and

12

if π is improper there must exist some s such that T π(s) = ∞. In this work we assume the
following about the SSP model.

Assumption 2.2.1. There exists at least one proper policy.

With Assumption 2.2.1, we have the following important properties of proper policies.
In particular, the first result shows that a policy is proper if and only if its cost-to-go
function satisfies the Bellman equations. The second result proves that a policy is optimal
if and only if it satisfies the Bellman optimality criterion. Note that they assume that every
improper policy has high cost.

Lemma 2.2.2 ([BT91, Lemma 1]). Suppose that Assumption 2.2.1 holds and that for every

improper policy π ′ there exists at least one state s ∈S such that V π ′(s) = ∞. Let π be any

policy, then

(i) If there exists V : S → R such that V (s) ≥ c
(
s,π(s)

)
+∑s′∈S P

(
s′ | s,π(s)

)
V (s′)

for all s ∈S , then π is proper. Moreover, it holds that V π(s)≤V (s), ∀s ∈S .

(ii) If π is proper then V π is the unique solution to the equations V π(s) = c
(
s,π(s)

)
+

∑s′∈S P
(
s′ | s,π(s)

)
V π(s′) for all s ∈S .

Lemma 2.2.3 ([BT91, Proposition 2]). Under the conditions of Lemma 2.2.2 the optimal

policy π⋆ is stationary, deterministic, and proper. Moreover, a policy π is optimal if and

only if it satisfies the Bellman optimality equations for all s ∈S :

V π(s) = min
a∈A

c
(
s,a
)
+ ∑

s′∈S
P
(
s′ | s,a

)
V π(s′), (2.5)

π(s) ∈ arg min
a∈A

c
(
s,a
)
+ ∑

s′∈S
P
(
s′ | s,a

)
V π(s′).

In this work we are not interested in approximating the optimal policy overall, but
rather the best proper policy. In this case the second requirement in the lemmas above,
that for every improper policy π there exists some state s ∈ S such that V π(s) = ∞, can
be circumvented in the following way [BY13]. First, note that this requirement is trivially
satisfied when all instantaneous costs are strictly positive. Then, one can perturb the in-
stantaneous costs by adding a small positive cost ε ∈ [0,1], i.e., the new cost function is
cε(s,a) = max{c(s,a),ε}. After this perturbation, all proper policies remain proper, and
every improper policy has infinite cost-to-go from some state (as all costs are positive). In
the modified MDP, we apply Lemma 2.2.3 and obtain an optimal policy π⋆

ε that is station-
ary, deterministic and proper and has a cost-to-go function V ⋆

ε . Taking the limit as ε → 0,
we have that π⋆

ε → π⋆ and V ⋆
ε →V ⋆, where π⋆ is the optimal proper policy in the original

model that is also stationary and deterministic, and V ⋆ denotes its cost-to-go function.

13

Algorithm 3 Reinforcement Learning - Computational Model
for k = 1,2, . . . ,K do

Observe initial state sk
1 = sinit.

Pick a policy πk.
for h = 1,2, . . . ,H do

Observe current state sk
h.

Pick action ak
h ∼ πk

h(· | s
k
h).

if Stochastic MDP then
Observe and suffer cost Ck

h = ck
h(s

k
h,a

k
h).

else if Adversarial MDP then
Observe and suffer cost Ck

h ∼ ch(sk
h,a

k
h).

end if
Observe next state sk

h+1 ∼ Ph(· | sk
h,a

k
h).

end for
if Full-Information Feedback then

Observe cost function ck.
end if

end for

2.3 Adversarial Markov Decision Processes

In many real-world applications, unlike in MDPs, the environment changes over time and
even throughout the learning process. To address this issue, the adversarial MDP model
[EKM09] was proposed. In this model, the cost function can change arbitrarily (while
still assuming a fixed stochastic transition function). Formally, there are K episodes of
interaction between the agent and the environment. The cost function in the k-th episode
is ck, i.e., in finite-horizon adversarial MDPs ck = {ck

h : S ×A → [0,1]} and in adver-
sarial SSPs ck : S ×A → [0,1]. The sequence of cost functions {ck}K

k=1 is chosen by an
oblivious adversary before the interaction starts.

Importantly, the adversarial MDP model generalizes the standard MDP model. Con-
cretely, stochastic MDPs are a specific case of adversarial MDPs in which the cost ck

h(s,a)

is sampled i.i.d for each (k,s,a,h) ∈ [K]×S ×A × [H] from a distribution with expected
value ch(s,a).

2.4 Reinforcement Learning

It is often the case that the exact model of an MDP is unknown, however, interaction
with the unknown model is possible. An optimal policy can be learned through inter-

14

action with the unknown MDP based on samples. The field of Reinforcement Learning
(RL) [SB98] tackles the question of how to learn an optimal policy using samples. Re-
cently, RL witnessed remarkable empirical success, e.g., [MKS+15, LFDA16, SSS+17].
The empirical success acted as driving force to significant theoretical developments. Next
we survey the major advancements in the theory of regret analysis in RL.

In the RL problem, the agent needs to trade-off between exploration and exploitation.
That is, to control whether it needs to have a better estimate of the model or whether it can
act optimally with respect to (w.r.t.) the ‘empirical’ model. By generalizing techniques and
algorithms from Multi-Armed Bandit literature [LS20, Sli19] many RL algorithms were
suggested and analyzed in the last two decades [AJO09, KS02, BT02, AOM17, JAZBJ18].

Large portion of recent research was devoted to RL for the case the environment is an
unknown finite-horizon MDP. For stochastic MDPs, the considered computational model
assumes an episodic interaction, in which an RL agent interacts with the finite-horizon
MDP for H time steps. Then, the state is initialized to the initial state sinit. For adversarial
MDPs, the interaction is similar but the cost function changes between episodes. In the
end of each episode, the agent observes either the entire cost function for full-information

feedback, or only the suffered costs for bandit feedback. See the full interaction in Algo-
rithm 3.

The common performance measure is the regret, which compares the cost suffered by
the agent with that suffered by the best fixed policy in hindsight. For stochastic MDPs, it
is defined as:

RK =
K

∑
k=1

V πk

1 (sinit;c,P)−V ⋆
1 (sinit) =

K

∑
k=1

V πk

1 (sinit)−V ⋆
1 (sinit),

and for adversarial MDPs:

RK =
K

∑
k=1

V πk

1 (sinit;ck,P)−min
π

K

∑
k=1

V π
1 (sinit;ck,P) =

K

∑
k=1

V k,πk

1 (sinit)−V k,π⋆

1 (sinit).

The definitions for SSP are slightly different and are described in the appropriate chapter.

In [OVR16] a lower bound of Ω(
√

H3SAK) was established for RL in finite-horizon
MDPs. Note that this lower bound also applies to adversarial MDPs, as they are a more
general model. Furthermore, [ZB19] analyzed the EULER algorithm and established an
Õ(
√

H3SAK) 1 upper bound, which shows the lower bound is tight.

1 We omit poly-logarithmic factors in the Õ(·) notation.

15

3 Learning Adversarial MDPs with Un-
known Transition Function and Full-
Information Feedback

This chapter is based on:

Aviv Rosenberg and Yishay Mansour. Online convex optimization in adversarial markov
decision processes. In Proceedings of the 36th International Conference on Machine

Learning, ICML 2019.

This chapter presents the first high probability regret bound for adversarial MDP with
unknown transitions. We start the chapter by introducing the concept of occupancy mea-
sures and reviewing the O-REPS algorithm [ZN13] for regret minimization in adversarial
MDP with known transitions. Then, we present an extension of occupancy measures to
the case where the transitions are unknown to the agent, and finally present our algorithm
and analyze its regret.

3.1 Occupancy Measures

It is beneficial to introduce the concept of occupancy measures on the state-action space
S ×A × [H]. For a policy π we define the occupancy measure qπ as follows:

qπ
h (s,a) = Pr [sh = s,ah = a | π] .

It is easy to see that the occupancy measure of any policy π satisfies

∑
a∈A

qπ
h+1(s,a) = ∑

s′∈S
∑

a∈A
qπ

h (s
′,a)Ph(s | s′,a) ∀(s,h) ∈S × [H−1],

16

with qπ
1 (s,a) = π1(a | s)I{s = sinit}. The set of all occupancy measures satisfying the

above equality in the MDP M will be denoted as ∆(M). The policy π is said to generate
the occupancy measure q ∈ ∆(M) if πh(a | s) = q(s,a)/q(s) holds for all (s,a,h) ∈S ×
A × [H], where q(s) = ∑a∈A q(s,a). It is clear that there exists a unique generating policy
for all measures in ∆(M) and vice versa. The policy generating q will be denoted as πq.
In what follows, we will redefine the task of the learner from having to select policies πk

to having to select occupancy measures qπk ∈ ∆(M) in each episode k. To see why this
notion simplifies the treatment of the problem, observe that:

V π
1 (sinit;c) = E

[
H

∑
h=1

ch(sh,ah) | s1 = sinit,π,P

]

=
H

∑
h=1

∑
s∈S

∑
a∈A

qπ
h (s,a)ch(s,a)

def
= ⟨qπ ,c⟩.

3.2 Reduction to Online Linear Optimization and the O-REPS Algorithm

Using the notation from the previous section, we can reformulate our original problem as
an instance of online linear optimization with decision space ∆(M). Assuming that the
learner selects occupancy measure qk in episode k, the regret can be rewritten as:

RK = max
q∈∆(M)

K

∑
k=1
⟨qk−q,ck⟩=

K

∑
k=1
⟨qk−q⋆,ck⟩.

The O-REPS algorithm [ZN13] is an instance of online linear optimization methods
usually referred to as Follow-the-Regularized-Leader (FTRL) or Online Mirror Descent
(OMD). Before describing the algorithm, some more definitions are in order. First, de-
fine KL(q ∥ q′) as the unnormalized Kullback-Leibler divergence between two occupancy
measures q and q′:

KL(q ∥ q′) =
H

∑
h=1

∑
s∈S

∑
a∈A

qh(s,a) log
qh(s,a)
qh(s,a)

−qh(s,a)+q′h(s,a).

Note that ∑h,s,a q′h(s,a)− qh(s,a) = 0, but adding these terms will help simplify some
of the derivations. Let R(q) define the unnormalized negative entropy of the occupancy

17

measure q:

R(q) =
H

∑
h=1

∑
s∈S

∑
a∈A

qh(s,a) logqh(s,a)−qh(s,a).

In the first episode, O-REPS chooses the uniform policy with π1
h (a | s) = 1/A for all s

and a, and we let q1 = qπ1
. Then, the algorithm proceeds as follows. After observing the

feedback from episode k, it selects the occupancy measure that solves the optimization
problem:

qk+1 = arg min
q∈∆(M)

η⟨q,ck⟩+KL(q ∥ qk), (3.1)

where η > 0 is a learning rate. This optimization can be reformulated as first solving the
unconstrained optimization problem and then projecting the result to ∆(M), i.e.,

q̃k+1 = argmin
q

η⟨q,ck⟩+KL(q ∥ qk)

qk+1 = arg min
q∈∆(M)

KL(q ∥ q̃k+1).

The first step can be simply carried out by setting q̃k+1
h (s,a) = qk

h(s,a)e
−ηck

h(s,a). The
projection step can be performed using the following lemma.

Lemma 3.2.1 ([ZN13], Proposition 1). It holds that

qk+1
h (s,a) =

qk
h(s,a)e

Bk
h(s,a|v

k)

Zk
h(v

k)
,

for:

Bk
h(s,a | v) = vh(s)−ηck

h(s,a)−∑
s′

Ph(s′ | s,a)vh+1(s′)

Zk
h(v) = ∑

s,a
qk

h(s,a)e
Bk

h(s,a|v)

vk = argmin
v ∑

h
logZk

h(v).

Minimizing the expression on the right-hand side of the last equation is an uncon-
strained convex optimization problem and can be solved efficiently. [ZN13] also show
that this algorithm achieves regret of Õ(H

√
K) which optimal up to logarithmic factors.

18

3.3 Extending Occupancy Measures to Unknown Transitions

When the transition function is unknown to the learner, we cannot compute the occupancy
measure of a policy π or the constraints that define the set of occupancy measures. A naive
solution could be to treat {Ph(s′ | s,a)}(s,a,s′,h)∈S×A×S×[H] as additional variables in the
optimization problem solved by the O-REPS algorithm in each episode. However, this
leads to a non-convex optimization problem which cannot be solved efficiently.

Instead we propose to extend the definition of occupancy measures such that it contains
not only the policy, but also the transition function. Namely, we define the occupancy
measure qπ,P of the policy π and the transition function P as follows:

qπ,P
h (s,a,s′) = Pr

[
sh = s,ah = a,sh+1 = s′ | π,P

]
.

We start with two basic properties that hold for every occupancy measure q. By stan-
dard flow constraints, it holds that in each episode the learner will go through every layer.
Therefore, for every h = 1, . . . ,H:

∑
s∈S

∑
a∈A

∑
s′∈S

qh(s,a,s′) = 1. (3.2)

Moreover, the probability to enter a state when coming from the previous layer is exactly
the probability to visit that state. Thus, for every h = 2, . . . ,H and every s ∈S :

∑
a∈A

∑
s′∈S

qh(s,a,s′) = ∑
a∈A

∑
s′∈S

qh−1(s′,a,s). (3.3)

Notice that every occupancy measure q induces a transition function and a policy. We
denote them as Pq and πq respectively, and they can be computed as follows:

Pq
h (s
′ | s,a) = qh(s,a,s′)

qh(s,a)

π
q
h (a | s) =

qh(s,a)
qh(s)

,

where qh(s,a) = ∑s′∈S qh(s,a,s′) and qh(s) = ∑a∈A qh(s,a). The following lemma char-
acterizes ∆(M) and its proof is straightforward.

Lemma 3.3.1. For every q = {qh : S ×A ×S → [0,1]}h∈[H] it holds that q ∈ ∆(M) if

and only if (3.2) and (3.3) hold, and Pq = P (where P is the transition function of M).

19

The regret is reformulated with occupancy measures similarly to the previous section,
but as we will see next, the extended occupancy measures will enable us to extend the
O-REPS algorithm to unknown transitions efficiently.

3.4 The UC-O-REPS Algorithm

Our algorithm “Upper Confidence Online Relative Entropy Policy Search” (UC-O-REPS)
is presented in Algorithms 4 and 5. It is inspired by the O-REPS algorithm [ZN13] in the
sense that it picks occupancy measures instead of policies. However, unlike our algorithm,
O-REPS assumes full knowledge of the transition function. To the best of our knowledge,
the only algorithm that handles unknown transition probabilities in adversarial MDPs is
FPOP [NGS12], which uses a Follow the Pertubed Leader method [KV03] in the space of
the policies.

Recall that the adversarial MDP has a stochastic element - the transition function, and
an adversarial element - the cost functions.

To handle the stochastic transition function we use the framework of epochs and con-
fidence sets, first introduced by the UCRL-2 algorithm [JOA10]. In this framework, the
algorithm maintains confidence sets that contain the actual MDP with high probability,
but also shrink as time progresses. We translated this method to the occupancy measures
space, and the full details can be found in Section 3.4.1.

The core of the algorithm is the way we choose the occupancy measure for each
episode from within the confidence set. This is done by the Online Mirror Descent method
[Sha12] for online linear optimization, since we deal with an arbitrary sequence of cost
functions. The full details of adapting OMD to our setting can be found in Section 3.4.2.

The combination of these two methods is done using an important principle in rein-
forcement learning - “optimism in face of uncertainty”. On the one hand, we keep confi-
dence sets to handle the uncertainty, but on the other hand, within these confidence sets, we
solve an OMD optimization problem optimistically (without thinking about the transition
function estimation).

3.4.1 Confidence Sets

Since the learner does not know the transition function, it has to estimate P from its ex-
perience. Using this estimate we define confidence sets, and choose occupancy measures
from within them. Notice that these occupancy measures might not be in ∆(M), i.e.,

20

their induced transition function may differ from P. Nevertheless, we can still use them to
compute policies and execute those policies.

The algorithm proceeds in epochs of random length, and in the beginning of each
epoch the confidence set is updated. The first epoch E1 starts at episode k = 1, and each
epoch Ei ends when the number of visits at some state-action pair (s,a) is doubled. Let ki

denote the index of the first episode in epoch Ei, and i(k) denote the index of the epoch that
includes episode k. Let Ni

h(s,a) and Mi
h(s
′ | s,a) denote the number of times state-action

pair (s,a) was visited (in step h) and the number of times this event was followed by a
transition to s′ up to episode ki, respectively. That is

Ni
h(s,a) =

ki−1

∑
j=1

I
{

s j
h = s,a j

h = a
}

Mi
h(s
′ | s,a) =

ki−1

∑
j=1

I
{

s j
h = s,a j

h = a,s j
h+1 = s′

}
.

Our estimate P̄i for the transition function in epoch E i is

P̄i
h(s
′ | s,a) =

Mi
h(s
′ | s,a)

max
{

1,Ni
h(s,a)

} ,
and we define our confidence set ∆(M , i) in epoch E i to include all the occupancy mea-
sures that their induced transition function is “close enough” to P̄i. More formally, given
a confidence parameter δ > 0, we define:

ε
i
h(s,a) =

√
2S ln KHSA

δ

max{1,Ni
h(s,a)}

,

and say that ∆(M , i) consists of all q = {qh : S ×A ×S → [0,1]}h∈[H] for which (3.2)
and (3.3) hold, and ∥∥Pq

h (· | s,a)− P̄i
h(· | s,a)

∥∥
1 ≤ ε

i
h(s,a) (3.4)

for every (s,a,h) ∈S ×A × [H].

Notice that these confidence sets shrink as time progresses, but the following lemma
[JOA10, NGS12] shows that they still contain ∆(M) with high probability.

Lemma 3.4.1. For any 0 < δ < 1,

∥∥Ph(· | s,a)− P̄i
h(· | s,a)

∥∥
1 ≤

√
2S ln KHSA

δ

max{1,Ni
h(s,a)}

21

holds with probability at least 1−δ simultaneously for all (s,a,h) ∈S ×A × [H] and all

epochs.

3.4.2 Optimization Problem

In order to choose the occupancy measure qk for episode k, the algorithm follows the OMD
method. The idea behind this method is to choose an occupancy measure that minimizes
the cost in episode k, while not straying too far from the previously chosen occupancy
measure. Formally, given a parameter η > 0,

qk+1 = arg min
q∈∆(M ,i(k))

η

〈
q,ck

〉
+KL(q ∥ qk),

where KL(q ∥ qk) is the unnormalized KL divergence between two occupancy measures
defined as

KL(q ∥ q′) =
H

∑
h=1

∑
s∈S

∑
a∈A

∑
s′∈S

qh(s,a,s′) log
qh(s,a,s′)
qh(s,a,s′)

−qh(s,a,s′)+q′h(s,a,s
′).

We now proceed to show that this optimization problem can be solved efficiently. From
the theory of OMD it is known that we can split this problem as follows: we start by
solving the unconstrained problem, and then project the unconstrained minimizer into the
feasible set, namely,

q̃k+1 = argmin
q

η

〈
q,ck

〉
+KL(q ∥ qk)

qk+1 = arg min
q∈∆(M ,i(k))

KL(q ∥ q̃k+1). (3.5)

The unconstrained problem can be solved by setting q̃k+1
h (s,a,s′)= qk

h(s,a,s
′)e−ηck

h(s,a)

for every (s,a,s′,h) ∈S ×A ×S × [H]. Theorem 3.4.2 shows that the second optimiza-
tion problem can be reduced to a convex optimization problem with only non-negativity
constraints (and no constraints about the relations between the variables), which can be
solved efficiently using iterative methods [BV04].

Theorem 3.4.2. It holds that

qk+1
h (s,a,s′) =

qk
h(s,a,s

′)eBk
h(s,a,s

′|vµk
,eµk ,βk

)

Zk
h(v

µk
,eµk,β k

)
,

22

for:

Bk
h(s,a,s

′ | v,e) = eh(s,a,s′)+ vh(s,a,s′)−ηck
h(s,a)−∑

s′′
P̄k

h (s
′′ | s,a)vh+1(s,a,s′′)

vµ

h (s,a,s
′) = µ

−
h (s,a,s′)−µ

+
h (s,a,s′)

eµ,β
h (s,a,s′) = βh+1(s′)−βh(s)+∑

s′′
(µ−h (s,a,s′′)+µ

+
h (s,a,s′′))εk

h(s
′′ | s,a)

ε
k
h(s
′ | s,a) =

√
16P̄k

h (s
′|s,a) log 10HSAK

δ

nk
h(s,a)∨1

+
10log 10HSAK

δ

nk
h(s,a)∨1

Zk
h(v,e) = ∑

s,a,s′
qk

h(s,a,s
′)eBk

h(s,a,s
′|v,e)

µ
k,β k = arg min

β ,µ≥0

H

∑
h=1

logZk
h(v

µ ,eµ,β), (3.6)

where P̄k = P̄i(k) and nk = Ni(k).

Proof. First of all we would like to reformulate optimization problem (3.5) as a con-
vex optimization problem. Notice that the target function is convex (since it is the KL-
divergence) and so are constraints (3.2), (3.3) of ∆(M , i) (where i = i(k)). As for con-
straint (3.4), we will need to write it differently.

Let (s,a,h) ∈S ×A × [H], we can replace∥∥∥∥ qh(s,a, ·)
∑y∈S qh(s,a,y)

− P̄i
h(· | s,a)

∥∥∥∥
1
≤ ε

i
h(s,a).

with S + 1 constraints as follows. For each s′ ∈ S we bound the difference in the
transition probability with a new variable ε ′h(s,a,s

′) and then we bound their sum with the
original bound ε i

h(s,a). That is,∣∣∣∣ qh(s,a,s′)
∑y∈S qh(s,a,y)

− P̄i
h(s
′ | s,a)

∣∣∣∣≤ ε
′
h(s,a,s

′)

∑
s′∈S

ε
′
h(s,a,s

′)≤ ε
i
h(s,a).

Now we can get rid of the denominator by multiplying the equation and then replacing
ε ′h(s,a,s

′) with a different variable εh(s,a,s′) = ε ′h(s,a,s
′)∑y∈S qh(s,a,y). Moreover, we

will discard the absolute value by replacing it with two linear constraints. The resulting

23

Algorithm 4 UC-O-REPS Algorithm
Input: state space S , action space A , number of episodes K, optimization parameter
η and confidence parameter δ .
Initialization: i(1) ← 1,k1 ← 1,π1

h (a|s) ← 1/A,q1
h(s,a,s

′) ← 1/(S2A),n1
h(s,a) ←

0,N1
h (s,a)← 0,m1

h(s
′|s,a)← 0,M1

h(s
′|s,a)← 0 ∀(s,a,s′,h).

for k = 1, . . . ,K do
Play policy πk and observe trajectory {sk

h,a
k
h}

H
h=1.

Observe cost function ck.
Update epoch counters for h = 1, . . . ,H:

ni(k)
h (sk

h,a
k
h)← ni(k)

h (sk
h,a

k
h)+1

mi(k)
h (sk

h+1 | s
k
h,a

k
h)← mi(k)

h (sk
h+1 | s

k
h,a

k
h)+1.

if ∃(s,a,h) ∈S ×A × [H]. ni(k)
h (s,a)≥ Ni(k)

h (s,a) then
Start new epoch:

i(k+1)← i(k)+1 ; ki(k+1)← k+1.

Initialize epoch counters ∀(s,a,s′,h):

ni(k+1)
h (s,a)← 0 ; mi(k+1)

h (s′ | s,a)← 0.

Update total counters ∀(s,a,s′,h):

Ni(k+1)
h (s,a)← Ni(k)

h (s,a)+ni(k)
h (s,a)

Mi(k+1)
h (s′ | s,a)←Mi(k)

h (s′ | s,a)+mi(k)
h (s′ | s,a).

compute probability estimate ∀(s,a,s′,h):

P̄i(k+1)(s′ | s,a)←
Mi(k+1)

h (s′ | s,a)

max
{

1,Ni(k+1)
h (s,a)

} .
else

Continue in the same epoch: i(k+1)← i(k).
end if
Compute policy for next episode:

qk+1,πk+1← Comp-Policy(qk, P̄i(k+1),ck).

end for

24

Algorithm 5 Comp-Policy Procedure

Input: previous occupancy measure qk, transition function estimate P̄i(k+1) and current
cost function ck.
Solve optimization problem (3.6):

µ
k,β k = arg min

β ,µ≥0

H

∑
h=1

logZk
h(v

µ ,eµ,β).

Compute next occupancy measure ∀(s,a,s′,h):

qk+1
h (s,a,s′) =

qk
h(s,a,s

′)eBk
h(s,a,s

′|vµk
,eµk ,βk

)

Zk
h(v

µk
,eµk,β k

)
.

Compute next policy ∀(s,a,h):

π
k+1
h (a | s) = ∑s′∈S qk+1

h (s,a,s′)

∑b∈A ∑s′∈S qk+1
h (s,b,s′)

.

constraints are:

qh(s,a,s′)− P̄i
h(s
′ | s,a) ∑

y∈S
qh(s,a,y)≤ εh(s,a,s′)

P̄i
h(s
′ | s,a) ∑

y∈S
qh(s,a,y)−qh(s,a,s′)≤ εh(s,a,s′)

∑
s′∈S

εh(s,a,s′)≤ ε
i
h(s,a) ∑

s′∈S
qh(s,a,s′).

This gives us a convex optimization problem with linear constraints. This problem
obtains strong duality because: (1) The target function is bounded from below because
KL-divergence is non-negative, (2) The target function and all constraints are convex, (3)
Slater condition holds (easy to check).

Thus we can use the method of Lagrange multipliers, and we are ensured that the
solution we get is optimal and finite. The full derivation can be found in the supplementary
material and yields the aforementioned result.

25

3.5 Analysis

In this section we bound the regret of the UC-O-REPS algorithm, by combining ideas
from the regret analyses of OMD and UCRL-2. First we partition the regret into two
terms: R̂APP

1:K - which includes the error that comes from the estimation of the unknown
transition function, and R̂ON

1:K - which includes the error that comes from choosing sub-
optimal policies. Formally,

RK =
K

∑
k=1

V πk

1 (sinit;ck,P)−min
π

K

∑
k=1

V π
1 (sinit;ck,P)

=
K

∑
k=1

V πk

1 (sinit;ck,P)−V πk

1 (sinit;ck,Pk)

+
K

∑
k=1

V πk

1 (sinit;ck,Pk)−min
π

K

∑
k=1

V π
1 (sinit;ck,P)

def
= R̂APP

1:K + R̂ON
1:K,

where Pk = Pqk
and πk = πqk

.

Theorems 3.5.2 and 3.5.3 bound each of these terms, which yields our main result.

Theorem 3.5.1. Running UC-O-REPS in an adversarial MDP M =
(
S ,A ,H,P,{ck}K

k=1
)

yields the following regret,

RK ≤ O

(
H2S

√
AK log

KHSA
δ

)
.

3.5.1 Bounding R̂APP
1:K

The term R̂APP
1:K is a result of the learner’s lack of knowledge about the environment’s dy-

namics. Since the dynamics are stochastic the learner estimates the transition probabilities
to build confidence sets. It then selects occupancy measures from within these confidence
sets, but they are not exactly occupancy measures of M .

In this section we bound the difference between the loss of the learner’s chosen policies
in M and the loss of these policies in the “optimistic” MDP (the one induced by the
occupancy measure qk).

The way the algorithm minimizes this difference is through shrinking of the confidence
sets. The following bound on R̂APP

1:K is adapted from arguments in the regret analysis of
UCRL-2, and the proof can be found in the supplementary material.

26

Theorem 3.5.2. Let M =
(
S ,A ,H,P,{ck}K

k=1
)

be an adversarial MDP. With probability

at least 1−2δ , UC-O-REPS obtains,

R̂APP
1:K ≤ O

(
H2S

√
AK log

KHSA
δ

)
.

3.5.2 Bounding R̂ON
1:K

The term R̂ON
1:K is a result of the learner’s lack of knowledge about the cost functions. Since

the sequence of cost functions can be arbitrary, the learner handles it with tools from online
convex optimization.

In this section we ignore the fact that the occupancy measures chosen by the learner
are not exactly occupancy measures of M , since this issue was already addressed in the
previous section bounding R̂APP

1:K . Recall that

R̂ON
1:K =

K

∑
k=1

〈
qk−q,ck

〉
,

for some occupancy measure q ∈ ∆(M) which is best in hindsight.

Now we can use arguments from online linear optimization. Specifically, the following
theorem is an adaptation of OMD regret analysis to our setting.

Theorem 3.5.3. Let M =
(
S ,A ,H,P,{ck}K

k=1
)

be an adversarial MDP. With probability

at least 1−δ , UC-O-REPS obtains the following for every q ∈ ∆(M).

R̂ON
1:K ≤ O

(
ηHK +

H log(HS2A)
η

)
,

and setting η =

√
log(HS2A)

K yields

R̂ON
1:K ≤ O

(
H
√

K log(HS2A)
)
.

Proof. By standard arguments of OMD regret analysis we have that

K

∑
k=1

〈
qk−q,ck

〉
≤

K

∑
k=1

〈
qk− q̃k+1,ck

〉
+

KL(q ∥ q1)

η
.

However, these arguments assume that qk are chosen from within ∆(M) so we need to

27

show that they are still valid. From Lemma 3.4.1 we know that ∆(M)⊆ ∆(M , i) for every
i with probability at least 1−δ . Therefore, by choosing approximate occupancy measures
we can only improve the regret so the arguments are indeed valid.

Using the exact form of q̃k+1 and the fact that ex ≥ 1+ x, we get that

q̃k+1
h (s,a,s′)≥ qk

h(s,a,s
′)−ηqk

h(s,a,s
′)ck

h(s,a),

and therefore

K

∑
k=1

〈
qk− q̃k+1,ck

〉
≤ η

K

∑
k=1

∑
h,s,a,s′

qk
h(s,a,s

′)ck
h(s,a)

2

≤ η

K

∑
k=1

∑
h,s,a,s′

qk
h(s,a,s

′) = ηHK.

For the second term, KL(q ∥ q1)/η , we use the fact that the unnormalized KL di-
vergence is the Bregman divergence associated with the unnormalized negative entropy,
defined as follows:

R(q) = ∑
h,s,a,s′

qh(s,a,s′) logqh(s,a,s′)−qh(s,a,s′).

Now from standard arguments we obtain

KL(q ∥ q1)≤ R(q)−R(q1)

≤
H

∑
h=1

∑
s∈S

∑
a∈A

∑
s′∈S

q1
h(s,a,s

′) log
1

q1
h(s,a,s

′)

≤ H log(HS2A).

Putting these two bounds together completes the proof.

28

4 Learning Adversarial MDPs with Un-
known Transition Function and Ban-
dit Feedback

This chapter is based on:

Aviv Rosenberg and Yishay Mansour. Online stochastic shortest path with bandit feed-
back and unknown transition function. In Advances in Neural Information Processing

Systems, NeurIPS 2019.

This chapter presents the first regret bounds for adversarial MDPs with unknown tran-
sition function and bandit feedback.

4.1 The O-REPS Algorithm for Bandit Feedback

Recall that under bandit feedback the agent observes only the costs that she suffers, as op-
posed to full-information feedback in which the entire cost function is revealed in the end
of the episode. Formally, in the end of episode k, instead of observing {ck

h(s,a)}(s,a,h)∈S×A×[H]

we only observe {ck
h(s

k
h,a

k
h)}h∈[H].

We start this chapter by reviewing the bandit version of the O-REPS algorithm when
the transition function is known to the learner. The algorithm is almost the same as the
one presented in the previous chapter, but with a single modification that we shall now
describe.

Notice that O-REPS uses the cost function ck when solving the optimization problem
in Equation (3.1). Now, that not the entire cost function is known, [ZN13] propose to

29

estimate it with a standard importance sampling estimator, defined by:

ĉk
h(s,a) =


ck

h(s,a)
qk

h(s,a)
, if sk

h = s and ak
h = a

0, otherwise
.

They show that this estimator is unbiased. Moreover, they prove that combining O-
REPS with this importance sampling estimator yields optimal regret (up to logarithmic
factors) of Õ(H

√
SAK).

4.2 Our Algorithms for Bandit Feedback with Unknown Transitions

We define β (M) as the minimum probability to visit some state under the worst ex-
ploratory policy, i.e., β (M)=minπ minh∈[H]mins∈S qP,π

h (s). Moreover, we define pmin(M)

as the minimal transition probability, that is, pmin(M) = minh,s,a,s′ Ph(s′ | s,a).

Our first algorithm, "Bounded Bandit UC-O-REPS", is aimed for MDPs where there
is a known positive lower bound on β (M). Our second algorithm, "Shifted Bandit UC-O-
REPS", works in general episodic adversarial MDPs and makes use of the first algorithm.

4.2.1 Bounded Bandit UC-O-REPS

The "Bounded Bandit UC-O-REPS" algorithm runs UC-O-REPS but with two crucial
changes.

Firstly, instead of using ck (which we do not have) we use ĉk which is our estimate of
ck defined as follows:

ĉk
h(x,a) =


ck

h(x,a)
qk

h(s,a)
, if sk

h = s and ak
h = a

0, otherwise
.

30

Notice that this is a biased estimator since Pk may be different from P,

Ek
[
ĉk

h(s,a)
]
= qP,πk

h (s,a)
ck

h(s,a)

qPk,πk

h (s,a)

= qP,πk

h (s)πk
h(a | s)

ck
h(s,a)

qPk,πk
(s)πk

h(a | s)
(4.1)

= qP,πk

h (s)
ck

h(s,a)

qPk,πk

h (s)
,

where the notation Ek[·] means that we take the expectation conditioning on every thing
that happened before the beginning of episode k.

Secondly, because of the bandit feedback we want to ensure that our algorithm per-
forms enough exploration. For this purpose we constrain the confidence sets to con-
tain only occupancy measures that visit every state with probability of at least α , where
0 < α < 1 is a parameter. That is, we define our confidence set for epoch i as ∆α(M , i) =

∆(M , i)∩{q : qh(s)≥ α ∀h,s}.

Thus our algorithm performs the following steps in each episode:

q̃k+1 = argmin
q

η⟨q, ĉk⟩+KL(q ∥ qk)

qt+1 = qPk+1,πk+1
= arg min

q∈∆α (M ,i(k))
KL(q ∥ q̃k+1).

If ∆α(M , i(t)) = /0, then qk+1 is chosen to be an arbitrary occupancy measure. The
efficient implementation of this algorithm is similar to the one of the original UC-O-REPS
algorithm, and is described in details in the supplementary material (together with full
pseudo-code).

4.2.2 Shifted Bandit UC-O-REPS

The "Shifted Bandit UC-O-REPS" algorithm runs "Bounded Bandit UC-O-REPS" with
α = ρ

S (where 0 < ρ < 1 is a parameter) but it makes the following change in order to
handle the unknown β (M) (which may be zero). It shifts the confidence sets by changing
the empirical transition function. That is, instead of using P̄i as the empirical transition
function for epoch i it uses P̃i which is defined as follows for every h = 1, . . . ,H and for

31

every (s,a,s′) ∈S ×A ×S :

P̃i
h(s
′ | s,a) = (1−ρ)P̄i

h(s
′ | s,a)+ ρ

S
.

To sum up, the new confidence sets are denoted as ∆̃α(M , i) and they contain all occu-
pancy measures qP′,π such that qP′,π

h (s)≥ α for every (h,s), and for every (h,s,a),

∥P′h(· | s,a)− P̃i
h(· | s,a)∥1 ≤ ε

i
h(s,a).

Clearly this algorithm can be implemented efficiently, given the efficient implementa-
tion of "Bounded Bandit UC-O-REPS" (full pseudo-code can be found in the supplemen-
tary material for completeness).

4.3 Regret Analysis - Bounded Bandit UC-O-REPS

In this case we assume that β (M) > 0 and it is known to the learner (or some positive
lower bound on it). This assumption is quite strong but it holds if, for example, the mini-
mum transition probability is not zero, i.e., pmin(M)> 0. In this case β (M)≥ pmin(M).

Notice that if we run "Bounded Bandit UC-O-REPS" with α = β (M), then ∆(M) =

∆α(M)
de f
= ∆(M)∩{q : qh(s)≥ α ∀h,s}. Therefore, using the proof of UC-O-REPS,

we have that all the confidence sets contain ∆(M) with probability at least 1−δ .

Let q ∈ ∆(M) = ∆α(M), and partition the regret into two terms as follows,

RK =
K

∑
k=1
⟨qP,πk

−q,ck⟩=

(
K

∑
k=1
⟨qP,πk

−qPk,πk
,ck⟩

)
+

(
K

∑
k=1
⟨qPk,πk

−q,ck⟩

)
.

The first term includes the error that comes from the estimation of the unknown transition
function and will be denoted as R̂APP

1:K . The second term includes the error that comes from
choosing sub-optimal policies and will be denoted as R̂ON

1:K .

Sections 4.3.1 and 4.3.2 bound these two terms and give us the following regret bound.

Theorem 4.3.1. Let M =
(
S ,A ,H,P,{ck}K

k=1
)

be an adversarial MDP, and assume that

β (M)> 0. Then, "Bounded Bandit UC-O-REPS" with α = β (M) obtains the following

regret bound:

E [RK]≤ O

(
H2S

√
AK log(KHSA)
β (M)

)
.

32

4.3.1 Bounding R̂APP
1:K

Recall that R̂APP
1:K is the difference between the loss of the learner’s chosen policies in M

and the loss of these policies in the “optimistic” MDPs (the ones induced by the occupancy
measures qk). The algorithm minimizes this difference through shrinking of the confidence
sets. Notice that:

R̂APP
1:K =

K

∑
k=1
⟨qP,πk

−qPk,πk
,ck⟩ ≤

K

∑
k=1
∥qP,πk

−qPk,πk
∥1∥ck∥∞ ≤

K

∑
k=1
∥qP,πk

−qPk,πk
∥1.

Since the algorithm uses the same framework of confidence sets as the original UC-O-
REPS (and all the confidence sets contain ∆(M) with high probability), we can use the
following theorem from [RM19a] to bound this difference.

Theorem 4.3.2. Let {πk}K
k=1 be policies and let {Pk}K

k=1 be transition functions such that

qPk,πk ∈ ∆(M , i(k)) for every k. Then, when setting δ = 1
K :

E
[
R̂APP

1:K

]
≤ E

[
K

∑
k=1
∥qP,πk

−qPk,πk
∥1

]
≤ O

(
H2S

√
AK log(KHSA)

)
.

4.3.2 Bounding R̂ON
1:K

Recall that R̂ON
1:K is the regret for the performance of the online algorithm’s chosen oc-

cupancy measures. Notice that the learner performs the original UC-O-REPS algorithm
with respect to the sequence of loss functions {ĉk}K

k=1 and the set of occupancy measures
∆α(M). Therefore, we can use the regret analysis of the original algorithm to obtain the
following result (full proof in the supplementary material).

Lemma 4.3.3. Let M =
(
S ,A ,H,P,{ck}K

k=1
)

be an adversarial MDP. Then, for every

q ∈ ∆α(M), "Bounded Bandit UC-O-REPS" obtains:

E

[
K

∑
k=1
⟨qPk,πk

−q, ĉk⟩

]
≤ O

(
ηHAK

α
+

H log(HSA)
η

)
.

Now we show that the sequence of occupancy measures chosen by the algorithm per-
forms similarly on {ĉk}K

k=1 and {ck}K
k=1 in expectation, and therefore we can derive a

bound on R̂ON
1:K .

33

Lemma 4.3.4. Let M =
(
S ,A ,H,P,{ck}K

k=1
)

be an adversarial MDP. Then, for every

q ∈ ∆α(M), "Bounded Bandit UC-O-REPS" obtains:∣∣∣∣∣E
[

K

∑
k=1
⟨qPk,πk

−q, ĉk⟩

]
−E

[
K

∑
k=1
⟨qPk,πk

−q,ck⟩

]∣∣∣∣∣≤ O

(
H2S

√
AK log(KHSA)

α

)
.

Proof. First we use the linearity of expectation and the fact that qk = qPk,πk
to obtain:∣∣∣∣∣E

[
K

∑
k=1
⟨qPk,πk

−q, ĉk⟩

]
−E

[
K

∑
k=1
⟨qPk,πk

−q,ck⟩

]∣∣∣∣∣=
∣∣∣∣∣E
[

K

∑
k=1
⟨qk−q, ĉk− ck⟩

]∣∣∣∣∣ .
From the law of total expectation we have,∣∣∣∣∣E

[
K

∑
k=1
⟨qk−q, ĉk− ck⟩

]∣∣∣∣∣=
∣∣∣∣∣E
[

K

∑
k=1

Ek
[
⟨qk−q, ĉk− ck⟩

]]∣∣∣∣∣ . (4.2)

Now for every k we can use the definition of ĉk and (4.1) to obtain,

Ek
[
⟨qk−q, ĉk− ck⟩

]
= ∑

h,s,a

(
qk

h(s,a)−qh(s,a)
)(

qP,πk

h (s)
ck

h(s,a)

qPk,πk

h (s)
− ck

h(s,a)

)
.

Substituting this back into (4.2) we get,

∣∣∣E[K

∑
k=1
⟨qk−q, ĉk− ck⟩

]∣∣∣= ∣∣∣∣∣E
[

K

∑
k=1

∑
h,s,a

(
qk

h(s,a)−qh(s,a)
)(

qP,πk

h (s)
ck

h(s,a)

qPk,πk

h (s)
− ck

h(s,a)

)]∣∣∣∣∣
≤ E

[∣∣∣∣∣ K

∑
k=1

∑
h,s,a

ck
h(s,a)

(
qk

h(s,a)−qh(s,a)
) qP,πk

h (s)−qPk,πk

h (s)

qPk,πk

h (s)

∣∣∣∣∣
]

≤ E

[
K

∑
k=1

∑
h,s

|qP,πk

h (s)−qPk,πk

h (s)|

qPk,πk

h (s)

∣∣∣∣∑
a

ck
h(s,a)

(
qk

h(s,a)−qh(s,a)
)∣∣∣∣
]

≤ 1
α

E

[
K

∑
k=1

∑
h,s
|qP,πk

(x)−qPk,πk
(x)|

]
,

where the last inequality follows because qPk,πk

h (s) ≥ α , 0 ≤ ∑a qk
h(s,a)c

k
h(s,a) ≤ 1 and

34

0≤ ∑a qh(s,a)ck(x,a)≤ 1. Finally, we use Theorem 4.3.2 to conclude that∣∣∣∣∣E
[

K

∑
k=1
⟨qk−q, ĉk− ck⟩

]∣∣∣∣∣≤ 1
α

E

[
K

∑
k=1

∑
h,s

∣∣∣∣∣∑a,s′ qP,πk

h (s,a,s′)−qPk,πk

h (s,a,s′)

∣∣∣∣∣
]

≤ 1
α

E

[
K

∑
k=1

∑
h,s,a,s′

|qP,πk

h (s,a,s′)−qPk,πk

h (s,a,s′)|

]

=
1
α

E

[
K

∑
k=1
∥qP,πk

−qPk,πk
∥1

]
≤ O

(
H2S

√
AK log(KHSA)

α

)
.

Corollary 4.3.5. Let M =
(
S ,A ,H,P,{ck}K

k=1
)

be an adversarial MDP. Then, when

setting η =

√
log(KHSA)

AK and δ = 1
K , "Bounded Bandit UC-O-REPS" obtains:

E
[
R̂ON

1:K

]
≤ O

(
H2S

√
AK log(KHSA)

α

)
.

4.4 Regret Analysis - Shifted Bandit UC-O-REPS

We remove the assumption that β (M)> 0, and for this case will use the "Shifted Bandit
UC-O-REPS" algorithm. Notice that the key insight for the regret analysis of "Bounded
Bandit UC-O-REPS" is that by setting α = β (M), we get that all the confidence sets
contain ∆(M) with high probability. The idea behind "Shifted Bandit UC-O-REPS" is to
work on an imaginary MDP M̃ that is close to M but has the property β (M̃)> 0.

The transition function for the MDP M̃ =
(
S ,A ,H, p,{ck}K

k=1
)

is defined as follows
for every h = 1, . . . ,H and for every (s,a,s′) ∈S ×A ×S :

ph(s′ | s,a) = (1−ρ)Ph(s′ | s,a)+
ρ

S
.

This means that the minimal transition probability is positive, i.e., pmin(M̃) ≥ ρ

S > 0.
Therefore, β (M̃) ≥ ρ

S > 0 and we can run "Bounded Bandit UC-O-REPS" on M̃ . The
problem is that our data is sampled from M , but we need to build confidence sets that
contain ∆(M̃) and not ∆(M). The following lemma shows that shifting the confidence
sets obtains this desired property: all the confidence sets contain ∆(M̃) with probability
at least 1−δ .

Lemma 4.4.1. If ∆(M)⊆ ∆(M , i), then ∆(M̃)⊆ ∆̃α(M , i).

35

Proof. Let qp,π ∈ ∆(M̃). First of all, since β (M̃)≥ ρ

S = α we have that qp,π
h (s)≥ α for

every h,s. Now, Since ∆(M)⊆ ∆(M , i) we have that for every (h,s,a),

∥P̄i
h(· | s,a)−Ph(· | s,a)∥1 ≤ ε

i
h(s,a).

By the definition of P̄⋆
i and P⋆ we have that,

∥P̃i
h(· | s,a)− ph(· | s,a)∥1 = ∑

s′
|P̃i

h(s
′ | s,a)− ph(s′ | s,a)|

= ∑
s′
|(1−ρ)P̄i

h(s
′ | s,a)+ ρ

S
− (1−ρ)Ph(s′ | s,a)−

ρ

S
|

= (1−ρ)∑
s′
|P̄i

h(s
′ | s,a)−Ph(s′ | s,a)|

= (1−ρ)∥P̄i
h(· | s,a)−Ph(· | s,a)∥1 ≤ ε

i
h(s,a),

and therefore qp,π ∈ ∆̃α(M , i) and ∆(M̃)⊆ ∆̃α(M , i).

Now we divide the regret into two parts: the regret of "Bounded Bandit UC-O-REPS"
in M̃ and the difference in the performance of policies in M and M̃ . Formally, the regret
of any q = qP,π ∈ ∆(M) is partitioned as follows:

RK =
K

∑
k=1
⟨qP,πk

−qP,π ,ck⟩

=

(
K

∑
k=1
⟨qP,πk

−qp,πk
,ck⟩

)
+

(
K

∑
k=1
⟨qp,πk

−qp,π ,ck⟩

)
+

(
K

∑
k=1
⟨qp,π −qP,π ,ck⟩

)
.

Since ∥Ph(·|s,a)− ph(·|s,a)∥1 ≤ 2ρ for every (h,s,a), we can use [RM19b, Corollary
E.2] to bound the first and third terms as O(ρH2K). The second term includes the regret
of "Bounded Bandit UC-O-REPS" in M̃ so according to Theorem 4.3.1 we can bound

it as O
(

H2S
√

AK log(KHSA)
ρ/S

)
= O

(
H2S2
√

AK log(KHSA)
ρ

)
. Thus we get the following regret

bound.

Theorem 4.4.2. Let M =
(
S ,A ,H,P,{ck}K

k=1
)

be an adversarial MDP. Then, "Shifted

Bandit UC-O-REPS" with ρ = S
4
√

A log(KHSA)
K obtains the following regret bound,

E [RK]≤ O
(

H2SA1/4K3/4 log1/4(KHSA)
)
.

36

5 Near-Optimal Regret
for Stochastic Shortest Path

This chapter is based on:

Aviv Rosenberg, Alon Cohen, Yishay Mansour and Haim Kaplan. Near-optimal regret
bounds for stochastic shortest path. In Proceedings of the 37th International Conference

on Machine Learning, ICML 2020.

This chapter presents the first lower bound and the first near-optimal regret bound for
stochastic shortest path (SSP). We start the chapter by describing the regret minimization
formulation in SSP, then we present the main results, and finally dive deeper into our
algorithms and lower bound.

5.1 Regret Minimization in SSP

For simplicity, in this chapter we assume that the costs are deterministic and known to the
learner. However, the transition probabilities P are fixed but unknown to the learner. The
learner interacts with the model in episodes: each episode starts at the initial state sinit,
and ends when the learner reaches the goal state g (note that she might never reach the
goal state). Success is measured by the learner’s regret over K such episodes, that is the
difference between her total cost over the K episodes and the total expected cost of the
optimal proper policy:

RK =
K

∑
k=1

Ik

∑
i=1

c(sk
i ,a

k
i)−K · min

π∈Πproper
V π(sinit),

where Ik is the time it takes the learner to complete episode k (which may be infinite),
Πproper is the set of all stationary, deterministic and proper policies (that is not empty by

37

Assumption 2.2.1), and (sk
i ,a

k
i) is the i-th state-action pair at episode k. In the case that Ik

is infinite for some k, we define RK = ∞.

We denote the optimal proper policy by π⋆, i.e., V ⋆(s) = argminπ∈Πproper V
π(s) for all

s ∈S . Moreover, let B⋆ > 0 be an upper bound on the values of V ⋆ and let T⋆ > 0 be an
upper bound on the times T π⋆

, i.e., B⋆ ≥maxs∈S V ⋆(s) and T⋆ ≥maxs∈S T π⋆
(s).

5.2 Summary of Results

In Section 5.3 we present our Hoeffding-based algorithms (Algorithms 6 and 14) and their
analysis. While they achieve similar regret bounds to [TGV+20], their presentation is
important in order to lay the foundations for our Bernstein-based algorithm (Algorithm 7)
and its improved regret bound shown in Section 5.4. Finally, in Section 5.5 we give a
lower bound on the learner’s regret showing that Algorithm 7 is near-optimal.

The learner must reach the goal state otherwise she has infinite regret. Therefore, she
has to trade-off two objectives, one is to reach the goal state and the other is to minimize
the cost. Under the following assumption, the two objectives essentially coincide.

Assumption 5.2.1. All costs are positive, i.e., there exists cmin > 0 such that c(s,a)≥ cmin

for every (s,a) ∈S ×A .

This assumption allows us to upper bound the running time of the algorithm by its
total cost up to a factor of c−1

min. In particular, it guarantees that any policy that does not
reach the goal state has infinite cost, so any bounded regret algorithm has to reach the goal
state. We eventually relax Assumption 5.2.1 by a technique similar to that of [BY13]. We
add a small positive perturbation to the instantaneous costs and run our algorithms on the
model with the perturbed costs. This provides a regret bound that scales with the expected
running time of the optimal policy.

We now summarize our results. For ease of comparison, we first present our regret
bounds for both the Hoeffding and Bernstein-based algorithms when Assumption 5.2.1
holds, and subsequently show the regret bounds of both algorithms for the general case. In
order to simplify the presentation of our results, we assume that S≥ 2, A≥ 2 and K ≥ S2A

throughout. In addition, we denote L = log(KB⋆SA/δcmin). The complete proofs of all
statements are found in Appendix C.

Positive costs. The following results hold when Assumption 5.2.1 holds (recall that we
always assume Assumption 2.2.1). In particular, when this assumption holds the optimal

38

policy overall is proper (Theorem 2.2.3) hence the regret bounds below are with respect to
the best overall policy.

Theorem 5.2.2. Suppose that Assumption 5.2.1 holds. With probability at least 1−δ the

regret of Algorithm 14 is bounded as follows:

RK = O

(√
B3
⋆S2AK
cmin

L+
B3
⋆S2A
c2

min
L2

)
.

The main issue with the regret bound in Theorem 5.2.2 is that it scales with
√

K/cmin

which cannot be avoided regardless of how large K is with respect to c−1
min. This problem

is alleviated in Algorithm 7 that uses the tighter Bernstein-based confidence bounds.

Theorem 5.2.3. Assume that Assumption 5.2.1 holds. With probability at least 1− δ the

regret of Algorithm 7 is bounded as follows:

RK = O

(
B⋆S
√

AKL+

√
B3
⋆S4A2

cmin
L2

)
.

Note that when K≫ B⋆S2A/cmin, the regret bound above scales as Õ(B⋆S
√

AK) thus
obtaining a near-optimal rate.

Arbitrary costs (i.e., c(s,a) ∈ [0,1]). Recall that in this case we can no longer assume
that the optimal policy is proper. Therefore, the regret bounds below are with comparison
to the best proper policy. Assumption 5.2.1 can be easily alleviated by adding a small fixed
cost to the cost of all state-action pairs. Following the perturbation of the costs, we obtain
regret bounds from Theorems 5.2.2 and 5.2.3 with cmin← ε and B⋆← B⋆+ εT⋆, and the
learner also suffers an additional cost of εT⋆K due to the misspecification of the model
caused by the perturbation. By picking ε to balance these terms we get the following
corollaries (letting L̃ = log(KB⋆T⋆SA/δ)).

Corollary 5.2.4. Running Algorithm 14 using costs cε(s,a) = max{c(s,a),ε} defined for

ε = (S2A/K)1/3 gives the following regret bound with probability at least 1−δ :

RK = O

(
T 3
⋆ S2/3A1/3K2/3L̃+T 3

⋆ S2AL̃2

)
.

39

Corollary 5.2.5. Running Algorithm 7 using costs cε(s,a) = max{c(s,a),ε} defined for

ε = S2A/K gives the following regret bound with probability at least 1−δ :

RK = O

(
B3/2
⋆ S
√

AKL̃+T 3/2
⋆ S2AL̃2

)
.

Moreover, when the algorithm knows B⋆ and K ≫ S2AT 2
⋆ , then choosing ε = B⋆S2A/K

gives a near-optimal regret bound of Õ(B⋆S
√

AK).

Lower bound. In Section 5.5 we show that Corollary 5.2.5 is nearly-tight using the
following theorem.

Theorem 5.2.6. There exists an SSP problem instance M = (S ,A ,P,c,sinit,g) in which

V ⋆(s)≤ B⋆ for all s∈S , S≥ 2, A≥ 16, B⋆ ≥ 2, K ≥ SA, and c(s,a) = 1 for all s∈S ,a∈
A , such the expected regret of any learner after K episodes satisfies

E[RK]≥
1

1024
B⋆

√
SAK.

5.3 Hoeffding-type Confidence Bounds

We start with a simpler case in which B⋆ is known to the learner. In Section 5.3.2 we
alleviate this assumption with a penalty of an additional log-factor in the regret bound.
For now, we prove the following bound on the learner’s regret.

Theorem 5.3.1. Suppose that Assumption 5.2.1 holds. With probability at least 1−δ the

regret of Algorithm 6 is bounded as follows:

RK = O

(√
B3
⋆S2AK
cmin

L+
B3
⋆S2A
c2

min
L3/2

)
.

Our algorithm follows the known concept of optimism in face of uncertainty. That is,
it maintains confidence sets that contain the true transition function with high probability
and picks an optimistic optimal policy—a policy that minimizes the expected cost over all
policies and all transition functions in the current confidence set. The computation of the
optimistic optimal policy can be done efficiently using Extended Value Iteration as shown
by [TGV+20]. Construct an augmented MDP whose states are S and its action set consists
of tuples (a, P̃) where a ∈A and P̃ is any transition function such that

40

Algorithm 6 HOEFFDING-TYPE CONFIDENCE BOUNDS AND KNOWN B⋆

input: state space S , action space A , bound on cost-to-go of optimal policy B⋆, con-
fidence parameter δ .
initialization: ∀(s,a,s′)∈S ×A ×S : N(s,a,s′)← 0,N(s,a)← 0, an arbitrary policy
π̃ , t← 1.
for k = 1,2, . . . do

set st ← sinit.
while st ̸= g do

follow optimistic optimal policy: at ← π̃(st).
observe next state st+1 ∼ P(· | st ,at).
update: N(st ,at ,st+1)← N(st ,at ,st+1)+1, N(st ,at)← N(st ,at)+1.
if N(st+1, π̃(st+1))≤ 5000B2

⋆S
c2

min
log B⋆SA

δcmin
orst+1=g then

start new interval
compute empirical transition function P̄ as P̄(s′|s,a) = N(s,a,s′)/N+(s,a)
where N+(s,a) = max{N(s,a),1}.
compute optimistic policy π̃ by minimizing expected cost over transition func-
tions P̃ that satisfy Equation (5.1).

end if
set t← t +1.

end while
end for

∥∥P̃(·|s,a)− P̄(·|s,a)
∥∥

1 ≤ 5

√
S log(SAN+(s,a)/δ)

N+(s,a)
(5.1)

where P̄ is the empirical estimate of P. It can be shown that the optimistic policy and
the optimistic model, i.e., those that minimize the expected total cost over all policies and
feasible transition functions, correspond to the optimal policy of the augmented MDP.

To ensure that the algorithm reaches the goal state in every episode, we define a state-
action pair (s,a) as known if the number of visits to this pair is at least 5000B2

⋆S
c2

min
log B⋆SA

δcmin
and

as unknown otherwise. We show with high probability the optimistic policy chosen by the
algorithm will be proper once all state-action pairs are known. However, when some pairs
are still unknown, our chosen policies may be improper. This implies that the strategy of
keeping the policy fixed throughout an episode, as done usually in episodic RL, will fail.
Consequently, our algorithm changes policies at the start of every episode and also every
time we reach an unknown state-action pair.

Formally, we split the time into intervals. The first interval begins at the first time step,
and every interval ends by reaching the goal state or a state s such that (s, π̃(s)) is unknown

41

(where π̃ is the current policy followed by the learner). Recall that once all state-action
pairs are known, the optimistic policy will eventually reach the goal state. Therefore,
recomputing the optimistic policy at the end of every interval ensures that the algorithm
will eventually reach the goal state with high probability. Note that the total number of
intervals is at most the number of visits to an unknown state-action pair plus the number
of episodes.

Observation 5.3.2. The total number of intervals, M, is

O
(

K +
B2
⋆S2A
c2

min
log

B⋆SA
δcmin

)
.

5.3.1 Analysis

The proof of Theorem 5.3.1 begins by defining the “good event” in which our confidence
sets contain the true transition function and the total cost in every interval is bounded. This
in turn implies that all episodes end in finite time. We prove that the good event holds with
high probability.

Then, independently, we give a high-probability bound on the regret of the algorithm
when the good event holds. To do so, recall that at the beginning of every interval m,
the learner computes an optimistic policy by minimizing over all policies and over all
transition functions within the current confidence set. We denote the chosen policy by
π̃m and let P̃m be the minimizing transition function (i.e., the optimistic model). A key
observation is that by the definition of our confidence sets, P̃m is such that there is always
some positive probability to transition to the goal state directly from any state-action. This
implies that all policies are proper in the optimistic model and that the cost-to-go function
of π̃m defined with respect to P̃m, and denoted by Ṽ m, is finite. By Theorem 2.2.2, the
following Bellman optimality equations hold for all s ∈S ,

Ṽ m(s) = min
a∈A

c(s,a)+ ∑
s′∈S

P̃m(s′ | s,a)Ṽ m(s′). (5.2)

High probability events. For every interval m, we let Ωm denote the event that the con-
fidence set for interval m contains the true transition function P. Formally, let P̄m denote
the empirical estimate of the transition function at the beginning of interval m, let Nm(s,a)

denote the number of visits to state-action pair (s,a) up to interval m (not including), and
let nm(s,a) be the number of visits to (s,a) during interval m. Then we say that Ωm holds

42

if for all (s,a) ∈S ×A , we have (Nm
+(s,a) = max{1,Nm(s,a)})

∥P(·|s,a)− P̄m(·|s,a)∥1 ≤ 5

√
S log

(
SANm

+(s,a)/δ
)

Nm
+(s,a)

. (5.3)

In the following lemma we show that, with high probability, the events Ωm hold and
that the total cost in each interval is bounded. Combining this with Observation 5.3.2 we
get that all episodes terminate within a finite number of steps, with high probability.

Lemma 5.3.3. With probability at least 1− δ/2, for all intervals m simultaneously, we

have that Ωm holds and that ∑
Hm

h=1 c(sm
h ,a

m
h) ≤ 24B⋆ log 4m

δ
, where Hm denotes the length

of interval m, sm
h is the observed state at time h of interval m and am

h = π̃m(sm
h) is the

chosen action. This implies that the total number of steps of the algorithm is

T = O
(

KB⋆

cmin
L+

B3
⋆S2A
c3

min
L2
)
.

Proof sketch. The events Ωm hold with high probability due to standard concentration
inequalities, and thus it remains to address the high probability bound on the total cost
within each interval.

This proof consists of three parts. In the first, we show that when Ωm occurs we have
that Ṽ m(s) ≤ V ⋆(s) ≤ B⋆ for all s ∈ S due to the optimistic nature of the computation
of π̃m. In the second part, we postulate that had all state-action pairs been known, then
having Ωm hold implies that V m(s) ≤ 2B⋆ for all s ∈ S . That is, when all state-action
pairs are known, not only π̃m is proper in the true model, but its expected cumulative cost
is at most 2B⋆.

The third part of the proof deals with the general case when not all state-action pairs
are known. Fix some interval m. Since the interval ends when we reach an unknown
state-action, it must be that all but the first state-action pair visited during the interval are
known. For this unknown first state-action pair, it follows from the Bellman equations
(Equation (5.2)) and from Ṽ m(s) ≤ B⋆ for all s ∈S that π̃m never picks an action whose
instantaneous cost is larger than B⋆. Therefore, the cost of this first unknown state-action
pair is at most B⋆, and we focus on bounding the total cost in the remaining time steps
with high probability.

To that end, we define the following modified MDP Mknow = (Sknow,A,Pknow,c,sinit)

in which every state s ∈S such that (s, π̃m(s)) is unknown is contracted to the goal state.

43

Let Pknow be the transition function induced in Mknow by P, and let V m
know be the cost-

to-go of π̃m in Mknow w.r.t Pknow. Similarly, define P̃know
m as the transition function in-

duced in Mknow by P̃m, and Ṽ m
know as the cost-to-go of π̃m in Mknow w.r.t P̃know

m . It is clear
that Ṽ m

know(s) ≤ Ṽ m(s) for every s ∈S from whence Ṽ m
know(s) ≤ B⋆. Moreover, since all

states s ∈S for which (s, π̃m(s)) is unknown were contracted to the goal state, in Mknow

all remaining states-action pairs are known. Therefore, by the second part of the proof,
V m

know(s) ≤ 2B⋆ for all s ∈ S . Note that reaching the goal state in Mknow is equivalent
to reaching either the goal state or an unknown state-action pair in the true model hence
the latter argument shows that the total expected cost in doing so is at most 2B⋆. We fur-
ther obtain the high probability bound by a probabilistic amplification argument using the
Markov property of the MDP.

Regret analysis. In what follows, instead of bounding RK , we bound

R̃K =
M

∑
m=1

Hm

∑
h=1

c(sm
h ,a

m
h)I{Ω

m}−K ·V ⋆(sinit),

where I is the indicator function. Note that according to Theorem 5.3.3, we have that
R̃K = RK with high probability.

The definition of R̃K allows the analysis to disentangle two dependent probabilistic
events. The first is the intersection of the events Ωm which is dealt with in Theorem 5.3.3.
The second holds when, for a fixed policy, the costs suffered by the learner do not deviate
significantly from their expectation. In the following lemma we bound R̃K .

Lemma 5.3.4. With probability at least 1−δ/2, we have

R̃K ≤ O
(

B3
⋆S2A
c2

min
log

B⋆SA
cminδ︸ ︷︷ ︸

(1)

+B⋆

√
T log

T
δ
+B⋆

√
S log

SAT
δ

∑
s,a

M

∑
m=1

nm(s,a)√
Nm
+(s,a)︸ ︷︷ ︸

(2)

)
.

Here we only explain how to interpret the resulting bound. The term (1) bounds the
total cost spent in intervals that ended in unknown state-action pairs (it does not depend on
K). The term (2) is at most O(

√
SAT) when Theorem 5.3.3 holds, and then the dominant

term in Lemma 5.3.4 becomes Õ(B⋆S
√

AT). Theorem 5.3.1 is finally obtained by applying
a union bound on Lemma 5.3.3 and Lemma 5.3.4, and using Theorem 5.3.3 to bound T .

44

5.3.2 Unknown Cost Bound

In this section we relax the assumption that B⋆ is known to the learner. Instead, we keep
an estimate B̃ that is initialized to cmin and doubles every time the cost in interval m (de-
noted as Cm) reaches 24B̃ log 4m

δ
. By Theorem 5.3.3, with high probability, B̃ ≤ 2B⋆. We

end an interval as before (once the goal state is reached or an unknown state-action pair
is reached), but also when B̃ is doubled. The algorithm for this case is presented in Ap-
pendix C (Algorithm 14). Since B̃ changes, every state-action pair can become known
once for every different value of B̃.

Observation 5.3.5. When B⋆ is unknown to the learner, the number of times a state-action

pair can become known is at most log2(B⋆/cmin). The number of intervals M is

O
(

K +
B2
⋆S2A
c2

min
log2 B⋆SA

δcmin

)
.

Lemma 5.3.6. When B⋆ is unknown, with probability at least 1− δ/2, for all intervals

m simultaneously, we have that Ωm holds and that ∑
Hm

h=1 c(sm
h ,a

m
h) ≤ 24B⋆ log 4m

δ
. This

implies that the total number of steps of the algorithm is

T = O
(

KB⋆

cmin
L+

B3
⋆S2A
c3

min
L3
)
.

The analysis follows that of Algorithm 6. In particular, Lemma 5.3.4 still holds (with
2B⋆ instead of B⋆), and jointly with Lemma 5.3.6 imply Theorem 5.2.2.

5.4 Bernstein-type Confidence Bounds

Algorithm 6 has two drawbacks. The first one is the use of Hoeffding-style confidence
bounds which we improve with Bernstein-style confidence bounds. The second is the
number of times the optimistic optimal policy is computed. In this section we propose to
compute it in a way similar to UCRL2, i.e., once the number of visits to some state-action
pair is doubled. Note that this change also eliminates the need to know or to estimate B⋆.

The algorithm is presented in Algorithm 7. It consists of epochs. The first epoch starts
at the first time step, and each epoch ends once the number of visits to some state-action
pair is doubled. An optimistic policy is computed at the end of every epoch using (em-
pirical) Bernstein confidence bounds. In contrast to Algorithm 6, Algorithm 7 defines a

45

Algorithm 7 BERNSTEIN-TYPE CONFIDENCE BOUNDS

input: state space S , action space A and confidence parameter δ .
initialization: i← 1, t← 1, arbitrary policy π̃1 , ∀(s,a,s′) : N1(s,a,s′)← 0,N1(s,a)←
0, n1(s,a,s′)← 0, n1(s,a)← 0.
for k = 1,2, . . . do

set st ← sinit.
while st ̸= g do

follow optimistic optimal policy: at ← π̃i(st).
observe next state st+1 ∼ P(· | st ,at).
set: ni(st ,at)← ni(st ,at)+1, ni(st ,at ,st+1)← ni(st ,at ,st+1)+1.
if ni(st+1, π̃i(st+1))< Ni(st+1, π̃i(st+1)) then

set t← t +1 and continue.
end if
start new epoch
set: Ni+1(s,a,s′) ← Ni(s,a,s′) + ni(s,a,s′), Ni+1(s,a) ← Ni(s,a) + ni(s,a),
ni+1(s,a)← 0, ni+1(s,a,s′)← 0 for all (s,a,s′) ∈S ×A ×S .
compute empirical transition function P̄ as P̄(s′ | s,a) = N(s,a,s′)/N+(s,a) for
every (s,a,s′) ∈S ×A ×S where N+(s,a) = max{N(s,a),1}.
compute optimistic transition function P̃ using Equation (5.4).
compute optimal policy π̃ w.r.t P̃.
i← i+1, t← t +1.

end while
end for

confidence range for each state, action, and next state, separately, around its empirical es-
timate (i.e., we use an L∞ “ball” rather than an L1 “ball” around the empirical estimates).
This allows us to disentangle the computation of the optimistic policy from the compu-
tation of the optimistic model. Indeed, the computation of the optimistic model becomes
very easy: one simply has to maximize the probability of transition directly to the goal
state at every state-action pair which means minimizing the probability of transition to all
other states and setting them at the lowest possible value of their confidence range. This
results in the following formula for P̃(s′ | s,a) for every (s,a,s′) ∈S ×A ×S :

max{P̄(s′|s,a)−28A(s,a)−4
√

P̄(s′|s,a)A(s,a),0}, (5.4)

where A(s,a) = log(SAN+(s,a)/δ)/N+(s,a) and the remaining probability mass goes to
P̃(g | s,a). The optimistic policy is then the optimal policy in the SSP model defined by
the transition function P̃.

46

5.4.1 Analysis

In this section we prove Theorem 5.2.3. We start by showing that our new confidence sets
contain P with high probability which implies that each episode ends in finite time with
high probability. Consequently, we are able to bound the regret through summation of our
confidence bounds.

We once again distinguish between known and unknown state-action pairs similarly to
Algorithm 6. A state-action pair (s,a) becomes known at the end of an epoch if the total
number of visits to (s,a) has passed α · B⋆S

cmin
log B⋆SA

δcmin
at some time step during the epoch

(for some constant α > 0). Note that at the end of the epoch, the visit count of (s,a)

may be strictly larger than α · B⋆S
cmin

log B⋆SA
δcmin

but at most twice as much by the definition
of our algorithm. Furthermore, we split each epoch into intervals similar to what did in
Section 5.3. The first interval starts at the first time step and each interval ends once (1)
the total cost in the interval accumulates to at least B⋆; (2) an unknown state-action pair is
reached; (3) the current episode ends; or (4) the current epoch ends. We have the following
observation.

Observation 5.4.1. Let CM denote the cost of the learner after M intervals. Observe that

the total cost in each interval is at least B⋆ unless the interval ends in the goal state, in an

unknown state-action pair or the epoch ends. Thus the total number of intervals satisfies

M ≤ CM

B⋆
+2SA logT +K +O

(
B⋆S2A
cmin

log
B⋆SA
δcmin

)
,

and the total time satisfies T ≤CM/cmin.

Recall that in the analysis of Algorithm 6 we show that once all state-action pairs are
known, the optimistic policies generated by the algorithm are proper in the true MDP. The
same holds true for Algorithm 7, yet we never prove this directly. Instead, our proof goes
as follows.1 We prove that CM, the cost accumulated by the learner during the first M

intervals, is at most K ·V ⋆(sinit)+B⋆

√
M with high probability as long as no more than

K episodes have been completed during these M intervals. We notice that once all state-
action pairs are known, the total cost in each interval is at least B⋆ (ignoring intervals
that end with the end of an epoch or an episode), which implies that the total number of
intervals M is bounded by CM/B⋆. This allows us to get a bound on CM that is independent
of the number of intervals by solving the inequality CM ≲ K ·V ⋆(sinit) + B⋆

√
M ≲ K ·

V ⋆(sinit)+
√

B⋆ ·CM. From this, and since the instantaneous costs are strictly positive (by
1 We neglect low order terms here.

47

Assumption 5.2.1), it must be that the learner eventually completes all K episodes; i.e.,
there must be a time from which Algorithm 7 generates only proper policies.

Notation. The epoch that interval m belongs to is denoted by i(m), other notations are as
in Section 5.3.1. Note that since the optimistic policy is computed at the end of an epoch
and not at the end of an interval, it follows that π̃m = π̃ i(m) and Ṽ m = Ṽ i(m). The trajectory
visited in interval m is denoted by Um = (sm

1 ,a
m
1 , . . . ,s

m
Hm,am

Hm,sm
Hm+1), where am

h is the
action taken in sm

h , and Hm is the length of the interval. In addition, the concatenation of
the trajectories of the intervals up to and including interval m is denoted by Ūm, that is
Ūm = ∪m

m′=1Um′ .

High probability events. Throughout the analysis we denote S+ = S∪{g}. For every
interval m we let Ωm denote the event that the confidence set for epoch i= i(m) contains the
actual transition function P. Formally, if Ωm holds then for all (s,a,s′) ∈S ×A ×S +,
we have (denote Nm

+(s,a) = max{1,Nm(s,a)}, Am
h = A(sm

h ,a
m
h))

|P(s′|s,a)− P̄m(s′|s,a)| ≤ 28Am
h +4

√
P̄m(s′|s,a)Am

h . (5.5)

In the following lemma we show that the events Ωm hold with high probability.

Lemma 5.4.2. With probability at least 1− δ/2, Ωm holds for all intervals m simultane-

ously.

Regret analysis. In the following section, instead of bounding RK , we bound R̃M =

∑
M
m=1 ∑

Hm

h=1 c(sm
h ,a

m
h)I{Ω

m}−KV ⋆(sinit) for any number of intervals M. This implies The-
orem 5.2.3 by the following argument. Theorem 5.4.2 implies that R̃M = RM with high
probability for any number of intervals M (RM is the true regret within the first M inter-
vals). In particular, when M is the number of intervals in which the first K episodes elapse,
this implies Theorem 5.2.3 (we show that the learner indeed completes these K episodes).

To bound R̃M, we use the next lemma to decompose R̃M into two terms which we
bound independently.

Lemma 5.4.3. It holds that R̃M = ∑
M
m=1 R̃1

m +∑
M
m=1 R̃2

m−K ·V ⋆(sinit), where

R̃1
m =

(
Ṽ m(sm

1)−Ṽ m(sm
Hm+1)

)
I{Ωm}, and

R̃2
m =

(
Hm

∑
h=1

Ṽ m(sm
h+1)− ∑

s′∈S
P̃m(s′ | sm

h ,a
m
h)Ṽ

m(s′)

)
I{Ωm}.

48

The lemma breaks down R̃M into two terms. The first term accounts for the number
of times in which the learner changes her policy in the middle of an episode which is at
most the number of epochs. The second term sums the errors between the cost-to-go of
the observed next state and its estimated expectation.

Indeed, ∑
M
m=1 R̃1

m is related to the total number of epochs which is at most SA log2 T

due to the following lemma.

Lemma 5.4.4. It holds that ∑
M
m=1 R̃1

m ≤ 2B⋆SA logT +KV ⋆(sinit).

The next lemma shows that ∑
M
m=1 R̃2

m does not deviate from ∑
M
m=1 E[R̃2

m | Ūm−1] signif-
icantly.

Lemma 5.4.5. With probability at least 1−δ/4,

M

∑
m=1

R̃2
m ≤

M

∑
m=1

E
[
R̃2

m | Ūm−1]+3B⋆

√
M log

8M
δ

.

The key property of the lemma is that the deviations between ∑
M
m=1 R̃2

m and its corre-
sponding expectation is of order

√
M and do not scale with T .

To prove the lemma, we recall that an interval ends at most at the first time step in
which the accumulated cost in the interval surpasses B⋆. We show in our analysis that
Ṽ m(s)≤V ⋆(s)≤ B⋆ for all s ∈S due to the optimistic computation of π̃m. Therefore, π̃m

never picks an action whose instantaneous cost is more than B⋆. This implies that the total
cost within each interval is at most 2B⋆. Then, we use the Bellman equations to bound
R̃2

m by order of the total cost in the interval, and the lemma follows by an application of
Azuma’s concentration inequality.

Theorem 5.4.6 below bounds E
[
R̃2

m | Ūm−1] for every interval m by a sum of the con-
fidence bounds used in Algorithm 7.

Lemma 5.4.6. For every interval m,

E
[
R̃2

m | Ūm−1]≤ 16E

[
Hm

∑
h=1

√
SVm

h Am
h I{Ωm}

∣∣∣∣ Ūm−1

]

+272E

[
Hm

∑
h=1

B⋆SAm
h I{Ωm}

∣∣∣∣ Ūm−1

]
, (5.6)

where Vm
h is the empirical variance defined as Vm

h = ∑s′∈S + P(s′ | sm
h ,a

m
h)
(
Ṽ m(s′)−µm

h

)2
,

and µm
h = ∑s′∈S + P(s′ | sm

h ,a
m
h)Ṽ

m(s′).

49

The next step is the part of our proof in which our analysis departs from that of Algo-
rithm 6. Note that when Ωm holds, Vm

h ≤B2
⋆. Using this bound for each time step separately

will result in a bound similar to that of Theorem 5.2.2. However, this bound is loose due
to the following intuitive argument. Suppose that we replace Ṽ m with the true cost-to-go
function of π̃m, V m, in the definition of Vm

h . Note that from the Bellman equations (Equa-
tion (2.5)) we have V m(sm

h) > V m(sm
h+1) in expectation on consecutive time steps h and

h+ 1 hence we surmise that in expectation Vm
h would also decrease on consecutive time

steps. A similar argument holds when in reality we use Ṽ m because all-but-one of the
state-action pairs in the interval are known, and Ṽ m is a “close enough” approximation
of V m on known state-action pairs since they have been sampled sufficiently many times.
Indeed, in Theorem 5.4.7 we use the technique of [AOM17] to show that (up to a constant)
B2
⋆ bounds the expected sum of the variances over the time steps of an interval.

Lemma 5.4.7. E
[
∑

Hm

h=1 Vm
h I{Ωm} | Ūm−1]≤ 44B2

⋆.

Armed with Theorem 5.4.7, we upper bound ∑
M
m=1 E

[
R̃2

m | Ūm−1] by applying some
algebraic manipulation on Equation (5.6), and summing over all intervals which gives the
next lemma.

Lemma 5.4.8. With probability at least 1−δ/4,

M

∑
m=1

E
[
R̃2

m |Ūm−1]≤ 614B⋆

√
MS2A log2 T SA

δ

+8160B⋆S2A log2 T SA
δ

.

Theorem 5.2.3 is obtained by first applying a union bound on Theorems 5.4.2, 5.4.5
and 5.4.8, plugging in the bounds of Theorems 5.4.4, 5.4.5 and 5.4.8 into Theorem 5.4.3,
and bounding T and M using Observation 5.4.1. This results in a quadratic inequality in
√

CM and solving it yields the theorem.

5.5 Lower Bound

In this section we give an overview of the proof for Theorem 5.2.6. For clarity we restate
the theorem.

Theorem (restatement of Theorem 5.2.6). There exists an SSP problem instance M =

(S,A,P,c,sinit) in which V ⋆(s) ≤ B⋆ for all s ∈S , S ≥ 2, A ≥ 16, B⋆ ≥ 2, K ≥ SA, and

50

c(s,a) = 1 for all s ∈S ,a ∈ A, such the expected regret of any learner after K episodes
satisfies

E[RK]≥
1

1024
B⋆

√
SAK.

The proof of our lower bound takes similar steps to the one in [JOA10]. Note that one
cannot simply use a reduction to the average-cost setting in our case because the number
of steps taken by the algorithm is potentially unbounded, and not the same as the number
of steps taken by the optimal policy.

Still, our lower bound matches the one for finite-horizon MDPs of Ω(
√

HSAT), where
H is the horizon and T is the total number of time steps. Since the length of each episode
is H, we have that T = HK and the lower bound takes the form of Ω(H

√
SAK). In our

case, B⋆ replaces the horizon H as an upper bound on the expected cost of the optimal
policy, and we get the same linear dependence in this parameter.

Before constructing an instance for which we can prove the general lower bound, we
consider a simpler instance that consists of only the initial state sinit and the goal state g.
The actions are all the same, except for one optimal action a⋆ which is chosen uniformly
at random. While all actions (including a⋆) suffer a cost of 1, a⋆ has a better probability
of transitioning to the goal state, that is, P(g | sinit,a⋆) = 1/B⋆ compared to P(g | sinit,a) =

(1− ε)/B⋆ for all other actions a ̸= a⋆.

Notice that the optimal policy π⋆ chooses a⋆ and has an expected cost of exactly B⋆.
Therefore, the job of the learner is simply to identify a⋆. In the supplementary material we
show that the regret of the learner in this case must be Ω(B⋆

√
AK).

Subsequently, we build our general hard instance by taking S copies of the aforemen-
tioned simple MDP and picking the initial state in every episode uniformly at random.
Since the copies are not connected in any way, the lower bound applies to each of them
separately. Notice that every state will be visited K/S times in expectation, so the expected
regret will be

Ω

(
∑

s∈S
B⋆

√
A

K
S

)
= Ω(B⋆

√
SAK).

Interestingly enough, although playing proper policies was a major concern in the
construction of our algorithms, the hard instance we have built does not have any improper
polices at all.

51

6 Minimax Regret
for Stochastic Shortest Path

This chapter is based on:

Alon Cohen, Yonathan Efroni, Yishay Mansour and Aviv Rosenberg. Minimax re-
gret for stochastic shortest path. In Advances in Neural Information Processing Systems,

NeurIPS 2021.

This chapter presents the first minimax optimal regret bound for stochastic shortest
path (SSP). While the algorithms in Chapter 4 were based on a direct application of the
optimism in face of uncertainty principle, in this chapter we present algorithms based on
a reduction to RL in finite-horizon MDPs.

6.1 Summary of Results

In Section 6.2 we present a novel black-box reduction from SSP to finite-horizon MDPs
(Algorithm 8), that yields

√
K regret bounds when combined with a certain class of opti-

mistic algorithms for regret minimization in finite-horizon MDPs that we call admissible

(Definition 6.2.1). The regret analysis for the reduction is described in Section 6.3, and in
Section 6.4 we present an admissible algorithm for regret minimization in finite-horizon
MDPs called ULCVI. We show that it guarantees the following optimal regret in the finite-
horizon setting (stated formally in Theorem 6.4.1). Note that (for large enough number of
episodes) this bound depends only on the expected cost of the optimal policy and not on
the horizon H.

Theorem 6.1.1. Running ULCVI (Algorithm 9 in Section 6.4) in a finite-horizon MDP

guarantees, with probability at least 1−δ , a regret bound of

O
(√

(B2
⋆+B⋆)SAM log

MHSA
δ

+H4B−1
⋆ S2A log3/2 MHSA

δ

)
,

52

for any number of episodes M ≥ 1 simultaneously.

Combining ULCVI with our reduction yields the following minimax optimal regret
bound for SSP.

Theorem 6.1.2. Running the reduction in Algorithm 8 with the finite-horizon regret mini-

mization algorithm ULCVI ensures, with probability at least 1−δ ,

RK = O
(√

(B2
⋆+B⋆)SAK log

KT⋆SA
δ

+T 5
⋆ B−2

⋆ S2A log6 KT⋆SA
δ

)
.

Remark 1. An important observation is that this regret bound is meaningful even for small
K. Unlike finite-horizon MDPs, where linear regret is trivial, in SSP ensuring finite regret
is not easy. Our regret bound also implies that if we play for only one episode, i.e., we
are only interested in the time it takes to reach the goal state, then it will take us at most
Õ(T 5

⋆ B−2
⋆ S2A) time steps to do so.

Remark 2. Note that our algorithm needs to know an upper bound on T⋆ in advance. How-
ever, if all costs are strictly positive (i.e., at least cmin > 0), then there is a trivial upper
bound of B⋆/cmin. In this case, our algorithm keeps an optimal regret bound for large
enough K, since the bound on T⋆ only appears in the additive factor. Some previous work
used a perturbation argument to generalize their results from the cmin case to general costs
[TGV+20, RCMK20, RM21b]. In our case, it will not work since the dependence on
1/cmin in the additive term is too large. This may be an inherent shortcoming of using
finite-horizon reduction to solve SSPs, as it also appears in the works of [CLW21, CL21]
for the adversarial setting.

Remark 3. In practice, one can think of T⋆ as a parameter of the algorithm that controls
computational complexity and the number of steps to complete K episodes. By choosing
the parameter T⋆ = x for example, we can guarantee that the regret bound of Theorem 6.1.2
holds against the best proper policy with expected time to the goal of at most x (assuming
there exists one), and we can also guarantee that the total computational complexity of
the algorithm is Õ(x logK) (see Remark 5). Furthermore, the algorithm will take at most
Õ(xK + poly(x,S,A)) steps to complete K episodes.

Remark 4. While the additive term in our regret bound is standard for most cases, it be-
comes large when B⋆ is extremely small because of the dependence in B−1

⋆ . This was not an
issue in previous work [TGV+20, RCMK20] since they assumed that the costs are deter-
ministic and known. We believe that this dependence is an artifact of our analysis that may
be avoided with a more careful definition of ωALG (see Definition 6.2.1) that depends on the

53

actual cost in each state-action pair and not just B⋆. Nevertheless, the main focus of this
paper is on establishing that the minimax optimal regret for SSP is Θ̃(

√
(B2

⋆+B⋆)SAK),
and not on optimizing lower order terms. By that we also show that this is the minimax
optimal regret for finite-horizon which is independent of the horizon H (up to logarithmic
factors). Tightening the additive term and eliminating its dependence in B−1

⋆ is left as an
interesting future direction.

In Section D.4 we prove that our regret bound is indeed minimax optimal. To comple-
ment the Ω(B⋆

√
SAK) lower bound of [RCMK20] that assumes B⋆ ≥ 1, we provide the

following tighter lower bound for the case that B⋆ < 1.

Theorem 6.1.3. Let B⋆≤ 1
2 . There exists an SSP problem instance M =(S ,A ,P,c,sinit,g)

in which V ⋆(s)≤ B⋆ for all s ∈ S, S≥ 2, A≥ 2, K ≥ B⋆SA, such the expected regret of any

learner after K episodes satisfies

E[RK]≥
1

32

√
B⋆SAK.

6.2 A Black-Box Reduction from SSP to Finite-Horizon

Our algorithm takes as input an algorithm ALG for regret minimization in finite-horizon
MDPs, and uses it to perform a black-box reduction. The algorithm is depicted below as
Algorithm 8.

The algorithm breaks the individual time steps that comprise each of the K episodes
into intervals of H time steps. If the agent reaches the goal state before H time steps, we
simply assume that she stays in g until H time steps are elapsed. We see each interval as
one episode of a finite-horizon model M̂ = (Ŝ ,A , P̂,H, ĉ, ĉ f), where Ŝ = S ∪{g} and
ĉ f : Ŝ → R is a set of terminal costs defined by ĉ f (s) = 8B⋆I{s ̸= g}, where I{s ̸= g} is
the indicator function that equals 1 if s ̸= g and 0 otherwise. Moreover, P̂, ĉ are the natural
extensions of P,c to the goal state. That is, ĉ(s,a) = c(s,a)I{s ̸= g} and

P̂(s′ | s,a) =


P(s′ | s,a), s ̸= g;

1, s = g,s′ = g;

0, s = g,s′ ̸= g.

The horizon H (which we will set to be roughly T⋆) is chosen such that the optimal SSP
policy will reach the goal state in H time steps with high probability (recall that the ex-
pected hitting time of the optimal policy is bounded by T⋆). The additional terminal cost

54

is there to encourage the agent to reach the goal state within H steps, which otherwise is
not necessarily optimal with respect to the planning horizon.

Algorithm 8 REDUCTION FROM SSP TO FINITE-HORIZON MDP
1: input: state sapce S , action space A , initial state sinit, goal state g, confidence pa-

rameter δ , number of episodes K, bound on the expected cost of the optimal policy
B⋆, bound on the expected time of the optimal policy T⋆ and algorithm ALG for regret
minimization in finite-horizon MDPs.

2: initialize ALG with state space Ŝ = S ∪ {g}, action space A , horizon H =

8T⋆ log(8K), confidence parameter δ/4, terminal costs ĉ f (s)= 8B⋆I{s ̸= g} and bound
on the expected cost of the optimal policy 9B⋆.

3: initialize intervals counter m← 0 and time steps counter t← 1.
4: for k = 1, . . . ,K do
5: set st ← sinit.
6: while st ̸= g do
7: set m← m+ 1, feed initial state st to ALG and obtain policy πm = {πm

h : Ŝ →
A }H

h=1.
8: for h = 1, . . . ,H do
9: play action at = πm

h (st), suffer cost Ct ∼ c(st ,at), and set sm
h = st ,am

h = at ,Cm
h =

Ct .
10: observe next state st+1 ∼ P(· | st ,at) and set t← t +1.
11: if st = g then
12: pad trajectory to be of length H and BREAK.
13: end if
14: end for
15: set sm

H+1 = st .
16: feed trajectory Um = (sm

1 ,a
m
1 , . . . ,s

m
H ,a

m
H ,s

m
H+1) and costs {Cm

h }
H
h=1 to ALG.

17: end while
18: end for

The algorithm ALG is initialized with the state and action spaces as in the original SSP
instance, the horizon length H, a confidence parameter δ/4, a set of terminal costs ĉ f and
a bound on the expected cost of the optimal policy in the finite-horizon model 9B⋆. At
the beginning of each interval, it takes as input an initial state and outputs a policy to be
used throughout the interval. In the end of the interval it receives the trajectory and costs
observed through the interval.

55

Note that while Algorithm 8 may run any finite-horizon regret minimization algorithm,
in the analysis we require that ALG possesses some properties (that most optimistic algo-
rithms already have) in order to establish our regret bound. We specifically require ALG to
be an admissible algorithm—a model-based optimistic algorithm for regret minimization
in finite-horizon MDPs, e.g., UCBVI [AOM17] and EULER [ZB19]. Admissible algorithms
are defined formally as follows.

Definition 6.2.1. A model-based algorithm ALG for regret minimization in finite-horizon
MDPs is called admissible if, when running ALG with confidence parameter δ , there is a
good event that holds with probability at least 1−δ , under which the following hold:

(i) ALG provides anytime regret guarantees without prior knowledge of the number of
episodes, and when the initial state of each episode is arbitrary. The regret bound
that ALG guarantees for M episodes is denoted by R̂ALG(M), for some non-decreasing
function R̂ALG.

(ii) The policy πm that ALG picks in episode m is greedy with respect to an estimate of
the optimal policy’s Q-function.

(iii) The algorithm’s estimate V m of V̂ ⋆ (the cost-to-go function associated with the op-
timal finite-horizon policy) is optimistic, i.e., V m

h (s) ≤ V̂ ⋆
h (s) for every s ∈ S and

h = 1, . . . ,H +1.
(iv) ALG computes V m using estimates c̃m, P̃m of the cost function ĉ and the transition

function P̂, respectively. There exists ωALG which is a function of H,S,A such that:
if state-action pair (s,a) was visited at least ωALG log MHSA

δ
times, then |c̃m

h (s,a)−
ĉ(s,a)| ≤ B⋆/H and ∥P̃m(· | s,a)− P̂(· | s,a)∥1 ≤ 1/(9H).

Using an admissible algorithm in Algorithm 8 enables us to bound the total number of
intervals, thus ensuring that the agent reaches the goal state in almost every interval. This
is because, as ALG is optimistic, it will try to avoid the terminal cost (which is suffered in
all states except for g) by reaching the goal state. In addition, ALG will succeed in doing
so once it has a good enough estimation of the transition function. Armed with the notion
of admissibility, in the sequel we prove the following regret bound for any admissible
algorithm ALG. The proof of Theorem 6.1.2 is now given by combining Theorem 6.2.1
with the regret bound of ULCVI in Theorem 6.1.1.

Theorem 6.2.1. Let ALG be an admissible algorithm for regret minimization in finite-

horizon MDPs and denote its regret in M episodes by R̂ALG(M). Then, running Algorithm 8

56

with ALG ensures that, with probability at least 1−δ ,

RK ≤ R̂ALG

(
4K +4 ·104SAωALG log

KT⋆SAωALG

δ

)
+O

(√
(B2

⋆+B⋆)K log
KT⋆SAωALG

δ
+T⋆ωALGSA log2 KT⋆SAωALG

δ

)
,

where ωALG is a quantity that depends on the algorithm ALG and on S,A,H.

Remark 5 (Computational complexity). Our reduction directly inherits the computational
complexity of the finite-horizon algorithm ALG in M episodes, where M≈K+ poly(S,A,T⋆)

by Theorem 6.3.3. The computational complexity of ULCVI is O(HS3A2 log(MH)), and
therefore our optimal regret for SSP is achieved in total computational complexity of
O
(
T⋆S3A2 log2 KT⋆SA

δ

)
which is only logarithmic in the number of episodes.

6.2.1 Unknown expected optimal cost

Inspired by techniques for estimation of the SSP-diameter in the adversarial SSP literature
[RM21b, CL21], in Section D.3 we show that our reduction does not need to know B⋆ in
advance, but can instead estimate it on the fly.

We can obtain a reasonable estimate (up to a constant multiplicative factor) of the
cost-to-go from state s by running the Bernstein-SSP algorithm of [RCMK20] for regret
minimization in SSPs (that does not need to know B⋆) with initial state s for roughly T 2

⋆ S2A

episodes. Thus, we can apply our reduction while utilizing our first visits to each state in
order to estimate its cost-to-go.

We operate in phases where each phase ends when some state is visited at least T 2
⋆ S2A

times, and all states that were not visited enough are treated as the goal state. Once we
reach a poorly visited state, we simply run an episode of the corresponding Bernstein-SSP
algorithm. Notice that this comes at a computational cost that is independent of the num-
ber of episodes K (since we use Bernstein-SSP for a small number of episodes), and in
Section D.3 we show that it achieves similar regret bounds with only an additional additive
factor of Õ(T 3

⋆ S3A).

6.3 Regret Analysis

In this section we prove Theorem 6.2.1. Below we give a high-level overview of the proofs
and defer the details to Section D.1. We start the analysis with a regret decomposition that

57

states that the SSP regret can be bounded by the sum of two terms: the expected regret
of the finite-horizon algorithm, and the deviation of the actual cost in each interval from
its expected value. To that end, we use the notations: M for the total number of intervals,
Um = (sm

1 ,a
m
1 , . . . ,s

m
h ,a

m
h ,s

m
H+1) for the trajectory visited in interval m, Cm

h for the cost
suffered in step h of interval m, πm for the policy chosen by ALG for interval m, and V̂ π

h (s)

for the expected finite-horizon cost when playing policy π starting from state s in time step
h.

Lemma 6.3.1. For H = 8T⋆ log(8K), we have the following bound on the regret of Algo-

rithm 8:

RK ≤ R̂ALG(M)+
M

∑
m=1

(
H

∑
h=1

Cm
h + ĉ f (sm

H+1)−V̂ πm

1 (sm
1)

)
+B⋆. (6.1)

The bound in Equation (6.1) is comprised of two summands and an additional con-
stant. The first summand is an upper bound on the expected finite-horizon regret which we
acquire by the admissibility of ALG (Definition 6.2.1). Note that this bound is in terms of
the number of intervals M (i.e., the number of finite-horizon episodes) which is a random
variable and not necessarily bounded. In what follows we show that, using the admissibil-
ity of ALG, we can actually bound M by the number of SSP episodes K plus a constant that
depends on ωALG,S,A,T⋆ (but not on K). The second summand in Equation (6.1) relates to
the deviation of the total finite-horizon cost from its expected value.

The proof of Theorem 6.3.1 builds on two key ideas. The first is that, by setting H to
be O(T⋆ logK), we ensure that the expected cost of the optimal policy in the SSP model
M is close to that in the finite-horizon model M̂ . The second idea is that if the agent does
not reach the goal state in a certain interval, then she must suffer the terminal cost in the
finite-horizon model. Therefore, although in a single episode there may be many intervals
in which the agent does not reach the goal state, we can upper bound the cost in these extra
intervals in M by the corresponding terminal costs in M̂ .

Next, we bound the deviation of the actual cost in each interval from its expected
value which appears as the second summand in Equation (6.1). The bound is due to the
following lemma.

Lemma 6.3.2. Assume that the reduction is performed using an admissible algorithm ALG.

Then, the following holds with probability at least 1− 3δ/8,

M

∑
m=1

(
H

∑
h=1

Cm
h + ĉ f (sm

H+1)−V̂ πm

1 (sm
1)

)
=O

(√
(B2

⋆+B⋆)M log
M
δ
+HωALGSA log

MKT⋆SA
δ

)
.

58

The key observation here relies on the notion of unknown state-action pairs – pairs that
were not visited at least ωALG times. After ωALG visits to some state-action pair s,a, we have
a reasonable estimate of the next-state distribution P(· | s,a) therefore we can show that
the expected accumulated cost in an interval until reaching an unknown state-action pair or
the goal state is of order B⋆. Moreover, the second moment of this cost is of order B2

⋆+B⋆.
Thus, using Freedman inequality, we bound the deviation by Õ(

√
(B2

⋆+B⋆)M), plus a
cost of O(H) for each “bad” interval in which we do not reach an unknown state-action
pair or the goal state (there are roughly ωALGSA such intervals).

Lastly, we need to bound the number of intervals M to obtain a regret bound in terms
of K and not M (notice that M is a random variable that is not bounded a-priori).

Lemma 6.3.3. Assume that the reduction is performed using an admissible algorithm ALG.

Then, with probability at least 1− 3δ/8, M ≤ 4K +4 ·104SAωALG log(KT⋆SAωALG/δ).

The proof shows that in every interval there is a constant probability to reach either the
goal state or an unknown state-action pair. Leveraging this observation with a concentra-
tion inequality, we can bound the number of intervals by Õ(K +ωALGSAH).

We can now prove a bound on the regret of Algorithm 8 using any admissible algorithm
ALG.

Proof of Theorem 6.2.1. The regret bound of ALG, Theorems 6.3.2 and 6.3.3 all hold with
probability at least 1−δ , via a union bound. Using Theorems 6.3.1 and 6.3.2 we can write

RK ≤ R̂ALG(M)+O

(√
(B2

⋆+B⋆)M log
M
δ
+HωALGSA log

MKT⋆SA
δ

)
+B⋆.

Finally, we use Theorem 6.3.3 to bound M by 4K+4 ·104SAωALG log(KT⋆SAωALG/δ).

6.4 ULCVI: an admissible algorithm for finite-horizon MDPs

In this section we present the Upper Lower Confidence Value Iteration algorithm (ULCVI;
Algorithm 9) for regret minimization in finite-horizon MDPs. This result holds indepen-
dently of our SSP algorithm. Since the algorithm is similar to previous optimistic algo-
rithms for the finite-horizon setting, e.g., UCBVI [AOM17] and ORLC [DLWB19], we defer
the analysis to Section D.2 and focus on our technical novelty – bounding the regret in
terms of the optimal value function and not the horizon.

59

In each episode m, the ULCVI algorithm maintains an optimistic lower bound V m
h (s)

and a pessimistic upper bound V̄ m
h (s) on the cost-to-go function of the optimal policy

V ⋆
h (s), and acts greedily with respect to the optimistic estimates. These optimistic and

pessimistic estimates are computed based on the empirical transition function P̄m−1(s′ |
s,a) and the empirical cost function c̄m−1(s,a) to which we add an exploration bonus
bm

c (s,a) + bm
p (s,a), where bm

p handles the approximation error in the transitions and bm
c

handles the approximation error in the costs. The bonuses are defined as follows,

bm
c (s,a) =

√
2Varm−1

s,a (C)Lm

max{1,nm−1(s,a)}
+

5Lm

max{1,nm−1(s,a)}
(6.2)

bm
p (s,a) =

√
2VarP̄m−1(·|s,a)(V

m
h+1)Lm

max{1,nm−1(s,a)}
+

62H3B−1
⋆ SLm

max{1,nm−1(s,a)}
+

B⋆

16H2 EP̄m−1(·|s,a)[V̄
m
h+1(s

′)−V m
h+1(s

′)],

where Lm = 3log(3SAHm/δ) is a logarithmic factor and nm−1(s,a) is the number of visits
to (s,a) in the first m−1 episodes. Furthermore, Varm−1

s,a (C) is the empirical variance of the
observed costs in (s,a) in the first m−1 episodes.1 Lastly, the term VarP̄m−1(·|s,a)(V

m
h+1) is

the variance of the next state value V m
h+1 from state-action pair (s,a), calculated via the em-

pirical transition model, i.e., VarP̄m−1(·|s,a)(V
m
h+1)=EP̄m−1(·|s,a)[V

m
h+1(s

′)2]−EP̄m−1(·|s,a)[V
m
h+1(s

′)]2.

For improved computational complexity, we compute the optimistic policy only in
episodes in which the number of visits to some state-action pair was doubled. This en-
sures that the number of optimistic policy computations grows only logarithmically with
the number of episodes, i.e., it is bounded by 3SA log(MH). Since each optimal policy
computation costs O(HS2A) in the finite-horizon MDP model, our algorithm enjoys a to-
tal computational complexity of O(HS3A2 log(MH)).

For clarity, we keep the notation of the finite-horizon MDP as M̂ =(S ,A , P̂,H, ĉ, ĉ f),
and let B⋆=maxs,h V̂ ⋆

h (s) where V̂ π is the value function of policy π (in the case of our SSP
reduction this parameter is simply 9B⋆ by Theorem D.1.1). This implies that ĉ f (s) ≤ B⋆

for every s, and for simplicity, we assume that B⋆ ≤ H. Thus, the maximal total cost
in an episode is bounded by H +B⋆ ≤ 2H. In Section D.2 we prove the following high
probability regret bound.

Theorem 6.4.1. ULCVI (Algorithm 9) is admissible with the following guarantees:

(i) With probability at least 1−δ , the regret bound of ULCVI is

R̂ULCVI(M) = O
(√

(B2
⋆+B⋆)SAM log

MHSA
δ

+H4B−1
⋆ S2A log3/2 MHSA

δ

)
1 The empirical variance of n numbers a1, . . . ,an is defined by 1

n ∑
n
i=1
(
ai− 1

n ∑
n
j=1 a j

)2.

60

for any number of episodes M ≥ 1.

(ii) ωULCVI = O(H4B−2
⋆ S).

Our analysis resembles the one in [EMSM21], and is adapted to the stationary MDP
setting (i.e., the transition function does not depend on the time step h), and to the setting
where we have costs instead of rewards, and terminal costs (which do not appear in pre-
vious work). By the definition of the algorithm and the regret bound in Theorem 6.4.1,
it is clear that properties (i)-(iii) in Definition 6.2.1 of admissible algorithms hold. For
property (iv), we use standard concentration inequalities and the definition of the bonuses
in Equation (6.2) in order to show it holds for ωULCVI = O(H4B−2

⋆ S).

To obtain a regret bound whose leading term depends on B⋆ and not H, we start with
a standard regret analysis for optimistic algorithms that establishes the regret scales with
the square-root of the variance of the value functions of the agent’s policies, i.e.,

R̂ULCVI(M)≲
√

SA

√√√√ M

∑
m=1

H

∑
h=1

VarP(·|sm
h ,a

m
h)
(V πm

h+1)+H4B−1
⋆ S2A,

up to logarithmic factors and lower order terms. This can be further bounded by the second
moment of the cumulative cost in each episode as follows,

R̂ULCVI(M)≲
√

SA

√√√√√ M

∑
m=1

E

(H

∑
h=1

Cm
h + ĉ f (sm

H+1)

)2 ∣∣∣∣∣ Ūm

+H4B−1
⋆ S2A,

where Ūm is the sequence of state-action pairs observed up to episode m. Leveraging our
techniques for the SSP reduction (but independently), we show that the second moment
of the cumulative cost until an unknown state-action pair is reached can be bounded by
O(B2

⋆+B⋆). Therefore, we have at most Õ(H4B−2
⋆ S2A) episodes in which we bound the

second moment trivially by O(H2), and in the rest of the episodes we can bound it by
O(B2

⋆+B⋆). Together this yields the theorem as follows,

R̂ULCVI(M)≲
√

SA
√

(B2
⋆+B⋆)M+H2 ·H4B−2

⋆ S2A ≲
√

(B2
⋆+B⋆)SAM+H4B−1

⋆ S2A.

61

Algorithm 9 UPPER LOWER CONFIDENCE VALUE ITERATION (ULCVI)

1: input: state space S , action space A , horizon H, confidence parameter δ , terminal
costs ĉ f and upper bound on the expected cost of the optimal policy B⋆.

2: initialize: n0(s,a) = 0,n0(s,a,s′) = 0,N0(s,a) = 0,N0(s,a,s′) = 0 ∀(s,a,s′).
3: initialize: C0(s,a) = 0, c̄0(s,a) = 0, P̄0(s′|s,a) = I{s′ = s} ∀(s,a,s′).
4: initialize: PlanningTrigger= true.
5: for m = 1,2, . . . do
6: observe initial state sm

1 .
7: if PlanningTrigger= true then
8: set nm−1(s,a)← Nm−1(s,a),nm−1(s,a,s′)← Nm−1(s,a,s′) ∀(s,a,s′).
9: set P̄m−1(s′|s,a)← nm−1(s,a,s′)

max{1,nm−1(s,a)} , c̄
m−1(s,a)← Cm−1(s,a)

max{1,nm−1(s,a)} ∀(s,a,s
′).

10: compute {πm
h (s)}s,h via OPTIMISTIC-PESSIMISTIC VALUE ITERATION (Algo-

rithm 10).
11: set PlanningTrigger← false.
12: else
13: set nm−1(s,a)← nm−2(s,a),nm−1(s,a,s′)← nm−2(s,a,s′) ∀(s,a,s′)
14: set P̄m−1(s′|s,a)← P̄m−2(s′|s,a), c̄m−1(s,a)← c̄m−2(s,a) ∀(s,a,s′).
15: set πm

h (s)← π
m−1
h (s) for all s ∈ S and h = 1, . . . ,H.

16: end if
17: set Nm(s,a) ← Nm−1(s,a),Nm(s,a,s′) ← Nm−1(s,a,s′),Cm(s,a) ←

Cm−1(s,a) ∀(s,a,s′).
18: for h = 1, . . . ,H do
19: pick action am

h = πm
h (s

m
h).

20: suffer cost Cm
h ∼ ĉ(sm

h ,a
m
h) and observe next state sm

h+1 ∼ P̂(· | sm
h ,a

m
h).

21: update visits counters nm(sm
h ,a

m
h) ← nm(sm

h ,a
m
h) + 1,nm(sm

h ,a
m
h ,s

m
h+1) ←

nm(sm
h ,a

m
h ,s

m
h+1)+1.

22: update accumulated cost Cm(sm
h ,a

m
h)←Cm(sm

h ,a
m
h)+Cm

h .
23: if Nm(sm

h ,a
m
h)≥ 2nm−1(sm

h ,a
m
h) then

24: set PlanningTrigger← true.
25: end if
26: end for
27: Suffer terminal cost ĉ f (sm

H+1).
28: end for

62

Algorithm 10 OPTIMISTIC-PESSIMISTIC VALUE ITERATION

1: input: nm−1, P̄m−1, c̄m−1, ĉ f ,B⋆.
2: initialize V m

H+1(s) = V̄ m
H+1(s) = ĉ f (s) for all s ∈S .

3: for h = H,H−1, . . . ,1 do
4: for s ∈ S do
5: for a ∈ A do
6: set the bonus bm

h (s,a) = bm
c (s,a)+bm

p (s,a) defined in Equation (6.2).
7: compute optimistic and pessimistic Q-functions:

Qm
h (s,a) = c̄m−1(s,a)−bm

h (s,a)+EP̄m−1(·|s,a)[V
m
h+1(s

′)]

Q̄m
h (s,a) = c̄m−1(s,a)+bm

h (s,a)+EP̄m−1(·|s,a)[V̄
m
h+1(s

′)].

8: end for
9: πm

h (s) ∈ argmina∈A Qm
h (s,a).

10: V m
h (s) = max

{
Qm

h (s,π
m
h (s)),0

}
, V̄ m

h (s) = min
{

Q̄m
h (s,π

m
h (s)),H

}
.

11: end for
12: end for

63

7 Learning Adversarial
Stochastic Shortest Path

This chapter is based on:

Aviv Rosenberg and Yishay Mansour. Stochastic Shortest Path with Adversarially
Changing Costs. In Proceedings of the Thirtieth International Joint Conference on Artifi-

cial Intelligence, IJCAI 2021.

This chapter presents the first algorithms for regret minimization in adversarial SSPs.
We start by introducing the adversarial SSP model. Then, we present and analyze our
algorithms that handle both known and unknown transitions.

7.1 Problem Formulation

An adversarial SSP problem is defined by an MDP M = (S ,A ,P,sinit,g) and a sequence
{ck : S ×A → [0,1]}K

k=1 of cost functions. The learner interacts with M in episodes,
where ck is the cost function for episode k. However, it is revealed to the learner only
in the end of the episode. Formally, the learner starts each episode k at the initial state
sk

1 = sinit. In each step i of the episode, the learner observes its current state sk
i , picks

an action ak
i and moves to the next state sk

i+1 sampled from P(· | sk
i ,a

k
i). The episode

ends when the goal state g is reached, and then the learner observes ck and suffers cost

∑
Ik

i=1 ck(sk
i ,a

k
i) where Ik is the length of the episode. Importantly, Ik is a random variable

that might be infinite. This is the unique challenge of SSP compared to finite-horizon.

Under the additional assumption that every improper policy suffers infinite expected
cost from some state, [BT91] show that the optimal policy is stationary, deterministic and
proper; and that every proper policy π satisfies the following Bellman equations for every

64

s ∈ S:

V π(s) = ∑
a∈A

π(a | s)
(

c(s,a)+ ∑
s′∈S

P(s′ | s,a)V π(s′)
)

T π(s) = 1+ ∑
a∈A

∑
s′∈S

π(a | s)P(s′ | s,a)T π(s′). (7.1)

Learning Formulation. The learner’s goal is to minimize its total cost. Its performance
is measured by the regret – the difference between the learner’s total cost in K episodes
and the total expected cost of the best proper policy in hindsight:

RK =
K

∑
k=1

Ik

∑
i=1

ck(sk
i ,a

k
i)− min

π∈Πproper

K

∑
k=1

V π
k (sinit),

where V π
k is the cost-to-go of policy π with respect to (w.r.t) cost function ck, and Πproper is

the set of proper policies. If Ik is infinite for some k, we define RK = ∞ forcing the learner
to reach the goal in every episode. We also denote by π⋆ = argminπ∈Πproper ∑

K
k=1V π

k (sinit)

the best policy in hindsight.

Our analysis makes use of the Bellman equations, that hold under the conditions de-
scribed before Eq. (7.1). To make sure these are met, we assume that the costs are strictly
positive.

Assumption 7.1.1. All costs are positive, i.e., there exists cmin > 0 such that ck(s,a)≥ cmin

for every k and (s,a) ∈S ×A .

We can easily eliminate Assumption 7.1.1 by applying a perturbation to the instan-
taneous costs. That is, instead of ck we use the cost function c̃k(s,a) = max{ck(s,a),ε}
for some ε > 0. This ensures that the effective minimal cost is cmin = ε , at the price of
introducing additional bias. Choosing ε = Θ(K−1/4) ensures that all our algorithms obtain
regret bounds of Õ(K3/4) in the general case.

Occupancy Measures. Every policy π induces an occupancy measure qπ : S ×A →
[0,∞] such that qπ(s,a) is the expected number of times to visit state s and take action a

when playing according to π , i.e.,

qπ(s,a) = lim
T→∞

E
[T

∑
t=1

I{st = s,at = a} | P,π,s1 = sinit

]
,

65

where I{·} is the indicator function. Note that for a proper policy π , qπ(s,a) is finite for
every (s,a). In fact, the correspondence between proper policies and finite occupancy mea-
sures is 1-to-1, and its inverse1 for q is given by πq(a | s)= q(s,a)

q(s) where q(s)=∑a∈A q(s,a)

is the expected number of visits to s. The equivalence between policies and occupancy
measures is well-known for MDPs (see, e.g., [ZN13]), but also holds for SSPs by linear
programming formulation [Man60]. Notice that the expected cost of policy π is linear
w.r.t qπ , i.e.,

V πk
k (sinit) = E

[Ik

∑
i=1

ck(sk
i ,a

k
i) | P,πk,s1 = sinit

]
= ∑

s∈S
∑
a∈A

qπk(s,a)ck(s,a) def
= ⟨qπk ,ck⟩.

Thus, minimizing the expected regret can be written as an instance of online linear opti-
mization in the following manner,

E[RK] = E
[K

∑
k=1

V πk
k (sinit)−

K

∑
k=1

V π⋆

k (sinit)
]

= E
[K

∑
k=1
⟨qπk−qπ⋆

,ck⟩
]
.

7.2 Known Transition Function

We start with the simpler (yet surprisingly challenging) case where P is known to the
learner. Recall that while the transition function is known, the costs change arbitrarily
between episodes. In Section 7.2.1 we establish the implementation of the OMD method
in SSP, and in Section 7.2.2 we use it to obtain a high probability regret bound.

7.2.1 Online Mirror Descent for SSP

Online mirror descent is a popular framework for OCO and its application to occupancy
measures yields the O-REPS algorithms [ZN13, RM19a, RM19b, JJL+20]. Usually these
algorithms operate w.r.t to the set of all occupancy measures (which corresponds to the
set of all policies), but a naive application of this kind fails in SSP because it does not

1 If q(s) = 0 for some state s then the inverse mapping is not well-defined. However, since s will not
be reached, we can pick the action there arbitrarily. More precisely, the correspondence holds when
restricting to reachable states.

66

guarantee that the learner plays proper policies. For example, in the first episode these
algorithms play the uniform policy which may suffer exponential cost.

Thus, we propose to apply OMD to the set ∆(M)(τ) – occupancy measures of policies
π that reach the goal in expected time T π(sinit)≤ τ . This set is convex and has a compact
representation as we show shortly. Our algorithm SSP-O-REPS operates as follows. In the
beginning of episode k, it picks an occupancy measure qk from ∆(M)(τ) which minimizes
a trade-off between the current cost function and the distance to the previously chosen
occupancy measure. Then, it extracts the policy πk = πqk and plays it through the episode.
Formally,

qk = qπk = arg min
q∈∆(M)(τ)

η⟨q,ck−1⟩+KL(q ∥ qk−1), (7.2)

where KL(·||·) is the KL-divergence, and η > 0 is a learning rate. Computing qk is im-
plemented in two steps: first find the unconstrained minimizer and then project it into
∆(M)(τ), i.e.,

q′k = argmin
q

η⟨q,ck−1⟩+KL(q ∥ qk−1) (7.3)

qk = arg min
q∈∆(M)(τ)

KL(q ∥ q′k). (7.4)

Eq. (7.3) has a closed form q′k(s,a) = qk−1(s,a)e−ηck−1(s,a), and Eq. (7.4) can be formal-
ized as a constrained convex optimization problem with the following linear constraints:

∀s. ∑
a∈A

q(s,a)− ∑
s′∈S

∑
a′∈A

q(s′,a′)P(s|s′,a′) = I{s = sinit}

∑
s∈S

∑
a∈A

q(s,a)≤ τ, (7.5)

where we omitted non-negativity constraints. The first set of constraints are standard flow
constraints, while the novel constraint (7.5) ensures that T πq

(sinit)≤ τ .

Finally, we need to pick the parameter τ . While it needs to upper bound T π⋆
(sinit) in or-

der to have qπ⋆ ∈ ∆(M)(τ), we want it to be as small as possible to get tighter regret guar-
antees. To that end, define the SSP-diameter [TGV+20] D = maxs∈S minπ∈Πproper T π(s)

and pick τ = D/cmin. The diameter can be computed efficiently by finding the optimal
policy w.r.t the constant cost function c(s,a) = 1. We refer to this policy as the fast policy
π f , and it holds that D = maxs∈S T π f

(s).

Indeed qπ⋆ ∈ ∆(M)(D/cmin) because the total cost of the best policy in hindsight in

67

K episodes is upper bounded by the total cost of any other policy, e.g., the fast policy
(which is at most DK), and is lower bounded by the expected time of π⋆ times the minimal
cost, i.e., V π⋆

k (sinit)≥ cminT π⋆
(sinit). In the supplementary material we also show that this

choice of τ cannot be smaller in general.

In the supplementary material we provide the full analysis of the algorithm yielding
the following regret bound in expectation. Moreover, we show that all the chosen policies
must be proper and therefore the goal is reached with probability 1 in all episodes.

Theorem 7.2.1. Under Assumption 5.2.1, the expected regret of SSP-O-REPS with known

transition function and η = Θ̃(1√
K
) is

E[RK]≤ O
(D

cmin

√
K log

DSA
cmin

)
= Õ

(D
cmin

√
K
)
.

7.2.2 High Probability Regret Bound

To obtain high probability regret bounds, we must control the deviation between the
learner’s suffered cost and its expected value. While this is easily achievable in the finite-
horizon setting through an application of Azuma inequality, it appears a major challenge
in SSP since there is no finite upper bound on the learner’s cost. In fact, the supplemen-
tary material illustrates a simple example with 0 expected regret, but constant probability
to suffer large regret (linear in K). The idea here is that even though a policy has small
cost in expectation, there might be a tiny probability that it suffers huge cost (this cannot
happen in finite-horizon since the cost is always bounded by H). Finally, even an event
with tiny probability will happen at least once if there is a large number of episodes K.

Our strategy to control the deviation between the learner’s actual suffered cost and
its expected value is based on the observation that this quantity is closely related to the
expected time to reach the goal from any state. This is illustrated by the following lemma
whose proof is based on an adaptation of Azuma inequality to unbounded martingales
(Theorem E.12.5) which may be of independent interest.

Lemma 7.2.2. Assume that in each episode k the learner plays a strategy σk such that the

expected time to reach the goal from any state is at most τ . Then, with probability at least

68

1−δ ,

K

∑
k=1

Ik

∑
i=1

ck(sk
i ,a

k
i)≤

K

∑
k=1

E
[Ik

∑
i=1

ck(sk
i ,a

k
i) | P,σk,sk

1 = sinit

]
+O

(
τ

√
K log3 K

δ

)
.

Thus, bounding the regret in high probability boils down to guaranteeing that T πk(s)≤
D/cmin for all s ∈ S and not just sinit. Unfortunately, these constraints admit a non-convex
set of occupancy measures. To bypass this issue we propose the SSP-O-REPS2 algorithm
that operates as follows: start every episode k by playing the policy πk chosen by SSP-O-
REPS (i.e., Eq. (7.2)), but once we reach a state s whose expected time to the goal is too
long (i.e., T πk(s)≥ D/cmin), switch to the fast policy π f .

Now the conditions of Lemma 7.2.2 are clearly met, so it remains to relate the expected
cost of our new strategy σk to this of πk. The key novelty of our mid-episode policy switch
is the timing. The naive approach would be to perform the switch when the policy takes
too long, but then there is no way to bound the excess cost when compared to that of πk.
Performing the switch only once a “bad” state is reached ensures that the expected cost of
σk can only be better than πk.

Theorem 7.2.3. Under Assumption 5.2.1, with probability 1− δ , the regret of SSP-O-

REPS2 with known transition function is

RK ≤ O
(D

cmin

√
K log3 KDSA

δcmin

)
= Õ

(D
cmin

√
K
)
.

7.3 Unknown Transition Function

A standard technique to deal with unknown transition function in adversarial MDPs is to
use optimistic estimates of P. We follow this approach but, as in the known transitions
case, crucial modifications are necessary to apply optimism and obtain regret guarantees.
In this section we describe our SSP-O-REPS3 algorithm for unknown transitions.

We start by describing the confidence sets and transition estimates used by the algo-
rithm. SSP-O-REPS3 proceeds in epochs and updates the confidence set at the begin-
ning of every epoch. The first epoch begins at the first time step, and an epoch ends
once an episode ends or the number of visits to some state-action pair is doubled. De-
note by Ne(s,a) the number of visits to (s,a) up to (and not including) epoch e, and by

69

Ne(s,a,s′) the number of times this was followed by a transition to s′. Let Ne
+(s,a) =

max{Ne(s,a),1} and define the empirical transition function for epoch e by P̄e(s′|s,a) =
Ne(s,a,s′)/Ne

+(s,a). Finally, define the confidence set for epoch e as the set of all transi-
tion functions P′ such that for every (s,a,s′) ∈S ×A × (S ∪{g}),

|P′(s′ | s,a)− P̄e(s′ | s,a)| ≤ εe(s′ | s,a),

where εe(s′|s,a)= 4
√

P̄e(s′|s,a)Ae(s,a)+28Ae(s,a) is the confidence set radius for Ae(s,a)=
log(SANe

+(s,a)/δ)
Ne
+(s,a)

. By Bernstein inequality (see, e.g., [AOM17]), these confidence sets con-
tain P with probability 1−δ for all epochs.

Next, we extend our OMD implementation to the unknown transitions case. We follow
the elegant approach of [RM19a] that use occupancy measures that are extended to include
a transition function as well, that is,

qP,π(s,a,s′) = lim
T→∞

E
[T

∑
t=1

I{st = s,at = a,st+1 = s′}
]
,

where E[·] is shorthand for E[· | P,π,s1 = sinit] here. Now an occupancy measure q corre-
sponds to a transition function-policy pair with the inverse mapping given by

π
q(a | s) = q(s,a)

q(s)
; Pq(s′ | s,a) = q(s,a,s′)

q(s,a)
,

where q(s,a) = ∑s′∈S∪{g} q(s,a,s′) is the expected number of visits to (s,a) w.r.t Pq when
playing πq. We extend the set ∆(M)(τ) (which we cannot compute without knowing
P), and perform OMD on the set ∆̃(M)e(τ) that changes through epochs. ∆̃(M)e(τ) is
defined as the set of occupancy measures q whose induced transition function Pq is in the
confidence set of epoch e and the expected time of πq (w.r.t Pq) from sinit to the goal is at
most τ . This set is again convex with a compact representation, and it admits the following
OMD update step,

qk = qPk,πk = arg min
q∈∆̃(M)e(k)(τ)

η⟨q,ck−1⟩+KL(q ∥ qk−1), (7.6)

where e(k) denotes the first epoch in episode k. Similarly to the known transitions case,
this update can be performed efficiently.

In contrast to the known transitions case, this version of OMD cannot even guarantee
bounded regret in expectation, because without knowledge of the transition function there

70

is no guarantee that the chosen policies are even proper. Note that in the easier loop-free
SSP setting, this OMD version is enough to guarantee a high probability regret bound even
with unknown transitions. We now describe the mechanisms that need to be combined with
OMD to obtain our regret bound.

Similarly to Section 7.2.2, we must make sure that the learner does not take too much
time to reach the goal. The problem now is that we cannot compute its expected time
T πk since P is unknown. Instead, we use the expected time of πk w.r.t Pk (denoted by T̃ πk

k)
which is an estimate of T πk , but not necessarily an optimistic one. Once a state s is reached
such that T̃ πk

k (s)≥ D/cmin we want to switch to the fast policy π f which again cannot be
computed without knowing P. This policy is replaced with its optimistic estimate π̃

f
e ,

which we refer to as the optimistic fast policy. Together with the optimistic fast transition
function P̃ f

e , this policy minimizes the expected time to the goal out of all pairs of policies
and transition functions from the confidence set of epoch e.

If we were in the known transitions case, this would have been enough. So it seems that
it should also suffice with unknown transitions, if we recompute the optimistic fast policy
in the end of every epoch similarly to [RCMK20]. However, in the adversarial setting this
approach fails for two main reasons. First, we cannot guarantee that T̃ πk

k is a good enough
estimate of T πk in all states. Second, the learner’s policy is stochastic which means that
we cannot guarantee all actions are being explored enough (as opposed to [RCMK20] that
only play deterministic policies since they do not tackle adversarial costs). To overcome
these challenges, we propose to force exploration in the following manner. Define a state
to be unknown until every action was played at least Φ = α

DS
c2

min
log DSA

δcmin
times in this state

(for some constant α > 0), and known afterwards. When reaching an unknown state,
we play the least played action so far (forcing exploration), and only then switch to the
optimistic fast policy. The idea behind this forced exploration is inspired by [RCMK20]
that show that once all states are known, the optimistic fast policy is proper with high
probability.

To summarize, SSP-O-REPS3 operates as follows. We start each episode k by playing
the policy πk computed in Eq. (7.6), and maintain confidence sets that are updated at the
beginning of every epoch. When we reach a state s such that T̃ πk

k (s)≥ D/cmin, we switch
to the optimistic fast policy. In addition, when an unknown state is reached we play the
least played action up to this point and then switch to the optimistic fast policy. Finally,
we also make the switch to the optimistic fast policy once the number of visits to some
state-action pair is doubled, at which point we also recompute it.

Theorem 7.3.1. Under Assumption 5.2.1, with probability 1− δ , the regret of SSP-O-

71

REPS3 with known SSP-diameter D is

RK ≤ Õ
(DS

cmin

√
AK +

D2S2A
c2

min

)
= Õ

(DS
cmin

√
AK
)
,

where the last equality holds for K ≥ D2S2A/c2
min.

Our analysis builds on ideas from [RCMK20] that analyze optimistic algorithms in
SSP with stochastic costs. However, for the many reasons described in this paper and
because our algorithm is not optimistic, many novel technical adaptions are needed in
order to tackle the new challenges that arise when both the costs are adversarial and the
transition function is unknown.

Recall that the learner has two objectives in SSP: minimizing cost and reaching the
goal. When transitions were known, we used Lemma 7.2.2 to say that (with high proba-
bility) the goal is reached in every episode, and then we could simply focus on bounding
the regret. With unknown transitions, the argument for bounding the total time becomes
more involved. The idea is that (with high probability) the number of steps between policy
switches cannot be too long, as a consequence of our added mechanisms. To that end, we
split the time steps into intervals. The first interval begins at the first time step, and an in-
terval ends once (1) an episode ends, (2) an epoch ends, (3) an unknown state is reached, or
(4) a policy switch is made due to reaching a “bad” state. Intuitively, we bound the length
of every interval by Õ(D/cmin) with high probability, and then use fact that the number of
intervals is bounded by Õ(K+DS2A/c2

min) to bound the total time. Then, we show that the
regret of the learner can be bounded by the regret of OMD (analyzed in Section 7.2) plus
the square root of the total variance (times S2A). Finally, we obtain our regret bound by
noticing that the total variance is equal to the variance in each interval times the number
of intervals, and bounding the variance in an interval by O(D2/c2

min) .

Estimating the SSP-diameter. When the transition function is unknown, we cannot
compute the diameter D. However, a careful look at our algorithms shows that we use it
only twice. First, we pick τ = D/cmin as an upper bound on the expected time of the best
policy in hindsight. For this purpose it is enough to use T π f

(sinit)/cmin, and therefore we
shall dedicate the first L episodes to computing an estimate D̃(sinit) of T π f

(sinit) before
running SSP-O-REPS3. Second, D is used to make a switch when a “bad” or unknown
state s is reached, but again it is enough to use T π f

(s) instead. Similarly, we use the first L

visits to s to estimate T π f
(s) and then continue executing the algorithm with D̃(s) instead

of D.

72

To compute D̃(s) we run the algorithm of [RCMK20] for regret minimization in SSP
with constant cost of 1 (since it measures time). By their regret bound, we can set L≈

√
K

and suffer negligible additional regret. This is also enough to yield the two properties we
need in order to keep the same regret bound (with high probability): D̃(s) is an upper
bound on T π f

(s) for any s ∈ S, and D̃(s)≤ O(D) (i.e., it is not too large).

73

8 Conclusions and Future Work

In this thesis we provided new algorithms and theory for tackling fundamental issues that
hurt the performance of reinforcement learning algorithms in many real-world applica-
tions. We focused on three main issues: exploration, non-stationarity and inaccurate mod-
els. Our algorithms face these challenges in several environments, and their performance
is analyzed in terms of the regret – the difference between the cumulative cost of the agent
through the learning process and the expected cost of the best policy in hindsight.

We started by studying adversarial MDPs that model non-stationary environments
through adversarially changing costs. We presented the first high-probability regret bounds
for adversarial MDPs with unknown transitions and full-information feedback, and the first
regret bounds for the case of bandit feedback (and unknown transitions).

Then, we studied the stochastic shortest path model that captures a wide variety of
realistic scenarios and includes the discounted return model and the finite-horizon model
as special cases. We presented the first near-optimal regret bounds for SSP, and then
developed an improved algorithm based on a reduction to the finite-horizon setting that is
able to achieve optimal regret (up to logarithmic factors).

Finally, we also combined the two models and presented the adversarial MDP model.
This general model is able to better capture the challenges of applying RL to real-world
applications, and we provide the first regret minimization algorithms in this setting.

There are many interesting open questions left for future work. The most important
direction is extending our regret minimization algorithms to settings where the state space
is huge (even infinite) and function approximation must be used. While research has al-
ready begun for factored MDPs and linear function approximation [JYWJ20, ZBB+20,
ZLKB20, RM21a, VPSS22, MHWG22, CJL22], it is just the tip of the iceberg. For ad-
versarial MDPs, the prominent open question that remains is whether the minimax op-
timal regret scales with the number of states linearly or via square root. Another im-
portant question is whether policy optimization methods (that are highly successful in

74

practice) are able to obtain optimal regret, or is it possible only with occupancy measure
based methods. This question was partly answered by [LWL21, CLR22], but it is still
unclear if these methods can be parameter-free in the SSP setting, for example. More
interesting future directions tackle best-of-both-worlds, delay, cooperation and privacy
[JL20, JHL21, LRM22b, JLL+22, LRM22a].

75

References

[ACBFS02] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The
nonstochastic multiarmed bandit problem. SIAM journal on computing,
32(1):48–77, 2002.

[AJO09] Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds
for reinforcement learning. In Advances in neural information processing

systems, pages 89–96, 2009.

[AOM17] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax re-
gret bounds for reinforcement learning. In Proceedings of the 34th Interna-

tional Conference on Machine Learning-Volume 70, pages 263–272. JMLR.
org, 2017.

[Ber95] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1.
Athena scientific Belmont, MA, 1995.

[BT91] Dimitri P Bertsekas and John N Tsitsiklis. An analysis of stochastic shortest
path problems. Mathematics of Operations Research, 16(3):580–595, 1991.

[BT02] Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial
time algorithm for near-optimal reinforcement learning. Journal of Machine

Learning Research, 3(Oct):213–231, 2002.

[BT09] Peter L Bartlett and Ambuj Tewari. Regal: A regularization based algorithm
for reinforcement learning in weakly communicating mdps. In Proceed-

ings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence,
pages 35–42. AUAI Press, 2009.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, New York, NY, USA, 2004.

76

[BY13] Dimitri P Bertsekas and Huizhen Yu. Stochastic shortest path problems un-
der weak conditions. Lab. for Information and Decision Systems Report

LIDS-P-2909, MIT, 2013.

[CBC+19] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti,
and Ed H Chi. Top-k off-policy correction for a reinforce recommender
system. In Proceedings of the Twelfth ACM International Conference on

Web Search and Data Mining, pages 456–464, 2019.

[CBL06] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games.
Cambridge university press, 2006.

[CEMR21] Alon Cohen, Yonathan Efroni, Yishay Mansour, and Aviv Rosenberg. Min-
imax regret for stochastic shortest path. Advances in Neural Information

Processing Systems, 34:28350–28361, 2021.

[CJL22] Liyu Chen, Rahul Jain, and Haipeng Luo. Improved no-regret algorithms
for stochastic shortest path with linear mdp. In International Conference on

Machine Learning, pages 3204–3245. PMLR, 2022.

[CL21] Liyu Chen and Haipeng Luo. Finding the stochastic shortest path with low
regret: the adversarial cost and unknown transition case. In Marina Meila
and Tong Zhang, editors, Proceedings of the 38th International Conference

on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, vol-
ume 139 of Proceedings of Machine Learning Research, pages 1651–1660.
PMLR, 2021.

[CLR22] Liyu Chen, Haipeng Luo, and Aviv Rosenberg. Policy optimization for
stochastic shortest path. In Po-Ling Loh and Maxim Raginsky, editors, Con-

ference on Learning Theory, 2-5 July 2022, London, UK, volume 178 of
Proceedings of Machine Learning Research, pages 982–1046. PMLR, 2022.

[CLW21] Liyu Chen, Haipeng Luo, and Chen-Yu Wei. Minimax regret for stochastic
shortest path with adversarial costs and known transition. In Mikhail Belkin
and Samory Kpotufe, editors, Conference on Learning Theory, COLT 2021,

15-19 August 2021, Boulder, Colorado, USA, volume 134 of Proceedings of

Machine Learning Research, pages 1180–1215. PMLR, 2021.

77

[DLWB19] Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certifi-
cates: Towards accountable reinforcement learning. In International Con-

ference on Machine Learning, pages 1507–1516. PMLR, 2019.

[EKM09] Eyal Even-Dar, Sham M. Kakade, and Yishay Mansour. Online Markov
Decision Processes. Math. Oper. Res., 34(3):726–736, 2009. (preliminary
version NIPS 2004).

[EMGM19] Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, and Shie Man-
nor. Tight regret bounds for model-based reinforcement learning with greedy
policies. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Flo-
rence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in

Neural Information Processing Systems 32: Annual Conference on Neural

Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019,

Vancouver, BC, Canada, pages 12203–12213, 2019.

[EMM21] Yonathan Efroni, Nadav Merlis, and Shie Mannor. Reinforcement learning
with trajectory feedback. In Thirty-Fifth AAAI Conference on Artificial Intel-

ligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of

Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational

Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9,

2021, pages 7288–7295. AAAI Press, 2021.

[EMSM21] Yonathan Efroni, Nadav Merlis, Aadirupa Saha, and Shie Mannor.
Confidence-budget matching for sequential budgeted learning. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Con-

ference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 2937–
2947. PMLR, 2021.

[JAZBJ18] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-
learning provably efficient? In Advances in Neural Information Processing

Systems, pages 4863–4873, 2018.

[JHL21] Tiancheng Jin, Longbo Huang, and Haipeng Luo. The best of both worlds:
stochastic and adversarial episodic mdps with unknown transition. Advances

in Neural Information Processing Systems, 34:20491–20502, 2021.

78

[JJL+20] Chi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, and Tiancheng Yu. Learn-
ing adversarial markov decision processes with bandit feedback and un-
known transition. In Proceedings of the 37th International Conference on

Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pages 4860–4869. PMLR,
2020.

[JL20] Tiancheng Jin and Haipeng Luo. Simultaneously learning stochastic and
adversarial episodic mdps with known transition. Advances in neural infor-

mation processing systems, 33:16557–16566, 2020.

[JLL+22] Tiancheng Jin, Tal Lancewicki, Haipeng Luo, Yishay Mansour, and Aviv
Rosenberg. Near-optimal regret for adversarial mdp with delayed bandit
feedback. arXiv preprint arXiv:2201.13172, 2022.

[JOA10] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds
for reinforcement learning. Journal of Machine Learning Research, 11(4),
2010.

[JYWJ20] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably
efficient reinforcement learning with linear function approximation. In Con-

ference on Learning Theory, pages 2137–2143. PMLR, 2020.

[KS02] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in
polynomial time. Machine learning, 49(2-3):209–232, 2002.

[KV03] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision
problems. In 16th Annual Conference on Computational Learning Theory

(COLT), pages 26–40, 2003.

[LCLS10] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-
bandit approach to personalized news article recommendation. In Proceed-

ings of the 19th international conference on World wide web, pages 661–670,
2010.

[LFDA16] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep
visuomotor policies. Journal of Machine Learning Research, 17(1):1334–
1373, 2016.

79

[LNSL+12] Huitan Lei, Inbal Nahum-Shani, Kevin Lynch, David Oslin, and Susan A
Murphy. A âsmartâ design for building individualized treatment sequences.
Annual review of clinical psychology, 8, 2012.

[LRM22a] Tal Lancewicki, Aviv Rosenberg, and Yishay Mansour. Cooperative
online learning in stochastic and adversarial mdps. arXiv preprint

arXiv:2201.13170, 2022.

[LRM22b] Tal Lancewicki, Aviv Rosenberg, and Yishay Mansour. Learning adversarial
markov decision processes with delayed feedback. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 36, pages 7281–7289,
2022.

[LS20] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge Uni-
versity Press, 2020.

[LWL21] Haipeng Luo, Chen-Yu Wei, and Chung-Wei Lee. Policy optimization in
adversarial mdps: Improved exploration via dilated bonuses. Advances in

Neural Information Processing Systems, 34:22931–22942, 2021.

[Man60] Alan S Manne. Linear programming and sequential decisions. Management

Science, 6(3):259–267, 1960.

[MHWG22] Yifei Min, Jiafan He, Tianhao Wang, and Quanquan Gu. Learning stochastic
shortest path with linear function approximation. In International Confer-

ence on Machine Learning, pages 15584–15629. PMLR, 2022.

[MKS+15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[MLL+14] Travis Mandel, Yun-En Liu, Sergey Levine, Emma Brunskill, and Zoran
Popovic. Offline policy evaluation across representations with applications
to educational games. In AAMAS, volume 1077, 2014.

[NGS10] Gergely Neu, András György, and Csaba Szepesvári. The online loop-free
stochastic shortest-path problem. In COLT 2010 - The 23rd Conference on

Learning Theory, Haifa, Israel, June 27-29, 2010, pages 231–243, 2010.

80

[NGS12] Gergely Neu, Andras Gyorgy, and Csaba Szepesvári. The adversarial
stochastic shortest path problem with unknown transition probabilities. In
Artificial Intelligence and Statistics, pages 805–813, 2012.

[NGSA14] Gergely Neu, András György, Csaba Szepesvári, and András Antos. Online
Markov Decision Processes under bandit feedback. IEEE Trans. Automat.

Contr., 59(3):676–691, 2014.

[OVR16] Ian Osband and Benjamin Van Roy. On lower bounds for regret in reinforce-
ment learning. arXiv preprint arXiv:1608.02732, 2016.

[Put14] Martin L Puterman. Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons, 2014.

[RCMK20] Aviv Rosenberg, Alon Cohen, Yishay Mansour, and Haim Kaplan. Near-
optimal regret bounds for stochastic shortest path. In International Confer-

ence on Machine Learning, pages 8210–8219. PMLR, 2020.

[RM19a] Aviv Rosenberg and Yishay Mansour. Online convex optimization in adver-
sarial markov decision processes. In International Conference on Machine

Learning, pages 5478–5486, 2019.

[RM19b] Aviv Rosenberg and Yishay Mansour. Online stochastic shortest path with
bandit feedback and unknown transition function. In Advances in Neural

Information Processing Systems, pages 2209–2218, 2019.

[RM21a] Aviv Rosenberg and Yishay Mansour. Oracle-efficient regret minimization
in factored mdps with unknown structure. Advances in Neural Information

Processing Systems, 34:11148–11159, 2021.

[RM21b] Aviv Rosenberg and Yishay Mansour. Stochastic shortest path with adversar-
ially changing costs. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth

International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual

Event / Montreal, Canada, 19-27 August 2021, pages 2936–2942. ijcai.org,
2021.

[SB98] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learn-

ing, volume 135. MIT press Cambridge, 1998.

81

[SERM20] Lior Shani, Yonathan Efroni, Aviv Rosenberg, and Shie Mannor. Optimistic
policy optimization with bandit feedback. In International Conference on

Machine Learning, pages 8604–8613. PMLR, 2020.

[Sha12] Shai Shalev-Shwartz. Online learning and online convex optimization. Foun-

dations and Trends in Machine Learning, 4(2):107–194, 2012.

[Sli19] Aleksandrs Slivkins. Introduction to multi-armed bandits. arXiv preprint

arXiv:1904.07272, 2019.

[SLKW02] Satinder Singh, Diane Litman, Michael Kearns, and Marilyn Walker. Op-
timizing dialogue management with reinforcement learning: Experiments
with the njfun system. Journal of Artificial Intelligence Research, 16:105–
133, 2002.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,
Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,
Adrian Bolton, et al. Mastering the game of go without human knowledge.
Nature, 550(7676):354, 2017.

[TGV+20] Jean Tarbouriech, Evrard Garcelon, Michal Valko, Matteo Pirotta, and
Alessandro Lazaric. No-regret exploration in goal-oriented reinforcement
learning. In International Conference on Machine Learning, 2020.

[VPSS22] Daniel Vial, Advait Parulekar, Sanjay Shakkottai, and R Srikant. Regret
bounds for stochastic shortest path problems with linear function approxi-
mation. In International Conference on Machine Learning, pages 22203–
22233. PMLR, 2022.

[WOS+03] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and
Marcelo J Weinberger. Inequalities for the l1 deviation of the empirical dis-
tribution. Hewlett-Packard Labs, Tech. Rep, 2003.

[YMS09] Jia Yuan Yu, Shie Mannor, and Nahum Shimkin. Markov Decision Processes
with arbitrary reward processes. Math. Oper. Res., 34(3):737–757, 2009.

[ZB19] Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret
bounds in reinforcement learning without domain knowledge using value

82

function bounds. In International Conference on Machine Learning, pages
7304–7312, 2019.

[ZBB+20] Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta,
and Alessandro Lazaric. Frequentist regret bounds for randomized least-
squares value iteration. In International Conference on Artificial Intelligence

and Statistics, pages 1954–1964. PMLR, 2020.

[ZJD21] Zihan Zhang, Xiangyang Ji, and Simon Du. Is reinforcement learning more
difficult than bandits? a near-optimal algorithm escaping the curse of hori-
zon. In Conference on Learning Theory, pages 4528–4531. PMLR, 2021.

[ZLKB20] Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brun-
skill. Learning near optimal policies with low inherent bellman error. In In-

ternational Conference on Machine Learning, pages 10978–10989. PMLR,
2020.

[ZN13] Alexander Zimin and Gergely Neu. Online learning in episodic markovian
decision processes by relative entropy policy search. In Advances in Neu-

ral Information Processing Systems 26: 27th Annual Conference on Neural

Information Processing Systems 2013. Proceedings of a meeting held De-

cember 5-8, 2013, Lake Tahoe, Nevada, United States, pages 1583–1591,
2013.

83

A Supplementary Material for
Chapter 3

A.1 Proof of Theorem 3.4.2 Cont.

In the proof of Theorem 3.4.2 we showed that the following optimization problem

qk+1 = arg min
q∈∆(M ,i(k))

KL(q ∥ q̃k+1)

can be reformulated as the following convex optimization problem (from now on we use k

instead of i):

min
q

KL(q ∥ q̃k+1)

s.t. ∑
s∈S

∑
a∈A

∑
s′∈S

qh(s,a,s′) = 1 ∀h = 1, . . . ,H

∑
s′∈S

∑
a∈A

qh(s,a,s′) = ∑
s′∈S

∑
a∈A

qh−1(s′,a,s) ∀h = 2, . . . ,H ∀s ∈S

qh(s,a,s′)− P̄k
h (s
′|s,a) ∑

y∈S
q(s,a,y)≤ ε

k
h(s
′|s,a) ∑

y∈S
q(s,a,y) ∀(s,a,s′,h) ∈S ×A ×S × [H]

P̄k
h (s
′|s,a) ∑

y∈S
qh(s,a,y)−qh(s,a,s′)≤ ε

k
h(s
′|s,a) ∑

y∈S
qh(s,a,y) ∀(s,a,s′,h) ∈S ×A ×S × [H]

qh(s,a,s′)≥ 0 ∀(s,a,s′,h) ∈S ×A ×S × [H].

Now we will derive the solution to this problem using Lagrange multipliers. First we
write the Lagrangian with λ ,β ,µ,µ+,µ− as Lagrange multipliers. Notice that we omit
the non-negativity constraints, which we can justify since the solution will be non-negative

84

anyway.

L (q) = KL(q ∥ q̃k+1)+
H

∑
h=1

λh

(
∑

s∈S
∑

a∈A
∑

s′∈S
qh(s,a,s′)−1

)

+
H

∑
h=2

∑
s∈S

βh(s)

(
∑

a∈A
∑

s′∈S
qh(s,a,s′)− ∑

a∈A
∑

s′∈S
qh−1(s′,a,s)

)

+
H

∑
h=1

∑
s∈S

∑
a∈A

∑
s′∈S

µ
+
h (s,a,s′)

(
qh(s,a,s′)−

(
ε

k
h(s
′|s,a)+ P̄k

h (s
′|s,a)

)
∑

y∈S
qh(s,a,y)

)

+
H

∑
h=1

∑
s∈S

∑
a∈A

∑
s′∈S

µ
−
h (s,a,s′)

(
−qh(s,a,s′)−

(
ε

k
h(s
′|s,a)− P̄k

h (s
′|s,a)

)
∑

y∈S
qh(s,a,y)

)
.

Let (s,a,s′,h)∈S ×A ×S ×[H] and consider the derivative with respect to qh(s,a,s′).
We denote β1(s) = 0 to avoid addressing the edge cases explicitly.

∂L

∂qh(s,a,s′)
= logqh(s,a,s′)− log q̃k+1

h (s,a,s′)+λh +βh(s)−βh+1(s′)

+µ
+
h (s,a,s′)−µ

−
h (s,a,s′)

− ∑
y∈S

(
ε

k
h(s
′|s,a)+ P̄k

h (s
′|s,a)

)
µ
+
h (s,a,y))

− ∑
y∈S

(
ε

k
h(s
′|s,a)− P̄k

h (s
′|s,a)

)
µ
−
h (s,a,y)).

We define the following value function v and error function e parameterized by µ and
β , and an estimated Bellman error.

vµ

h (s,a,s
′) = µ

−
h (s,a,s′)−µ

+
h (s,a,s′)

eµ,β
h (s,a,s′) = ∑

y∈S
(µ−h (s,a,y)+µ

+
h (x,a,y))εk

h(s
′ | s,a)+βh+1(s′)−βh(s)

Bk
h(s,a,s

′ | v,e) = eh(s,a,s′)+ vh(s,a,s′)−ηck
h(s,a)− ∑

y∈S
P̄k

h (y | s,a)vh+1(s,a,y).

So the derivative becomes:

∂L

∂qh(s,a,s′)
= log

qh(s,a,s′)
q̃k+1

h (s,a,s′)
+λh− vµ

h (s,a,s
′)+ ∑

y∈S
P̄k

h (y | s,a)v
µ

h+1(s,a,y)

= logqh(s,a,s′)− log q̃k+1
h (s,a,s′)+λh−ηck

h(s,a)−Bk
h(s,a,s

′ | vµ ,eµ,β).

85

Setting the gradient to zero and using the explicit form of q̃k+1
h (s,a,s′) we obtain

qk+1
h (s,a,s′) = q̃k+1

h (s,a,s′)e−λh+ηck
h(s,a)+Bk

h(s,a,s
′|vµ ,eµ,β)

= qk
h(s,a,s

′)e−ηck
h(s,a)e−λh+ηck

h(s,a)+Bk
h(s,a,s

′|vµ ,eµ,β)

= qk
h(s,a,s

′)e−λh+Bk
h(s,a,s

′|vµ ,eµ,β).

We can use the first constraint to discover that λh is a normalizer for every h= 1, . . . ,H,
i.e.

1 = ∑
s∈S

∑
a∈A

∑
s′∈S

qk+1
h (s,a,s′)

1 = ∑
s∈S

∑
a∈A

∑
s′∈S

qk
h(s,a,s

′)e−λh+Bk
h(s,a,s

′|vµ ,eµ,β)

eλh = ∑
s∈S

∑
a∈A

∑
s′∈S

qk
h(s,a,s

′)eBk
h(s,a,s

′|vµ ,eµ,β),

so defining Zk
h(v,e) = ∑s∈S ∑a∈A ∑s′∈S qk

h(s,a,s
′)eBk

h(s,a,s
′|v,e) , we obtain

qk+1
h (s,a,s′) =

qk
h(s,a,s

′)eBk
h(s,a,s

′|vµ ,eµ,β)

Zk
h(v

µ ,eµ,β)
.

Now to find β and µ we consider the dual problem. Substituting qk+1 back into L we
obtain the following dual problem.

max
β ,µ≥0

min
q

L (q) = max
β ,µ≥0

L (qk+1) = max
β ,µ≥0

−
H

∑
h=1

logZk
h(v

µ ,eµ,β)−1+ ∑
h,s,a,s′

q̃k+1
h (s,a,s′).

So after ignoring constants we observe that

β
k,µk = arg min

β ,µ≥0

H

∑
h=1

logZk
h(v

µ ,eµ,β).

86

A.2 Proof of Theorem 3.5.2

We start with a value difference lemma [SERM20]:

R̂APP
1:K =

K

∑
k=1

V πk

1 (sinit;ck,Pk)−min
π

K

∑
k=1

V π
1 (sinit;ck,P)

=
K

∑
k=1

H

∑
h=1

E
[
⟨Ph(· | sk

h,a
k
h)−Pk

h (· | s
k
h,a

k
h),V

πk

h+1(·;ck,Pk)⟩ | sk
1 = sinit,P,πk

]
≤

K

∑
k=1

H

∑
h=1

∑
s′∈S

E
[
|Ph(s′ | sk

h,a
k
h)−Pk

h (s
′ | sk

h,a
k
h)|V

πk

h+1(s
′;ck,Pk) | sk

1 = sinit,P,πk
]

=
K

∑
k=1

H

∑
h=1

∑
s∈S

∑
a∈A

∑
s′∈S

qπk

h (s,a)|Ph(s′ | sk
h,a

k
h)−Pk

h (s
′ | sk

h,a
k
h)|V

πk

h+1(s
′;ck,Pk)

≤ H
K

∑
k=1

H

∑
h=1

∑
s∈S

∑
a∈A

qπk

h (s,a)∥Ph(· | sk
h,a

k
h)−Pk

h (· | s
k
h,a

k
h)∥1.

Now, we use the fact that the confidence sets contain P with probability 1−δ to obtain:

R̂APP
1:K ≤ H

K

∑
k=1

H

∑
h=1

∑
s∈S

∑
a∈A

qπk

h (s,a)min{2,εk
h(s,a)}

≤ H
K

∑
k=1

H

∑
h=1

∑
s∈S

∑
a∈A

I{sk
h = s,ak

h = a}min{2,εk
h(s,a)}+10H

√
K log

KHSA
δ

≤ 10H

√
S log

KHSA
δ

K

∑
k=1

H

∑
h=1

∑
s∈S

∑
a∈A

I{sk
h = s,ak

h = a}
max{1,Nk

h(s,a)}
+10H

√
K log

KHSA
δ

,

where the second inequality follows by Azuma inequality.

Finally, by [JOA10] we have that:

K

∑
k=1

H

∑
h=1

∑
s∈S

∑
a∈A

I{sk
h = s,ak

h = a}
max{1,Nk

h(s,a)}
≤ 3

H

∑
h=1

∑
s∈S

∑
a∈A

√
NK

h (s,a)

≤ 3H
√

SAK,

where the last inequality follows by Jensen inequality.

87

B Supplementary Material for
Chapter 4

B.1 Efficient Implementation of "Bounded Bandit UC-O-REPS"

In each episode we need to perform (while maintaining confidence sets):

q̃k+1 = argmin
q

η⟨q, ĉk⟩+KL(q ∥ qk) (B.1)

qk+1 = arg min
q∈∆α (M ,i(k))

KL(q ∥ q̃k+1). (B.2)

The confidence sets are maintained like in the original UC-O-REPS algorithm, and
step (B.1) can be easily solved by setting q̃k+1

h (s,a,s′) = qk
h(s,a,s

′)e−η ĉk
h(s,a) for every

(s,a,s′,h) ∈S ×A ×S × [H]. Thus, we need to describe an efficient implementation to
step (B.2). This step can be reformulated as the following constrained convex optimization
problem (from now on we use k instead of i):

min
q

KL(q ∥ q̃k+1)

s.t. ∑
s∈S

∑
a∈A

∑
s′∈S

qh(s,a,s′) = 1 ∀h = 1, . . . ,H

∑
s′∈S

∑
a∈A

qh(s,a,s′) = ∑
s′∈S

∑
a∈A

qh−1(s′,a,s) ∀h = 2, . . . ,H ∀s ∈S

qh(s,a,s′)− P̄k
h (s
′|s,a) ∑

y∈S
q(s,a,y)≤ ε

k
h(s
′|s,a) ∑

y∈S
q(s,a,y) ∀(s,a,s′,h) ∈S ×A ×S × [H]

P̄k
h (s
′|s,a) ∑

y∈S
qh(s,a,y)−qh(s,a,s′)≤ ε

k
h(s
′|s,a) ∑

y∈S
qh(s,a,y) ∀(s,a,s′,h) ∈S ×A ×S × [H]

∑
s′∈S

∑
a∈A

qh(s,a,s′)≥ α ∀h = 1, . . . ,H ∀s ∈S

qh(s,a,s′)≥ 0 ∀(s,a,s′,h) ∈S ×A ×S × [H].

88

Now we will derive the solution to this problem using Lagrange multipliers. First we
write the Lagrangian with λ ,β ,µ,µ+,µ−,g as Lagrange multipliers. Notice that we omit
the non-negativity constraints, which we can justify since the solution will be non-negative
anyway.

L (q) = KL(q ∥ q̃k+1)+
H

∑
h=1

λh

(
∑

s∈S
∑

a∈A
∑

s′∈S
qh(s,a,s′)−1

)

+
H

∑
h=2

∑
s∈S

βh(s)

(
∑

a∈A
∑

s′∈S
qh(s,a,s′)− ∑

a∈A
∑

s′∈S
qh−1(s′,a,s)

)

+
H

∑
h=1

∑
s∈S

∑
a∈A

∑
s′∈S

µ
+
h (s,a,s′)

(
qh(s,a,s′)−

(
ε

k
h(s
′|s,a)+ P̄k

h (s
′|s,a)

)
∑

y∈S
qh(s,a,y)

)

+
H

∑
h=1

∑
s∈S

∑
a∈A

∑
s′∈S

µ
−
h (s,a,s′)

(
−qh(s,a,s′)−

(
ε

k
h(s
′|s,a)− P̄k

h (s
′|s,a)

)
∑

y∈S
qh(s,a,y)

)

+
H

∑
h=1

∑
s∈S

gh(s)

(
α− ∑

s′∈S
∑

a∈A
qh(s,a,s′)

)
.

Let (s,a,s′,h)∈S ×A ×S ×[H] and consider the derivative with respect to qh(s,a,s′).
We denote β1(s) = 0 to avoid addressing the edge cases explicitly.

∂L

∂qh(s,a,s′)
= logqh(s,a,s′)− log q̃k+1

h (s,a,s′)+λh +βh(s)−βh+1(s′)

+µ
+
h (s,a,s′)−µ

−
h (s,a,s′)−gh(s)

− ∑
y∈S

(
ε

k
h(s
′|s,a)+ P̄k

h (s
′|s,a)

)
µ
+
h (s,a,y))

− ∑
y∈S

(
ε

k
h(s
′|s,a)− P̄k

h (s
′|s,a)

)
µ
−
h (s,a,y)).

We define the following value function v and error function e parameterized by µ and
β , and an estimated Bellman error.

vµ

h (s,a,s
′) = µ

−
h (s,a,s′)−µ

+
h (s,a,s′)

eµ,β ,g
h (s,a,s′) = ∑

y∈S
(µ−h (s,a,y)+µ

+
h (x,a,y))εk

h(s
′ | s,a)+βh+1(s′)−βh(s)+gh(s)

Bk
h(s,a,s

′ | v,e) = eh(s,a,s′)+ vh(s,a,s′)−η ĉk
h(s,a)− ∑

y∈S
P̄k

h (y | s,a)vh+1(s,a,y).

89

So the derivative becomes:

∂L

∂qh(s,a,s′)
= log

qh(s,a,s′)
q̃k+1

h (s,a,s′)
+λh− vµ

h (s,a,s
′)+ ∑

y∈S
P̄k

h (y | s,a)v
µ

h+1(s,a,y)

= logqh(s,a,s′)− log q̃k+1
h (s,a,s′)+λh−η ĉk

h(s,a)−Bk
h(s,a,s

′ | vµ ,eµ,β ,g).

Setting the gradient to zero and using the explicit form of q̃k+1
h (s,a,s′) we obtain

qk+1
h (s,a,s′) = q̃k+1

h (s,a,s′)e−λh+η ĉk
h(s,a)+Bk

h(s,a,s
′|vµ ,eµ,β ,g)

= qk
h(s,a,s

′)e−η ĉk
h(s,a)e−λh+η ĉk

h(s,a)+Bk
h(s,a,s

′|vµ ,eµ,β ,g)

= qk
h(s,a,s

′)e−λh+Bk
h(s,a,s

′|vµ ,eµ,β ,g).

We can use the first constraint to discover that λh is a normalizer for every h, i.e.,

1 = ∑
s∈S

∑
a∈A

∑
s′∈S

qk+1
h (s,a,s′)

1 = ∑
s∈S

∑
a∈A

∑
s′∈S

qk
h(s,a,s

′)e−λh+Bk
h(s,a,s

′|vµ ,eµ,β ,g)

eλh = ∑
s∈S

∑
a∈A

∑
s′∈S

qk
h(s,a,s

′)eBk
h(s,a,s

′|vµ ,eµ,β ,g),

so defining Zk
h(v,e) = ∑s∈S ∑a∈A ∑s′∈S qk

h(s,a,s
′)eBk

h(s,a,s
′|v,e) , we obtain

qk+1
h (s,a,s′) =

qk
h(s,a,s

′)eBk
h(s,a,s

′|vµ ,eµ,β ,g)

Zk
h(v

µ ,eµ,β ,g)
.

Now to find β and µ we consider the dual problem. Substituting qk+1 back into L we
obtain the following dual problem.

max
β ,µ≥0,g≥0

min
q

L (q) = max
β ,µ≥0,g≥0

L (qk+1)

= max
β ,µ≥0,g≥0

−
H

∑
h=1

logZk
h(v

µ ,eµ,β ,g)−1+ ∑
h,s,a,s′

q̃k+1
h (s,a,s′)+α ∑

h,s
gh(s).

So after ignoring constants we observe that

β
k,µk,gk = arg min

β ,µ≥0,g≥0

H

∑
h=1

logZk
h(v

µ ,eµ,β ,g)−α ∑
h,s

gh(s).

90

B.2 Pseudo-code for "Bounded Bandit UC-O-REPS"

Algorithm 11 Bounded Bandit UC-O-REPS Algorithm
Parameters: state space S , action space A , number of episodes K, minimum reacha-
bility parameter α , optimization parameter η and confidence parameter δ .
Initialization: i(1) ← 1,N1

h (s,a) ← 0,N1
h (s,a,s

′) ← 0,n1
h(s,a) ← 0,n1

h(s,a,s
′) ←

0,π1
h (a|s)← 1/A,q1

h(s,a,s
′)← 1/(S2A) ∀(s,a,s′,h).

for k = 1, . . . ,K do
Traverse trajectory Uk = (sk

1,a
k
1, . . . ,s

k
H ,a

k
H) using policy πk.

Observe costs ck(Uk) =
{

ck
h(s

k
h,a

k
h)
}H

h=1.
Update in-epoch counters ∀h = 1, . . . ,H:

ni(k)
h (sk

h,a
k
h)← ni(k)

h ((sk
h,a

k
h)+1

ni(k)
h (sk

h,a
k
h,s

k
h+1)← ni(k)

h (sk
h,a

k
h,s

k
h+1)+1.

if ∃(s,a,h) ∈S ×A × [H]. ni(k)
h (s,a)≥ Ni(k)

h (s,a) then
Start new epoch: i(k+1)← i(k)+1.
Initialize epoch counters ∀(s,a,s′,h) ∈ S × A × S × [H]: ni(k+1)

h (s,a) ←
0,ni(k+1)

h (s,a,s′)← 0.
Update total counters ∀(s,a,s′,h) ∈S ×A ×S × [H]:

Ni(k+1)
h (s,a)← Ni(k)

h (s,a)+ni(k)
h (s,a)

Ni(k+1)
h (s,a,s′)← Ni(k)

h (s,a,s′)+ni(t)
h (s,a,s′).

Compute transition estimate ∀(s,a,s′,h): P̄i(k+1)
h (s′|s,a)← Ni(k+1)

h (s,a,s′)

max{1,Ni(k+1)
h (s,a)}

.

else
Continue in the same epoch: i(k+1)← i(k).

end if
compute policy for next episode:

qk+1,πk+1← Comp-Policy(S ,A ,K,α,η ,δ ,qk, P̄i(k+1),Ni(k+1),ck(Uk)).

end for

91

Algorithm 12 Comp-Policy Procedure
Input: state space S , action space A , number of episodes K, minimum reachability
parameter α , optimization parameter η and confidence parameter δ , previous occu-
pancy measure qk, transition function estimate P̄i(k), visit counters Ni(k) and obtained
losses ck(Uk).

Compute cost function estimate:

ĉk
h(s,a) =


ck

h(s,a)
qk

h(s,a)
, if sk

h = s and ak
h = a

0, otherwise

Compute confidence set size parameter:

ε
i(k)
h (s,a) =

√√√√ 2S log KHSA
δ

max{1,Ni(k)
h (s,a)}

.

Define functions:

vµ

h (s,a,s
′) = µ

−
h (s,a,s′)−µ

+
h (s,a,s′)

eµ,β ,g
h (s,a,s′) = ∑

y∈S
(µ−h (s,a,y)+µ

+
h (x,a,y))εk

h(s
′ | s,a)+βh+1(s′)−βh(s)+gh(s)

Bk
h(s,a,s

′ | v,e) = eh(s,a,s′)+ vh(s,a,s′)−η ĉk
h(s,a)− ∑

y∈S
P̄k

h (y | s,a)vh+1(s,a,y)

Zk
h(v,e) = ∑

s∈S
∑

a∈A
∑

s′∈S
qk

h(s,a,s
′)eBk

h(s,a,s
′|v,e)

Solve optimization problem:

β
k,µk,gk = arg min

β ,µ≥0,g≥0

H

∑
h=1

logZk
h(v

µ ,eµ,β ,g)−α ∑
h,s

gh(s).

Compute next occupancy measure ∀(s,a,s′,h) ∈S ×A ×S × [H]:

qk+1
h (s,a,s′) =

qk
h(s,a,s

′)eBk
h(s,a,s

′|vµ ,eµ,β ,g)

Zk
h(v

µ ,eµ,β ,g)
.

Compute next policy ∀(s,a,h) ∈S ×A × [H]:

π
k+1
h (a | s) = ∑s′∈S qk+1

h (s,a,s′)

∑b∈A ∑s′∈S qk+1
h (s,b,s′)

.

92

B.3 Pseudo-code for "Shifted Bandit UC-O-REPS"

Algorithm 13 Shifted Bandit UC-O-REPS Algorithm
Parameters: state space S , action space A , number of episodes K, perturbation pa-
rameter ρ , optimization parameter η and confidence parameter δ .
Initialization: i(1) ← 1,N1

h (s,a) ← 0,N1
h (s,a,s

′) ← 0,n1
h(s,a) ← 0,n1

h(s,a,s
′) ←

0,π1
h (a|s)← 1/A,q1

h(s,a,s
′)← 1/(S2A) ∀(s,a,s′,h).

for k = 1, . . . ,K do
Traverse trajectory Uk = (sk

1,a
k
1, . . . ,s

k
H ,a

k
H) using policy πk.

Observe costs ck(Uk) =
{

ck
h(s

k
h,a

k
h)
}H

h=1.

Update in-epoch counters ∀h = 1, . . . ,H: ni(k)
h (sk

h,a
k
h) ← ni(k)

h ((sk
h,a

k
h) +

1,ni(k)
h (sk

h,a
k
h,s

k
h+1)← ni(k)

h (sk
h,a

k
h,s

k
h+1)+1.

if ∃(s,a,h) ∈S ×A × [H]. ni(k)
h (s,a)≥ Ni(k)

h (s,a) then
Start new epoch: i(k+1)← i(k)+1.
Initialize epoch counters ∀(s,a,s′,h) ∈ S × A × S × [H]: ni(k+1)

h (s,a) ←
0,ni(k+1)

h (s,a,s′)← 0.

Update total counters ∀(s,a,s′,h) ∈ S × A × S × [H]: Ni(k+1)
h (s,a) ←

Ni(k)
h (s,a)+ni(k)

h (s,a),Ni(k+1)
h (s,a,s′)← Ni(k)

h (s,a,s′)+ni(t)
h (s,a,s′).

Compute transition estimate ∀(s,a,s′,h): P̄i(k+1)
h (s′|s,a)← Ni(k+1)

h (s,a,s′)

max{1,Ni(k+1)
h (s,a)}

.

Compute perturbed transition estimate ∀(s,a,s′,h):

P̃i(k+1)
h (s′|s,a)← (1−ρ)P̄i(k+1)

h (s′|s,a)+ ρ

S
.

else
Continue in the same epoch: i(k+1)← i(k).

end if
Compute next episode policy:

qk+1,πk+1← Comp-Policy(S ,A ,K,
ρ

S
,η ,δ ,qt , P̃i(k+1),Ni(k+1),ck(Uk)).

end for

93

94

C Supplementary Material for
Chapter 5

C.1 Algorithm

Algorithm 14 HOEFFDING-TYPE CONFIDENCE BOUNDS

input: state space S , action space A and confidence parameter δ .
initialization: arbitrary policy π̃ , m← 1, B̃← cmin,C1← 0,∀(s,a,s′) ∈S ×A ×S :
N(s,a,s′)← 0,N(s,a)← 0.
for k = 1,2, . . . do

set s← sinit.
while s ̸= g do

follow optimistic optimal policy: a← π̃(s), and suffer cost: Cm←Cm + c(s,a).
observe next state s′ ∼ P(· | s,a).
update visit counters: N(s,a,s′)← N(s,a,s′)+1,N(s,a)← N(s,a)+1.
if N(s′, π̃(s′))≤ 5000B̃2S

c2
min

log B̃SA
δcmin

or s′ = g or Cm ≥ 24B̃ log 4m
δ

then

if Cm ≥ 24B̃ log 4m
δ

then
update B⋆ estimate: B̃← 2B̃.

end if
advance intervals counter: m← m+1, and initialize suffered cost: Cm← 0.
compute empirical transition function P̄ for every (s,a,s′) ∈S ×A ×S :

P̄(s′ | s,a) = N(s,a,s′)
max{N(s,a),1}

.

compute policy π̃ that minimizes the expected cost w.r.t a transition function P̃,

such that for every (s,a):
∥∥P̃(· | s,a)− P̄(· | s,a)

∥∥
1 ≤ 5

√
S log(SAN+(s,a)/δ)

N+(s,a)
.

end if
set s← s′.

end while
end for 95

C.2 Proofs

C.2.1 Proofs for Section 5.3.1

Proof of Theorem 5.3.3

Lemma (restatement of Theorem 5.3.3). With probability at least 1− δ/2, Ωm holds and

∑
Hm

h=1 c(sm
h ,a

m
h)≤ 24B⋆ log 4m

δ
for all intervals m simultaneously. This implies that the total

number of steps of the algorithm is

T = O
(

KB⋆

cmin
log

KB⋆SA
δcmin

+
B3
⋆S2A
c3

min
log2 KB⋆SA

δcmin

)
.

Lemma C.2.1. The event Ωm holds for all intervals m simultaneously with probability at

least 1−δ/4.

Proof. Fix a state s and an action a. Consider an infinite sequence {Zi}∞
i=1 of draws from

the distribution P(· | s,a). By Theorem C.4.2 we get that for a prefix of length t of this
sequence (that is {Zi}ti=1)

∥∥P(· | s,a)− P̄{Zi}ti=1
(· | s,a)

∥∥
1 ≤ 2

√
S log(δ−1

t)

t
,

holds with probability 1− δt , where P̄{Zi}ti=1
(· | s,a) is the empirical distribution defined

by the draws {Zi}ti=1. We repeat this argument for every prefix {Zi}ti=1 of {Zi}∞
i=1 and for

every state-action pair, with δt = δ/8SAt2. Then from the union bound we get that Ωm

holds for all intervals m simultaneously with probability at least 1−δ/4.

Lemma C.2.2. Let m be an interval. If Ωm holds then Ṽ m(s) ≤ V ⋆(s) ≤ B⋆ for every

s ∈S .

Proof. [TGV+20] show that all the transition functions in the confidence set of Equa-
tion (5.3) can be combined into a single augmented MDP. The optimal policy of the aug-
mented MDP can be found efficiently, e.g., with Extended Value Iteration. The optimistic
policy is the optimal policy in the augmented MDP. It minimizes Ṽ m(s) over all policies
and feasible transition functions, for all states s ∈S simultaneously (following [BT91]).
Since Ωm holds, it follows that the real transition function is in the confidence set there-
fore it is also considered in the minimization. Thus Ṽ m(s)≤V ⋆(s) for all s ∈S . Finally,
V ⋆(s)≤ B⋆ by the definition of B⋆.

96

Lemma C.2.3. Let m be an interval and (s,a) be a known state-action pair. If Ωm holds

then

∥P̃m(· | s,a)−P(· | s,a)∥1 ≤
c(s,a)
2B⋆

.

Proof. By the definition of the confidence set

∥P̃m(· | s,a)− P̄m(· | s,a)∥1 ≤ 5

√
S log

(
SANm

+(s,a)/δ
)

Nm
+(s,a)

≤ c(s,a)
4B⋆

,

where the last inequality follows because log(x)/x is decreasing, and since (s,a) is known
Nm
+(s,a)≥

5000B2
⋆S

c2
min

log B⋆SA
δcmin

. Similarly, since Ωm holds we also have that

∥P(· | s,a)− P̄m(· | s,a)∥1 ≤ 5

√
S log

(
SANm

+(s,a)/δ
)

Nm
+(s,a)

≤ c(s,a)
4B⋆

,

and the lemma follows by the triangle inequality.

Lemma C.2.4. Let π̃ be a policy and P̃ be a transition function. Denote the cost-to-go of

π̃ with respect to P̃ by Ṽ . Assume that for every s ∈S , Ṽ (s)≤ B⋆ and that

∥∥P̃(· | s, π̃(s))−P(· | s, π̃(s))
∥∥

1 ≤
c(s, π̃(s))

2B⋆
.

Then, π̃ is proper (with respect to P), and it holds that V π̃(s)≤ 2B⋆ for every s ∈S .

Proof. Consider the Bellman equations of π̃ with respect to transition function P̃ at some
state s ∈S (see Theorem 2.2.2), defined as

Ṽ (s) = c(s, π̃(s))+ ∑
s′∈S

P̃(s′ | s, π̃(s))Ṽ (s′)

= c(s, π̃(s))+ ∑
s′∈S

P(s′ | s, π̃(s))Ṽ (s′) (C.1)

+ ∑
s′∈S

Ṽ (s′)
(

P̃(s′ | s, π̃(s))−P(s′ | s, π̃(s))
)
.

97

Notice that by our assumptions and using Hölder inequality,∣∣∣∣∣ ∑
s′∈S

Ṽ (s′)
(

P̃(s′ | s, π̃(s))−P(s′ | s, π̃(s))
)∣∣∣∣∣≤

≤ ∥P̃(· | s, π̃(s))−P(· | s, π̃(s))∥1 · ∥Ṽ ∥∞

≤ c(s, π̃(s))
2B⋆

·B⋆ =
c(s, π̃(s))

2
.

Plugging this into Equation (C.1), we obtain

Ṽ (s)≥ c(s, π̃(s))+ ∑
s′∈S

P(s′ | s, π̃(s))Ṽ (s′)− c(s, π̃(s))
2

=
c(s, π̃(s))

2
+ ∑

s′∈S
P(s′ | s, π̃(s))Ṽ (s′).

Therefore, defining V ′ = 2Ṽ , then V ′(s) ≥ c(s, π̃(s))+∑s′∈S P(s′ | s, π̃(s))V ′(s′) for
all s ∈S . The statement now follows by Theorem 2.2.2.

Lemma C.2.5. Let π be a proper policy such that for some v > 0, V π(s) ≤ v for every

s ∈S . Then, the probability that the cost of π to reach the goal state from any state s is

more than m, is at most 2e−m/4v for all m ≥ 0. Note that a cost of at most m implies that

the number of steps is at most m
cmin

.

Proof. By Markov inequality, the probability that π accumulates cost of more than 2v

before reaching the goal state is at most 1/2. Iterating this argument, we get that the
probability that π accumulates cost of more than 2kv before reaching the goal state is at
most 2−k for every integer k ≥ 0. In general, for any m≥ 0, the probability that π suffers
a cost of more than m is at most 2−⌊m/2v⌋ ≤ 2 ·2−m/2v ≤ 2e−m/4v.

For the next lemma we will need the following definitions. The trajectory visited in
interval m is denoted by Um = (sm

1 ,a
m
1 , . . . ,s

m
Hm,am

Hm,sm
Hm+1) where am

h is the action taken
in sm

h , and Hm is the length of the interval. In addition, the concatenation of the trajectories
in the intervals up to and including interval m is denoted by Ūm = ∪m

m′=1Um′ .

Lemma C.2.6. Let m be an interval. For all r ≥ 0, we have that

Pr

[
Hm

∑
h=1

c
(
sm

h ,a
m
h
)
I{Ωm}> r | Ūm−1

]
≤ 3e−r/8B⋆.

98

Proof. Note that Ωm is determined given Ūm−1, and suppose that Ωm holds otherwise

∑
Hm

h=1 c
(
sm

h ,a
m
h

)
I{Ωm} is 0. Also assume that r ≥ 8B⋆ or else the statement holds trivially.

Define the MDP Mknow = (Sknow,A,Pknow,c,sinit) in which every state s ∈ S such
that (s, π̃m(s)) is unknown is contracted into the goal state. Let Pknow be the transition
function induced in Mknow by P, and let V m

know be the cost-to-go of π̃m in Mknow with
respect to Pknow. Similarly, define P̃know

m as the transition function induced in Mknow by
P̃m, and Ṽ m

know as the cost-to-go of π̃m in Mknow with respect to P̃know
m . It is clear that

Ṽ m
know(s)≤ Ṽ m(s) for every s ∈S , so by Theorem C.2.2, Ṽ m

know(s)≤ B⋆. Moreover, since
all the states s ∈S for which (s, π̃m(s)) is unknown were contracted to the goal state, we
can use Theorem C.2.3 to obtain for all s ∈S know:

∥∥P̃know
m (· | s, π̃m(s))−Pknow(· | s, π̃m(s))

∥∥
1 ≤

∥∥P̃m(· | s, π̃m(s))−P(· | s, π̃m(s))
∥∥

1

≤ c(s, π̃m(s))
2B⋆

. (C.2)

We can apply Theorem C.2.4 in Mknow and obtain that V m
know(s) ≤ 2B⋆ for every s ∈

S know. Notice that reaching the goal state in Mknow is equivalent to reaching the goal
state or an unknown state-action pair in M, and also recall that all state-action pairs in the
interval are known except for the first one. Thus, from Theorem C.2.5,

Pr

[
Hm

∑
h=2

c
(
sm

h ,a
m
h
)
I{Ωm}> r−B⋆ | Ūm−1

]
≤ 2e−(r−B⋆)/8B⋆ ≤ 3e−r/8B⋆.

Since Ṽ m ≤ B⋆, our algorithm will never select an action whose instantaneous cost is
larger than B⋆. Since the first state-action in the interval might not be known, its cost is at
most B⋆, and therefore

Pr

[
Hm

∑
h=1

c
(
sm

h ,a
m
h
)
I{Ωm}> r | Ūm−1

]
≤ Pr

[
Hm

∑
h=2

c
(
sm

h ,a
m
h
)
I{Ωm}> r−B⋆ | Ūm−1

]
≤ 3e−r/8B⋆ .

Proof of Theorem 5.3.3. From Theorem C.2.6, with probability at least 1−δ/16m2,

Hm

∑
h=1

c
(
sm

h ,a
m
h
)
≤ 24B⋆ log

4m
δ

,

99

and by the union bound this holds for all intervals m simultaneously with probability at
least 1−δ/4. By Theorem C.2.1, with probability 1−δ/4, Ωm holds for all intervals m.
Combining these two facts again by a union bound, we get that both Ωm holds and the cost
of interval m is at most 24B⋆ log 4m

δ
simultaneously to all intervals m with probability at

least 1−δ/2.

If the cost of all intervals is bounded (and therefore so is the length of the interval), we
can use the bound on the number of intervals in Observation 5.3.2 to conclude that

T = O
(

B⋆

cmin
log

M
δ
·
(

K +
B2
⋆S2A
c2

min
log

B⋆SA
δcmin

))
= O

(
KB⋆

cmin
log

KB⋆SA
δcmin

+
B3
⋆S2A
c3

min
log2 KB⋆SA

δcmin

)
.

Proof of Theorem 5.3.4

Lemma (restatement of Theorem 5.3.4). With probability at least 1−δ/2, we have

R̃K ≤
5000B3

⋆S2A
c2

min
log

B⋆SA
cminδ

+B⋆

√
T log

4T
δ

+10B⋆

√
S log

SAT
δ

∑
s,a

M

∑
m=1

nm(s,a)√
Nm
+(s,a)

.

To analyze R̃K , we begin by plugging in the Bellman optimality equation of π̃m with
respect to P̃m into R̃K . This allows us to decompose R̃K into three terms as follows.

R̃K =
M

∑
m=1

Hm

∑
h=1

(
Ṽ m(sm

h)− ∑
s′∈S

P̃m(s′ | sm
h ,a

m
h)Ṽ

m(s′)

)
I{Ωm}−K ·V ⋆(sinit)

=
M

∑
m=1

Hm

∑
h=1

(
Ṽ m(sm

h)−Ṽ m(sm
h+1)

)
I{Ωm}−K ·V ⋆(sinit) (C.3)

+
M

∑
m=1

Hm

∑
h=1

∑
s′∈S

Ṽ m(s′)
(

P(s′ | sm
h ,a

m
h)− P̃m(s′ | sm

h ,a
m
h)
)

I{Ωm} (C.4)

+
M

∑
m=1

(
Hm

∑
h=1

Ṽ m(sm
h+1)− ∑

s′∈S
P(s′ | sm

h ,a
m
h)Ṽ

m(s′)

)
I{Ωm}. (C.5)

Equation (C.3) is a bound on the cost suffered from switching policies each time we
visit an unknown state-action pair and is bounded by the following lemma.

100

Lemma C.2.7. ∑
M
m=1 ∑

Hm

h=1

(
Ṽ m(sm

h)−Ṽ m(sm
h+1)

)
I{Ωm} ≤ B⋆SA · 5000B2

⋆S
c2

min
log B⋆SA

δcmin
+K ·

V ⋆(sinit).

Proof. Note that per interval ∑
Hm

h=1(Ṽ
m(sm

h)−Ṽ m(sm
h+1)) is a telescopic sum which equals

Ṽ m(sm
1)− Ṽ m(sm

Hm+1). Furthermore, for every two consecutive intervals m,m+ 1 one of
the following occurs:

(i) If interval m ended in the goal state then Ṽ m(sm
Hm+1)= Ṽ m(g)= 0 and Ṽ m+1(sm+1

1)=

Ṽ m+1(sinit). Thus, using Theorem C.2.2 for the last inequality,

Ṽ m+1(sm+1
1)I{Ωm+1}−Ṽ m(sm

Hm+1)I{Ωm}= Ṽ m+1(sinit)I{Ωm+1} ≤V ⋆(sinit).

This happens at most K times.

(ii) If interval m ended in an unknown state then

Ṽ m+1(sm+1
1)I{Ωm+1}−Ṽ m(sm

Hm+1)I{Ωm} ≤ Ṽ m+1(sm+1
1)I{Ωm+1} ≤ B⋆.

This happens at most SA · 5000B2
⋆S

c2
min

log B⋆SA
δcmin

times.

Theorem C.2.8 bounds Equation (C.4) using techniques borrowed from [JOA10].

Lemma C.2.8. It holds that

M

∑
m=1

Hm

∑
h=1

∑
s′∈S

Ṽ m(s′)
(

P(s′ | sm
h ,a

m
h)− P̃m(s′ | sm

h ,a
m
h)
)

I{Ωm} ≤ 10B⋆

√
S log

SAT
δ

∑
s,a

M

∑
m=1

nm(s,a)√
Nm
+(s,a)

.

Proof. Using the definition of the confidence sets we obtain

M

∑
m=1

Hm

∑
h=1

∑
s′∈S

Ṽ m(s′)
(

P(s′ | sm
h ,a

m
h)− P̃m(s′ | sm

h ,a
m
h)
)

I{Ωm} ≤

≤ B⋆ ∑
s∈S

∑
a∈A

M

∑
m=1

nm(s,a)∥P(· | s,a)− P̃m(· | s,a)∥1I{Ωm}

≤ 10B⋆ ∑
s∈S

∑
a∈A

M

∑
m=1

nm(s,a)

√
S log

(
SANm

+(s,a)/δ
)

Nm
+(s,a)

≤ 10B⋆

√
S log

SAT
δ

∑
s∈S

∑
a∈A

M

∑
m=1

nm(s,a)√
Nm
+(s,a)

.

101

where the first inequality follows from Hölder inequality and Theorem C.2.2, and the
second because P̃m and P are both in the confidence set of Equation (5.3) when Ωm holds.
The third inequality follows because Nm

+(s,a)≤ T .

Theorem C.2.9 bounds the term in Equation (C.5) using Azuma’s concentration in-
equality.

Lemma C.2.9. With probability at least 1−δ/2,

M

∑
m=1

(
Hm

∑
h=1

Ṽ m(sm
h+1)− ∑

s′∈S
P(s′ | sm

h ,a
m
h)Ṽ

m(s′)

)
I{Ωm} ≤ B⋆

√
T log

4T
δ
.

Proof. Consider the infinite sequence of random variables

Xt =

(
Ṽ m(sm

h+1)− ∑
s′∈S

P(s′ | sm
h , π̃

m(sm
h))Ṽ

m(s′)

)
I{Ωm},

where m is the interval containing time t, and h is the index of time step t within interval
m. Notice that this is a martingale difference sequence, and |Xt | ≤ B⋆ by Theorem C.2.2.
Now, we apply anytime Azuma’s inequality (Theorem C.4.1) to any prefix of the sequence
{Xt}∞

t=1. Thus, with probability at least 1−δ/2, for every T :

T

∑
t=1

Xt ≤ B⋆

√
T log

4T
δ
.

Proof of Theorem 5.3.1

Theorem (restatement of Theorem 5.3.1). Suppose that Theorem 5.2.1 holds. With proba-
bility at least 1−δ the regret of Algorithm 6 is bounded as follows:

RK = O

(√
B3
⋆S2AK
cmin

log
KB⋆SA
δcmin

+
B3
⋆S2A
c2

min
log3/2 KB⋆SA

δcmin

)
.

Lemma C.2.10. Assume that the number of steps in every interval is is at most 24B⋆
cmin

log 4m
δ

.

Then for every s ∈S and a ∈ A,

M

∑
m=1

nm(s,a)√
Nm
+(s,a)

≤ 3
√

NM+1(s,a) .

102

Proof. We claim that, by the assumption of the lemma, for every interval m we have that
nm(s,a)≤ Nm

+(s,a). Indeed, if (s,a) is unknown then nm(s,a) = 1 and since Nm
+(s,a)≥ 1

the claim follows. If (s,a) is known then Nm
+(s,a)≥

5000B2
⋆S

c2
min

log B⋆SA
δcmin

and by our assump-

tion the length of the interval, and in particular nm(s,a), is at most 24B⋆
cmin

log 4m
δ

. Our state-
ment then follows by [JOA10, Lemma 19].

Proof of Theorem 5.3.1. With probability at least 1− δ , both Theorems C.2.9 and 5.3.3
hold. Theorem 5.3.3 states that the length of every interval is at most 24B⋆

cmin
log 4m

δ
, and

Theorem C.2.10 obtains

∑
s∈S

∑
a∈A

M

∑
m=1

nm(s,a)√
Nm
+(s,a)

≤ 3 ∑
(s,a)∈S×A

√
NM+1(s,a)≤ 3

√
SAT , (C.6)

where the last inequality follows from Jensen’s inequality and the fact that

∑
s,a)∈S×A

NM+1(s,a)≤ T.

Next, we sum the bounds of Theorems C.2.7 to C.2.9 and use Equation (C.6) to obtain

RK ≤ 5000
B3
⋆S2A
c2

min
log

B⋆SA
δcmin

+30B⋆S

√
AT log

SAT
δ

+B⋆

√
T log

4T
δ
.

To finish the proof use Theorem 5.3.3 to bound T .

C.2.2 Proofs for Section 5.4.1

Proof of Theorem 5.4.2

Lemma (restatement of Theorem 5.4.2). With probability at least 1− δ/2, Ωm holds for
all intervals m simultaneously.

Proof. Fix a triplet (s,a,s′) ∈ S ×A ×S +. Consider an infinite sequence (Zi)
∞
i=1 of

draws from the distribution P(· | s,a) and let Xi = I{Zi = s′}. We apply Equation (C.18)
of Theorem C.4.3 with δt =

δ

4S2At2 to a prefix of length t of the sequence (Xi)
∞
i=1. Then

divide Equation (C.18) by t and obtain that, after simplifying using the assumptions that
S ≥ 2 and A ≥ 2, Equation (5.5) holds with probability 1− δt . We repeat this argument
for every prefix (Zi)

t
i=1 of (Zi)

∞
i=1 and for every state-action-state triplet. Then from the

union bound we get that Ωm holds for all intervals m simultaneously with probability at
least 1−δ/2.

103

Proof of Theorem 5.4.3

Lemma (restatement of Theorem 5.4.3). It holds that

R̃M =
M

∑
m=1

(
Hm

∑
h=1

Ṽ m(sm
h)−Ṽ m(sm

h+1)

)
I{Ωm}−K ·V ⋆(sinit)

+
M

∑
m=1

(
Hm

∑
h=1

Ṽ m(sm
h+1)− ∑

s′∈S
P̃m(s′ | sm

h ,a
m
h)Ṽ

m(s′)

)
I{Ωm}.

Lemma C.2.11. Let m be an interval. If Ωm holds then π̃m satisfies the Bellman equations

in the optimistic model:

Ṽ m(s) = c(s, π̃m(s))+ ∑
s′∈S

P̃m(s′ | s, π̃ i(s))Ṽ m(s′), ∀s ∈S .

Proof. Note that the Bellman equations hold in the optimistic model since as we defined
this model, there is a nonzero probability of transition to the goal state by any action from
every state. Thus in the optimistic model every policy is a proper policy and in particular
Theorem 2.2.3 holds.

Proof of Theorem 5.4.3. By Theorem C.2.11, we can use the Bellman equations in the
optimistic model to have the following interpretation of the costs for every interval m and
time h:

c(sm
h ,a

m
h)I{Ω

m}=

(
Ṽ m(sm

h)− ∑
s′∈S

P̃i(s′ | sm
h ,a

m
h)Ṽ

m(s′)

)
I{Ωm}

=

(
Ṽ m(sm

h)−Ṽ m(sm
h+1)

)
I{Ωm}+

(
Ṽ m(sm

h+1)− ∑
s′∈S

P̃i(s′ | sm
h ,a

m
h)Ṽ

m(s′)

)
I{Ωm}.

(C.7)

We now write R̃M = ∑
M
m=1 ∑

Hm

h=1 c(sm
h ,a

m
h)I{Ω

m}−K ·V ⋆(sinit), and substitute for each cost
using Equation (C.7) to get the lemma.

Proof of Theorem 5.4.4

Lemma (restatement of Theorem 5.4.4). It holds that

M

∑
m=1

(Hm

∑
h=1

Ṽ m(sm
h)−Ṽ m(sm

h+1)
)
I{Ωm}−K ·V ⋆(sinit)≤ 2B⋆SA logT.

104

Lemma C.2.12. Let m be an interval. If Ωm holds then Ṽ m(s) ≤ V ⋆(s) ≤ B⋆ for every

s ∈S .

Proof. Denote by P̃ the transition function computed by Algorithm 7 at the beginning of
epoch i(m), and by Ṽ the cost-to-go with respect to P̃. We claim that for every proper
policy π and state s ∈S , Ṽ π(s)≤V π(s). Then, the lemma follows easily since Ṽ m(s)≤
Ṽ π⋆

(s)≤V π⋆
(s)≤ B⋆.

Indeed, let s ∈S and consider the Bellman equations of π with respect to P:

V π(s) = c(s,π(s))+ ∑
s′∈S

P(s′ | s,π(s))V π(s′)≥ c(s,π(s))+ ∑
s′∈S

P̃(s′ | s,π(s))V π(s′),

where the inequality follows because P̃(s′ | s,a) ≤ P(s′ | s,a) for every (s,a,s′) ∈ S ×
A ×S . This holds since P is in the confidence set of Equation (5.5) (as Ωm holds), and
by the way P̃ is computed in Algorithm 7. Therefore, by Theorem 2.2.2 we obtain that
V π(s)≥ Ṽ π(s) for every s ∈S as required.

Proof of Theorem 5.4.4. For every two consecutive intervals m,m+1, denoting i = i(m),
we have one of the following:

(i) If interval m ended in the goal state then Ṽ i(m)(sm
Hm+1) = Ṽ i(m)(g) = 0. Moreover, it

holds that Ṽ i(m+1)(sm+1
1) = Ṽ i(m+1)(sinit). Therefore, by Theorem C.2.12,

Ṽ i(m+1)(sm+1
1)I{Ωm+1}−Ṽ i(m)(sm

Hm+1)I{Ωm}= Ṽ i(m+1)(sinit)I{Ωm+1} ≤V ⋆(sinit).

This happens at most K times.

(ii) If interval m ended in an unknown state-action pair or since the cost reached B⋆, and
we stay in the same epoch, then i(m) = i(m+1) = i and sm+1

1 = sm
Hm+1. Thus

Ṽ i(m+1)(sm+1
1)I{Ωm+1}−Ṽ i(m)(sm

Hm+1)I{Ωm}=

= Ṽ i(sm+1
1)I{Ωm}−Ṽ i(sm

Hm+1)I{Ωm}= 0.

(iii) If interval m ended by doubling the visit count to some state-action pair, then we
start a new epoch. Thus by Theorem C.2.12,

Ṽ i(m+1)(sm+1
1)I{Ωm+1}−Ṽ i(m)(sm

Hm+1)I{Ωm} ≤ Ṽ i+1(sm+1
1)I{Ωm+1} ≤ B⋆,

105

This happens at most 2SA logT times.

To conclude, we have

M

∑
m=1

(
Hm

∑
h=1

Ṽ i(m)(sm
h)−Ṽ i(m)(sm

h+1)

)
I{Ωm}−KV ⋆(sinit)≤ KV ⋆(sinit)+2B⋆SA logT −KV ⋆(sinit)

= 2B⋆SA logT.

Proof of Theorem 5.4.5

Lemma (restatement of Theorem 5.4.5). With probability at least 1− δ/4, the following
holds for all M = 1,2, . . . simultaneously.

M

∑
m=1

(
Hm

∑
h=1

Ṽ m(sm
h+1)− ∑

s′∈S
P̃m(s′ | sm

h ,a
m
h)Ṽ

m(s′)

)
I{Ωm}

≤
M

∑
m=1

E

[(
Hm

∑
h=1

Ṽ m(sm
h+1)− ∑

s′∈S
P̃m(s′ | sm

h ,a
m
h)Ṽ

m(s′)

)
I{Ωm} | Ūm−1

]
+3B⋆

√
M log

8M
δ

.

Proof. Consider the following martingale difference sequence (Xm)∞
m=1 defined by

Xm =
Hm

∑
h=1

(
Ṽ m(sm

h+1)− ∑
s′∈S

P̃m(s′ | sm
h ,a

m
h)Ṽ

m(s′)
)
I{Ωm}.

The Bellman optimality equations of π̃m with respect to P̃m (Theorem C.2.11) obtain

|Xm|=
∣∣∣∣(Ṽ m(sm

Hm+1)−Ṽ m(sm
1)︸ ︷︷ ︸

≤B⋆

+
Hm

∑
h=1

c(sm
h ,a

m
h)︸ ︷︷ ︸

≤2B⋆

)
I{Ωm}

∣∣∣∣≤ 3B⋆,

where the inequality follows from Theorem C.2.12 and the fact that the total cost within
each interval at most 2B⋆ by construction. Therefore, we use anytime Azuma’s inequality
(Theorem C.4.1) to obtain that with probability at least 1−δ/4:

M

∑
m=1

Xm ≤
M

∑
m=1

E
[
Xm | Ūm−1]+3B⋆

√
M log

8M
δ

.

106

Proof of Theorem 5.4.6

Lemma (restatement of Theorem 5.4.6). For every interval m and time h, denote Am
h =

log(SANm
+(s

m
h ,a

m
h)/δ)

Nm
+(s

m
h ,a

m
h)

. Then,

E

[(
Hm

∑
h=1

Ṽ m(sm
h+1)− ∑

s′∈S
P̃m(s′ | sm

h ,a
m
h)Ṽ

m(s′)

)
I{Ωm} | Ūm−1

]

≤ 16 ·E

[
Hm

∑
h=1

√
SVm

h Am
h I{Ωm}

∣∣∣∣ Ūm−1

]
+272 ·E

[
Hm

∑
h=1

B⋆SAm
h I{Ωm}

∣∣∣∣ Ūm−1

]
,

where Vm
h is the empirical variance defined as

Vm
h = ∑

s′∈S +

P(s′ | sm
h ,a

m
h)

(
Ṽ m(s′)− ∑

s′′∈S +

P(s′′ | sm
h ,a

m
h)Ṽ

m(s′′)

)2

.

The next lemma gives a different interpretation to the confidence bounds of Equa-
tion (5.5), and will be useful in the proofs that follow.

Lemma C.2.13. Denote Am
h = log(SANm

+(s,a)/δ)/Nm
+(s,a). When Ωm holds we have for

any (s,a,s′) ∈S ×A ×S +:

∣∣P(s′ | s,a)− P̃m(s′ | s,a)
∣∣≤ 8

√
P(s′ | s,a)Am

h +136Am
h .

Proof. Since Ωm holds we have for all (s,a,s′) ∈S ×A ×S + that

P̄m(s′ | s,a)−P(s′ | s,a)≤ 4
√

P̄m(s′ | s,a)Am
h +28Am

h .

This is a quadratic inequality in
√

P̄m(s′ | s,a). Using the fact that x2 ≤ a · x+ b implies
x≤ a+

√
b with a = 4

√
Am

h and b = P(s′ | s,a)+28Am
h , we have√

P̄m(s′ | s,a)≤ 4
√

Am
h +

√
P(s′ | s,a)+28Am

h ≤
√

P(s′ | s,a)+10
√

Am
h ,

where we used the inequality
√

x+ y ≤
√

x +
√

y that holds for any x ≥ 0 and y ≥ 0.
Substituting back into Equation (5.5) obtains

∣∣P(s′ | s,a)− P̄m(s′ | s,a)
∣∣≤ 4

√
P(s′ | s,a)Am

h +68Am
h .

107

From a similar argument

∣∣P̃m(s′ | s,a)− P̄m(s′ | s,a)
∣∣≤ 4

√
P(s′ | s,a)Am

h +68Am
h .

Using the triangle inequality finishes the proof.

Proof of Theorem 5.4.6. Denote Xm =
(
∑

Hm

h=1 Ṽ m(sm
h+1)−∑s′∈S P̃m(s′ | sm

h ,a
m
h)Ṽ

m(s′)
)
I{Ωm},

and Zm
h =

(
Ṽ m(sm

h+1)−∑s′∈S P(s′ | sm
h ,a

m
h)Ṽ

m(s′)
)
I{Ωm}. Think of the interval as an in-

finite stochastic process, and note that, conditioned on Ūm−1,
(
Zm

h

)∞

h=1 is a martingale
difference sequence w.r.t (Uh)∞

h=1, where Uh is the trajectory of the learner from the be-
ginning of the interval and up to and including time h. This holds since, by conditioning
on Ūm−1, Ωm is determined and is independent of the randomness generated during the
interval. Note that Hm is a stopping time with respect to (Zm

h)
∞
h=1 which is bounded by

2B⋆/cmin. Hence by the optional stopping theorem E[∑Hm

h=1 Zm
h | Ū

m−1] = 0, which gets us

E[Xm | Ūm−1] = E

[
Hm

∑
h=1

(
Ṽ m(sm

h+1)− ∑
s′∈S

P̃m(s′ | sm
h ,a

m
h)Ṽ

m(s′)
)

I{Ωm} | Ūm−1

]

= E

[
Hm

∑
h=1

Zm
h | Ū

m−1

]
+E

[
Hm

∑
h=1

∑
s′∈S

(
P(s′ | sm

h ,a
m
h)− P̃m(s′ | sm

h ,a
m
h)
)
Ṽ m(s′)I{Ωm} | Ūm−1

]

= E

[
Hm

∑
h=1

∑
s′∈S

(
P(s′ | sm

h ,a
m
h)− P̃m(s′ | sm

h ,a
m
h)
)
Ṽ m(s′)I{Ωm} | Ūm−1

]
.

Furthermore, we have

E

[
Hm

∑
h=1

∑
s′∈S

(
P(s′ | sm

h ,a
m
h)− P̃m(s′ | sm

h ,a
m
h)
)
Ṽ m(s′)I{Ωm} | Ūm−1

]

= E

[
Hm

∑
h=1

∑
s′∈S +

(
P(s′ | sm

h ,a
m
h)− P̃m(s′ | sm

h ,a
m
h)

)(
Ṽ m(s′)− ∑

s′′∈S +

P(s′′ | sm
h ,a

m
h)Ṽ

m(s′′)
)

I{Ωm} | Ūm−1

]

≤ E

[
8

Hm

∑
h=1

∑
s′∈S +

√√√√Am
h P(s′ | sm

h ,a
m
h)

(
Ṽ m(s′)− ∑

s′′∈S +

P(s′′ | sm
h ,a

m
h)Ṽ

m(s′′)

)2

I{Ωm} | Ūm−1

]

+E

[
136

Hm

∑
h=1

∑
s′∈S +

Am
h

∣∣∣∣∣Ṽ m(s′)− ∑
s′′∈S +

P(s′′ | sm
h ,a

m
h)Ṽ

m(s′′)

∣∣∣∣∣I{Ωm} | Ūm−1

]

≤ E

[
16

Hm

∑
h=1

√
SVm

h Am
h I{Ωm}+272SB⋆Am

h I{Ωm} | Ūm−1

]
,

where the first equality follows since Ṽ m(g) = 0, and P(· | sm
h ,a

m
h) and P̃i(· | sm

h ,a
m
h) are

108

probability distributions over S+ whence ∑s′′∈S + P(s′′ | sm
h ,a

m
h)Ṽ

m(s′′) does not depend
on s′. The first inequality follows from Theorem C.2.13, and the second inequality from
Jensen’s inequality, Theorem C.2.12, |S+| ≤ 2S, and the definition of Vm

h .

Proof of Theorem 5.4.7

Lemma (restatement of Theorem 5.4.7). For any interval m, E
[
∑

Hm

h=1 Vm
h I{Ωm} | Ūm−1]≤

44B2
⋆.

Lemma C.2.14. Let m be an interval and (s,a) be a known state-action pair. If Ωm holds

then for every s′ ∈S +

∣∣P̃m
(
s′ | s,a

)
−P
(
s′ | s,a

)∣∣≤ 1
8

√
cmin ·P

(
s′ | s,a

)
SB⋆

+
cmin

4SB⋆
.

Proof. By Theorem C.2.13 we have that

∣∣P̃m
(
s′ | s,a

)
−P
(
s′ | s,a

)∣∣≤ 8

√
P(s′ | s,a) log

(
SANm

+(s,a)/δ
)

Nm
+(s,a)

+
136log

(
SANm

+(s,a)/δ
)

Nm
+(s,a)

which gives the required bound because log(x)/x is decreasing, and (s,a) is a known state-
action pair so Nm

+(s,a)≥ 30000 · B⋆S
cmin

log B⋆SA
δcmin

.

Proof of Theorem 5.4.7. Note that the first state-action pair in the subinterval, (sm
1 ,a

m
1),

might be unknown and that all state-action pairs that appear afterwards are known. Thus,
we bound

E

[
Hm

∑
h=1

Vm
h | Ū

m−1

]
= E

[
Vm

1 I{Ωm} | Ūm−1

]
+E

[
Hm

∑
h=2

Vm
h I{Ωm} | Ūm−1

]
.

The first summand is trivially bounded by B2
⋆ (Theorem C.2.12). We now upper bound

E
[
∑

Hm

h=2 Vm
h I{Ωm} | Ūm−1]. Denote Zm

h =
(
Ṽ m(sm

h+1)−∑s′∈S P(s′ | sm
h ,a

m
h)Ṽ

m(s′)
)
I{Ωm},

and think of the interval as an infinite stochastic process. Note that, conditioned on Ūm−1,(
Zm

h

)∞

h=1 is a martingale difference sequence w.r.t (Uh)∞
h=1, where Uh is the trajectory of

the learner from the beginning of the interval and up to time h and including. This holds
since, by conditioning on Ūm−1, Ωm is determined and is independent of the randomness
generated during the interval. Note that Hm is a stopping time with respect to (Zm

h)
∞
h=1

109

which is bounded by 2B⋆/cmin. Therefore, applying Theorem C.2.15 found below obtains

E

[
Hm

∑
h=2

Vm
h I{Ωm} | Ūm−1

]
= E

[(
Hm

∑
h=2

Zm
h I{Ωm}

)2

| Ūm−1

]
. (C.8)

We now proceed by bounding |∑Hm

h=1 Zm
h | when Ωm occurs. Therefore,∣∣∣∣∣Hm

∑
h=2

Zm
h

∣∣∣∣∣=
∣∣∣∣∣Hm

∑
h=2

Ṽ m(sm
h+1)− ∑

s′∈S
P(s′ | sm

h ,a
m
h)Ṽ

m(s′)

∣∣∣∣∣
≤

∣∣∣∣∣Hm

∑
h=2

Ṽ m(sm
h+1)−Ṽ m(sm

h)

∣∣∣∣∣ (C.9)

+

∣∣∣∣∣Hm

∑
h=2

Ṽ m(sm
h)− ∑

s′∈S
P̃m(s′ | sm

h ,a
m
h)Ṽ

m(s′)

∣∣∣∣∣ (C.10)

+

∣∣∣∣∣Hm

∑
h=2

∑
s′∈S +

(
P(s′ | sm

h ,a
m
h)− P̃m(s′ | sm

h ,a
m
h)
)(

Ṽ m(s′)− ∑
s′′∈S +

P(s′′ | sm
h ,a

m
h)Ṽ

m(s′′)
)∣∣∣∣∣,

(C.11)

where Equation (C.11) is given as P(· | sm
h ,a

m
h) and P̃i(· | sm

h ,a
m
h) are probability distribu-

tions over S+, ∑s′′∈S + P(s′′ | sm
h ,a

m
h)Ṽ

m(s′′) is constant w.r.t s′, and Ṽ m(g) = 0.

We now bound each of the three terms above individually. Equation (C.9) is a tele-
scopic sum that is at most B⋆ on Ωm (Theorem C.2.12). For Equation (C.10), we use the
Bellman equations for π̃m on the optimistic model defined by the transitions P̃m (Theo-
rem C.2.11) thus it is at most ∑

Hm

h=2 c
(
sm

h ,a
m
h

)
≤ 2B⋆ (see text following Theorem 5.4.5).

For Equation (C.11), recall that all states-action pairs at times h = 2, . . . ,Hm are known by
definition of Hm. Hence by Theorem C.2.14,∣∣∣∣∣ ∑

s′∈S +

(
Ṽ m(s′)− ∑

s′′∈S +

P
(
s′′ | sm

h ,a
m
h
)
Ṽ m(s′′)

)(
P̃m
(
s′ | sm

h ,a
m
h
)
−P
(
s′ | sm

h ,a
m
h
))∣∣∣∣∣

≤ 1
8 ∑

s′∈S +

√
cmin ·P

(
s′ | sm

h ,a
m
h

)(
Ṽ m(s′)−∑s′′∈S + P

(
s′′ | sm

h ,a
m
h

)
Ṽ m(s′′)

)2

SB⋆

+ ∑
s′∈S +

cmin

4SB⋆
·
∣∣∣Ṽ m(s′)− ∑

s′′∈S +

P
(
s′′ | sm

h ,a
m
h
)
Ṽ m(s′′)

∣∣∣︸ ︷︷ ︸
≤B⋆ by Theorem C.2.12

≤ 1
4

√
cmin ·Vm

h
B⋆

+
c
(
sm

h ,a
m
h

)
2

, (by Jensen’s inequality, cmin ≤ c(sm
h ,a

m
h), |S

+| ≤ 2S)

110

and again by Jensen’s inequality and that the total cost throughout the interval is at most
2B⋆, we have on Ωm

Hm

∑
h=2

1
4

√
cmin ·Vm

h
B⋆

+
c
(
sm

h ,a
m
h

)
2

≤ 1
4

√√√√ Hm︸︷︷︸
≤2B⋆/cmin

·
Hm

∑
h=2

cmin ·Vm
h

B⋆
+

1
2

Hm

∑
h=2

c
(
sm

h ,a
m
h
)

︸ ︷︷ ︸
≤2B⋆

(Jensen’s inequality)

≤ 1
4

√√√√2
Hm

∑
h=2

Vm
h +B⋆.

Plugging these bounds back into Equation (C.8) gets us

E

[
Hm

∑
h=2

Vm
h I{Ωm}

∣∣∣∣ Ūm−1

]
≤ E

[(
4B⋆+

1
4

√√√√2
Hm

∑
h=1

Vm
h I{Ωm}

)2 ∣∣∣∣ Ūm−1

]

≤ 32B2
⋆+

1
4

E

[
Hm

∑
h=2

Vm
h I{Ωm}

∣∣∣∣ Ūm−1

]
,

where the last inequality is by the elementary inequality (a+b)2 ≤ 2(a2 +b2). Rearrang-
ing gets us E

[
∑

Hm

h=2 Vm
h I{Ωm} | Ūm−1]≤ 43B2

⋆, and the lemma follows.

Lemma C.2.15. Let (Xt)
∞
t=1 be a martingale difference sequence adapted to the filtration

(Ft)
∞
t=0. Let Yn = (∑n

t=1 Xt)
2−∑

n
t=1 E[X2

t |Ft−1]. Then (Yn)
∞
n=0 is a martingale, and in

particular if τ is a stopping time such that τ ≤ c almost surely, then E[Yτ] = 0.

Proof. We first show that (Yn)
∞
n=1 is a martingale. Indeed,

E[Yn |Fn−1] = E

[(
n

∑
t=1

Xt

)2

−
n

∑
t=1

E[X2
t |Ft−1] |Fn−1

]

= E

[(
n−1

∑
t=1

Xt

)2

−2

(
n−1

∑
t=1

Xt

)
Xn +X2

n −
n

∑
t=1

E[X2
t |Ft−1] |Fn−1

]

=

(
n−1

∑
t=1

Xt

)2

−2

(
n−1

∑
t=1

Xt

)
·0+E[X2

n |Fn−1]−
n

∑
t=1

E[X2
t |Ft−1]

(E[Xn |Fn−1] = 0)

=

(
n−1

∑
t=1

Xt

)2

−
n−1

∑
t=1

E[X2
t |Ft−1] = Yn−1.

111

We would now like to show that E[Yτ] = E[Y1] = 0 using the optional stopping theorem.
The latter holds since τ ≤ c almost surely and E[Y1] = E[X2

1 −E[X2
1 |F0]] = 0.

Proof of Theorem 5.4.8

Lemma (restatement of Theorem 5.4.8). With probability at least 1−δ/4,

M

∑
m=1

E

[
Hm

∑
h=1

∑
s′∈S

(
P(s′ | sm

h ,a
m
h)− P̃m(s′ | sm

h ,a
m
h)
)
Ṽ m(s′)I{Ωm} | Ūm−1

]

≤ 614B⋆

√
MS2A log2 T SA

δ
+8160B⋆S2A log2 T SA

δ
.

Proof. Recall the following definitions:

Am
h =

log(SANm
+(s

m
h ,a

m
h)/δ)

Nm
+(s

m
h ,a

m
h)

.

Vm
h = ∑

s′∈S +

P(s′ | sm
h ,a

m
h)

(
Ṽ m(s′)− ∑

s′′∈S +

P(s′′ | sm
h ,a

m
h)Ṽ

m(s′′)

)2

.

From Theorem 5.4.6 we have that

E

[
Hm

∑
h=1

∑
s′∈S

(
P(s′ | sm

h ,a
m
h)− P̃m(s′ | sm

h ,a
m
h)
)
Ṽ m(s′)I{Ωm} | Ūm−1

]

≤ E

[
16
√

S
Hm

∑
h=1

√
Vm

h Am
h I{Ωm}+272B⋆SAm

h I{Ωm} | Ūm−1

]
.

Moreover, by applying the Cauchy-Schwartz inequality twice, we get that

E

[
Hm

∑
h=1

√
Vm

h Am
h I{Ωm}

∣∣∣∣ Ūm−1

]
≤ E

[√√√√Hm

∑
h=1

Vm
h I{Ωm} ·

√√√√Hm

∑
h=1

Am
h I{Ωm}

∣∣∣∣ Ūm−1

]

≤

√√√√E

[
Hm

∑
h=1

Am
h I{Ωm}

∣∣∣∣ Ūm−1

]
·

√√√√E

[
Hm

∑
h=1

Vm
h I{Ωm}

∣∣∣∣ Ūm−1

]

≤ 7B⋆

√√√√E

[
Hm

∑
h=1

Am
h I{Ωm}

∣∣∣∣ Ūm−1

]
. (Theorem 5.4.7)

112

We sum over all intervals to obtain

M

∑
m=1

E

[
Hm

∑
h=1

∑
s′∈S

(
P(s′ | sm

h ,a
m
h)− P̃m(s′ | sm

h ,a
m
h)
)
Ṽ m(s′)I{Ωm} | Ūm−1

]
≤

≤ 112B⋆

M

∑
m=1

√√√√SE

[
Hm

∑
h=1

Am
h I{Ωm} | Ūm−1

]
+272B⋆S

M

∑
m=1

E

[
Hm

∑
h=1

Am
h I{Ωm} | Ūm−1

]

≤ 112B⋆

√√√√MS
M

∑
m=1

E

[
Hm

∑
h=1

Am
h I{Ωm} | Ūm−1

]
+272B⋆S

M

∑
m=1

E

[
Hm

∑
h=1

Am
h I{Ωm} | Ūm−1

]
,

where the last inequality follows from Jensen’s inequality. We finish the proof using The-
orem C.2.16 below.

Lemma C.2.16. With probability at least 1− δ/4, the following holds for M = 1,2, . . .
simultaneously.

M

∑
m=1

E

[
Hm

∑
h=1

Am
h I{Ωm} | Ūm−1

]
≤ O

(
SA log2 T SA

δ

)
.

Proof. Define the infinite sequence of random variables: Xm = ∑
Hm

h=1 Am
h I{Ωm} for which

|Xm| ≤ 3log(SA/δ) due to Theorem C.2.17 below. We apply Equation (C.19) of Theo-
rem C.4.4 to obtain with probability at least 1−δ/4, for all M = 1,2, . . . simultaneously

M

∑
m=1

E
[
Xm | Ūm−1]≤ 2

M

∑
m=1

Xm +12log
(

SA
δ

)
log
(

8M
δ

)
.

Now, we bound the sum over Xm by rewriting it as a sum over epochs:

M

∑
m=1

Xm ≤
M

∑
m=1

Hm

∑
h=1

log(SANm
+(s

m
h ,a

m
h)/δ)

Nm
+(s

m
h ,a

m
h)

≤ log
SAT

δ
∑

s∈S
∑
a∈A

E

∑
i=1

ni(s,a)
Ni
+(s,a)

,

where E is the last epoch. Finally, from Theorem C.2.18 below we have that for every
(s,a) ∈S ×A ,

E

∑
i=1

ni(s,a)
Ni
+(s,a)

≤ 2logNE+1(s,a)≤ 2logT.

We now plugin the resulting bound for ∑
M
m=1 Xm and simplify the acquired expression by

using M ≤ T .

Lemma C.2.17. For any interval m, |∑Hm

h=1 Am
h | ≤ 3log(SA/δ).

113

Proof. Note that all state-action pairs (sm
h ,a

m
h) (except the first one (sm

1 ,a
m
1)) are known.

Hence, for h≥ 2, Nm
+(s

m
h ,a

m
h)≥ 30000 · B⋆S

cmin
log B⋆SA

δcmin
. Therefore, since log(x)/x is decreas-

ing and since S≥ 2 and A≥ 2 by assumption,

Hm

∑
h=1

log(SANm
+(s

m
h ,a

m
h)/δ)

Nm
+(s

m
h ,a

m
h)

≤
log(SANm

+(s
m
1 ,a

m
1)/δ)

Nm
+(s

m
1 ,a

m
1)

+
Hm

∑
h=2

log(SANm
+(s

m
h ,a

m
h)/δ)

Nm
+(s

m
h ,a

m
h)

≤ log(SA/δ)+
cminHm

B⋆

≤ log(SA/δ)+2 (Hm ≤ 2B⋆
cmin

by definition.)

≤ 3log(SA/δ).

Lemma C.2.18. For any sequence of integers z1, . . . ,zn with 0≤ zk≤Zk−1 :=max{1,∑k−1
i=1 zi}

and Z0 = 1, it holds that
n

∑
k=1

zk

Zk−1
≤ 2logZn.

Proof. We use the inequality x≤ 2log(1+ x) for every 0≤ x≤ 1 to obtain

n

∑
k=1

zk

Zk−1
≤ 2

n

∑
k=1

log
(

1+
zk

Zk−1

)
= 2

n

∑
k=1

log
Zk−1 + zk

Zk−1
= 2

n

∑
k=1

log
Zk

Zk−1
= 2log

n

∏
k=1

Zk

Zk−1
= 2logZn.

Proof of Theorem 5.2.3

Theorem (restatement of Theorem 5.2.3). Assume that Theorem 5.2.1 holds. With proba-
bility at least 1−δ the regret of Algorithm 7 is bounded as follows:

RK = O
(

B⋆S
√

AK log
KB⋆SA
δcmin

+

√
B3
⋆S4A2

cmin
log2 KB⋆SA

δcmin

)
.

Proof. Let CM denote the cost of the learner after M intervals. First, with probability at
least 1−δ , we have Theorems 5.4.2, 5.4.5 and 5.4.8 via a union bound. Now, as Ωm holds
for all intervals, we have R̃M = RM for any number of intervals M. Plugging in the bounds
of Theorems 5.4.4, 5.4.5 and 5.4.8 into Theorem 5.4.3, we have that for any number of
intervals M:

CM = O
(

K ·V ⋆(sinit)+B⋆

√
MS2A log2 T SA

δ
+B⋆S2A log2 T SA

δ

)
.

114

We now plug in the bounds on M and T from Theorem 5.4.1 into the bound above.
First, we plug in the bound on M. As long as the K episodes have not elapsed we have that
M ≤ O

(
CM/B⋆+K + 2SA logT + B⋆S2A

cmin
log B⋆SA

δcmin

)
. This gets after using the subadditivity

of the square root to simplify the resulting expression,

CM = O
(

K ·V ⋆(sinit)+B⋆

√
KS2A log2 T SA

δ

+

√
B⋆CMS2A log2 T SA

δ
+

√
B3
⋆S4A2

cmin
log4 T B⋆SA

cminδ

)
.

From which, by solving for CM (using that x ≤ a
√

x+ b implies x ≤ (a+
√

b)2 for
a≥ 0 and b≥ 0), and simplifying the resulting expression by applying V ⋆(sinit)≤ B⋆ and
our assumptions that K ≥ S2A, S≥ 2, A≥ 2, we get that

CM = O

((√
B⋆S2A log2 T SA

δ

+

√√√√K ·V ⋆(sinit)+B⋆

√
KS2A log2 T SA

δ
+

√
B3
⋆S4A2

cmin
log4 T B⋆SA

cminδ

)2
)

= O

(
B⋆S2A log2 T SA

δ

+

√
B⋆S2A log2 T SA

δ
·

√√√√K ·V ⋆(sinit)+B⋆

√
KS2A log2 T SA

δ
+

√
B3
⋆S4A2

cmin
log4 T B⋆SA

cminδ

+K ·V ⋆(sinit)+B⋆

√
KS2A log2 T SA

δ
+

√
B3
⋆S4A2

cmin
log4 T B⋆SA

cminδ

)

= O

(
B⋆S2A log2 T SA

δ
+B⋆

√
K1/4S3A3/2 log3 T SA

δ
+

√√√√B5/2
⋆ S4A2

c1/2
min

log4 T B⋆SA
cminδ

+K ·V ⋆(sinit)+B⋆

√
KS2A log2 T SA

δ
+

√
B3
⋆S4A2

cmin
log4 T B⋆SA

cminδ

)

= O

(
K ·V ⋆(sinit)+B⋆

√
KS2A log2 T SA

δ
+

√
B3
⋆S4A2

cmin
log4 T B⋆SA

cminδ

)
. (C.12)

Note that in particular, by simplifying the bound above, we have CM =O
(√

B3
⋆S4A2KT/cminδ

)
.

115

Next we combine this with the fact, stated in Theorem 5.4.1 that T ≤CM/cmin. Isolating T

gets T = O
(

B3
⋆S4A2K
c3

minδ

)
, and plugging this bound back into Equation (C.12) and simplifying

gets us

CM = O
(

K ·V ⋆(sinit)+B⋆S

√
AK log2 KB⋆SA

cminδ
+

√
B3
⋆S4A2

cmin
log4 KB⋆SA

cminδ

)
.

Finally, we note that the bound above holds for any number of intervals M as long as
K episodes do not elapse. As the instantaneous costs in the model are positive, this means
that the learner must eventually finish the K episodes from which we derive the bound for
RK claimed by the theroem.

C.3 Lower Bound

In this section we prove Theorem 5.2.6. At first glance, it is tempting to try and use the
lower bound of [JOA10, Theorem 5] on the regret suffered against learning average-reward
MDPs by reducing any problem instance from an average-reward MDP to an instance of
SSP. However, it is unclear to us if such a reduction is possible, and if it is, how to perform
it.1 We consequently prove the theorem here directly.

By Yao’s minimax principle, in order to derive a lower bound on the learner’s regret,
it suffices to show a distribution over MDP instances that forces any deterministic learner
to suffer a regret of Ω(B⋆

√
SAK) in expectation.

To simplify our arguments, let us first consider the following simpler problem before
considering the problem in its full generality. Think of a simple MDP with two states: the
initial state and a goal state. The set of actions A has a special action a⋆ chosen uniformly at
random a-priori. Upon choosing the special action, the learner transitions to the goal state
with probability ≈ 1/B⋆ and remains at sinit with the remaining probability. Concretely
P(g | a⋆) = 1/B⋆ and P(sinit | a⋆) = 1− 1/B⋆, and for any other action a ̸= a⋆ we have
P(g | a) = (1− ε)/B⋆ and P(sinit | a) = 1− (1− ε)/B⋆ for some ε ∈ (0,1/8).2 The costs
of all actions equal 1; i.e., c(sinit,a) = 1 for all a∈A. Clearly, the optimal policy constantly
plays a⋆ and therefore V ⋆(sinit) = B⋆.

Fix any deterministic learning algorithm, we shall now quantify the regret of the
learner during a single episode in terms of the number of times that it chooses a⋆. Let

1 Even though a reduction in the reverse direction is fairly straight-forward in the unit-cost case [TGV+20].
2 For ease of notation and since there is only one state other than g, we do not write this state as the origin
state in the definition of the transition function.

116

Nk denote the number of steps that the learner spends in sinit during episode k, and let N⋆
k

be the number of times the learner plays a⋆ at sinit during the episode. Note that Nk is also
the total cost that the learning algorithm suffered during episode k. We have the following
lemma.

Lemma C.3.1. E
[
Nk
]
−V ⋆(sinit) = ε ·E

[
Nk−N⋆

k

]
.

Proof. Let us denote by s1,s2, . . . and a1,a2, . . . the sequences of states and actions ob-
served by the learner during the episode. We have,

E[Nk] =
∞

∑
t=1

Pr[st = sinit]

= 1+
∞

∑
t=2

Pr[st = sinit]

= 1+
∞

∑
t=2

Pr[st = sinit | st−1 = sinit,at−1 = a⋆]Pr[st−1 = sinit,at−1 = a⋆]

+
∞

∑
t=2

Pr[st = sinit | st−1 = sinit,at−1 ̸= a⋆]Pr[st−1 = sinit,at−1 ̸= a⋆]

= 1+
∞

∑
t=2

(
1− 1

B⋆

)
Pr[st−1 = sinit,at−1 = a⋆]+

∞

∑
t=2

(
1− 1− ε

B⋆

)
Pr[st−1 = sinit,at−1 ̸= a⋆]

= 1+
(

1− 1
B⋆

)
∞

∑
t=1

Pr[st = sinit,at = a⋆]+
(

1− 1− ε

B⋆

)
∞

∑
t=1

Pr[st = sinit,at ̸= a⋆]

= 1+
(

1− 1
B⋆

)
E[N⋆

k]+

(
1− 1− ε

B⋆

)
E[Nk−N⋆

k].

Rearranging using V ⋆(sinit) = B⋆ gives the Lemma’s statement.

By Theorem C.3.1 the overall regret of the learner over K episodes is: E[RK] = ε ·
E
[
N−N⋆

]
, where N = ∑

K
k=1 Nk and N⋆ = ∑

K
k=1 N⋆

k . In words, the regret of the learner is ε

times the expected number of visits to sinit in which the learner did not play a⋆.

In the remainder of the proof we lower bound N in expectation and upper bound the
expected value of N⋆. To upper bound N⋆, we use standard techniques from lower bounds
of multi-armed bandits [ACBFS02] that bound the total variation distance between the
distribution of the sequence of states traversed by the learner in the original MDP and that
generated in a “uniform MDP” in which all actions are identical. However, we cannot
apply this argument directly since it requires N⋆ to be bounded almost surely, yet here N⋆

depends on the total length of all K episodes which is unbounded in general. We fix this

117

issue by looking only on the first T steps (where T is to be determined) and showing that
the regret is large even in these T steps.

Formally, we view the run of the K episodes as a continuous process in which when
the learner reaches the goal state we transfer it to sinit (at no cost) and let it restart from
there. Furthermore, we cap the learning process to consist of exactly T steps as follows.
If the K episodes are completed before T steps are elapsed, the learner remains in g (un-
til completing T steps) without suffering any additional cost, and otherwise we stop the
learner after T steps before it completes its K episodes. In this capped process, we denote
the number of visits in sinit by N− and the number of times the learner played a⋆ in sinit by
N⋆
−. We have

E[RK]≥ ε ·
(
E
[
N−
]
−E
[
N⋆
−
])
. (C.13)

The number of visits to sinit under this capping is lower bounded by the following
lemma.

Lemma C.3.2. For any deterministic learner, if T ≥ 2KB⋆ then we have that E
[
N−
]
≥

KB⋆/4.

Proof. If the capped learner finished its K episodes then N− = N. Otherwise, it visits
the goal state less than K times and therefore N− ≥ T −K. Hence E

[
N−
]
≥ E

[
min{T −

K,N}
]
≥∑

K
k=1 E

[
min{T/K−1,Nk}

]
. Since T ≥ 2KB⋆, the lemma will follow if we show

that Nk ≥ B⋆ with probability at least 1/4. We lower bound the probability that Nk ≥ B⋆ by
the probability of staying at sinit for B⋆ steps and picking a⋆ in the first B⋆−1 steps. Indeed,
using (1−1/x)x−1 ≥ 1/e for x≥ 1, we get that Pr[Nk ≥ B⋆]≥

(
1− 1

B⋆

)B⋆−1 ≥ 1
4 .

We now introduce an additional distribution of the transitions which call Prunif. Prunif

is identical to Pr as defined above, except that P(g | a) = (1− ε)/B⋆ for all actions a. We
denote expectations over Prunif by Eunif. The following lemma uses standard lower bound
techniques used for multi-armed bandits (see, e.g., [JOA10, Theorem 13]) to bound the
difference in the expectation of N⋆

− when the learner plays in Pr compared to when it plays
in Prunif.

Lemma C.3.3. For any deterministic learner we have that E
[
N⋆
−
]
≤Eunif

[
N⋆
−
]
+εT

√
Eunif[N⋆

−]/B.

Proof. Fix any deterministic learner. Let us denote by s(t) the sequence of states observed
by the learner up to time t and including. Now, as N⋆

−≤ T and the fact that N⋆
− is a function

118

of s(T), E
[
N⋆
−
]
≤ Eunif

[
N⋆
−
]
+T ·TV(Prunif[s(T)],Pr[s(T)]). Pinsker’s inequality yields

TV(Pr
unif

[s(T)],Pr[s(T)])≤
√

1
2

KL(Pr
unif

[s(T)] ∥ Pr[s(T)]). (C.14)

Next, the chain rule of the KL divergence obtains

KL(Pr
unif

[s(T)] ∥ Pr[s(T)]) =
T

∑
t=1

∑
s(t−1)

Pr
unif

[s(t−1)] ·KL(Pr
unif

[st | s(t−1)] ∥ Pr[st | s(t−1)]).

Observe that at any time, since the learning algorithm is deterministic, the learner
chooses an action given s(t−1) regardless of whether s(t−1) was generated under Pr or under
Prunif. Thus, the KL(Prunif[st | s(t−1)] ∥ Pr[st | s(t−1)]) is zero if at−1 ̸= a⋆, and otherwise

KL(Pr
unif

[st | s(t−1)] ∥ Pr[st | s(t−1)]) =

= ∑
s∈S

Pr
unif

[st | st−1 = sinit,at−1 = a⋆] log
Prunif[st | st−1 = sinit,at−1 = a⋆]

Pr[st | st−1 = sinit,at−1 = a⋆]

=
1− ε

B⋆
· log(1− ε)+

(
1− 1− ε

B⋆

)
log
(

1+
ε

B⋆−1

)
≤ ε2

B⋆−1
. (using log(1+ x)≤ x for all x > 0)

Plugging the above back into Equation (C.14) and using B⋆ ≥ 2 gives the lemma.

In the following result, we combine the lemma above with standard techniques from
lower bounds of multi-armed bandits (see [JOA10, Thm. 5] for example).

Theorem C.3.4. Suppose that B⋆ ≥ 2, ε ∈ (0, 1
8) and A ≥ 16. For the problem described

above we have that

E[RK]≥ εKB⋆

(
1
8
−2ε

√
2K
A

)
.

Proof of Theorem C.3.4. Note that as under Prunif the transition distributions are identical
for all actions, we have that

∑
a∈A|a⋆=a

Eunif
[
N⋆
−
]
= Eunif

[
∑

a∈A|a⋆=a
N⋆
−

]
= Eunif

[
N−
]
≤ T. (C.15)

Suppose that a⋆ is sampled uniformly at random before the game starts. Denote the
probability and expectation with respect to the distribution induced by a specific choice of

119

a⋆ = a by Pra and Ea respectively. Then for T = 2KB⋆,

E[RK] =
1
A ∑

a∈A
Ea[RK]

≥ 1
A ∑

a∈A
Ea[N−−N⋆

−] (Equation (C.13))

≥ 1
A ∑

a∈A|a⋆=a

(
KB⋆

4
−Eunif[N⋆

−]− εT

√
Eunif[N⋆

−]

B⋆

)
(Theorems C.3.2 and C.3.3)

≥ KB⋆

4
− 1

A ∑
a∈A|a⋆=a

Eunif[N⋆
−]− εT

√
1

B⋆
· 1

A ∑
a∈A|a⋆=a

Eunif[N⋆
−]

(Jensen’s inequality)

≥ KB⋆

4
− T

A
− εT

√
T

B⋆A
(Equation (C.15))

= ε

(
KB⋆

4
− 2KB⋆

A
−2εKB⋆

√
2KB⋆

AB⋆

)
= εKB⋆

(
1
4
− 2

A
−2ε

√
2K
A

)
.

The theorem follows from A≥ 16 and by rearranging.

Proof of Theorem 5.2.6. Consider the following MDP. Let S be the set of states disre-
garding g. The initial state is sampled uniformly at random from S. Each s ∈ S has
its own special action a⋆s . The transition distributions are defined P(g | a⋆s ,s) = 1/B⋆,

P(s | a⋆s ,s) = 1− 1/B⋆, and P(g | a,s) = (1− ε)/B⋆, P(s | a,s) = 1− (1− ε)/B⋆ for any
other action a ∈ A\{a⋆s}.

Note that for each s ∈ S , the learner is faced with a simple problem as the one de-
scribed above from which it cannot learn about from other states s′ ̸= s. Therefore, we can
apply Theorem C.3.4 for each s ∈S separately and lower bound the learner’s expected
regret the sum of the regrets suffered at each s ∈S , which would depend on the number
of times s ∈S is drawn as the initial state. Since the states are chosen uniformly at ran-
dom there are many states (constant fraction) that are chosen Θ(K/S) times. Summing the
regret bounds of Theorem C.3.4 over only these states and choosing ε appropriately gives
the sought-after bound.

120

Denote by Ks the number of episodes that start in each state s ∈S .

E[RK]≥ ∑
s∈S

E

[
εKsB⋆

(
1
8
−2ε

√
2Ks

A

)]
=

εKB⋆

8
−2ε

2B⋆

√
2
A ∑

s∈S
E[K3/2

s]. (C.16)

Taking expectation over the initial states and applying Cauchy-Schwartz inequality gives

∑
s∈S

E
[
K3/2

s
]
≤ ∑

s∈S

√
E[Ks]

√
E[K2

s] = ∑
s∈S

√
E[Ks]

√
E[Ks]2 +V[Ks]

= ∑
s∈S

√
K
S

√
K2

S2 +
K(S−1)

S2 ≤ K

√
2K
S
,

where we have used the expectation and variance formulas of the Binomial distribution.
The lower bound is now given by applying the inequality above in Equation (C.16) and
choosing ε = 1

64

√
AS/K.

C.4 Concentration inequalities

Theorem C.4.1 (Anytime Azuma). Let (Xn)
∞
n=1 be a martingale difference sequence with

respect to the filtration (Fn)
∞
n=0 such that |Xn| ≤ B almost surely. Then with probability at

least 1−δ , ∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣≤ B

√
n log

2n
δ
, ∀n≥ 1.

Theorem C.4.2 ([WOS+03]). Let p(·) be a distribution over m elements, and let p̄t(·)
be the empirical distribution defined by t iid samples from p(·). Then, with probability at

least 1−δ , ∥∥p̄t(·)− p(·)
∥∥

1 ≤ 2

√
m log 1

δ

t
.

Theorem C.4.3 (Anytime Bernstein). Let (Xn)
∞
n=1 be a sequence of i.i.d. random variables

with expectation µ . Suppose that 0≤ Xn ≤ B almost surely. Then with probability at least

1−δ , the following holds for all n≥ 1 simultaneously:∣∣∣∣∣ n

∑
i=1

(Xi−µ)

∣∣∣∣∣≤ 2

√
Bµn log

2n
δ

+B log
2n
δ
. (C.17)∣∣∣∣∣ n

∑
i=1

(Xi−µ)

∣∣∣∣∣≤ 2

√
B

n

∑
i=1

Xi log
2n
δ

+7B log
2n
δ
. (C.18)

121

Proof. Fix some n≥ 1. By Bernstein’s concentration inequality (see for example, [CBL06,
Corollary A.3]), we have with probability at least 1− δ

2n2 that Equation (C.17) holds. By
a union bound, the inequality holds with probability at least 1−δ for all n≥ 1 simultane-
ously.

To show Equation (C.18), note that in particular we have

µ ·n−
n

∑
i=1

Xi ≤ 2

√
Bµn log

2n
δ

+B log
2n
δ

that is a quadratic inequality in µ . This implies that
√

µ ≤
√

1
n ∑

n
i=1 Xi +3

√
B log 2n

δ

n . Plug-
ging this inequality back into the RHS of Equation (C.17) gets us Equation (C.18).

Lemma C.4.4. Let (Xn)
∞
n=1 be a sequence of random variables with expectation adapted

to the filtration (Fn)
∞
n=0. Suppose that 0≤ Xn ≤ B almost surely. Then with probability at

least 1−δ , the following holds for all n≥ 1 simultaneously:

n

∑
i=1

E[Xi |Fi−1]≤ 2
n

∑
i=1

Xi +4B log
2n
δ
. (C.19)

Proof. For all n≥ 1, we have

E[e−Xn/B |Fn−1]≤ E

[
1− Xn

B
+

X2
n

2B2

∣∣∣Fn−1

]
(e−x ≤ 1− x+ x2

2 for all x≥ 0)

≤ 1− E[Xn |Fn−1]

B
+

E[Xn |Fn−1]

2B
(Xn ≤ B)

= 1− E[Xn |Fn−1]

2B
≤ e−E[Xn|Fn−1]/2B. (1− x≤ e−x for all x)

Hence, fix some n≥ 1, then

E

[
exp
(

1
B

n

∑
i=1

(
1
2

E[Xi |Fi−1]−Xi

))]

= E

[
exp
(

1
B

n−1

∑
i=1

(
1
2

E[Xi |Fi−1]−Xi

))
·E

[
exp
(

1
B

(
1
2

E[Xn |Fn−1]−Xn

) ∣∣∣∣Fn−1

]
︸ ︷︷ ︸

≤1

]

≤ E

[
exp
(

1
B

n−1

∑
i=1

(
1
2

E[Xi |Fi−1]−Xi

))]
≤ 1. (by repeating the last argument inductively.)

122

Therefore,

Pr

[
n

∑
i=1

(
1
2

E[Xi |Fi−1]−Xi

)
> 2B log

2n
δ

]
≤ Pr

[
exp
(

1
B

n

∑
i=1

(
1
2

E[Xi |Fi−1]−Xi

))
>

2n2

δ

]

≤ E

[
exp
(

1
B

n

∑
i=1

(
1
2

E[Xi |Fi−1]−Xi

))]
· δ

2n2

(Markov inequality)

≤ δ

2n2 .

Hence the above holds for all n≥ 1 via a union bound which provides the lemma.

123

D Supplementary Material for
Chapter 6

D.1 Proofs for Section 6.3

D.1.1 Proof of Lemma 6.3.1

In this section we relate the SSP regret and the finite-horizon regret, which relies on The-
orems D.1.1 and D.1.2 below that compare the cost-to-go function in the SSP M to the
value function in the finite-horizon M̂ . To that end, we define a cost-to-go function with
respect to the finite-horizon MDP M̂ as: V̂ π

h (s) = E
[
∑

H
h′=h c(sh′,ah′) | sh = s

]
, for any de-

terministic finite-horizon policy π : S × [H]→A .

Lemma D.1.1. Let π be a stationary policy. For every s∈ Ŝ and h = 1, . . . ,H+1 it holds

that

V̂ π
h (s)≤V π(s)+8B⋆Pr[sH+1 ̸= g | sh = s, P̂,π].

Proof.

V̂ π
h (s) =

H

∑
h′=h

∑
s′∈Ŝ

Pr[sh′ = s′ | sh = s, P̂,π] ĉ
(
s′,π(s′)

)
+ ∑

s′∈Ŝ

Pr[sH+1 = s′ | sh = s, P̂,π] ĉ f (s′)

=
H

∑
h′=h

∑
s′∈S

Pr[sh′ = s′ | sh = s,P,π] c
(
s′,π(s′)

)
+8B⋆ Pr[sH+1 ̸= g | sh = s, P̂,π]

≤
∞

∑
h′=h

∑
s′∈S

Pr[sh′ = s′ | sh = s,P,π] c
(
s′,π(s′)

)
+8B⋆ Pr[sH+1 ̸= g | sh = s, P̂,π]

=V π(s)+8B⋆ Pr[sH+1 ̸= g | sh = s, P̂,π].

Lemma D.1.2. For every s ∈ Ŝ , it holds that V ⋆(s)≥ V̂ π⋆

1 (s)− B⋆
K .

124

Proof. The probability that π⋆ does not reach the goal in H steps is at most 1/(8K) due to
[CLW21, Lemma 7]. Plugging that into Theorem D.1.1 yields the desired result.

Proof of Theorem 6.3.1. Consider the first interval of the first episode. If it ends in the
goal state then

I1

∑
i=1

C1
i =

H

∑
h=1

C1
h + ĉ f (g) =

H

∑
h=1

C1
h + ĉ f (s1

H+1).

If the agent did not reach g in the first interval, then the agent also suffered the 8B⋆ terminal
cost and thus

I1

∑
i=1

C1
i =

H

∑
h=1

C1
h + ĉ f (s1

H+1)+
I1

∑
i=H+1

C1
i − ĉ f (s1

H+1)

=
H

∑
h=1

C1
h + ĉ f (s1

H+1)+
I1

∑
i=H+1

C1
i −8B⋆

≤
H

∑
h=1

C1
h + ĉ f (s1

H+1)+
I1

∑
i=H+1

C1
i −V̂ π⋆

1 (s1
H+1),

where the last inequality follows by combining Theorem D.1.2 with our assumption that
V ⋆(s)≤ B⋆.

Repeating this argument iteratively we get, for every episode k,

Ik

∑
i=1

Ck
i −V ⋆(sinit)≤

Ik

∑
i=1

Ck
i −V̂ π⋆

1 (sm
1)+

B⋆

K

≤ ∑
m∈Mk

H

∑
h=1

Cm
h + ĉ f (sm

H+1)−V̂ π⋆

1 (sm
1)+

B⋆

K

= ∑
m∈Mk

(
H

∑
h=1

Cm
h + ĉ f (sm

H+1)−V̂ πm
(sm

1)

)
+ ∑

m∈Mk

(
V̂ πm

(sm
1)−V̂ π⋆

1 (sm
1)

)
+

B⋆

K
,

where Mk is the set of intervals that are contained in episode k, and the first inequality
follows from Theorem D.1.2. Summing over all episodes obtains

RK ≤
M

∑
m=1

(
H

∑
h=1

Cm
h + ĉ f (sm

H+1)−V̂ πm
(sm

1)

)
+

M

∑
m=1

(
V̂ πm

(sm
1)−V̂ π⋆

1 (sm
1)

)
+

B⋆

K
.

Notice that the second summand in the bound above is exactly the expected finite-horizon
regret over the M intervals. We finish the proof of the lemma by using the regret guarantees
of ALG (Definition 6.2.1).

125

D.1.2 Proof of Lemma 6.3.2

In this section we bound the deviation of the actual cost in each interval from its expected
value. To do that, we apply Theorem D.1.3 below to bound the second moment of the
cumulative cost in an interval up until an unknown state-action pair or the goal state were
reached. Here Ūm denotes the union of all information prior to the mth interval together
with the first state of the mth interval (more formally, {Ūm}m≥1 is a filtration). Moreover,
we denote by hm the last time step before an unknown state-action pair or the goal state
were reached in interval m (or H if they were not reached).

Lemma D.1.3. Let m be an interval and assume that the reduction is performed using an

admissible algorithm ALG. If the good event of ALG holds until the beginning of interval m,

then the agent reaches the goal state or an unknown state-action pair with probability at

least 1
2 . Moreover, denote by Cm = ∑

hm
h=1Cm

h + ĉ f (sm
H+1)I{hm = H} the cumulative cost in

the interval until time hm. Then, E[(Cm)2 | Ūm]≤ 2 ·105B2
⋆+4B⋆.

Proof. The result is given by bounding the total expected cost suffered by the agent in
another MDP (defined below) where all unknown state-action pairs are contracted with
the goal state. The cost in this MDP is exactly Cm by definition.

Let πm be the optimistic policy chosen by the algorithm for interval m. Consider the
following finite-horizon MDP M̂ m = (Ŝ ,A, P̂m,H, ĉ, ĉ f) that contracts unknown state-
action pairs with the goal:

P̂m
h (s′ | s,a) =


0, (s′,πm

h+1(s
′)) is unknown;

P(s′ | s,a), s′ ̸= g and (s′,πm
h+1(s

′)) is known;

1−∑s′′∈Ŝ \{g} P̂m
h (s′′ | s,a), s′ = g.

Denote by V m the cost-to-go function of πm in the finite-horizon MDP M̂ m. Further,
let P̃′m be the transition function induced by P̃m in the MDP M̂ m similarly to P̂m, and
Ṽ m the cost-to-go function of πm with respect to P̃′m (and with cost function c̃m). Notice
that πm can only reach the goal state quicker in M̂ m than in M̂ , so that Ṽ m

h (s)≤ Vm
h (s)≤

V̂ π⋆

h (s) for any s ∈ Ŝ . By the value difference lemma (see, e.g., [SERM20]), for every s,h

126

such that (s,πm
h (s)) is known,

V m
h (s) = Ṽ m

h (s)+
H

∑
h′=h

E
[
ĉ(sh′,ah′)− c̃m

h′(sh′,ah′) | sh = s, P̂m,πm
]

+
H

∑
h′=h

E
[(

P̂m
h′ (· | sh′,ah′)− P̃′mh′ (· | sh′,ah′)

)
·Ṽ m | sh = s, P̂m,πm

]
≤ Ṽ m

h (s)+H max
(s,πm

h′(s))
known

|c(s,πm
h′ (s))− c̃m

h′(s,π
m
h′ (s))|+H∥Ṽ m∥∞ max

(s,πm
h′(s))

known

∥P̂m
h′ (·|s,π

m
h′ (s))− P̃′mh′ (·|s,π

m
h′ (s))∥1

(a)
≤ V̂ π⋆

h (s)+H max
(s,πm

h′(s))
known

|c(s,πm
h′ (s))− c̃m

h′(s,π
m
h′ (s))|

+H∥V̂ π⋆

h (s)∥∞ max
(s,πm

h′(s))
known

∥P̂(·|s,πm
h′ (s))− P̃m(·|s,πm

h′ (s))∥1

≤ V̂ π⋆

h (s)+H max
(s,πm

h′(s))
known

|c(s,πm
h′ (s))− c̃m

h′(s,π
m
h′ (s))|+9HB⋆ max

(s,πm
h′(s))

known

∥P̂(·|s,πm
h′ (s))− P̃m(·|s,πm

h′ (s))∥1,

where the last inequality follows by optimism and since V̂ π⋆

h (s) ≤ 9B⋆ (Theorem D.1.1),
and (a) follows because

∥P̂m
h (·|s,a)− P̃′mh (·|s,a)∥1 = ∑

(s′,πm
h+1(s

′))
known

|P̂m
h (s′|s,a)− P̃′mh (s′|s,a)|+ |P̂m

h (g|s,a)− P̃′mh (g|s,a)|

= ∑
(s′,πm

h+1(s
′))

known

|P̂(s′|s,a)− P̃m(s′|s,a)|+
∣∣∣ ∑
(s′,πm

h+1(s
′))

unknown

P̂(s′|s,a)+ P̂(g|s,a)− P̃m(s′|s,a)− P̃m(g|s,a)
∣∣∣

≤ ∥P̂(·|s,a)− P̃m(·|s,a)∥1.

Thus V m
h (s) ≤ V̂ π⋆

h (s) + 2B⋆ since the number of visits to each known state-action pair
is at least ωALG log MHSA

δ
and by property (iv) of admissible algorithms (Definition 6.2.1).

Also note that V m
h (s)≤ 11B⋆ by Theorem D.1.1, and for h = 1 in particular we use Theo-

rem D.1.2 to obtain V m
1 (s)≤ 4B⋆.

By Markov inequality, the probability that the agent suffers a cost of more than 8B⋆ in
M̂ m is at most 1

2 . Notice that all costs are non-negative and there is a terminal cost of 8B⋆

in all states but the goal, therefore the agent cannot suffer a cost of less than 8B⋆ unless
she reaches the goal. So the probability to reach the goal is at least 1

2 . Moreover, note that
the probability to reach the goal in M̂ m is equal to the probability to reach the goal or an
unknown state-action pair in M̂ .

Similarly, we notice that E[(Cm)2 | Ūm] = E[(Ĉ)2], where Ĉ is the cumulative cost in

127

M̂ m, and we override notation by denoting Ĉ = ∑
H
h=1Ch + ĉ f (sH+1). We have that,

E[(Ĉ)2] = E

[(
H

∑
h=1

Ch + ĉ f (sH+1)

)2]

= E

[(
H−1

∑
h=1

Ch + ĉ(sH ,aH)+ ĉ f (sH+1)

)2]

+2E

[(
H−1

∑
h=1

Ch + ĉ(sH ,aH)+ ĉ f (sH+1)

)
(CH− ĉ(sH ,aH))

]
+E[(CH− ĉ(sH ,aH))

2].

The second summand is zero since the realization of CH is independent of all other ran-
domness given sH . Also, since CH ∈ [0,1], the third summand satisfies

E[(CH− ĉ(sH ,aH))
2]≤ E[(CH)

2]≤ E[CH] = E[ĉ(sH ,aH)].

Thus we arrived at

E[(Ĉ)2]≤ E

[(
H−1

∑
h=1

Ch + ĉ(sH ,aH)+ ĉ f (sH+1)

)2]
+E[ĉ(sH ,aH)],

and iterating this argument yields

E[(Ĉ)2]≤ E

[(
H

∑
h=1

ĉ(sh,ah)+ ĉ f (sH+1)

)2]
+E

[
H

∑
h=1

ĉ(sh,ah)

]
.

Here, the second summand equals V m
1 (s1) which is at most 4B⋆.

Next, for the first summand, we split the time steps into Q blocks as follows. We
denote by t1 the first time step in which we accumulated a total cost of at least 11B⋆ (or
H + 1 if it did not occur), by t2 the first time step in which we accumulated a total cost
of at least 11B⋆ after t1, and so on up until tQ = H + 1. Then, the first block consists of
time steps t0 = 1, . . . , t1− 1, the second block consists of time steps t1, . . . , t2− 1, and so
on. Since V m

h (s) ≤ 11B⋆ we must have ĉ(sh,ah) ≤ 11B⋆ for all h = 1, . . . ,H and thus in

128

every such block the total cost is between 11B⋆ and 22B⋆. Thus,

E

[(
H

∑
h=1

ĉ(sh,ah)+ ĉ f (sH+1)

)2]
≥ E

[
H

∑
h=1

ĉ(sh,ah)+ ĉ f (sH+1)

]2

= E

[
Q−1

∑
i=0

ti+1−1

∑
h=ti

ĉ(sh,ah)+ ĉ f (sH+1)

]2

≥ E[11B⋆Q]2 = 121B2
⋆E[Q]2,

by Jensen’s inequality. On the other hand,

E

[(
H

∑
h=1

ĉ(sh,ah)+ ĉ f (sH+1)

)2]
= E

[(
H

∑
h=1

ĉ(sh,ah)+ ĉ f (sH+1)−V m
1 (s1)+V m

1 (s1)

)2]

≤ 2E

[(
H

∑
h=1

ĉ(sh,ah)+ ĉ f (sH+1)−V m
1 (s1)

)2]
+2V m

1 (s1)
2

≤ 2E

[(
Q−1

∑
i=0

ti+1−1

∑
h=ti

ĉ(sh,ah)−V m
ti (sti)+V m

ti+1
(sti+1)

)2]
+32B2

⋆

(a)
= 4E

[
Q−1

∑
i=0

(
ti+1−1

∑
h=ti

ĉ(sh,ah)−V m
ti (sti)+V m

ti+1
(sti+1)

)2]
+32B2

⋆

≤ 4E[Q · (33B⋆)
2]+32B2

⋆ ≤ 4356B2
⋆E[Q]+32B2

⋆.

For (a) we used the fact that E[∑
ti+1−1
h=ti

ĉ(sh,ah)−Vti(sti)+Vti+1(sti+1)] = 0 using the Bell-
man optimality equations and conditioned on all past randomness up until time ti, and
the fact that ti+1 is a (bounded) stopping time by the optional stopping theorem, in the
following manner,

E

[
ti+1−1

∑
h=ti

ĉ(sh,ah)−V m
ti (sti)+V m

ti+1
(sti+1)

]
= E

[
ti+1−1

∑
h=ti

ĉ(sh,ah)−V m
h (sh)+V m

h+1(sh+1)

]

= E

[
ti+1−1

∑
h=ti

E
[
ĉ(sh,ah)−V m

h (sh)+V m
h+1(sh+1)

∣∣ s1, . . . ,sh

]]

= E

[
ti+1−1

∑
h=ti

ĉ(sh,ah)+E
[
V m

h+1(sh+1) | sh

]
−V m

h (sh)

]
= 0.

Thus, we have 121B2
⋆E[Q]2 ≤ 4356B2

⋆E[Q]+32B2
⋆, and solving for E[Q] we obtain E[Q]≤

129

37, so

E

[(
H

∑
h=1

ĉ(sh,ah)+ ĉ f (sH+1)

)2]
≤ 2 ·105B2

⋆,

and therefore

E[(Ĉ)2]≤ E

[(
H

∑
h=1

ĉ(sh,ah)+ ĉ f (sH+1)

)2]
+E

[
H

∑
h=1

ĉ(sh,ah)

]
≤ 2 ·105B2

⋆+4B⋆.

Proof of Theorem 6.3.2. Recall that hm is the last time step before an unknown state-action
pair or the goal state were reached (or H if they were not reached) in interval m, and let
Ωm be the event that the good event of algorithm ALG holds up to the beginning of interval
m. We start by decomposing the sum as follows

M

∑
m=1

(
H

∑
h=1

Cm
h + ĉ f (sm

H+1)−V̂ πm

1 (sm
1)

)
I{Ωm}=

M

∑
m=1

(
hm

∑
h=1

Cm
h + c f (sm

H+1)I{hm = H}−V̂ πm

1 (sm
1)

)
I{Ωm}

+
M

∑
m=1

(
H

∑
h=hm+1

Cm
h + ĉ f (sm

H+1)I{hm ̸= H}

)
I{Ωm}.

The second term is trivially bounded by (H + 8B⋆)SAωALG log MHSA
δ

since every state-
action pair becomes known after ωALG log MHSA

δ
visits. Next, since

E

[(
hm

∑
h=1

Cm
h + c f (sm

H+1)I{hm = H}

)
I{Ωm}

∣∣∣∣∣ Ūm

]
= E

[
hm

∑
h=1

Cm
h + c f (sm

H+1)I{hm = H}

∣∣∣∣∣ Ūm

]
I{Ωm}

≤ V̂ πm

1 (sm
1)I{Ωm},

the first term is bounded by ∑
M
m=1 Xm where

Xm =

(
hm

∑
h=1

Cm
h + c f (sm

H+1)I{hm = H}−E

[
hm

∑
h=1

Cm
h + c f (sm

H+1)I{hm = H}

∣∣∣∣∣ Ūm

])
I{Ωm}

is a martingale difference sequence bounded by H + 8B⋆ with probability 1. For any
fixed M = m, by Freedman’s inequality (Theorem D.5.1, we have with probability at least
1− δ

8m(m+1) ,

m

∑
m′=1

Xm′ ≤ η

m

∑
m′=1

E[(Xm′)2 | Ūm′]+
log(8m(m+1)/δ)

η

130

for any η ∈ (0,1/(H +8B⋆)). By Theorem D.1.3, for some universal constant α > 0, that

m

∑
m′=1

E[(Xm′)2 | Ūm′]≤ αm(B2
⋆+B⋆),

and setting η = min
{√ log(8m(m+1)/δ)

(B2
⋆+B⋆)m

, 1
H+8B⋆

}
obtains

m

∑
m′=1

Xm′ ≤ O
(√

(B2
⋆+B⋆)m log

m
δ
+(H +B⋆) log

m
δ

)
.

Taking a union bound on all values of m = 1,2, . . . that the inequality above holds for
all such values of m simultaneously with probability at least 1− δ/8. In particular, with
probability at least 1−δ/8, we have

M

∑
m=1

Xm ≤ O
(√

(B2
⋆+B⋆)M log

M
δ
+(H +B⋆) log

M
δ

)
.

The proof is concluded via a union bound—both Freedman inequality and the good
event of ALG hold with probability at least 1− 3

8δ , and this implies that I{Ωm} = 1 for
every m.

D.1.3 Proof of Lemma 6.3.3

In this section we bound the number of intervals M with high probability for any admis-
sible algorithm. To that end, we first define the notion of unknown state-action pairs. A
state-action pair is defined as unknown if the number of times it was visited is at most
ωALG log MHSA

δ
(and otherwise known).

Proof of Theorem 6.3.3. Let Ωm be the event that the good event of algorithm ALG holds
up to the beginning of interval m, and define Xm to be 1 if an unknown state-action pair or
the goal state were reached during interval m (and 0 otherwise). Notice that E[XmI{Ωm} |
Ūm] = E[Xm | Ūm]I{Ωm} ≥ I{Ωm}/2 by Theorem D.1.3. Moreover, note that every state-
action pair becomes known after ωALG log MHSA

δ
visits and therefore ∑

M
m=1 XmI{Ωm} ≤

∑
M
m=1 Xm ≤ K + SAωALG log MHSA

δ
. By Theorem D.5.2, which is a consequence of Freed-

man’s inequality for bounded positive random variables, we have with probability at least

131

1− δ

8 for all M ≥ 1 simultaneously

M

∑
m=1

E[XmI{Ωm} | Ūm]≤ 2
M

∑
m=1

XmI{Ωm}+108log
M
δ
≤ 2K +110SAωALG log

MHSA
δ

.

Using a union bound, this inequality and the good event of ALG both hold with probability
at least 1− 3

8δ . Then, I{Ωm}= 1 for all m, and therefore

M
2
≤ 2K +110SAωALG log

MHSA
δ

.

Using the fact that x≤ a log(bx)+ c→ x≤ 6a log(abc)+ c for a,b,c≥ 1, this implies

M ≤ 4K +4 ·104SAωALG log
KT⋆SAωALG

δ
.

132

D.2 Proofs for Section 6.4

Since all the proofs in this section refer to the finite-horizon setting (without a connection
to SSP), we use the simpler notations M = (S ,A ,P,H,c,c f) for the MDP, V π

h (s) for
the value function of policy π , and B⋆ ≥ maxs,hV ⋆

h (s) for the upper bound on the value
function of the optimal policy.

We define a state-action pair (s,a) to be known if it was visited at least αH4B−2
⋆ S

times (for some universal constant α > 0 to be determined later), and otherwise unknown.
In addition, we denote by hm the last time step before an unknown state-action pair was
reached (or H if they were not reached).

D.2.1 The good event, optimism and pessimism

Throughout this section we use the notation a∨ 1 defined as max{a,1}. In addition, we
define the logarithmic factor Lm = 3log(6SAHm/δ). Define the following events:

Ec(m) =
{
∀(s,a) : |c̄m−1(s,a)− c(s,a)| ≤ bm

c (s,a)
}

Ecv(m) =

{
∀(s,a) :

∣∣∣∣√Varm−1
s,a (C)−

√
Vars,a(c)

∣∣∣∣≤
√

12Lm

nm−1(s,a)∨1

}

E p(m) =

{
∀(s,a,s′) : |P

(
s′|s,a

)
− P̄m−1(s′|s,a)| ≤√ 2P(s′|s,a)Lm

nm−1(s,a)∨1
+

2Lm

nm−1(s,a)∨1

}

E pv1(m) =

∀(s,a,h) :
∣∣(P̄m−1(·|s,a)−P(·|s,a)

)
·V ∗h+1

∣∣≤√2VarP(·|s,a)(V ∗h+1)Lm

nm−1(s,a)∨1
+

5B⋆Lm

nm−1(s,a)∨1


E pv2(m) =

{
∀(s,a,h) :

∣∣∣√VarP(·|s,a)(V ∗h+1)−
√

VarP̄m−1(·|s,a)(V
∗
h+1)

∣∣∣≤
√

12B2
⋆Lm

nm−1(s,a)∨1

}

For brevity, we denote bm
pv1,h(s,a) =

√
2VarP(·|s,a)(V ∗h+1)Lm

nm−1(s,a)∨1 + 5B⋆Lm
nm−1(s,a)∨1 . This good event,

which is the intersection of the above events, is the one used in [EMSM21]. The following
lemma establishes that the good event holds with high probability. The proof is supplied
in [EMSM21, Lemma 13] by applying standard concentration results.

Lemma D.2.1 (The First Good Event). Let G1 =∩m≥1Ec(m)∩m≥1 Ecv(m)∩m≥1 E p(m)∩m≥1

E pv1(m)∩m≥1 E pv2(m) be the basic good event. It holds that Pr(G1)≥ 1− 1
4δ .

Under the first good event, we can prove that the value is optimistic using standard
techniques.

133

Lemma D.2.2 (Upper Value Function is Optimistic, Lower Value Function is Pessimistic).
Conditioned on the first good event G1, it holds that V m

h (s)≤V ∗h (s)≤V πm

h (s)≤ V̄ m
h (s) for

every m = 1,2, . . . , s ∈S and h = 1, . . . ,H +1.

Proof. Since V ∗h (s) ≤ V π
h (s) for any policy π , we only need to prove the leftmost and

rightmost inequalities of the claim. We prove this result via induction.

Base case, the claim holds for h = H + 1. Since we assume the terminal costs are
known, for any s ∈S ,

V m
H+1(s) =V ∗H+1(s) =V πm

H+1(s) = V̄ m
H+1(s) = c f (s).

Induction step, prove for h ∈ [H] assuming the claim holds for all h+1≤ h′ ≤ H +1.

Leftmost inequality, optimism. Let a∗(s) ∈ argmina∈A Q∗h(s,a), then

V ∗h (s)−V m
h (s) = Q∗h(s,a

∗(s))−max
{

min
a∈A

Qm
h (s,a),0

}
. (D.1)

Assume that mina Q̄m
h (s,a)> 0 (otherwise, the inequality is satisfied). Then,

(D.1)≥ Q∗h(s,a
∗(s))−Qm

h (s,a
∗(s))

= c(s,a∗(s))− c̄m−1(s,a∗(s))+bm
c (s,a

∗(s))+bm
p (s,a

∗(s))

+(P− P̄m−1)(· | s,a∗(s)) ·V ∗h+1 +EP̄m−1(·|s,a∗(s))[V
∗
h+1(s

′)−V m
h+1(s

′)︸ ︷︷ ︸
≥0 Induction hypothesis

]

≥−bm
pv1,h(s,a

∗(s))+bm
p (s,a

∗(s)), (D.2)

134

where the last relation holds since the events ∩mE pv1(m) and ∩mEc(m) hold. We now
analyze this term.

(D.2) =−bm
pv1,h(s,a

∗(s))+bm
p (s,a

∗(s))

(a)
≥ −

√
2VarP(·|s,a∗(s))(V ∗h+1)Lm

nm−1(s,a∗(s))∨1
− 5B⋆Lm

nm−1(s,a∗(s))∨1

+

√
2VarP̄m−1(·|s,a∗(s))(V

m
h+1)Lm

nm−1(s,a∗(s))∨1
+

17H3B−1
⋆ Lm

nm−1(s,a∗(s))∨1
+

B⋆

16H2 EP̄m−1(·|s,a)
[
V ∗h+1(s

′)−V m
h+1(s

′)
]

≥−
√

2Lm

√
VarP(·|s,a∗(s))(V ∗h+1)−

√
VarP̄m−1(·|s,a∗(s))(V

m
h+1)√

nm−1(s,a∗(s))∨1

+
B⋆

16H2 EP̄m−1(·|s,a)
[
V ∗h+1(s

′)−V m
h+1(s

′)
]
+

13H3B−1
⋆ Lm

nm−1(s,a∗(s))∨1
(b)
≥ − B⋆

16H2 EP̄m−1(·|s,a)
[
V ∗h+1(s

′)−V m
h+1(s

′)
]
− 13H2Lm

nm−1(s,a∗(s))∨1

+
B⋆

16H2 EP̄m−1(·|s,a)
[
V ∗h+1(s

′)−V m
h+1(s

′)
]
+

13H3B−1
⋆ Lm

nm−1(s,a)∨1
≥ 0,

where (a) holds by plugging the definition of the bonuses bm
pv1,h and bm

p (recall Equa-
tion (6.2)), as S ≥ 1 by assumption, and by the induction hypothesis (V̄ m

h+1(s)≥V ∗h+1(s)).
(b) holds by Lemma D.2.11 while setting α = 16H2B−1

⋆ and bounding (5+α/2)B⋆ ≤
13H2. Combining all the above we conclude the proof of the rightmost inequality since
V ∗h (s)−V m

h (s)≥ (D.1)≥ (D.2)≥ 0.

Rightmost inequality, pessimism. The following relations hold.

V πm

h (s)−V̄ m
h (s) = Qπm

h (s,πm
h (s))−min

{
Q̄m

h (s,π
m
h (s)),H

}
. (D.3)

Assume that Q̄m
h (s,π

m
h (s))< H (otherwise, the claim holds). Then,

(D.3) = Qπm

h (s,πm
h (s))− Q̄m

h (s,π
m
h (s))

= c(s,πm
h (s))− c̄m−1(s,πm

h (s))−bm
c (s,π

m
h (s))−bm

p (s,π
m
h (s))

+(P− P̄m−1)(· | s,πm
h (s)) ·V

πm

h+1 +EP̄m−1(·|s,πm
h (s))[V

πm

h+1(s
′)−V̄ m

h+1(s
′)︸ ︷︷ ︸

≤0 Induction hypothesis

]

≤−bm
p (s,π

m
h (s))+(P− P̄m−1)(· | s,πm

h (s)) ·V
πm

h+1. (D.4)

135

We now focus on the last term. Observe that

(P−P̄m−1)(· | s,πm
h (s)) ·V

πm

h+1 =

= (P− P̄m−1)(· | s,πm
h (s)) ·V

∗
h+1 +(P− P̄m−1)(· | s,πm

h (s)) · (V
πm

h+1−V ∗h+1)

≤ bm
pv1,h(s,π

m
h (s))+(P− P̄m−1)(· | s,πm

h (s)) · (V
πm

h+1−V ∗h+1) (∩mE pv1(m) holds)
(a)
≤ bm

pv1,h(s,π
m
h (s))+

36H3B−1
⋆ SLm

nm−1(s,πm
h (s))∨1

+
B⋆

32H2 EP̄m−1(·|s,πm
h (s))

[
(V πm

h+1−V ∗h+1)(s
′)
]

(b)
≤ bm

pv1,h(s,π
m
h (s))+

36H3B−1
⋆ SLm

nm−1(s,πm
h (s))∨1

+
B⋆

32H2 EP̄m−1(·|s,πm
h (s))

[
(V̄ m

h+1−V m
h+1)(s

′)
]

(c)
≤

√
2VarP(·|s,πm

h (s))(V ∗h+1)Lm

nm−1(s,πm
h (s))∨1

+
41H3B−1

⋆ SLm

nm−1(s,πm
h (s))∨1

+
B⋆

32H2 EP̄m−1(·|s,πm
h (s))

[
(V̄t−1,h+1−V m

h+1)(s
′)
]
,

where (a) holds by applying Theorem D.2.13 while setting α = 32H2B−1
⋆ ,C1 = 2,C2 = 2

and bounding 2C2 +αSC1/2 ≤ 36H2B−1
⋆ S (assumption holds since ∩mE p(m) holds), (b)

holds by the induction hypothesis, and (c) holds by plugging in bm
pv1,h. Plugging this back

into (D.4) and plugging the explicit form of the bonus bm
p (s,a) we get

(D.4)≤−
√

2Lm

√
VarP̄m−1(·|s,πm

h (s))(V
m
h+1)−

√
VarP(·|s,πm

h (s))(V ∗h+1)√
nm−1(s,πm

h (s))∨1

− 21H3B−1
⋆ SLm

nm−1(s,πm
h (s))∨1

− B⋆

32H2 EP̄m−1(·|s,πm
h (s))

[
V̄ m

h+1(s
′)−V m

h+1(s
′)
]

≤ B⋆

32H2 EP̄m−1(·|s,πm
h (s))

[
V ∗h+1(s

′)−V m
h+1(s

′)
]
+

21H3B−1
⋆ Lm

nm−1(s,πm
h (s))

− B⋆

32H2 EP̄m−1(·|s,πm
h (s))

[
V̄ m

h+1(s
′)−V m

h+1(s
′)
]
− 21H3B−1

⋆ SLm

nm−1(s,πm
h (s))

= 0,

where the last inequality holds by Lemma D.2.11 while setting α = 32H2B−1
⋆ and bound-

ing (5+α/2)B⋆ ≤ 21H3B−1
⋆ . Combining all the above we concludes the proof as

V πm

h (s)−V̄ m
h (s)≤ (D.3)≤ (D.4)≤ 0.

Finally, using similar techniques to [EMSM21], we can prove an additional high prob-
ability bounds which hold alongside the basic good event G1.

136

Lemma D.2.3 (The Good Event). Let G1 be the event defined in Theorem D.2.1, and define

the following random variables.

Y m
1,h = V̄ m

h (sm
h)−V m

h (s
m
h)

Y m
2,h = VarP(·|sm

h ,a
m
h)
(V πm

h+1)

Y m
3 =

(
H

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

h+1)

)2

Y m
4 =

(
hm

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

h+1)I{hm = H}

)2

Y m
5 =

hm

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

h+1)I{hm = H}.

The second good event is the intersection of two events G2 = EOP∩EVar∩ESec1∩ESec2∩
Ecost defined as follows.

EOP =

{
∀h ∈ [H],M ≥ 1 :

M

∑
m=1

E[Y m
1,h | Ū

m
h]≤ 68H2LM +

(
1+

1
4H

) M

∑
m=1

Y m
1,h

}

EVar =

{
∀M ≥ 1 :

M

∑
m=1

H

∑
h=1

Y m
2,h ≤ 16H3LM +2

M

∑
m=1

H

∑
h=1

E[Y m
2,h|Ū

m]

}

ESec1 =

{
∀M ≥ 1 :

M

∑
m=1

E[Y m
3 | Ūm]≤ 68H4LM +2

M

∑
m=1

Y m
3

}

ESec2 =

{
∀M ≥ 1 :

M

∑
m=1

Y m
4 ≤ 16H4LM +2

M

∑
m=1

E[Y m
4 | Ūm]

}

Ecost =

{
∀M ≥ 1 :

M

∑
m=1

Y m
5 ≤ 8HLM +2

M

∑
m=1

E[Y m
5 | Ūm]

}
.

Then, the good event G = G1∩G2 holds with probability at least 1−δ .

Proof. Event EOP. Fix h and M. We start by defining the random variable W m = I{V̄ m
h (s)−

V m
h (s) ≥ 0 ∀h ∈ [H],s ∈ S }. Observe that Y m

h is Ūm
h measurable and also notice that

W m is Ūm measurable, as both πm and V̄ m
h are Ūm-measurable. Finally, define Ỹ m =

W mY m
h . Importantly, notice that Ỹ m ∈ [0,2H] almost surely, by definition of W m and since

V̄ m
h (s),V m

h (s) ∈ [0,2H] by the update rule. Thus, using Theorem D.5.2 with C = 2H ≥ 1,
we get

M

∑
m=1

E[Ỹ m
h | Ū

m
h]≤

(
1+

1
4H

) M

∑
m=1

Ỹ m
h +68H2 log

2HM(M+1)
δ

,

137

with probability greater than 1−δ , and since W m is Ūm-measurable, we can write

M

∑
m=1

W mE[Y m
h |Ū

m
h]≤

(
1+

1
4H

) M

∑
m=1

W mY m
h +68H2 log

2HM(M+1)
δ

. (D.5)

Importantly, notice that under G1, it holds that W m ≡ 1 (by Theorem D.2.2). Therefore,
applying the union bound and setting δ = δ/(2HM(M+1)) we get

Pr(EO∩G1)≤

≤
H

∑
h=1

∞

∑
M=1

Pr

({
M

∑
m=1

E[Y m
h |Ū

m
h]≥

(
1+

1
4H

) M

∑
m=1

Y m
h +68H2 log

2HM(M+1)
δ

}
∩G1

)

=
H

∑
h=1

∞

∑
M=1

Pr

({
M

∑
m=1

W mE[Y m
h |Ū

m
h]≥

(
1+

1
4H

) M

∑
m=1

W mY m
h +68H2 log

2HM(M+1)
δ

}
∩G1

)

≤
H

∑
h=1

∞

∑
M=1

Pr

(
M

∑
m=1

W mE[Y m
h |Ū

m
h]≥

(
1+

1
4H

) M

∑
m=1

W mY m
h +68H2 log

2HM(M+1)
δ

)

≤
H

∑
h=1

∞

∑
M=1

δ

2HM(M+1)
= δ/2,

where the first relation is by a union bound, the second relation follows because W m ≡ 1
under G1, and the last relation is by (D.5). Finally, we have

Pr(G)≤ Pr(G2∩G1)+2Pr(G1)≤
δ

2
+

2δ

4
= δ .

Replacing δ → δ/5 implies that Pr(EOP∩G1)≤ δ

10 .

Event EVar. Fix h ∈ [H]. Observe that Y m
2,h is Ūm measurable and that 0≤ Y m

2,h ≤ 4H2.
Applying the second statement of Theorem D.5.2 we get that

M

∑
m=1

Y m
2,h ≤ 2

M

∑
m=1

E[Y m
2,h|Ū

m]+16H2 log
1
δ
.

By taking union bound, as in the proof of the first statement of the lemma on all h ∈ [H]

and summing over h ∈ [H], we get that with probability at least 1−δ/10 for all M ≥ 1 it
holds that

M

∑
m=1

H

∑
h=1

Y m
2,h ≤ 2

M

∑
m=1

H

∑
h=1

E[Y m
2,h|Ū

m]+16H3LM.

Event ESec1. Observe that Y m
3 is Ūm measurable and that 0≤Y m

3 ≤ 4H2. Applying the

138

first statement of Theorem D.5.2 we get that

M

∑
m=1

E[Y m
3 |Ūm]≤ 2

M

∑
m=1

Y m
3 +50H4 log

1
δ
.

By taking union bound we get that with probability at least 1−δ/10 the event holds.

Event ESec2. Observe that Y m
4 is Ūm measurable and that 0≤Y m

4 ≤ 4H2. Applying the
second statement of Theorem D.5.2 we get that

M

∑
m=1

Y m
4 ≤ 2

M

∑
m=1

E[Y m
4 |Ūm]+16H2 log

1
δ
.

By taking union bound we get that with probability at least 1−δ/10 the event holds.

Event Ecost . Observe that Y m
5 is Ūm measurable and that 0≤ Y m

5 ≤ 2H. Applying the
second statement of Theorem D.5.2 we get that

M

∑
m=1

Y m
5 ≤ 2

M

∑
m=1

E[Y m
5 |Ūm]+8H log

1
δ
.

By taking union bound we get that with probability at least 1−δ/10 the event holds.

Combining all the above. We bound the probability of G as follows:

Pr(G)≤Pr(G1)+Pr(EOP∩G1)+Pr(EVar)+Pr(ESec1)+Pr(ESec2)+Pr(Ecost)≤ δ

2
+5 · δ

10
= δ .

D.2.2 ULCVI is admissible

By the definition of the algorithm and its regret bound in Theorem 6.4.1, it is clear that
properties 1,2,3 of the admissible algorithm definition hold. Thus, it remains to show prop-
erty 4 by bounding ωULCVI. In order to show that ωULCVI = O(H4B−2

⋆ S), we need to show
that if the number of visits to (s,a) is at least αH4B−2

⋆ S log MHSA
δ

(for a large enough uni-
versal constant α > 0) then ∥P(· | s,a)− P̃t(· | s,a)∥1 ≤ 1/(18H) and |c(s,a)− c̃t

h(s,a)| ≤
B⋆/H (under the good event), where P̃, c̃ are the estimations used by the algorithm to
compute its optimistic Q-function (i.e., these are the empirical transition estimate and the
empirical cost estimate plus the bonus).

139

Indeed, by event ∩m>0E p(m),

∥P(· | s,a)− P̃(· | s,a)∥1 = ∥P(· | s,a)− P̄(· | s,a)∥1

≤

√
2S log 16M3HS2A

δ

n(s,a)
+

2S log 16M3HS2A
δ

n(s,a)

≤ 4B⋆√
αH2 +

16B2
⋆

αH4 ≤
1

18H
,

for α > 5800, where the first inequality holds by Jensen inequality and since event∩m>0E p(m)

holds. By the definition of the exploration bonuses we have

|c(s,a)− c̃h(s,a)| ≤ |c(s,a)− c̄(s,a)|+bc(s,a)+bp(s,a)

≤ 3

√
2B2

⋆ log 16M3HS2A
δ

n(s,a)
+

72H3B−1
⋆ S log 16M3HS2A

δ

n(s,a)
+

B⋆maxs′ V̄h+1(s′)−V h+1(s
′)

16H2

≤ 12B2
⋆√

αH2 +
800B⋆

αH
+

B⋆

16H
≤ B⋆

H
,

for α > 5800.

Finally, note that although our algorithm does not update the policy in the beginning
of every episode (only when the number of visits to some state-action pair is doubled), this
only implies that the constant α needs to be doubled.

D.2.3 Proof of Theorem 6.4.1

As in the proof of UCBVI, before establishing the proof of Theorem 6.4.1 we establish the
following key lemma that bounds the on-policy errors at time step h by the on-policy errors
at time step h+1 and additional additive terms. Given this result, the analysis follows with
relative ease.

Lemma D.2.4 (ULCBVI, Key Recursion Bound). Conditioning on the good event G, the

following bound holds for all h ∈ [H].

M

∑
m=1

V̄ m
h (sm

h)−V m
h (s

m
h)≤ 68H2LM +

M

∑
m=1

310H3B−1
⋆ SLm

nm−1(sm
h ,a

m
h)∨1

+
M

∑
m=1

4
√

Lm

√
c(sm

h ,a
m
h)√

nm−1(sm
h ,a

m
h)∨1

+
M

∑
m=1

2
√

2Lm

√
VarP(·|sm

h ,a
m
h)
(V πm

h+1)√
nm−1(sm

h ,a
m
h)∨1

+

(
1+

1
2H

)2 M

∑
m=1

(
V̄ m

h+1(s
m
h+1)−V m

h+1(s
m
h+1)

)
.

140

Proof. We bound each of the terms in the sum as follows.

V̄ m
h (sm

h)−V m
h (s

m
h) = 2bm

c (s
m
h ,a

m
h)+2bm

p (s
m
h ,a

m
h)+EP̄m−1(·|sm

h ,a
m
h)
[V̄ m

h+1(s
m
h+1)−V m

h+1(s
m
h+1)]

= 2bm
c (s

m
h ,a

m
h)+2bm

p (s
m
h ,a

m
h)

+EP(·|sm
h ,a

m
h)
[V̄ m

h+1(s
m
h+1)−V m

h+1(s
m
h+1)]+(P̄m−1−P)(·|sm

h ,a
m
h) ·
(
V̄ m

h+1−V m
h+1
)

≤ 2bm
c (s

m
h ,a

m
h)+2bm

p (s
m
h ,a

m
h)

+
8H2SLm

nm−1(sm
h ,a

m
h)∨1

+

(
1+

1
4H

)
EP(·|sm

h ,a
m
h)
[V̄ m

h+1(s
m
h+1)−V m

h+1(s
m
h+1)],

(D.6)

where the last relation holds by Theorem D.2.13 which upper bounds

(P̄m−1−P)(·|sm
h ,a

m
h) ·
(
V̄ m

h+1−V m
h+1
)
≤ 8H2SLm

nm−1(sm
h ,a

m
h)∨1

+
1

4H
EP(·|sm

h ,a
m
h)
[V̄ m

h+1(s
m
h+1)−V m

h+1(s
m
h+1)]

by setting α = 4H,C1 = C2 = 2 and bounding HLm(2C2 +αSC1/2) ≤ 8H2SLm (the as-
sumption of the lemma holds since the event ∩mE p(m) holds). Taking the sum over
m ∈ [M] we get that

M

∑
m=1

V̄ m
h (sm

h)−V m
h (s

m
h)≤

M

∑
m=1

2bm
c (s

m
h ,a

m
h)+

M

∑
m=1

2bm
p (s

m
h ,a

m
h)

+
M

∑
m=1

8H2SLm

nm−1(sm
h ,a

m
h)∨1

+
M

∑
m=1

(
1+

1
4H

)
EP(·|sm

h ,a
m
h)
[V̄ m

h+1(s
m
h+1)−V m

h+1(s
m
h+1)].

(D.7)

The first sum is bounded in Theorem D.2.5 by

M

∑
m=1

bm
c (s

m
h ,a

m
h)≤

M

∑
m=1

√
2c(sm

h ,a
m
h)Lm

nm−1(sm
h ,a

m
h)∨1

+
M

∑
m=1

10Lm

nm−1(sm
h ,a

m
h)∨1

,

and the second sum is bounded in Theorem D.2.6 by

M

∑
m=1

bm
p (s

m
h ,a

m
h)≤

M

∑
m=1

139H3B−1
⋆ SLm

nm−1(sm
h ,a

m
h)∨1

+
M

∑
m=1

√
2Lm

√
VarP(·|sm

h ,a
m
h)
(V πm

h+1)√
nm−1(sm

h ,a
m
h)∨1

+
1

8H

M

∑
m=1

EP(·|sm
h ,a

m
h)
[V̄ m

h+1(s
m
h+1)−V m

h+1(s
m
h+1)].

141

Plugging this into (D.7) and rearranging the terms we get

M

∑
m=1

V̄ m
h (sm

h)−V m
h (s

m
h)≤

M

∑
m=1

2
√

2c(sm
h ,a

m
h)Lm√

nm−1(sm
h ,a

m
h)∨1

+
M

∑
m=1

2
√

2Lm

√
VarP(·|sm

h ,a
m
h)
(V πm

h+1)√
nm−1(sm

h ,a
m
h)∨1

+
M

∑
m=1

286H3B−1
⋆ SLm

nm−1(sm
h ,a

m
h)∨1

+

(
1+

1
2H

) M

∑
m=1

EP(·|sm
h ,a

m
h)
[V̄ m

h+1(s
m
h+1)−V m

h+1(s
m
h+1)]

≤ 68H2LM +
M

∑
m=1

2
√

2Lm√
nm−1(sm

h ,a
m
h)∨1

+
M

∑
m=1

286H3B−1
⋆ SLm

nm−1(sm
h ,a

m
h)∨1

+
M

∑
m=1

2
√

2Lm

√
VarP(·|sm

h ,a
m
h)
(V πm

h+1)√
nm−1(sm

h ,a
m
h)∨1

+

(
1+

1
2H

)2 M

∑
m=1

V̄ m
h+1(s

m
h+1)−V m

h+1(s
m
h+1),

where the last inequality follows since the second good event holds.

Proof of Theorem 6.4.1. Start by conditioning on the good event which holds with proba-
bility greater than 1−δ . Applying the optimism-pessimism of the upper and lower value
function we get

M

∑
m=1

V πm

1 (sm
1)−V ∗1 (s

m
1)≤

M

∑
m=1

V̄ m
1 (sm

1)−V m
1 (s

m
1). (D.8)

Iteratively applying Theorem D.2.4 and bounding the exponential growth by
(
1+ 1

2H

)2H ≤
e≤ 3, the following upper bound on the cumulative regret is obtained.

(D.8)≤ 204H3B−1
⋆ LM +

M

∑
m=1

H

∑
h=1

930H3B−1
⋆ SLm

nm−1(sm
h ,a

m
h)∨1

+
M

∑
m=1

H

∑
h=1

12
√

c(sm
h ,a

m
h)Lm√

nm−1(sm
h ,a

m
h)∨1

+9
M

∑
m=1

H

∑
h=1

√
LmVarP(·|sm

h ,a
m
h)
(V πm

h+1)√
nm−1(sm

h ,a
m
h)

. (D.9)

We now bound each of the three sums in Equation (D.9). We bound the first sum in

142

Equation (D.9) via standard analysis as follows:

M

∑
m=1

H

∑
h=1

H3B−1
⋆ SLm

nm−1(sm
h ,a

m
h)∨1

≤ H3B−1
⋆ SLM

M

∑
m=1

H

∑
h=1

1
nm−1(sm

h ,a
m
h)∨1

= H3B−1
⋆ SLM

M

∑
m=1

∑
s,a

∑
H
h=1 I{sm

h = s,am
h = a}

nm−1(s,a)∨1

≤ H3B−1
⋆ SLM

M

∑
m=1

∑
s,a

I{nm−1(s,a)≥ H}∑
H
h=1 I{sm

h = s,am
h = a}

nm−1(s,a)∨1
+2H4B−1

⋆ S2ALM

≤ 3H3B−1
⋆ S2ALM log(MH)+2H4B−1

⋆ S2ALM,

where the last inequality is by Theorem D.2.12 that bounds ∑m,s,a I{nm−1(s,a)≥H}∑
H
h=1 I{sm

h =s,am
h =a}

nm−1(s,a)∨1 ≤
3SA log(MH).

The second sum in Equation (D.9) is bounded as follows.

M

∑
m=1

H

∑
h=1

√
c(sm

h ,a
m
h)Lm√

nm−1(sm
h ,a

m
h)∨1

≤
M

∑
m=1

H

∑
h=1

√
c(sm

h ,a
m
h)Lm√

nm−1(sm
h ,a

m
h)∨1

I{nm−1(sm
h ,a

m
h)≥ H}+2HSALM

(a)
≤
√

LM

√√√√ M

∑
m=1

H

∑
h=1

c(sm
h ,a

m
h) ·

√√√√ M

∑
m=1

H

∑
h=1

I{nm−1(sm
h ,a

m
h)≥ H}

nm−1(sm
h ,a

m
h)∨1

+2HSALM

(b)
≤
√

LM

√√√√ M

∑
m=1

H

∑
h=1

c(sm
h ,a

m
h) ·
√

3SA log(MH)+2HSALM

≤
√

3SALM

√√√√ M

∑
m=1

H

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

H+1)+2HSALM

≤ O
(√

B⋆SAMLM +H3B−1
⋆ S2A log3/2 MHSA

δ

)
.

where (a) is by Cauchy-Schwartz, (b) is by Theorem D.2.12, and the last inequality is by
Theorem D.2.7. The third sum in Equation (D.9) is bounded in Theorem D.2.8 by

M

∑
m=1

H

∑
h=1

√
LmVarP(·|sm

h ,a
m
h)
(V πm

h+1)√
nm−1(sm

h ,a
m
h)

≤
√

LM

M

∑
m=1

H

∑
h=1

√
VarP(·|sm

h ,a
m
h)
(V πm

h+1)√
nm−1(sm

h ,a
m
h)

(Lm increasing in m)

≤
√

Lm ·O
(√

B2
⋆SAM log(MH)+H3B−1

⋆ S2A log
MHSA

δ

)
. (Lemma D.2.8)

143

D.2.4 Bounds on the cumulative bonuses

Lemma D.2.5 (Bound on the Cumulative Cost Function Bonus). Conditioning on the good

event the following bound holds for all h ∈ [H].

M

∑
m=1

bm
c (s

m
h ,a

m
h)≤

M

∑
m=1

√
2c(sm

h ,a
m
h)Lm

nm−1(sm
h ,a

m
h)∨1

+
M

∑
m=1

10Lm

nm−1(sm
h ,a

m
h)∨1

.

Proof. By definition of bm
c and since the event ∩mEcv(m) holds, we have

M

∑
m=1

bm
c (s

m
h ,a

m
h) =

M

∑
m=1

√√√√ 2Varm−1
sm

h ,a
m
h
(c)Lm

nm−1(sm
h ,a

m
h)∨1

+
5Lm

nm−1(sm
h ,a

m
h)∨1

≤
M

∑
m=1

√
2Varsm

h ,a
m
h
(c)Lm

nm−1(sm
h ,a

m
h)∨1

+

√√√√2Lm
∣∣Varsm

h ,a
m
h
(c)−Varm−1

sm
h ,a

m
h ,t−1(c)

∣∣
nm−1(sm

h ,a
m
h)∨1

+
5Lm

nm−1(sm
h ,a

m
h)∨1

≤
M

∑
m=1

√
2Varsm

h ,a
m
h
(c)Lm

nm−1(sm
h ,a

m
h)∨1

+
10Lm

nm−1(sm
h ,a

m
h)∨1

,

where the first inequality holds since
√

a+b ≤
√

A+
√
|b|. Finally, notice that for ev-

ery (s,a) ∈S ×A the variance of the cost is bounded by the second moment, which is
bounded by the expected value c(s,a) since the random cost value is bounded in [0,1].

Lemma D.2.6 (Bound on the Cumulative Transition Model Bonus). Conditioning on the

good event the following bound holds for all h ∈ [H].

M

∑
m=1

bm
p (s

m
h ,a

m
h)≤

M

∑
m=1

139H3B−1
⋆ SLm

nm−1(sm
h ,a

m
h)∨1

+
M

∑
m=1

√
2Lm

√
VarP(·|sm

h ,a
m
h)
(V πm

h+1)√
nm−1(sm

h ,a
m
h)∨1

+
1

8H

M

∑
m=1

EP(·|sm
h ,a

m
h)
[V̄ m

h+1(s
m
h+1)−V m

h+1(s
m
h+1)].

Proof. First, by applying Lemma D.2.13 with α = 8H,C1 = C2 = 2 and HLm(2C2 +

αSC1/2)≤ 12H2SLm, we have

EP̄m−1(·|s,a)[V̄
m
h+1(s

′)−V m
h+1(s

′)] = EP(·|s,a)[V̄
m
h+1(s

′)−V m
h+1(s

′)]+(P̄m−1−P)(· | s,a) · (V̄ m
h+1−V m

h+1)

≤ 9
8

EP(·|s,a)[V̄
m
h+1(s

′)−V m
h+1(s

′)]+
12H2SLm

nm−1(s,a)∨1
.

(D.10)

144

Thus, the bonus bp
t (s,a) can be upper bounded as follows.

bm
p (s,a)≤

√
2

√
VarP̄m−1(·|s,a)(V

m
h+1)Lm

nm−1(s,a)∨1
+

1
16H

EP̄m−1(·|s,a)[V̄
m
h+1(s

′)−V m
h+1(s

′)]+
62H3B−1

⋆ SLm

nm−1(s,a)∨1

≤
√

2

√
VarP̄m−1(·|s,a)(V

m
h+1)Lm

nm−1(s,a)∨1
+

9
128H

EP(·|s,a)[V̄
m
h+1(s

′)−V m
h+1(s

′)]+
74H3B−1

⋆ SLm

nm−1(s,a)∨1
.

(D.11)

We bound the first term of (D.11) to establish the lemma. It holds that

√
2Lm

√
VarP̄m−1(·|s,a)(V

m
h+1)

nm−1(s,a)∨1
=
√

2Lm

√
VarP̄m−1(·|s,a)(V

m
h+1)−

√
VarP(·|s,a)(V ∗h+1)√

nm−1(s,a)∨1︸ ︷︷ ︸
(i)

+
√

2Lm

√
VarP(·|s,a)(V ∗h+1)−

√
VarP(·|s,a)(V πm

h+1)√
nm−1(s,a)∨1︸ ︷︷ ︸
(ii)

+

√
2Lm

√
VarP(·|s,a)(V πm

h+1)√
nm−1(s,a)∨1

.

Term (i) is bounded by Theorem D.2.11 (by setting α = 32H and (5+α/2)B⋆ ≤ 21H2),

√
2Lm

√
VarP̄m−1(·|s,a)(V

m
h+1)−

√
VarP(·|s,a)(V ∗h+1)√

nm−1(s,a)∨1
≤ 1

32H
EP̄m−1(·|s,a)

[
V ∗h+1(s

′)−V m
h+1(s

′)
]
+

21H2Lm

nm−1(s,a)∨1
.

Following the same steps as in (D.10), we get

EP̄m−1(·|s,a)
[
V ∗h+1(s

′)−V m
h+1(s

′)
]
≤ 9

8
EP(·|s,a)

[
V ∗h+1(s

′)−V m
h+1(s

′)
]
+

12H2SLm

nm−1(s,a)∨1
,

and thus,

(i)≤ 9
256H

EP(·|s,a)
[
V ∗h+1(s

′)−V m
h+1(s

′)
]
+

33H2SLm

nm−1(s,a)∨1
.

145

Term (ii) is bounded as follows.

(ii)≤

√
VarP(·|s,a)(V ∗h+1−V πm

h+1)√
nm−1(s,a)∨1

(By Lemma D.5.3)

≤

√
EP(·|s,a)[(V ∗h+1(s

′)−V πm

h+1(s
′))2]√

nm−1(s,a)∨1

≤

√
2HEP(·|s,a)[(V ∗h+1(s

′)−V πm

h+1(s
′))]√

nm−1(s,a)∨1
(0≤V ∗h (s

′)−V πm

h (s′)≤ 2H)

≤ 1
64H

EP(·|s,a)[(V
πm

h+1(s
′)−V ∗h+1(s

′))]+
32H2

nm−1(s,a)∨1
.

(ab≤ 1
α

a2 + α

4 b2 for α = 64H)

Thus, applying V̄ m
h ≥V πm

h ≥V ∗h ≥V m
h (Lemma D.2.2) in the bounds of (i) and (ii) we get

bm
p (s,a)≤

1
8H

EP(·|s,a)[(V̄
m
h (s′)−V m

h (s
′))]+

139H3B−1
⋆ SLm

nm−1(s,a)∨1
+

√
2Lm

√
VarP(·|s,a)(V πm

h+1)√
nm−1(s,a)∨1

,

and summing over m concludes the proof.

Lemma D.2.7 (Bound on Cost Term). Conditioning on the good event, it holds that

M

∑
m=1

H

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

H+1)≤ O
(

B⋆M+H5B−2
⋆ S2A log

MHSA
δ

)
.

Proof. Denote by hm the last time step before reaching an unknown state-action pair (or
H if it was not reached). By the event Ecost we have

M

∑
m=1

H

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

H+1) =
M

∑
m=1

(
H

∑
h=hm+1

c(sm
h ,a

m
h)+ c f (sm

h+1)I{hm ̸= H}

)

+
M

∑
m=1

(
hm

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

h+1)I{hm = H}

)

≤ 2αH5B−2
⋆ S2A log

MHSA
δ

+
M

∑
m=1

(
hm

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

h+1)I{hm = H}

)

≤ 10αH5B−2
⋆ S2A log

MHSA
δ

+2
M

∑
m=1

E

[
hm

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

h+1)I{hm = H}
∣∣∣∣ Ūm

]
≤ O

(
H5B−2

⋆ S2A log
MHSA

δ
+B⋆M

)
,

146

where the second inequality follows since every state-action pair becomes known after the
number of visits is αH4B−2

⋆ S log MHSA
δ

, and the last one by Theorem D.2.10.

Lemma D.2.8 (Bound on Variance Term). Conditioning on the good event, it holds that

M

∑
m=1

H

∑
h=1

√
VarP(·|sm

h ,a
m
h)
(V πm

h+1)√
nm−1(sm

h ,a
m
h)

≤ O
(√

B2
⋆SAM log(MH)+H3B−1

⋆ S3/2A log
MHSA

δ

)
.

Proof. Applying Cauchy-Schwartz inequality we get

M

∑
m=1

H

∑
h=1

√
VarP(·|sm

h ,a
m
h)
(V πm

h+1)√
nm−1(sm

h ,a
m
h)∨1

≤
M

∑
m=1

H

∑
h=1

√
VarP(·|sm

h ,a
m
h)
(V πm

h+1)√
nm−1(sm

h ,a
m
h)∨1

I{nm−1(sm
h ,a

m
h)≥ H}+2H2SA

≤

√√√√ M

∑
m=1

H

∑
h=1

VarP(·|sm
h ,a

m
h)
(V πm

h+1)

√√√√ M

∑
m=1

H

∑
h=1

1
nm−1(sm

h ,a
m
h)∨1

I{nm−1(sm
h ,a

m
h)≥ H}+2H2SA

≤

√√√√ M

∑
m=1

H

∑
h=1

VarP(·|sm
h ,a

m
h)
(V πm

h+1)
√

3SA log(MH)+2H2SA (Lemma D.2.12)

≤

√√√√2
M

∑
m=1

E

[
H

∑
h=1

VarP(·|sm
h ,a

m
h)
(V πm

h+1) | Ūm

]
+16H3LM

√
3SA log(MH)+2H2SA

(Event EVar holds)

≤ 3

√√√√ M

∑
m=1

E

[
H

∑
h=1

VarP(·|sm
h ,a

m
h)
(V πm

h+1) | Ūm

]√
SA log(MH)

+7
√

SAH3 log(MH)LM +2H2SA (
√

a+b≤
√

a+
√

b)

(a)
= 3

√√√√√ M

∑
m=1

E

(H

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

h+1)−V πm

1 (s1)

)2 ∣∣∣∣ Ūm

√SA log(MH)

+7
√

SAH3 log(MH))Lm +2H2SA

(b)
≤ 3

√√√√√ M

∑
m=1

E

(H

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

h+1)

)2 ∣∣∣∣ Ūm

√SA log(MH)+9H2SALM

≤ O
(√

B2
⋆SAM log(MH)+H3B−1

⋆ S3/2A log
MHSA

δ

)
,

where (a) is by law of total variance [AOM17], see Lemma D.2.14, (b) is because the
variance is bounded by the second moment, and the last inequality is by Theorem D.2.9.

147

D.2.5 Bounds on the second moment

Lemma D.2.9. Conditioning on the good event, it holds that

M

∑
m=1

E

(H

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

h+1)

)2 ∣∣∣∣ Ūm

≤ O
(

B2
⋆M+H6B−2

⋆ S2A log
MHSA

δ

)
.

Proof. Denote by hm the last time step before reaching an unknown state-action pair (or
H if it was not reached). By the event ESec1 we have

M

∑
m=1

E

(H

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

h+1)

)2 ∣∣∣∣ Ūm

≤ 2
M

∑
m=1

(
H

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

h+1)

)2

+62H4LM

≤ 4
M

∑
m=1

(
H

∑
h=hm+1

c(sm
h ,a

m
h)+ c f (sm

h+1)I{hm ̸= H}

)2

+62H4LM

+4
M

∑
m=1

(
hm

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

h+1)I{hm = H}

)2

≤ 300αH6B−2
⋆ S2A log

MHSA
δ

+4
M

∑
m=1

(
hm

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

h+1)I{hm = H}

)2

≤ 400αH6B−2
⋆ S2A log

MHSA
δ

+4
M

∑
m=1

E

(hm

∑
h=1

c(sm
h ,a

m
h)+ c f (sm

h+1)I{hm = H}

)2 ∣∣∣∣ Ūm


≤ O

(
H6B−2

⋆ S2A log
MHSA

δ
+B2

⋆M
)
,

where the third inequality follows since every state-action pair becomes known after the
number of visits is αH4B−2

⋆ S log MHSA
δ

, the forth inequality by event ESec2, and the last
one by Theorem D.2.10.

Lemma D.2.10. Let m be an episode and hm be the last time step before an unknown

state-action pair was reached (or H if they were not reached). Further, denote by Cm =

∑
hm
h=1 c(sm

h ,a
m
h) + c f (sm

H+1)I{hm = H} the cumulative cost in the episode until time hm.

Then, under the good event, E[Cm | Ūm]≤ 3B⋆ and E[(Cm)2 | Ūm]≤ 2 ·104B2
⋆.

Proof. Consider the following finite-horizon MDP M m = (S∪{g},A,Pm,H,cm,cm
f) that

contracts unknown state-action pairs with a new goal state, i.e., cm(s,a) = c(s,a)I{s ̸= g}

148

and cm
f (s) = c f (s)I{s ̸= g} and

Pm
h (s′ | s,a) =


0, (s′,πm

h+1(s
′)) is unknown;

P(s′ | s,a), s′ ̸= g and (s′,πm
h+1(s

′)) is known;

1−∑s′′∈S Pm
h (s′′ | s,a), s′ = g.

Denote by V m the cost-to-go function of πm in the MDP M m. Moreover, we slightly abuse
notation to let P̃m be the transition function induced by P̄m−1 in the MDP M m similarly
to Pm, and Ṽ m the cost-to-go function of πm with respect to P̄m−1 (and cost function
c̃m = c̄m−1− bm

c − bm
p). By the value difference lemma (see, e.g., [SERM20]), for every

s,h such that (s,πm
h (s)) is known,

V m
h (s) = Ṽ m

h (s)+
H

∑
h′=h

E
[
cm(sh′,ah′)− c̃m

h′(sh′,ah′) | sh = s,Pm,πm
]

+
H

∑
h′=h

E
[(

Pm
h′ (· | sh′,ah′)− P̃m

h′ (· | sh′,ah′)
)
·Ṽ m | sh = s,Pm,πm

]
≤ Ṽ m

h (s)+H max
(s,πm

h′(s))
known

|c(s,πm
h′ (s))− c̃m

h′(s,π
m
h′ (s))|+H∥Ṽ m∥∞ max

(s,πm
h′(s))

known

∥Pm
h′ (·|s,π

m
h′ (s))− P̃m

h′ (·|s,π
m
h′ (s))∥1

≤ Ṽ m
h (s)+H max

(s,πm
h′(s))

known

|c(s,πm
h′ (s))− c̃m

h′(s,π
m
h′ (s))|

+2H∥Ṽ m∥∞ max
(s,πm

h′(s))
known

∥P(·|s,πm
h′ (s))− P̄m−1(·|s,πm

h′ (s))∥1

≤V ∗h (s)+H max
(s,πm

h′(s))
known

|c(s,πm
h′ (s))− c̃m

h′(s,π
m
h′ (s))|+2HB⋆ max

(s,πm
h′(s))

known

∥P(·|s,πm
h′ (s))− P̄m−1(·|s,πm

h′ (s))∥1,

where the last inequality follows by optimism and since V ⋆
h (s) ≤ B⋆. Thus, by Sec-

tion D.2.2 (since all state-action pairs in M m are known), we have that V m
h (s) ≤ V ∗h (s)+

2B⋆ ≤ 3B⋆. Notice that Cm is exactly the cost in the MDP M m, so E[Cm | Ūm]≤ 3B⋆.

Similarly, we notice that E[(Cm)2 | Ūm] = E[(Ĉ)2], where Ĉ is the cumulative cost
in M m, and we override notation by denoting Ĉ = ∑

H
h=1 c(sh,ah)+ c f (sH+1). We split

the time steps into Q blocks as follows. We denote by t1 the first time step in which we
accumulated a total cost of at least 3B⋆ (or H+1 if it did not occur), by t2 the first time step
in which we accumulated a total cost of at least 3B⋆ after t1, and so on up until tQ = H +1.
Then, the first block consists of time steps t0 = 1, . . . , t1−1, the second block consists of
time steps t1, . . . , t2− 1, and so on. Since V m

h (s) ≤ 3B⋆ we must have c(sh,ah) ≤ 3B⋆ for

149

all h = 1, . . . ,H and thus in every such block the total cost is between 3B⋆ and 6B⋆. Thus,

E

[(
H

∑
h=1

c(sh,ah)+ c f (sH+1)

)2]
≥ E

[
H

∑
h=1

c(sh,ah)+ c f (sH+1)

]2

= E

[
Q−1

∑
i=0

ti+1−1

∑
h=ti

c(sh,ah)+ c f (sH+1)

]2

≥ E[3B⋆Q]2 = 9B2
⋆E[Q]2,

by Jensen’s inequality. On the other hand,

E

[(
H

∑
h=1

c(sh,ah)+ c f (sH+1)

)2]
= E

[(
H

∑
h=1

c(sh,ah)+ c f (sH+1)−V m
1 (s1)+V m

1 (s1)

)2]

≤ 2E

[(
H

∑
h=1

c(sh,ah)+ c f (sH+1)−V m
1 (s1)

)2]
+2V m

1 (s1)
2

≤ 2E

[(
Q−1

∑
i=0

ti+1−1

∑
h=ti

c(sh,ah)−V m
ti (sti)+V m

ti+1
(sti+1)

)2]
+18B2

⋆

(a)
= 4E

[
Q−1

∑
i=0

(
ti+1−1

∑
h=ti

c(sh,ah)−V m
ti (sti)+V m

ti+1
(sti+1)

)2]
+18B2

⋆

≤ 4E[Q · (9B⋆)
2]+18B2

⋆ ≤ 324B2
⋆E[Q]+18B2

⋆.

For (a) we used the fact that E[∑
ti+1−1
h=ti

c(sh,ah)−Vti(sti)+Vti+1(sti+1)] = 0 using the Bell-
man optimality equations and conditioned on all past randomness up until time ti, and the
fact that ti+1 is a stopping time, in the following manner,

E

[
ti+1−1

∑
h=ti

c(sh,ah)−V m
ti (sti)+V m

ti+1
(sti+1)

]
= E

[
ti+1−1

∑
h=ti

c(sh,ah)−V m
h (sh)+V m

h+1(sh+1)

]

= E

[
ti+1−1

∑
h=ti

E
[
c(sh,ah)−V m

h (sh)+V m
h+1(sh+1) | sh

]]

= E

[
ti+1−1

∑
h=ti

c(sh,ah)+E
[
V m

h+1(sh+1) | sh

]
−V m

h (sh)

]
= 0.

Thus, we have
9B2

⋆E[Q]2 ≤ 324B2
⋆E[Q]+18B2

⋆,

150

and solving for E[Q] we obtain E[Q]≤ 37, so

E[(Cm)2 | Ūm] = E

[(
H

∑
h=1

ĉ(sh,ah)+ ĉ f (sH+1)

)2]
≤ 2 ·104B2

⋆.

Lemma D.2.11 (Variance Difference is Upper Bounded by Value Difference). Assume

that the value at time step h+1 is optimistic, i.e., V m
h+1(s)≤V ∗h+1(s) for all s ∈S . Con-

ditioning on the event ∩mE pv2(m) it holds for all (s,a) ∈S ×A that

√
2Lm

∣∣∣√VarP̄m−1(·|s,a)(V
m
h+1)−

√
VarP(·|s,a)(V ∗h+1)

∣∣∣√
nm−1(s,a)∨1

≤ 1
α

EP̄m−1(·|s,a)
[
V ∗h+1(s

′)−V m
h+1(s

′)
]

+
(5+α/2)B⋆Lm

nm−1(s,a)∨1
,

for any α > 0.

Proof. Conditioning on ∩mE pv2(m), the following relations hold.∣∣∣√VarP̄m−1(·|s,a)(V
m
h+1)−

√
VarP(·|s,a)(V ∗h+1)

∣∣∣≤ ∣∣∣√VarP̄m−1(·|s,a)(V
m
h+1)−

√
VarP̄m−1(·|s,a)(V

∗
h+1)

∣∣∣
+

√
12B2

⋆Lm

nm−1(s,a)∨1

≤
√

VarP̄m−1(·|s,a)(V
∗
h+1−V m

h+1)+

√
12B2

⋆Lm

nm−1(s,a)∨1

≤
√

EP̄m−1
[
(V ∗h+1(s

′)−V m
h+1(s

′))2
]
+

√
12B2

⋆Lm

nm−1(s,a)∨1

≤
√

B⋆EP̄m−1
[
V ∗h+1(s

′)−V m
h+1(s

′)
]
+

√
12B2

⋆Lm

nm−1(s,a)∨1
,

where the second inequality is by Theorem D.5.3, and the last relation holds since V ∗h+1(s
′),V m

h+1(s
′)∈

[0,B⋆] (the first, by model assumption, and the second, by the update rule) and since

151

V ∗h+1(s
′)≥V m

h+1(s
′) by the assumption the value is optimistic. Thus,

√
2Lm

∣∣∣√VarP̄m−1(·|s,a)(V
m
h+1)−

√
VarP(·|s,a)(V ∗h+1)

∣∣∣√
nm−1(s,a)

≤

≤
√

EP̄m−1
[
V ∗h+1(s

′)−V m
h+1(s

′)
]√ 2B⋆Lm

nm−1(s,a)∨1

+

√
24B⋆Lm

nm−1(s,a)∨1

≤ 1
α

EP̄m−1
[
V ∗h+1(s

′)−V m
h+1(s

′)
]
+

(5+α/2)B⋆Lm

nm−1(s,a)∨1
,

where the last inequality is by Young’s inequality, ab≤ 1
α

a2 + α

4 b2.

D.2.6 Useful results for reinforcement learning analysis

Lemma D.2.12 (Cumulative Visitation Bound for Stationary MDP, e.g., [EMM21], Lemma
23). It holds that

M

∑
m=1

∑
s,a

I{nm−1(s,a)≥ H}∑
H
h=1 I{sm

h = s,am
h = a}

nm−1(s,a)∨1
≤ 3SA log(MH).

Proof. Recall that we recompute the optimistic policy only in the end of episodes in which
the number of visits to some state-action pair was doubled. In this proof we refer to a
sequence of consecutive episodes in which we did not perform a recomputation of the
optimistic policy by the name of epoch. Let E be the number of epochs and note that E ≤
SA log(MH) because the number of visits to each state-action pair (s,a) can be doubled at
most log(MH) times. Next, denote by ñe(s,a) the number of visits to (s,a) until the end
of epoch e and by Ñe(s,a) the number of visits to (s,a) during epoch e. The following

152

relations hold for any fixed (s,a) pair.

M

∑
m=1

I{nm−1(s,a)≥ H}∑
H
h=1 I{sm

h = s,am
h = a}

nm−1(s,a)∨1
=

=
E

∑
e=1

I{ñe−1(s,a)≥ H} Ñe(s,a)
ñe−1(s,a)

=
E

∑
e=1

I{ñe−1(s,a)≥ H}Ñe(s,a)
ñe(s,a)

ñe(s,a)
ñe−1(s,a)

≤ 3
E

∑
e=1

I{ñe−1(s,a)≥ H}Ñe(s,a)
ñe(s,a)

= 3
E

∑
e=1

I{ñe−1(s,a)≥ H} ñe(s,a)− ñe−1(s,a)
ne(s,a)

≤ 3
E

∑
e=1

I{ñe−1(s,a)≥ H} log
(

ñe(s,a)
ñe−1(s,a)

)
≤ 3I{ñE(s,a)≥ H}(log ñE(s,a)− log(H))

≤ 3log
(
ñE(s,a)∨1

)
,

where the first inequality follows since ñe(s,a)
ñe−1(s,a) ≤

2ñe−1(s,a)+H
ñe−1(s,a) ≤ 3 for ñe−1(s,a) ≥ H,

and the second inequality follows by the inequality a−b
a ≤ log a

b for a ≥ b > 0. Applying
Jensen’s inequality we conclude the proof:

M

∑
m=1

∑
s,a

I{nm−1(s,a)≥ H}∑
H
h=1 I{sm

h = s,am
h = a}

nm−1(s,a)∨1
≤ 3∑

s,a
log
(
ñE(s,a)∨1

)
≤ 3SA log

(
∑
s,a

ñE(s,a)

)
≤ 3SA log(MH).

Lemma D.2.13 (Transition Difference to Next State Expectation, [EMSM21], Lemma
28). Let Y ∈ RS be a vector such that 0 ≤ Y (s) ≤ 2H for all s ∈ S . Let P1 and P2 be

two transition models and n ∈ RSA
+ . Let ∆P(· | s,a) ∈ RS and ∆P(s′|s,a) = P1(s′|s,a)−

P2(s′|s,a). Assume that

∀(s,a,s′) ∈S ×A ×S ,h ∈ [H] : |∆P(s′|s,a)| ≤

√
C1LmP1(s′|s,a)

n(s,a)∨1
+

C2Lm

n(s,a)∨1
,

153

for some C1,C2 > 0. Then, for any α > 0.

|∆P(· | s,a) ·Y | ≤ 1
α

EP1(·|s,a)
[
Y (s′)

]
+

HLm(2C2 +αSC1/2)
n(s,a)∨1

.

Lemma D.2.14 (Law of Total Variance, e.g., [AOM17]). For any π the following holds.

E

[
H

∑
h=1

VarP(·|sh,ah)(V
π
h+1) | π

]
= E

(H

∑
h=1

c(sh,ah)+ c f (sH+1)−V π
1 (s1)

)2

| π

.

154

D.3 Extending the reduction to unknown B⋆

In this section we assume B⋆≥ 1 to simplify presentation, but the results work similarly for
B⋆ < 1. To handle unknown B⋆, we leverage techniques from the adversarial SSP literature
[RM21b, CL21] for learning the diameter of an SSP problem. Recall that the SSP-diameter
D [TGV+20] is defined as D = maxs∈S minπ:s→A T π(s). So to compute D we can find the
optimal policy with respect to the constant cost function c1(s,a) = 1, and compute its cost-
to-go function. [RM21b] utilize this observation to estimate the SSP-diameter. They show
that one can estimate the expected time from a state s to the goal state g by running the
Bernstein-SSP algorithm of [RCMK20] with unit costs for L = Õ(D2S2A) episodes and
setting the estimator to be the average cost per episode times 10.

Inspired by their approach, we use the Bernstein-SSP algorithm on the the actual
costs, in order to estimate the expected cost of the optimal policy. Although Bernstein-SSP
suffers from sub-optimal regret, we run it only for a small number of episodes and there-
fore we will only suffer from a slightly larger additive factors in our regret bound, but keep
minimax optimal regret for large enough K.

By similar proofs to Lemmas 26 and 27 from [RM21b, Appendix J], we can show
that the cost-to-go from state s can be estimated up to a constant multiplicative factor by
running Bernstein-SSP for L = Õ(T 2

⋆ S2A) episodes. This is demonstrated in the follow-
ing lemma, where the upper bound follows from the regret guarantees of Bernstein-SSP
and the lower bound follows from concentration arguments (and noticing that the regret is
minimized by playing the optimal policy, but even then it is not zero).

Lemma D.3.1. Let s ∈ S and L ≥ 2400T 2
⋆ S2A log3 KT⋆SA

δ
. Run Bernstein-SSP with

initial state s for L episodes and denote by B̃s the average cost per episode times 10. Then,

with probability 1−δ ,

V π⋆
(s)≤ B̃s ≤ O(B⋆).

Thus, we use the first L visits to each state in order to estimate its cost-to-go. A state
which was visited at least L times will be called B⋆-known, and otherwise B⋆-unknown

(not to be confused with our previous definition of known state-action pair). To that end,
we split the total time steps into E epochs. In epoch e, we apply our reduction to a virtual
MDP M e that is identical to M in B⋆-known states, but turns B⋆-unknown states into
zero-cost sinks (like the goal state). For every state s ∈S we maintain a Bernstein-SSP
algorithm Bs. Every time we reach a B⋆-unknown state s, we run an episode of Bs until
the goal is reached.

155

Note that in the virtual MDP M e we can compute an upper bound on the optimal cost-
to-go using our estimates. Epoch e ends once some B⋆-unknown state s is visited L times
and thus becomes B⋆-known. Therefore the number of epochs E is bounded by S. The
important change, introduced by [CL21], is to not completely initialize our finite-horizon
algorithm ALG in the beginning of a new epoch as this leads to an extra S factor in the
regret. Instead, algorithm ALG inherits the experience (i.e., visit counters and accumulated
costs) of the previous epoch in B⋆-known states.

The reduction without knowledge of B⋆ is presented in Algorithm 15, and next we
prove that it maintains the same regret bound up to a slightly larger additive factor.

Theorem D.3.2. Let ALG be an admissible algorithm for regret minimization in finite-

horizon MDPs and denote its regret in M episodes by R̂ALG(M). Then, running Algo-

rithm 15 with ALG ensures that, with probability at least 1−2δ ,

RK ≤ R̂ALG

(
4K +4 ·104SAωALG log

KT⋆SAωALG

δ
+4 ·104T 2

⋆ S3A log3 KT⋆SA
δ

)
+O

(
B⋆

√
K log

KT⋆SAωALG

δ
+T⋆ωALGSA log2 KT⋆SAωALG

δ
+T 3

⋆ S3A log4 KT⋆SA
δ

)
,

where ωALG is a quantity that depends on the algorithm ALG and on S,A,H.

Using the reduction with the ULCVI algorithm, we can again obtain optimal regret for
SSP.

Theorem D.3.3. Running the reduction in Algorithm 15 with the finite-horizon regret min-

imization algorithm ULCVI ensures, with probability at least 1−2δ ,

RK = O
(

B⋆

√
SAK log

KT⋆SA
δ

+T 5
⋆ S2A log6 KT⋆SA

δ
+T 3

⋆ S3A log4 KT⋆SA
δ

)
.

156

Algorithm 15 REDUCTION FROM SSP TO FINITE-HORIZON MDP WITH UNKNOWN B⋆

1: input: state space S , action space A , initial state sinit, goal state g, confidence pa-
rameter δ , number of episodes K, bound on the expected time of the optimal policy
T⋆ and algorithm ALG for regret minimization in finite-horizon MDPs.

2: initialize a Bernstein-SSP algorithm Bs with initial state s and confidence parameter
δ/S for every s ∈S .

3: set L = 104T 2
⋆ S2A log3 KT⋆SA

δ
, S 1

known = {sinit} and N f (s) = LI{s = sinit} for every
s ∈S .

4: run Bsinit for L episodes and set B̃sinit to be the average cost per episode times 10.
5: initialize ALG with state space Ŝ = S ∪ {g}, action space A , horizon H =

8T⋆ log(8K), confidence parameter δ

4S , terminal costs ĉ f (s) = 8I{s = sinit}B̃sinit and
bound on the expected cost of the optimal policy 9B̃sinit .

6: initialize intervals counter m← 0, time steps counter t← 1 and epochs counter e← 1.
7: for k = L+1, . . . ,K do
8: set st ← sinit.
9: while st ̸= g do

10: set m← m+ 1, feed initial state st to ALG and obtain policy πm = {πm
h : Ŝ →

A }H
h=1.

11: for h = 1, . . . ,H do
12: play action at = πm

h (st), suffer cost Ct ∼ c(st ,at), and set sm
h = st ,am

h = at ,Cm
h =

Ct .
13: observe next state st+1 ∼ P(· | st ,at) and set t← t +1.
14: if st = g or st ̸∈S

⌉
known then

15: pad trajectory to be of length H and BREAK.
16: end if
17: end for
18: set sm

H+1 = st .
19: feed trajectory Um = (sm

1 ,a
m
1 , . . . ,s

m
H ,a

m
H ,s

m
H+1) and costs {Cm

h }
H
h=1 to ALG.

20: if st ̸∈S e
known then

21: set N f (st)← N f (st)+1 and run an episode of Bst .
22: if N f (st) = L then
23: set e← e+1 and S e

known←S e−1
known∪{st}.

24: set B̃st to be the average cost per episode of Bst times 10.
25: reinitialize ALG by updating the terminal costs as ĉ f (s) = 8I{s ∈

S e
known}maxs̃∈S e

known
B̃s̃, updating the bound on the expected cost of the op-

timal policy 9maxs̃∈S e
known

B̃s̃ and deleting the history of ALG only in state
st .

26: end if
27: end if
28: end while
29: end for

157

D.3.1 Proof of Theorem D.3.2

We follow the analysis of the known B⋆ case under the event that Theorem D.3.1 holds
for all states (which happens with probability at least 1− δ), i.e., V π⋆

(s) ≤ B̃s ≤ O(B⋆)

for every s ∈ S . We start by decomposing the regret similarly to Theorem 6.3.1. Note
that now there is an additional term that comes from the regret of the S Bernstein-SSP

algorithms that are used to estimate B⋆.

Lemma D.3.4. For H = 8T⋆ log(8K), we have the following bound on the regret of Algo-

rithm 15:

RK ≤ R̂ALG(M)+
M

∑
m=1

(
H

∑
h=1

Cm
h + ĉ f (sm

H+1)−V̂ πm

1 (sm
1)

)
+O

(
T 2
⋆ B⋆S3A log3 KT⋆SA

δ

)
,

(D.12)

where M is the total number of intervals.

Remark 6. Note that now each interval is considered in the context of the current epoch,
i.e., the current B⋆-known states. The finite-horizon cost-to-go V̂ πm

is with respect to the
MDP of B⋆-known states. Moreover, for interval m that ends in a B⋆-unknown state, the
last state in the trajectory sm

H+1 will be a B⋆-unknown state and the length of the interval
may be shorter than H (just like intervals that end in the goal state).

Proof. Every interval ends either in the goal state, in a B⋆-known state or in a B⋆-unknown
state. The first two cases are similar to the proof of Theorem 6.3.1 because our estimates
B̃s in all B⋆-known states s are upper bounds on V π⋆

(s). Importantly, we do not initialize
ALG in the end of an epoch and this allows us to get its regret bound without an extra
S factor. The reason is that ALG is an admissible (and thus optimistic) algorithm, so it
operates based on the observations it collected. Another important note is that the cost in
the virtual MDP M e is always bounded by the cost in the actual MDP M .

We now focus on the last case. Recall that if interval m ends in a B⋆-unknown state s,
then the terminal cost is 0 and we run an episode of the Bernstein-SSP algorithm Bs.
Thus, the excess cost of running Bernstein-SSP algorithms is bounded by S times the
Bernstein-SSP regret plus SB⋆L, i.e., we can bound it as follows

SB⋆L+O
(

B3/2
⋆ S2

√
AL log

KT⋆SA
δ

+T 3/2
⋆ S3A log2 KT⋆SA

δ

)
.

To finish the proof we plug in the definition of L.

158

Next, we bound the number of intervals. Again, we get a similar bound to Theo-
rem 6.3.3 but with an additional term for all the intervals that ended in a B⋆-unknown state
(there are at most SL such intervals).

Lemma D.3.5. Assume that the reduction is performed using an admissible algorithm

ALG. Then, with probability at least 1− 3δ/8,

M ≤ 4
(

K +104SAωALG log
KT⋆SAωALG

δ
+104T 2

⋆ S3A log3 KT⋆SA
δ

)
.

Proof. The proof is based on the claim that in every interval there is a probability of at
least 1/2 that the agent reaches either the goal state, an unknown state-action pair or a
B⋆-unknown state. This is proved similarly to Theorem D.1.3 since we can look at the
MDP of B⋆-known states, and then the claim of Theorem D.1.3 is equivalent to reaching
either the goal state, an unknown state-action pair or a B⋆-unknown state.

With this claim the proof follows easily by following the proof of Theorem 6.3.3. We
simply define Xm to be 1 if an unknown state-action pair or the goal or a B⋆-unknown state
were reached during interval m (and 0 otherwise). Then, we have

M

∑
m=1

Xm ≤ K +SAωALG log
MHSA

δ
+SL,

which implies the Lemma following the same argument based on Freedman’s inequality.

Finally, we bound the deviation of the actual cost in each interval from its expected
value. The proof is exactly the same as Theorem 6.3.2. The second moment of the accu-
mulated cost until reaching the goal, an unknown state-action pair or a B⋆-unknown state
is of order B2

⋆, and therefore in almost all intervals (except for a finite number) the accumu-
lated cost will be of order B⋆ with high probability (in other intervals the cost is trivially
bounded by H +O(B⋆)).

Lemma D.3.6. Assume that the reduction is performed using an admissible algorithm

ALG. Then, the following holds with probability at least 1− 3δ/8,

M

∑
m=1

(
H

∑
h=1

Cm
h + ĉ f (sm

H+1)−V̂ πm

1 (sm
1)

)
= O

(
B⋆

√
M log

M
δ
+(H +B⋆)ωALGSA log

MKT⋆SA
δ

)

+O
(
(H +B⋆)T 2

⋆ S3A log3 KT⋆SA
δ

)
.

159

The proof of the theorem is finished by combining Theorems D.3.4 to D.3.6 together
with the guarantees of the admissible algorithm ALG and Theorem D.3.1, similarly to The-
orem 6.2.1.

160

D.4 Lower bound

In this section we prove Theorem 6.1.3 which lower bounds the expected regret of any
learning algorithm for the case B⋆< 1. It complements the lower bound found in [RCMK20]
for the case B⋆ ≥ 1.

By Yao’s minimax principle, in order to derive a lower bound on the learner’s regret,
it suffices to show a distribution over MDP instances that forces any deterministic learner
to suffer a regret of Ω(

√
B⋆SAK) in expectation.

To construct this distribution, we follow [RCMK20] with a few modifications. We
initially consider the simpler setting with two states: an initial state and the goal state.
We now embed a hard MAB instance into our problem where the optimal action has an
expected cost of B⋆. To that end, consider a distribution over MDPs where a special action
a⋆ is chosen a-priori uniformly at random. Then, all actions lead to the goal state g with
probability 1. The cost Ck(sinit,a⋆) chosen at episode k is 1 w.p. B⋆ and 0 otherwise. The
cost of any other action a ̸= a⋆ is 1 w.p. B⋆+ ε and 0 otherwise, where ε ∈ (0,1/8) is
a constant to be determined. Thus the optimal policy will always play a⋆ and we have
V ⋆(sinit) = B⋆.

Fix any deterministic learning algorithm, we shall now quantify the regret of the
learner in terms of the number of times that it plays a⋆. Indeed, we have that the opti-
mal cost is B⋆, and the learner loses ε in the regret each time she plays an action other than
a⋆. Therefore,

E[RK]≥ ε · (K−E[N]),

where N is the number of times a⋆ was chosen in sinit.

We now introduce an additional distribution of the costs which denote by Prunif. Prunif

is identical to the distribution over the costs defined above, and denoted by Pr, except that
Pr[Ck(sinit,a) = 1] = B⋆+ε for all actions a ∈ A regardless of the choice of a⋆. We denote
expectations over Prunif by Eunif, and expectations over Pr by E. The following lemma
uses standard lower bound techniques used for multi-armed bandits (see, e.g., [JOA10,
Theorem 13]) to bound the difference in the expectation of N when the learner plays in Pr
compared to when it plays in Prunif.

Lemma D.4.1. Suppose that B⋆ ≤ 1
2 . Denote by Prunif,a, Eunif,a, Pra, Ea the distributions

and expectations defined above conditioned on a⋆ = a. For any deterministic learner we

have that Ea[N]≤ Eunif,a[N]+ εK
√

Eunif,a[N]/B⋆.

161

Proof. Fix any deterministic learner. Let us denote by C(k) the sequence of costs observed
by the learner up to episode k and including. Now, as N ≤ K and the fact that N is a
deterministic function of C(K), Ea[N] ≤ Eunif,a[N] +K · TV(Prunif,a[C(K)],Pr[C(K)]), and
Pinsker’s inequality yields

TV(Pr
unif,a

[C(K)],Pr[C(K)])≤

√
1
2

KL(Pr
unif,a

[C(K)] ∥ Pr
a
[C(K)]). (D.13)

Next, the chain rule of the KL divergence obtains

KL(Pr
unif,a

[C(K)] ∥ Pr
a
[C(K)])

=
K

∑
k=1

∑
C(k)

Pr
unif,a

[C(k)] ·KL(Pr
unif,a

[Ck(sinit,ak) |C(k)] ∥ Pr
a
[Ck(sinit,ak) |C(k)]),

where ak is the action chosen by the learner at episode k. (Recall that after which the
model transition to the goal state and the episode ends.)

Observe that at any episode, since the learning algorithm is deterministic, the learner
chooses an action given C(k) regardless of whether C(k) was generated under Pr or under
Prunif,a. Thus, the KL(Prunif,a[Ck(sinit,ak) |C(k)] ∥ Pra[Ck(sinit,ak) |C(k)]) is zero if ak ̸= a⋆,
and otherwise

KL(Pr
unif,a

[Ck(sinit,ak) |C(k)] ∥ Pr
a
[Ck(sinit,ak) |C(k)])

= (B⋆+ ε) log
(

1+
ε

B⋆

)
+(1−B⋆− ε) log

(
1− ε

1−B⋆

)
≤ ε2

B⋆(1−B⋆)
,

where we used that log(1+ x)≤ x for all x >−1, and since we assume B⋆ ≤ 1
2 and ε < 1

8

that imply −ε/(1−B⋆) ≥ −1
4 > −1. Plugging the above back into Equation (D.13) and

using B⋆ ≤ 1
2 gives the lemma.

In the following result, we combine the lemma above with standard techniques from
lower bounds of multi-armed bandits (see [ACBFS02] for example).

Theorem D.4.2. Suppose that B⋆ ≤ 1
2 , ε ∈ (0, 1

8) and A ≥ 2. For the problem described

above we have that

E[RK]≥ εK
(

1
2
− ε

√
K

AB⋆

)
.

162

Proof of Theorem D.4.2. Note that as under Prunif the cost distributions of all actions are
identical. Denote by Na the number of times that the learner chooses action a in sinit.
Therefore,

∑
a∈A

Eunif,a[N] = ∑
a∈A

Eunif[Na] = Eunif

[
∑
a∈A

Na

]
= K. (D.14)

Recall that a⋆ is sampled uniformly at random before the game starts. Then,

E[RK] =
1
A ∑

a∈A
Ea[RK]

≥ K− 1
A ∑

a∈A
Ea[N]

≥ K− 1
A ∑

a∈A

(
Eunif,a[N]+ εK

√
Eunif,a[N]/B⋆

)
(Theorem D.4.1)

≥ K− 1
A ∑

a∈A
Eunif,a[N]+ εK

√
1

AB⋆
∑
a∈A

Eunif,a[N] (Jensen’s inequality)

= K− K
A
+ εK

√
K

AB⋆
, (Equation (D.14))

The theorem follows from A≥ 2 and by rearranging.

Proof of Theorem 6.1.3. Consider the following MDP. Let S be the set of states disre-
garding g. The initial state is sampled uniformly at random from S . Each s ∈ S has
its own special action a⋆s . All actions transition to the goal state with probability 1. The
cost Ck(s,a) of action a ̸= a⋆s in episode k and state s is 1 with probability B⋆+ ε and 0
otherwise. The cost of Ck(s,a⋆s) is 1 with probability B⋆ and 0 otherwise.

Note that for each s ∈ S , the learner is faced with a simple problem as the one de-
scribed above from which it cannot learn about from other states s′ ̸= s. Therefore, we can
apply Theorem D.4.2 for each s ∈S separately and lower bound the learner’s expected
regret the sum of the regrets suffered at each s ∈S , which would depend on the number
of times s ∈S is drawn as the initial state. Since the states are chosen uniformly at ran-
dom there are many states (constant fraction) that are chosen Θ(K/S) times. Summing the
regret bounds of Theorem D.4.2 over only these states and choosing ε appropriately gives
the sought-after bound.

Denote by Ks the number of episodes that start in each state s ∈S .

E[RK]≥ ∑
s∈S

E

[
εKs

(1
2
− ε

√
Ks

AB⋆

)]
=

εK
2
− ε

2
√

1
AB⋆

∑
s∈S

E[K3/2
s]. (D.15)

163

Applying Cauchy-Schwartz inequality gives

∑
s∈S

E[K3/2
s]≤ ∑

s∈S

√
E[Ks]

√
E[K2

s] = ∑
s∈S

√
E[Ks]

√
E[Ks]2 +Var[Ks]

= ∑
s∈S

√
K
S

√
K2

S2 +
K
S

(
1− 1

S

)
≤ K

√
2K
S
,

where we have used the expectation and variance formulas of the Binomial distribution.
The lower bound is now given by applying the inequality above in Equation (D.15) and
choosing ε = 1

8

√
B⋆AS/K.

164

D.5 General useful results

Lemma D.5.1 (Freedman’s Inequality). Let {Xt}t≥1 be a real valued martingale difference

sequence adapted to a filtration {Ft}t≥0. If |Xt | ≤ R a.s. then for any η ∈ (0,1/R),T ∈ N

it holds with probability at least 1−δ ,

T

∑
t=1

Xt ≤ η

T

∑
t=1

E[X2
t |Ft−1]+

log(1/δ)

η
.

Lemma D.5.2 (Consequences of Freedman’s Inequality for Bounded and Positive Se-
quence of Random Variables, e.g., [EMSM21], Lemma 27). Let {Yt}t≥1 be a real valued

sequence of random variables adapted to a filtration {Ft}t≥0. Assume that for all t ≥ 1 it

holds that 0 ≤ Yt ≤C a.s., and T ∈ N. Then, each of the following inequalities hold with

probability at least 1−δ .

T

∑
t=1

E[Yt |Ft−1]≤
(

1+
1

2C

) T

∑
t=1

Yt +2(2C+1)2 log
1
δ

T

∑
t=1

Yt ≤ 2
T

∑
t=1

E[Yt |Ft−1]+4C log
1
δ
.

Lemma D.5.3 (Standard Deviation Difference, e.g., [ZB19]). Let V1,V2 : S→ R be fixed

mappings. Let P(s) be a probability measure over the state space. Then,
√

Var(V1)−√
Var(V2)≤

√
Var(V1−V2).

165

E Supplementary Material for
Chapter 7

E.1 Examples that illustrate some challenges in adversarial SSPs

E.1.1 Naive application of OMD fails in SSP

In general, the first policy that OMD picks is the one that maximizes the entropy, which is
the uniform policy, i.e., πu(a | s) = 1/A for every (s,a) ∈S ×A . Next we show that, in
SSP, this might result in exponential cost of AS already in the first episode. In the finite-
horizon setting, this is not a concern because the cost in a single episode is always bounded
by H, while in SSP it can be infinite.

Consider the following MDP M =(S ,A ,P,sinit,g) with the state space S = {1, . . . ,S}.
In every state i there is one action a(i) (picked uniformly at random in advance) such that
P(i+ 1 | i,a(i)) = 1, while the other actions return the agent to the initial state sinit = 1,
i.e., P(1 | i,a) = 1 for every a ̸= a(i). Finally, the cost function (for the first episode in
which OMD picks πu) is simply c(s,a) = 1 for every (s,a) ∈S ×A .

Clearly the best policy in this case is to pick a(i) in state i and then the total cost is S

(the SSP-diameter in this example is also S). However, the uniform policy picks this action
only with probability 1/A which yields exponential expected time to reach the goal (and
therefore exponential cost). To see that consider the Bellman equations for πu:

V πu
(i) = 1+

1
A
·V πu

(i+1)+(1− 1
A
) ·V πu

(1) ∀i = 1, . . . ,S−1

V πu
(S) = 1+

1
A
·0+(1− 1

A
) ·V πu

(1).

Solving these equations gives V πu
(sinit) =V πu

(1) = A(AS−1)
A−1 ≥ AS.

166

E.1.2 The expected time of the best policy in hindsight might be Ω(D/cmin)

The following example shows that the expected time of the best policy in hindsight might
be Ω(D/cmin), and therefore there is no better apriori choice for τ .

Consider the MDP M = ({sinit},{a1,a2},P,sinit,g) that has only one state (other than
the goal) and two actions.

Playing action a1 transitions to the goal with probability 1/D and back to sinit with
probability 1−1/D, i.e., P(sinit | sinit,a1) = 1−1/D and P(g | sinit,a1) = 1/D. Therefore,
the expected time of the policy that plays a1 is D and so the SSP-diameter is also bounded
by D.

Playing action a2 transitions to the goal with probability 2cmin/D and back to sinit with
probability 1−2cmin/D, i.e., P(sinit | sinit,a2) = 1−2cmin/D and P(g | sinit,a2) = 2cmin/D.
Therefore, the expected time of the policy that plays a1 is D/2cmin.

Apriori there is no way to tell if a1 or a2 will be the best policy in hindsight. For
example, if c(sinit,a1) = 1 and c(sinit,a2) = cmin then a2 is better, and if c(sinit,a1) = 1 and
c(sinit,a2) = 3cmin then a1 is better. Thus, the smallest possible choice for τ in this case is
D/2cmin = Ω(D/cmin).

E.1.3 A bound on the expected regret does not guarantee a high probability regret bound

in SSP

In most online learning problems, algorithms that guarantee bounded regret in expecta-
tion also guarantee bounded regret with high probability. The way to show this (in most
problems) is by Azuma inequality for bounded martingales. However, the SSP problem is
unique in the sense that guaranteeing bounded regret in expectation is significantly easier
than guaranteeing bounded regret with high probability. This is illustrated by the follow-
ing simple example in which there exists a policy with 0 expected regret, but linear regret
with constant probability of at least 1/30.

Consider the MDP M = ({sinit,s1},{a1,a2},P,sinit,g) that has only two states (other
than the goal) and two actions. In state sinit playing action a1 simply transitions to the goal,
i.e., P(g | sinit,a1)= 1. In this state playing action a2 transitions to the goal with probability
p = 1− 1−cmin

10K and transitions to state s1 with probability 1− p, i.e., P(g | sinit,a2) = p

and P(s1 | sinit,a2) = 1− p. Moreover, in state s1 both actions have the same effect. They
transition to the goal with probability 1/10K and remain in state s1 with probability 1−1/10K,
i.e., P(g | s1,ai) = 1/10K and P(s1 | s1,ai) = 1− 1/10K for i = 1,2.

167

Now consider the simple case where the cost function is the same for all episodes.
Playing action a1 always suffers a cost of 1, i.e., c(sinit,a1) = c(s1,a1) = 1. Playing action
a2 suffers cost of cmin in sinit but cost of 1 in s1, i.e., c(sinit,a2) = cmin and c(s1,a2) = 1.
There are only two policies: π1 plays action a1 in state sinit, and π2 plays a2. Notice that
both policies have the same expected cost since clearly V π1(sinit) = 1 and

V π2(sinit) = cmin + p ·0+(1− p) ·10K = cmin +
1− cmin

10K
·10K = 1.

Moreover, both have similar expected time since clearly T π1(sinit) = 1 and

T π2(sinit) = 1+ p ·0+(1− p) ·10K = 1+
1− cmin

10K
·10K = 2− cmin ≤ 2.

Thus, playing policy π2 in all episodes has optimal expected regret of 0 since

E[RK] = E
[K

∑
k=1

V π2(sinit)−1
]
= E

[K

∑
k=1

1−1
]
= 0.

However, we now show that with probability at least 1/2 the actual regret is linear.
Define the event Ek – in episode k the agent’s cost was at most 2K. Now define E =⋂K

k=1 Ek as the event that Ek occurs for all episodes. Notice that if E does not occur than
the regret is linear in K since in some episode k the cost was at least 2K while the overall
cost of π1 in all episodes is just K. The following lemma proves that event Ek occurs with
probability at most 1− 1/26K and therefore event E indeed occurs with probability at most
(1− 1/26K)K ≤ e−1/26 ≤ 29/30.

Lemma E.1.1. For every k = 1, . . . ,K it holds that Pr[Ek]≤ 1− 1/26K.

Proof. Recall that Ek is the event that the actual cost of the learner in episode k is bounded
by 2K. The probability of that is the probability to transition to the goal from sinit or to

168

transition to s1 and stay there for at most 2K steps. Thus,

Pr[Ek]≤ p+(1− p)
2K

∑
i=1

(1− 1
10K

)i · 1
10K

= 1− 1− cmin

10K
+

1− cmin

100K2

2K

∑
i=1

(1− 1
10K

)i

≤ 1− 1− cmin

10K
+

1− cmin

100K2 ·
1− (1− 1

10K)
2K+1

1/10K

= 1− 1− cmin

10K
+

1− cmin

10K
·
(
1− (1− 1

10K
)2K+1)

≤ 1− 1− cmin

10K
+

1− cmin

10K
· 1

5
≤ 1− 1− cmin

13K
≤ 1− 1

26K
,

where the third inequality holds for large enough K since (1− 1
10K)

2K+1→ e−1/5, and the
last inequality holds for cmin ≤ 1/2.

169

E.2 Implementation details for SSP-O-REPS

E.2.1 Computing qk

Before describing the algorithm, some more definitions are in order. First, define KL(q ∥ q′)

as the unnormalized Kullback-Leibler divergence between two occupancy measures q and
q′:

KL(q ∥ q′) = ∑
s∈S

∑
a∈A

q(s,a) log
q(s,a)
q′(s,a)

+q′(s,a)−q(s,a).

Furthermore, let R(q) define the unnormalized negative entropy of the occupancy measure
q:

R(q) = ∑
s∈S

∑
a∈A

q(s,a) logq(s,a)−q(s,a).

SSP-O-REPS chooses its occupancy measures as follows:

q1 = qπ1 = arg min
q∈∆(M)(D/cmin)

R(q)

qk+1 = qπk+1 = arg min
q∈∆(M)(D/cmin)

η⟨q,ck⟩+KL(q ∥ qk).

As shown by [ZN13], each of these steps can be split into an unconstrained minimiza-
tion step, and a projection step. Thus, q1 can be computed as follows:

q′1 = argmin
q

R(q)

q1 = arg min
q∈∆(M)(D/cmin)

KL(q ∥ q′1),

where q′1 has a closed-from solution q′1(s,a) = 1 for every s ∈S and a ∈ A . Similarly,
qk+1 is computed as follows for every k = 1, . . . ,K−1:

q′k+1 = argmin
q

η⟨q,ck⟩+KL(q ∥ qk)

qk+1 = arg min
q∈∆(M)(D/cmin)

KL(q ∥ q′k+1),

where again q′k+1 has a closed-from solution q′k+1(s,a) = qk(s,a)e−ηck(s,a) for every s∈S

and a ∈A .

Therefore, we just need to show that the projection step can be computed efficiently
(the implementation follows [ZN13]). We start by formulating the projection step as a

170

constrained convex optimization problem:

min
q

KL(q ∥ q′k+1)

s.t. ∑
a∈A

q(s,a)− ∑
s′∈S

∑
a′∈A

P(s | s′,a′)q(s′,a′) = I{s = sinit} ∀s ∈S

∑
s∈S

∑
a∈A

q(s,a)≤ D
cmin

q(s,a)≥ 0 ∀(s,a) ∈S ×A

To solve the problem, consider the Lagrangian:

L (q,λ ,v) = KL(q ∥ q′k+1)+λ

(
∑

s∈S
∑

a∈A
q(s,a)− D

cmin

)

+ ∑
s∈S

v(s)

(
∑

s′∈S
∑

a′∈A
P(s | s′,a′)q(s′,a′)+ I{s = sinit}− ∑

a∈A
q(s,a)

)

= KL(q ∥ q′k+1)+ ∑
s∈S

∑
a∈A

q(s,a)

(
λ + ∑

s′∈S
P(s′ | s,a)v(s′)− v(s)

)
+ v(sinit)−λ

D
cmin

where λ and {v(s)}s∈S are Lagrange multipliers. Differentiating the Lagrangian with
respect to any q(s,a), we get

∂L (q,λ ,v)
∂q(s,a)

= logq(s,a)− logq′k+1(s,a)+λ + ∑
s′∈S

P(s′ | s,a)v(s′)− v(s).

Hence, setting the gradient to zero, we obtain the formula for qk+1(s,a):

qk+1(s,a) = q′k+1(s,a)e
−λ−∑s′∈S P(s′|s,a)v(s′)+v(s)

= qk(s,a)e−λ−ηck(s,a)−∑s′∈S P(s′|s,a)v(s′)+v(s)

= qk(s,a)e−λ+Bv
k(s,a), (E.1)

where the second equality follows from the formula of q′k+1(s,a), and setting c0(s,a) =

0 and q0(s,a) = 1 for every s ∈ S and a ∈ A . The last equality follows by defining
Bv

k(s,a) = v(s)−ηck(s,a)−∑s′∈S P(s′ | s,a)v(s′).

We now need to compute the value of λ and v at the optimum. To that end, we write

171

the dual problem D(λ ,v) = minq L (q,λ ,v) by substituting qk+1 back into L :

D(λ ,v) = ∑
s∈S

∑
a∈A

q′k+1(s,a)− ∑
s∈S

∑
a∈A

qk+1(s,a)+ v(sinit)−λ
D

cmin

=− ∑
s∈S

∑
a∈A

qk(s,a)e−λ+Bv
k(s,a)+ v(sinit)−λ

D
cmin

+ ∑
s∈S

∑
a∈A

q′k+1(s,a).

Now we obtain λ and v by maximizing the dual. Equivalently, we can minimize the
negation of the dual (and ignore the term ∑s∈S ∑a∈A q′k+1(s,a)), that is:

λk+1,vk+1 = arg min
λ≥0,v

∑
s∈S

∑
a∈A

qk(s,a)e−λ+Bv
k(s,a)+λ

D
cmin
− v(sinit).

This is a convex optimization problem with only non-negativity constraints (and no con-
straints about the relations between the variables), which can be solved efficiently using
iterative methods like gradient descent.

E.2.2 Computing the SSP-diameter and the fast policy

The fast policy π f is a deterministic stationary policy that minimizes the time to the goal
state from all states simultaneously (its existence is similar to regular MDPs, for a detailed
proof see [BT91]). Thus, π f is the optimal policy w.r.t the constant cost function c(s,a) =

1 for every s ∈S and a ∈A .

Finding the optimal policy of an SSP instance is known as the planning problem. By
[BT91], this problem can be solved efficiently using Linear Programming (LP), Value
Iteration (VI) or Policy Iteration (PI).

The SSP-diameter D is an upper bound on the expected time it takes to reach the goal
from some state, and therefore D = maxs∈S T π f

(s). Thus, in order to compute π f and D

we need to perform the following steps:

1. Compute the optimal policy π f w.r.t the constant cost function c(s,a) = 1.

2. Compute T π f
(s) for every s ∈S by solving the linear Bellman equations:

T π f
(s) = 1+ ∑

a∈A
∑

s′∈S
π

f (a | s)P(s′ | s,a)T π f
(s′) ∀s ∈S .

3. Set D = maxs∈S T π f
(s).

172

E.3 Pseudo-code for SSP-O-REPS

Algorithm 16 SSP-O-REPS
Input: state space S , action space A , transition function P, minimal cost cmin, opti-
mization parameter η .
Initialization:
Compute the SSP-diameter D (see Section E.2.2).
Set q0(s,a) = 1 and c0(s,a) = 0 for every (s,a) ∈S ×A .
for k = 1,2, . . . do

Compute λk,vk as follows (using, e.g., gradient descent):

λk,vk = arg min
λ≥0,v

∑
s∈S

∑
a∈A

qk−1(s,a)e−λ+Bv
k−1(s,a)+λ

D
cmin
− v(sinit),

where Bv
k(s,a) = v(s)−ηck(s,a)−∑s′∈S P(s′ | s,a)v(s′).

Compute qk as follows for every (s,a) ∈S ×A :

qk(s,a) = qk−1(s,a)e−λk+B
vk
k−1(s,a).

Compute πk as follows for every (s,a) ∈S ×A :

πk(a | s) =
qk(s,a)

∑a′∈A qk(s,a′)
.

Set sk
1← sinit, i← 1.

while sk
i ̸= g do

Play action according to πk, i.e., ak
i ∼ πk(· | sk

i).
Observe next state sk

i+1 ∼ P(· | sk
i ,a

k
i), i← i+1.

end while
Set Ik← i−1.
Observe cost function ck and suffer cost ∑

Ik

j=1 ck(sk
j,a

k
j).

end for

173

E.4 Proofs for Section 7.2.1

Lemma E.4.1. It holds that qπ⋆ ∈ ∆(M)(D
cmin

).

Proof. Denote by π f the fast policy, i.e., π f = argminπ∈Πproper T π(sinit). By definition of
the SSP-diameter we have that T π f

(sinit) ≤ D. Now, recall that π⋆ is the best policy in
hindsight and therefore

1
K

K

∑
k=1

V π⋆

k (sinit)≤
1
K

K

∑
k=1

V π f

k (sinit)≤
1
K

K

∑
k=1

T π f
(sinit)≤ D, (E.2)

where the second inequality follows because ck(s,a)≤ 1.

However, we also have that ck(s,a) ≥ cmin and therefore V π⋆

k (sinit) ≥ cminT π⋆
(sinit).

Thus, combining with Equation (E.2), we obtain

cminT π⋆
(sinit)≤

1
K

K

∑
k=1

V π⋆

k (sinit)≤ D.

This finishes the proof since T π⋆
(sinit)≤ D

cmin
.

E.4.1 Proof of Theorem 7.2.1

Lemma E.4.2. Let τ ≥ 1. For every q ∈ ∆(M)(τ) it holds that R(q)≤ τ logτ .

Proof.

R(q) = ∑
s∈S

∑
a∈A

q(s,a) logq(s,a)− ∑
s∈S

∑
a∈A

q(s,a)

≤ ∑
s∈S

∑
a∈A

q(s,a) logq(s,a)

= ∑
s∈S

∑
a∈A

q(s,a) log
q(s,a)

τ
+ ∑

s∈S
∑

a∈A
q(s,a) logτ

≤ ∑
s∈S

∑
a∈A

q(s,a) logτ ≤ τ logτ,

where the first two inequalities follow from non-positivity, and the last one from the defi-
nition of ∆(M)(τ).

Lemma E.4.3. Let τ ≥ 1. For every q ∈ ∆(M)(τ) it holds that −R(q)≤ τ(1+ log(SA)).

174

Proof. Similarly to Theorem E.4.2 we have that

−R(q) =− ∑
s∈S

∑
a∈A

q(s,a) log
q(s,a)

τ
+ ∑

s∈S
∑

a∈A
q(s,a)− ∑

s∈S
∑

a∈A
q(s,a) logτ

≤−τ ∑
s∈S

∑
a∈A

q(s,a)
τ

log
q(s,a)

τ
+ τ ≤ τ log(SA)+ τ,

where the first inequality follows because the last term is non-positive and from the def-
inition of ∆(M)(τ), and the last inequality follows from properties of Shannon’s en-
tropy.

Proof of Theorem 7.2.1. We start with a fundamental inequality of OMD (see, e.g., [ZN13])
that holds for every q ∈ ∆(M)(D/cmin) (by Theorem E.4.1 it also holds for qπ⋆

),

K

∑
k=1
⟨qk−qπ⋆

,ck⟩ ≤
K

∑
k=1
⟨qk−q′k+1,c

k⟩+ KL(qπ⋆ ∥ q1)

η
. (E.3)

For the first term we use the exact form of q′k+1 and the inequality ex ≥ 1+ x to obtain

q′k+1(s,a) = qk(s,a)e−ηck(s,a) ≥ qk(s,a)−ηqk(s,a)ck(s,a).

We substitute this back and obtain

K

∑
k=1
⟨qk−q′k+1,c

k⟩ ≤ η

K

∑
k=1

∑
s∈S

∑
a∈A

qk(s,a)ck(s,a)2 ≤ η

K

∑
k=1

∑
s∈S

∑
a∈A

qk(s,a)

= η

K

∑
k=1

T πk(sinit)≤ ηK
D

cmin
, (E.4)

where the last inequality follows from the definition of ∆(M)(D/cmin).

Next we use Theorems E.4.2 and E.4.3 to bound the second term of Equation (E.3).
Recall that q1 minimizes R in ∆(M)(D/cmin), this implies that ⟨∇R(q1),qπ⋆ − q1⟩ ≥ 0
because otherwise we could decrease R by taking small step in the direction qπ⋆ − q1.
Thus we obtain

KL(qπ⋆
∥ q1) = R(qπ⋆

)−R(q1)−⟨∇R(q1),qπ⋆
−q1⟩ ≤ R(qπ⋆

)−R(q1)

≤ D
cmin

log
D

cmin
+

D
cmin

(1+ log(SA))≤ 3D
cmin

log
DSA
cmin

. (E.5)

By substituting Equations (E.4) and (E.5) into Equation (E.3) and choosing η =

√
3log DSA

cmin
K ,

175

we obtain,

K

∑
k=1
⟨qk−qπ⋆

,ck⟩ ≤ ηK
D

cmin
+

3D
cminη

log
DSA
cmin

≤ 2D
cmin

√
3K log

DSA
cmin

. (E.6)

This finishes the proof since

E[RK] = E

[
K

∑
k=1
⟨qk−qπ⋆

,ck⟩

]
.

E.4.2 SSP-O-REPS picks proper policies

For every policy πk chosen by SSP-O-REPS it holds that T πk(sinit) ≤ D/cmin. If there
exists some state s∈S such that T πk(s) = ∞, then the probability to reach it must be zero,
since otherwise T πk(sinit) = ∞. Thus there exists B > 0 such that if s is reachable from
sinit using πk then T πk(s) ≤ B. By Theorem E.6.1, this implies that the goal state will be
reached in every episode with probability 1. Thus, all policies chosen by SSP-O-REPS are
proper.

176

E.5 Pseudo-code for SSP-O-REPS2

Algorithm 17 SSP-O-REPS2
Input: state space S , action space A , transition function P, minimal cost cmin, opti-
mization parameter η .
Initialization:
Compute the SSP-diameter D and the fast policy π f (see Section E.2.2).
Set q0(s,a) = 1 and c0(s,a) = 0 for every (s,a) ∈S ×A .
for k = 1,2, . . . do

Compute λk,vk as follows (using, e.g., gradient descent):

λk,vk = arg min
λ≥0,v

∑
s∈S

∑
a∈A

qk−1(s,a)e−λ+Bv
k−1(s,a)+λ

D
cmin
− v(sinit),

where Bv
k(s,a) = v(s)−ηck(s,a)−∑s′∈S P(s′ | s,a)v(s′).

Compute qk as follows for every (s,a) ∈S ×A : qk(s,a) = qk−1(s,a)e−λk+B
vk
k−1(s,a).

Compute πk as follows for every (s,a) ∈S ×A : πk(a | s) = qk(s,a)
∑a′∈A qk(s,a′)

.

Set T πk(s)← D
cmin

for every s ∈S such that qπk(s) = ∑a∈A qπk(s,a) = 0.
Compute T πk by solving the following linear equations (the Bellman equations):

T πk(s) = 1+ ∑
a∈A

∑
s′∈S

πk(a | s)P(s′ | s,a)T πk(s′) ∀s ∈ {s ∈S : ∑
a∈A

qπk(s,a)> 0}.

Set sk
1← sinit, i← 1.

while sk
i ̸= g and T πk(sk

i)<
D

cmin
do

Play action according to πk, i.e., ak
i ∼ πk(· | sk

i).
Observe next state sk

i+1 ∼ P(· | sk
i ,a

k
i), i← i+1.

end while
while sk

i ̸= g do
Play action according to π f , i.e., ak

i ∼ π f (· | sk
i).

Observe next state sk
i+1 ∼ P(· | sk

i ,a
k
i), i← i+1.

end while
Set Ik← i−1, observe cost function ck and suffer cost ∑

Ik

j=1 ck(sk
j,a

k
j).

end for

177

E.6 Proofs for Section 7.2.2

E.6.1 Proof of Theorem 7.2.2

Lemma E.6.1. Let σ be a strategy such that the expected time of reaching the goal state

when starting at state s is at most τ for every s ∈S . Then, the probability that σ takes

more than m steps to reach the goal state is at most 2e−
m
4τ .

Proof. By Markov inequality, the probability that σ takes more than 2τ steps before reach-
ing the goal state is at most 1/2. Iterating this argument, we get that the probability that
σ takes more than 2kτ steps before reaching the goal state is at most 2−k for every integer
k ≥ 0. In general, for any m ≥ 0, the probability that σ takes more than m steps before
reaching the goal state is at most 2−⌊

m
2τ
⌋ ≤ 2 ·2− m

2τ ≤ 2e−
m
4τ .

Proof of Theorem 7.2.2. Define

Xk =
Ik

∑
i=1

ck(sk
i ,a

k
i)−E

[Ik

∑
i=1

ck(sk
i ,a

k
i) | P,σk,sk

1 = sinit

]
.

This is a martingale difference sequence, and in order to use Theorem E.12.5 we need to
show that Pr[|Xk|>m]≤ 2e−

m
4τ for every k = 1,2, . . . and m≥ 0. This follows immediately

from Theorem E.6.1 since the total cost is bounded by the total time.

By Theorem E.12.5, ∑
K
k=1 Xk ≤ 44τ

√
K log3 4K

δ
with probability 1− δ , which gives

the Lemma’s statement.

E.6.2 Proof of Theorem 7.2.3

Lemma E.6.2. For every k = 1, . . . ,K it holds that

E
[Ik

∑
i=1

ck(sk
i ,a

k
i) | P,σk,sk

1 = sinit

]
≤ E

[Ik

∑
i=1

ck(sk
i ,a

k
i) | P,πk,sk

1 = sinit

]
=V πk

k (sinit).

Proof. Until a state s ∈S with T πk(s)≥D/cmin is reached, the strategy σk is the same as
the policy πk. If such a state is reached then V πk(s) ≥ cminT πk(s) ≥ cmin

D
cmin

= D, where
the first inequality is because all costs are bounded from below by cmin. On the other hand,
V π f

(s)≤ T π f
(s)≤D, where the last inequality follows by the definition of the fast policy

and the SSP-diameter. Therefore, V π f
(s)≤V πk(s).

178

Lemma E.6.3. For every k = 1, . . . ,K, the strategy σk of the learner ensures that the

expected time to the goal state from any initial state is at most D/cmin.

Proof. Let s ∈S . If T πk(s)≥ D/cmin, then we play the fast policy π f when we start in s.
Thus, the expected time to the goal when starting in s will be at most D.

If T πk(s) < D/cmin, then the expected time to the goal when starting in s will also be
at most D/cmin since playing σk only decreases the expected time.

Proof of Theorem 7.2.3. We decompose the regret into two terms as follows,

RK =
K

∑
k=1

Ik

∑
i=1

ck(sk
i ,a

k
i)−

K

∑
k=1

V π⋆

k (sinit)

=
K

∑
k=1

Ik

∑
i=1

ck(sk
i ,a

k
i)−

K

∑
k=1

E
[Ik

∑
i=1

ck(sk
i ,a

k
i) | P,σk,sk

1 = sinit

]
+

K

∑
k=1

E
[Ik

∑
i=1

ck(sk
i ,a

k
i) | P,σk,sk

1 = sinit

]
−

K

∑
k=1

V π⋆

k (sinit).

The first term accounts for the deviations in the performance of the learner’s strategies
from their expected value, and is bounded with high probability using Theorem 7.2.2.

The second term is the difference between the expected performance of the learner’s
strategies and the best policy in hindsight. Using Theorem E.6.2, we can bound it as
follows,

K

∑
k=1

E
[Ik

∑
i=1

ck(sk
i ,a

k
i) | P,σk,sk

1 = sinit

]
−

K

∑
k=1

V π⋆

k (sinit)≤
K

∑
k=1

V πk
k (sinit)−

K

∑
k=1

V π⋆

k (sinit)

=
K

∑
k=1
⟨qπk−qπ⋆

,ck⟩

≤ 2D
cmin

√
3K log

DSA
cmin

,

where the last inequality follows from Equation (E.6), and the equality follows because

V π
k (sinit) = ∑

s∈S
∑

a∈A
qπ(s,a)ck(s,a) = ⟨qπ ,ck⟩.

179

E.7 Implementation details for SSP-O-REPS3

E.7.1 Computing qk

After extending the occupancy measures, we must extend our additional definitions. De-
fine KL(q ∥ q′) as the unnormalized Kullback-Leibler divergence between two occupancy
measures q and q′:

KL(q ∥ q′) = ∑
s∈S

∑
a∈A

∑
s′∈S +

q(s,a,s′) log
q(s,a,s′)
q′(s,a,s′)

+q′(s,a,s′)−q(s,a,s′),

where S + = S ∪{g}. Furthermore, let R(q) define the unnormalized negative entropy
of the occupancy measure q:

R(q) = ∑
s∈S

∑
a∈A

∑
s′∈S +

q(s,a,s′) logq(s,a,s′)−q(s,a,s′).

SSP-O-REPS3 chooses its occupancy measures as follows:

q1 = qP1,π1 = arg min
q∈∆̃(M)e(1)(D/cmin)

R(q)

qk+1 = qPk+1,πk+1 = arg min
q∈∆̃(M)e(k+1)(D/cmin)

η⟨q,ck⟩+KL(q ∥ qk).

As shown in [RM19a], each of these steps can be split into an unconstrained mini-
mization step, and a projection step. Thus, q1 can be computed as follows:

q′1 = argmin
q

R(q)

q1 = arg min
q∈∆̃(M)e(1)(D/cmin)

KL(q ∥ q′1),

where q′1 has a closed-from solution q′1(s,a,s
′) = 1 for every (s,a,s′) ∈ S ×A ×S +.

Similarly, qk+1 is computed as follows for every k = 1, . . . ,K−1:

q′k+1 = argmin
q

η⟨q,ck⟩+KL(q ∥ qk)

qk+1 = arg min
q∈∆̃(M)e(k+1)(D/cmin)

KL(q ∥ q′k+1),

where again q′k+1 has a closed-from solution q′k+1(s,a,s
′) = qk(s,a,s′)e−ηck(s,a) for every

180

(s,a,s′) ∈S ×A ×S +.

Therefore, we just need to show that the projection step can be computed efficiently
(the implementation follows [RM19a, JJL+20]). We start by formulating the projection
step as a constrained convex optimization problem (where e = e(k+1)):

min
q

KL(q ∥ q′k+1)

s.t. ∑
a∈A

∑
s′∈S +

q(s,a,s′)− ∑
s′∈S

∑
a′∈A

q(s′,a′,s) = I{s = sinit} ∀s ∈S

q(s,a,s′)≤
(
P̄e(s′ | s,a)+ εe(s′ | s,a)

)
∑

s′′∈S +

q(s,a,s′′) ∀(s,a,s′) ∈S ×A ×S +

q(s,a,s′)≥
(
P̄e(s′ | s,a)− εe(s′ | s,a)

)
∑

s′′∈S +

q(s,a,s′′) ∀(s,a,s′) ∈S ×A ×S +

∑
s∈S

∑
a∈A

∑
s′∈S +

q(s,a,s′)≤ D
cmin

q(s,a,s′)≥ 0 ∀(s,a,s′) ∈S ×A ×S +

To solve the problem, consider the Lagrangian:

L (q,λ ,v,µ) = KL(q ∥ q′k+1)+λ

(
∑

s∈S
∑

a∈A
∑

s′∈S +

q(s,a,s′)− D
cmin

)

+ ∑
s∈S

v(s)

(
∑

s′∈S
∑

a′∈A
q(s′,a′,s)+ I{s = sinit}− ∑

a∈A
∑

s′∈S +

q(s,a,s′)

)

+ ∑
s∈S

∑
a∈A

∑
s′∈S +

µ
+(s,a,s′)

(
q(s,a,s′)−

(
P̄e(s′ | s,a)+ εe(s′ | s,a)

)
∑

s′′∈S +

q(s,a,s′′)

)

+ ∑
s∈S

∑
a∈A

∑
s′∈S +

µ
−(s,a,s′)

((
P̄e(s′ | s,a)− εe(s′ | s,a)

)
∑

s′′∈S +

q(s,a,s′′)−q(s,a,s′)

)
= KL(q ∥ q′k+1)+ v(sinit)−λ

D
cmin

+ ∑
s∈S

∑
a∈A

∑
s′∈S +

q(s,a,s′)

(
λ + v(s′)− v(s)+µ

+(s,a,s′)−µ
−(s,a,s′)

− ∑
s′′∈S +

P̄e(s′′ | s,a)(µ+(s,a,s′′)−µ
−(s,a,s′′))

− ∑
s′′∈S +

εe(s′′ | s,a)(µ+(s,a,s′′)+µ
−(s,a,s′′))

)

where λ , {v(s)}s∈S , {µ+(s,a,s′)}(s,a,s′)∈S×A×S + and {µ−(s,a,s′)}(s,a,s′)∈S×A×S + are

181

Lagrange multipliers, and we set v(g) = 0 for convenience. Differentiating the Lagrangian
with respect to any q(s,a,s′), we get

∂L (q,λ ,v,µ)
∂q(s,a,s′)

= log
q(s,a,s′)

q′k+1(s,a,s
′)
+λ + v(s′)− v(s)+µ

+(s,a,s′)−µ
−(s,a,s′)

− ∑
s′′∈S +

P̄e(s′′ | s,a)(µ+(s,a,s′′)−µ
−(s,a,s′′))

− ∑
s′′∈S +

εe(s′′ | s,a)(µ+(s,a,s′′)+µ
−(s,a,s′′)).

Next we define

Bv,µ
k (s,a,s′) = v(s)− v(s′)+µ

−(s,a,s′)−µ
+(s,a,s′)−ηck(s,a)

+ ∑
s′′∈S +

P̄e(k+1)(s
′′ | s,a)(µ+(s,a,s′′)−µ

−(s,a,s′′))

+ ∑
s′′∈S +

εe(k+1)(s
′′ | s,a)(µ+(s,a,s′′)+µ

−(s,a,s′′)). (E.7)

Hence, setting the gradient to zero, we obtain the formula for qk+1(s,a):

qk+1(s,a,s′) = q′k+1(s,a,s
′)e−λ+ηck(s,a)+Bv,µ

k (s,a,s′)

= qk(s,a,s′)e−λ+Bv,µ
k (s,a,s′), (E.8)

where the last equality follows from the formula of q′k+1(s,a,s
′), and setting c0(s,a) = 0

and q0(s,a,s′) = 1 for every (s,a,s′) ∈S ×A ×S +.

We now need to compute the value of λ ,v,µ at the optimum. To that end, we write the
dual problem D(λ ,v,µ) = minq L (q,λ ,v,µ) by substituting qk+1 back into L :

D(λ ,v,µ) = ∑
s∈S

∑
a∈A

∑
s′∈S +

q′k+1(s,a,s
′)− ∑

s∈S
∑

a∈A
∑

s′∈S +

qk+1(s,a,s′)+ v(sinit)−λ
D

cmin

=− ∑
s∈S

∑
a∈A

∑
s′∈S +

qk(s,a,s′)e−λ+Bv,µ
k (s,a,s′)+ v(sinit)−λ

D
cmin

+ ∑
s∈S

∑
a∈A

∑
s′∈S +

q′k+1(s,a,s
′).

Now we obtain λ ,v,µ by maximizing the dual. Equivalently, we can minimize the
negation of the dual (and ignore the term ∑s∈S ∑a∈A ∑s′∈S + q′k+1(s,a,s

′)), that is:

λk+1,vk+1,µk+1 = arg min
λ≥0,v,µ≥0

∑
s∈S

∑
a∈A

∑
s′∈S +

qk(s,a,s′)e−λ+Bv,µ
k (s,a,s′)+λ

D
cmin
− v(sinit).

182

This is a convex optimization problem with only non-negativity constraints (and no con-
straints about the relations between the variables), which can be solved efficiently using
iterative methods like gradient descent.

E.7.2 Computing the optimistic fast policy

The optimistic fast policy π̃
f

e is a deterministic stationary policy that together with the
optimistic fast transition function from the confidence set of epoch e, minimizes the time
to the goal state from all states simultaneously out of all pairs of policies and transition
functions from the confidence set. Essentially, this is the optimal pair of policy and transi-
tion function from the confidence set w.r.t the constant cost function c(s,a) = 1 for every
s ∈S and a ∈A .

The existence of the optimistic fast policy is proven in [TGV+20], and there they also
show that it can be computed efficiently with Extended Value Iteration. In [RCMK20],
the authors compute the following optimistic fast transition function for every (s,a,s′) ∈
S ×A ×S :

P̃ f
e (s
′ | s,a) = max

{
0, P̄e(s′ | s,a)−28Ae(s,a)−4

√
P̄e(s′ | s,a)Ae(s,a)

}
,

where the remaining probability mass goes to P̃ f
e (g | s,a). Then, π̃

f
e is computed by finding

the fast policy w.r.t P̃ f
e (see Section E.2.2).

While this method is simpler and more efficient than Extended Value Iteration, the
authors do not prove that this is indeed the optimistic fast policy. However, this policy
is sufficient for their analysis and for our analysis as well. For simplicity, throughout the
analysis we assume that π̃

f
e is the optimistic fast policy, but every step of the proof works

with this computation as well.

183

E.8 Pseudo-code for SSP-O-REPS3

Algorithm 18 SSP-O-REPS3
Input: state space S , action space A , minimal cost cmin, optimization parameter η

and confidence parameter δ .
Initialization:
Obtain SSP-diameter D from user or estimate it (see Section E.10).
Set q0(s,a,s′) = 1 and c0(s,a) = 0 for every (s,a,s′) ∈S ×A ×S +.
Set e← 0 and ∀(s,a,s′): N0(s,a)← 0,N0(s,a,s′)← 0,n0(s,a)← 0,n0(s,a,s′)← 0.
for k = 1,2, . . . do

e← e+1, start new epoch (Algorithm 19), set sk
1← sinit, i← 1.

while sk
i ̸= g and T̃ πk

k (sk
i)<

D
cmin

and ∀a.ne(sk
i ,a)+Ne(sk

i ,a)> α
DS
c2

min
log DSA

δcmin
do

Play according to πk, i.e., ak
i ∼ πk(· | sk

i), and observe next state sk
i+1 ∼ P(· | sk

i ,a
k
i).

Update counters: ne(sk
i ,a

k
i)← ne(sk

i ,a
k
i)+1,ne(sk

i ,a
k
i ,s

k
i+1)← ne(sk

i ,a
k
i ,s

k
i+1)+1.

i← i+1.
if ne(sk

i−1,a
k
i−1)≥ Ne(sk

i−1,a
k
i−1) then

e← e+1, start new epoch (Algorithm 19), and BREAK.
end if

end while
while sk

i ̸= g do
if ∃a ∈A .ne(sk

i ,a)+Ne(sk
i ,a)≤ α

DS
c2

min
log DSA

δcmin
then

Play the least played action ak
i = argmina∈A ne(sk

i ,a)+Ne(sk
i ,a).

else
Play according to π̃

f
e , i.e., ak

i ∼ π̃
f

e (· | sk
i).

end if
Observe next state sk

i+1 ∼ P(· | sk
i ,a

k
i).

Update counters: ne(sk
i ,a

k
i)← ne(sk

i ,a
k
i)+1,ne(sk

i ,a
k
i ,s

k
i+1)← ne(sk

i ,a
k
i ,s

k
i+1)+1.

i← i+1.
if ne(sk

i−1,a
k
i−1)≥ Ne(sk

i−1,a
k
i−1) then

e← e+1, start new epoch (Algorithm 19).
end if

end while
Set Ik← i−1, observe cost function ck and suffer cost ∑

Ik

j=1 ck(sk
j,a

k
j).

end for

184

Algorithm 19 START NEW EPOCH

Update counters for every (s,a,s′) ∈S ×A ×S +:

Ne(s,a)← Ne−1(s,a)+ne−1(s,a) ; ne(s,a)← 0

Ne(s,a,s′)← Ne−1(s,a,s′)+ne−1(s,a,s′) ; ne(s,a,s′)← 0

Update confidence set for every (s,a,s′) ∈S ×A ×S +:

P̄e(s′ | s,a) =
Ne(s,a,s′)
Ne
+(s,a)

εe(s′ | s,a) = 4
√

P̄e(s′ | s,a)Ae(s,a)+28Ae(s,a),

where Ae(s,a) = log(SANe
+(s,a)/δ)

Ne
+(s,a)

.
if e is the first epoch of episode k then

Compute λk,vk,µk as follows (using, e.g., gradient descent):

λk,vk,µk = arg min
λ≥0,v,µ≥0

∑
s∈S

∑
a∈A

∑
s′∈S +

qk−1(s,a,s′)e−λ+Bv,µ
k−1(s,a,s

′)+λ
D

cmin
−v(sinit),

where Bv,µ
k (s,a,s′) is defined in Equation (E.7).

Compute qk as follows for every (s,a,s′) ∈S ×A ×S +:

qk(s,a,s′) = qk−1(s,a,s′)e−λk+B
vk ,µk
k−1 (s,a,s′).

Compute πk and Pk as follows for every (s,a,s′) ∈S ×A ×S +:

πk(a | s) =
∑s′∈S + qk(s,a,s′)

∑a′∈A ∑s′∈S + qk(s,a′,s′)
; Pk(s′ | s,a) =

qk(s,a,s′)
∑s′′∈S + qk(s,a,s′′)

Set T̃ πk
k (s)← D

cmin
for every s ∈S such that ∑a∈A ∑s′∈S + qk(s,a,s′) = 0.

Compute T̃ πk
k by solving the following linear equations:

T̃ πk
k (s)= 1+ ∑

a∈A
∑

s′∈S
πk(a|s)Pk(s′|s,a)T̃ πk

k (s′) ∀s∈{s∈S : ∑
a∈A

∑
s′∈S +

qk(s,a,s′)> 0}.

else
Compute the optimistic fast policy π̃

f
e (see Section E.7.2).

end if

185

E.9 Analysis of SSP-O-REPS3 (proofs for Section 7.3)

E.9.1 Overview

Our analysis follows the framework of [RCMK20] for analyzing optimism in SSPs, but
makes the crucial adaptations needed to handle the adversarial environment.

We have two objectives: bounding the number of steps T taken by the algorithm (to
show that we reach the goal in every episode) and bounding the regret. To bound the total
time we split the time steps into intervals. The first interval begins at the first time step,
and an interval ends once (1) an episode ends, (2) an epoch ends, (3) an unknown state is
reached, or (4) a state s such that T̃ πk

k (s)≥ D/cmin is reached when playing πk in episode
k, i.e., there is a switch.

Intuitively, we will bound the length of every interval by Õ(D/cmin) with high proba-
bility, and then use the number of intervals Õ(K +DS2A/c2

min) to bound the total time T .
Finally, we will show that the regret scales with the square root of the total variance (which
is the number of intervals times the variance in each interval) to finish the proof. While
intuitive, this approach is technically difficult and therefore we apply these principles in a
different way.

We start by showing that the confidence sets contain P with high probability, which
is a common result (see, e.g., [ZB19, EMGM19]). Define Ωm the event that P is in the
confidence set of the epoch that interval m belongs to.

Lemma E.9.1 ([RCMK20], Lemma 4.2). With probability at least 1−δ/2, the event Ωm

holds for all intervals m simultaneously.

There are two dependant probabilistic events that are important for the analysis. The
first are the events Ωm, and the second is that the deviation in the cost of a given policy
from its expected value is not large. To disentangle these events we define an alternative
regret for every M = 1,2, . . . ,

R̃M =
M

∑
m=1

Hm

∑
h=1

∑
a∈A

π̃m(a | sm
h)c

m(sm
h ,a)I{Ω

m}−
K

∑
k=1

V π⋆

k (sinit),

where cm = ck for the episode k that interval m belongs to, π̃m is the policy followed by the
learner in interval m, Hm is the length of interval m, and the trajectory visited in interval m

is Um = (sm
1 ,a

m
1 , . . . ,s

m
Hm,am

Hm,sm
Hm+1).

186

We focus on bounding R̃M because we can use it to obtain a bound on RK . This is done
using Theorem E.9.1 and an application of Azuma inequality, when M is the number of
intervals in which the first K episodes elapse (we show that the learner indeed completes
these K episodes).

As mentioned, bounding the length of each interval complicates the analysis, and there-
fore we introduce artificial intervals. That is, an interval m also ends at the first time step
H such that ∑

H
h=1 ∑a∈A π̃m(a | sm

h)c
m(sm

h ,a)≥ D/cmin. The artificial intervals are only in-
troduced for the analysis and do not affect the algorithm. Now, the length of each interval
is bounded by 2D/c2

min and we can bound the number of intervals as follows.

Lemma E.9.2. Let C̃M = ∑
M
m=1 ∑

Hm

h=1 ∑a∈A π̃m(a | sm
h)c

m(sm
h ,a). The total time satisfies

T ≤ C̃M/cmin and the total number of intervals satisfies

M ≤ cminC̃M

D
+2SA logT +2K +2α

DS2A
c2

min
log

DSA
δcmin

.

Note that a confidence set update occurs only in the end of an epoch and thus Ωm =

Ωm−1 for most intervals. Also, for artificial intervals the policy does not change. Next we
bound C̃M as a function of the number of intervals M. Through summation of our confi-
dence bounds, and by showing that the variance in each interval is bounded by D2/c2

min

we are able to obtain the following, when Theorem E.9.1 holds,

C̃M ≤
K

∑
k=1
⟨qk,ck⟩+ Õ

(
DS
cmin

√
MA+

D2S2A
c2

min

)
.

Substituting in Theorem E.9.2 and solving for C̃M we get

R̃M = C̃M−
K

∑
k=1

V π⋆

k (sinit)≤
K

∑
k=1
⟨qk−qP,π⋆

,ck⟩

+ Õ
(

DS
cmin

√
AK +

D2S2A
c2

min

)
,

Notice that the first term on the RHS of the inequality is exactly the regret of OMD, and
therefore analyzing it similarly to Theorem 7.2.1 gives the final bound (see Section E.9.7).

E.9.2 Notations

Denote the trajectory visited in interval m by Um =(sm
1 ,a

m
1 , . . . ,s

m
Hm,am

Hm,sm
Hm+1), where am

h

is the action taken in sm
h , and Hm is the length of the interval. In addition, the concatenation

187

of trajectories in the intervals up to and including interval m is denoted by Ūm, that is
Ūm = ∪m

m′=1Um′ .

The policy that the learner follows in interval m is denoted by π̃m, and the transition
function that was involved in the choice of π̃m is denoted by P̃m. For the first interval of
every episode these are chosen by OMD, i.e., πk and Pk, and for other intervals these are
the optimistic fast policy π̃

f
e and the transition function chosen from the confidence set

together with it P̃ f
e , for the epoch e that interval m belongs to. Notice that intervals with

unknown states are of length 1. Thus, there is no policy since only one action is performed
– we ignore visits to unknown states and we suffer their cost directly in Theorem E.9.5.

The expected cost of π̃m w.r.t P̃m is denoted by Ṽ m, and the expected time to the goal is
denoted by T̃ m. For intervals in which we follow the optimistic fast policy, we will show
that T̃ m(s)≤D for every s ∈S when Ωm holds. We would like to have a similar property
for intervals in which we follow the OMD policy, i.e., the first interval of every episode.

Note that for the first interval m of episode k, we have that T̃ πk
k = T̃ m, and recall that

reaching a state s ∈S such that T̃ πk
k (s)≥D/cmin ends the current interval. We would like

to take advantage of this fact in order to make sure that T̃ m is always bounded by D/cmin.
Similarly to Section 7.2.2, we compute T̃ πk

k (s) only for states s that are reachable from sinit

w.r.t Pk. Since reaching a state s with T̃ πk
k (s)≥D/cmin yields the start of a new interval for

which we use the optimistic fast policy, we can set T̃ πk
k (s) = D/cmin for states that are not

reachable from sinit without affecting the algorithm’s choices.

We make another change to P̃m for interval m that is the first interval of episode k. Since
reaching a state s ∈S such that T̃ πk

k (s)≥D/cmin ends the interval, we tweak P̃m such that
from such a state it goes directly to the goal with expected time of D/cmin and expected
cost of D (can be done with a self-loop that has cmin/D probability to go to g). Thus,
when we consider the expected cost of π̃m w.r.t P̃m, we have that Ṽ m(sinit) ≤ Ṽ πk

k (sinit)

because we only decreased the cost from some states. However, notice that now P̃m is in
the confidence set only for states that we did not tweak. We show that this does not affect
the analysis, since reaching those states ends the interval.

We would like to emphasize that tweaking P̃m is only done in hindsight as a part of the
analysis, and does not change the algorithm.

E.9.3 Properties of the learner’s policies

Lemma E.9.3. Let m be an interval. If m is the first interval of episode k then T̃ m(s) ≤
D/cmin for every s ∈S . Otherwise, if Ωm holds then T̃ m(s)≤ D for every s ∈S .

188

Proof. The first case holds by definition of P̃m for intervals that are in the beginning of
some episode (see discussion in Section E.9.2). The second case follows by optimism and
the fact that P is in the confidence set (see [RCMK20], Lemma B.2).

Lemma E.9.4. Let m be an interval and let 1 ≤ h ≤ Hm. If Ωm holds then the following

Bellman equations hold:

Ṽ m(sm
h) = ∑

a∈A
π̃m(a | sm

h)c
m(sm

h ,a)+ ∑
a∈A

∑
s′∈S

π̃m(a | sm
h)P̃m(s′ | sm

h ,a)Ṽ
m(s′)

T̃ m(sm
h) = 1+ ∑

a∈A
∑

s′∈S
π̃m(a | sm

h)P̃m(s′ | sm
h ,a)T̃

m(s′).

Proof. For the optimistic fast policy π̃
f

e the Bellman equations hold for every s ∈S since
it is proper w.r.t P̃ f

e (see [RCMK20], Lemma B.11). When π̃m is the policy chosen by
OMD πk, reaching a state s such that qPk,πk(s) = 0 will end the interval (since we set
T̃ πk

k (s) = D/cmin for these states). Thus, it suffices to show that the Bellman equations
hold for all states in {s ∈S : qPk,πk(s)> 0}.

For these states we have that T̃ m is bounded by D/cmin and therefore π̃m is proper w.r.t
P̃m and the Bellman equations hold. Note that we did not make changes to P̃m or cm in
states that can be visited during the interval.

E.9.4 Regret decomposition

Lemma E.9.5. It holds that

R̃M ≤
M

∑
m=1

R̃1
m +

M

∑
m=1

R̃2
m−

K

∑
k=1

V π⋆

k (sinit)+α
DS2A
c2

min
log

DSA
δcmin

,

where

R̃1
m =

(
Ṽ m(sm

1)−Ṽ m(sm
Hm+1)

)
I{Ωm}

R̃2
m =

Hm

∑
h=1

(
Ṽ m(sm

h+1)− ∑
a∈A

∑
s′∈S

π̃m(a | sm
h)P̃m(s′ | sm

h ,a)Ṽ
m(s′)

)
I{Ωm}.

Proof. First we have a cost of at most 1 every time we visit an unknown state. Each state
becomes known after αA DS

c2
min

log DSA
δcmin

visits, and therefore the total cost from these visits is

at most αSA DS
c2

min
log DSA

δcmin
. From now on we will ignore visits to unknown states throughout

the analysis because we calculated their contribution to the total cost.

189

We can use the Bellman equations w.r.t P̃m (Theorem E.9.4) to have the following
interpretation of the costs for every interval m and time h:

∑
a∈A

π̃m(a | sm
h)c

m(sm
h ,a)I{Ω

m}=

=

(
Ṽ m(sm

h)− ∑
a∈A

∑
s′∈S

π̃m(a | sm
h)P̃m(s′ | sm

h ,a)Ṽ
m(s′)

)
I{Ωm}

=

(
Ṽ m(sm

h)−Ṽ m(sm
h+1)

)
I{Ωm}

+

(
Ṽ m(sm

h+1)− ∑
a∈A

∑
s′∈S

π̃m(a | sm
h)P̃m(s′ | sm

h ,a)Ṽ
m(s′)

)
I{Ωm}.

(E.9)

We now write R̃M = ∑
M
m=1 ∑

Hm

h=1 ∑a∈A π̃m(a | sm
h)c

m(sm
h ,a)I{Ω

m} −∑
K
k=1V π⋆

k (sinit), and
substitute for each cost using Equation (E.9) to get the lemma, noting that the first term
telescopes within the interval.

Lemma E.9.6. It holds that

M

∑
m=1

R̃1
m ≤ 2DSA logT +α

D2S2A
c2

min
log

DSA
δcmin

+
K

∑
k=1

Ṽ πk
k (sinit)I{Ωm(k)},

where m(k) is the first interval of episode k.

Proof. For every two consecutive intervals m,m+1 we have one of the following:

1. If interval m ended in the goal state then Ṽ m(sm
Hm+1)= Ṽ m(g)= 0 and Ṽ m+1(sm+1

1)=

Ṽ m(k)(sinit)≤ Ṽ πk
k (sinit), where m+1 is the first interval of episode k. Therefore,

Ṽ m+1(sm+1
1)I{Ωm+1}−Ṽ m(sm

Hm+1)I{Ωm} ≤ Ṽ πk
k (sinit)I{Ωm(k)}.

This happens at most K times, once for every value k.

2. If interval m ended since the sum of expected costs in the interval passed D/cmin,
then we did not change policy. Thus, Ṽ m = Ṽ m+1, Ωm = Ωm+1 and sm+1

1 = sm
Hm+1.

We get
Ṽ m+1(sm+1

1)I{Ωm+1}−Ṽ m(sm
Hm+1)I{Ωm}= 0.

190

3. If interval m ended by reaching an unknown state, then we switch policy. Thus,

Ṽ m+1(sm+1
1)I{Ωm+1}−Ṽ m(sm

Hm+1)I{Ωm} ≤ Ṽ m+1(sm+1
1)I{Ωm+1} ≤ D,

where the last inequality follows because we switched to the optimistic fast policy
and thus its expected time will be bounded by D if P is in the confidence set (see
Theorem E.9.3). This happens at most SAα

DS
c2

min
log DSA

δcmin
times.

Here we ignored the unknown state (since we accounted for its cost in Theorem E.9.5)
and jumped right to the next interval, which is controlled by the optimistic fast pol-
icy.

4. If interval m ended with doubling the visits to some state-action pair, then similarly
to the previous article,

Ṽ m+1(sm+1
1)I{Ωm+1}−Ṽ m(sm

Hm+1)I{Ωm} ≤ Ṽ m+1(sm+1
1)I{Ωm+1} ≤ D.

This happens at most 2SA logT .

5. If m is the first interval of an episode k and it ended because we reached a “bad” state
then Ṽ m(sm

Hm+1) = D and Ṽ m+1(sm+1
1) ≤ D since this is the optimistic fast policy.

Thus,
Ṽ m+1(sm+1

1)I{Ωm+1}−Ṽ m(sm
Hm+1)I{Ωm} ≤ 0.

Lemma E.9.7. With probability at least 1−δ/6, the following holds for all M = 1,2, . . .
simultaneously.

M

∑
m=1

R̃2
m ≤

M

∑
m=1

E
[
R̃2

m | Ūm−1]+ 6D
cmin

√
M log

4M
δ

,

where E[· | Ūm−1] is the expectation conditioned on the trajectories up to interval m.

Proof. Consider the martingale difference sequence (Y m)∞
m=1 defined by Y m =Xm−E[Xm |

Ūm−1] and

Xm =
Hm

∑
h=1

(
Ṽ m(sm

h+1)− ∑
a∈A

∑
s′∈S

π̃m(a | sm
h)P̃m(s′ | sm

h ,a)Ṽ
m(s′)

)
I{Ωm}.

191

The Bellman equations of π̃m w.r.t P̃m (Theorem E.9.4) obtain

|Xm|=
∣∣∣∣(Ṽ m(sm

Hm+1)−Ṽ m(sm
1)︸ ︷︷ ︸

≤D/cmin

+

+
Hm

∑
h=1

Ṽ m(sm
h)− ∑

a∈A
∑

s′∈S
π̃m(a | sm

h)P̃m(s′ | sm
h ,a)Ṽ

m(s′)︸ ︷︷ ︸
=∑

Hm
h=1 ∑a∈A π̃m(a|sm

h)c
m(sm

h ,a)

)
I{Ωm}

∣∣∣∣

≤ D
cmin

+
Hm

∑
h=1

∑
a∈A

π̃m(a | sm
h)c

m(sm
h ,a)≤

3D
cmin

where for the first inequality we used Theorems E.9.3 and E.9.4, and the last inequality
follows because the cost in every interval is at most 2D/cmin.

Therefore, we use anytime Azuma inequality (Theorem E.12.1) to obtain that with
probability at least 1−δ/6:

M

∑
m=1

Xm ≤
M

∑
m=1

E
[
Xm | Ūm−1]+ 6D

cmin

√
M log

4M
δ

.

E.9.5 Bounding the variance within an interval

Lemma E.9.8 ([RCMK20], Lemma B.13). Denote Am(s,a) = log(SANe(m)
+ (s,a)/δ)

Ne(m)
+ (s,a)

, where

e(m) is the epoch that interval m belongs to. When Ωm holds we have for any (s,a,s′) ∈
S ×A ×S +:

∣∣P(s′ | s,a)− P̃m(s′ | s,a)
∣∣≤ 8

√
P(s′ | s,a)Am(s,a)+136Am(s,a).

Lemma E.9.9. Denote Am
h = Am(sm

h ,a
m
h). For every interval m it holds that,

E[R̃2
m | Ūm−1]≤ 16E

[
Hm

∑
h=1

√
SVm

h Am
h I{Ωm}

∣∣∣∣ Ūm−1

]
+272E

[
Hm

∑
h=1

D
cmin

SAm
h I{Ωm}

∣∣∣∣ Ūm−1

]
,

where Vm
h is the empirical variance defined as

Vm
h = ∑

s′∈S +

P(s′ | sm
h ,a

m
h)

(
Ṽ m(s′)−µ

m
h

)2

,

192

and µm
h = ∑a∈A ∑s′∈S + π̃m(a | sm

h)P(s
′ | sm

h ,a)Ṽ
m(s′).

Proof. Denote

Xm =
Hm

∑
h=1

(
Ṽ m(sm

h+1)− ∑
a∈A

∑
s′∈S

π̃m(a | sm
h)P̃m(s′ | sm

h ,a)Ṽ
m(s′)

)
I{Ωm}

Zm
h =

(
Ṽ m(sm

h+1)− ∑
a∈A

∑
s′∈S

π̃m(a | sm
h)P(s

′ | sm
h ,a)Ṽ

m(s′)

)
I{Ωm}.

Think of the interval as an infinite stochastic process, and note that, conditioned on Ūm−1,(
Zm

h

)∞

h=1 is a martingale difference sequence w.r.t (Uh)∞
h=1, where Uh is the trajectory of

the learner from the beginning of the interval and up to and including time h. This holds
since, by conditioning on Ūm−1, Ωm is determined and is independent of the randomness
generated during the interval.

Note that Hm is a stopping time with respect to (Zm
h)

∞
h=1 which is bounded by 2D/c2

min.
Hence by the optional stopping theorem E[∑Hm

h=1 Zm
h | Ū

m−1] = 0, which gets us

E[Xm | Ūm−1] =

= E

[
Hm

∑
h=1

(
Ṽ m(sm

h+1)− ∑
a∈A

∑
s′∈S

π̃m(a | sm
h)P̃m(s′ | sm

h ,a)Ṽ
m(s′)

)
I{Ωm} | Ūm−1

]

= E

[
Hm

∑
h=1

Zm
h | Ū

m−1

]
+E

[
Hm

∑
h=1

∑
a∈A

∑
s′∈S

(
P(s′ | sm

h ,a)− P̃m(s′ | sm
h ,a)

)
π̃m(a | sm

h)Ṽ
m(s′)I{Ωm} | Ūm−1

]

= E

[
Hm

∑
h=1

∑
a∈A

∑
s′∈S

(
P(s′ | sm

h ,a)− P̃m(s′ | sm
h ,a)

)
π̃m(a | sm

h)Ṽ
m(s′)I{Ωm} | Ūm−1

]
.

193

Furthermore, we have

E

[
Hm

∑
h=1

∑
a∈A

∑
s′∈S

(
P(s′ | sm

h ,a)− P̃m(s′ | sm
h ,a)

)
π̃m(a | sm

h)Ṽ
m(s′)I{Ωm} | Ūm−1

]
=

= E

[
Hm

∑
h=1

∑
a∈A

∑
s′∈S +

(
P(s′ | sm

h ,a)− P̃m(s′ | sm
h ,a)

)
π̃m(a | sm

h)Ṽ
m(s′)I{Ωm} | Ūm−1

]

= E

[
Hm

∑
h=1

∑
s′∈S +

(
P(s′ | sm

h ,a
m
h)− P̃m(s′ | sm

h ,a
m
h)
)
Ṽ m(s′)I{Ωm} | Ūm−1

]

= E

[
Hm

∑
h=1

∑
s′∈S +

(
P(s′ | sm

h ,a
m
h)− P̃m(s′ | sm

h ,a
m
h)
)(

Ṽ m(s′)−µ
m
h

)
I{Ωm} | Ūm−1

]

≤ E

[
8

Hm

∑
h=1

∑
s′∈S +

√√√√Am
h P(s′ | sm

h ,a
m
h)

(
Ṽ m(s′)−µm

h

)2

I{Ωm} | Ūm−1

]

+E

[
136

Hm

∑
h=1

∑
s′∈S +

Am
h

∣∣∣∣∣Ṽ m(s′)−µ
m
h

∣∣∣∣∣I{Ωm} | Ūm−1

]

≤ E

[
16

Hm

∑
h=1

√
SVm

h Am
h I{Ωm}+272S

D
cmin

Am
h I{Ωm} | Ūm−1

]
,

where the first equality follows because Ṽ m(g) = 0 and the second by the definition of am
h .

The third equality follows since P(· | sm
h ,a

m
h) and P̃m(· | sm

h ,a
m
h) are probability distribu-

tions over S+ whence µm
h does not depend on s′. The first inequality follows from Theo-

rem E.9.8, and the second inequality from Jensen’s inequality, Theorem E.9.3, |S+| ≤ 2S,
and the definition of Vm

h .

The following lemma will help us bound the variance within an interval, and it follows
by the fact that known states were visited many times so our estimation of the transition
function in these states is relatively accurate.

Lemma E.9.10 ([RCMK20], Lemma B.14). Let m be an interval and s be a known state.

If Ωm holds then for every a ∈A and s′ ∈S +,

∣∣P̃m
(
s′ | s,a

)
−P
(
s′ | s,a

)∣∣≤ 1
8

√
c2

min ·P
(
s′ | s,a

)
SD

+
c2

min
4SD

.

Define µm(s) = ∑a∈A ∑s′∈S + π̃m(a | s)P(s′ | s,a)Ṽ m(s′) and therefore µm
h = µm(sm

h).

Similarly, define Vm(s,a) = ∑s′∈S + P(s′ | s,a)

(
Ṽ m(s′)− µm(s)

)2

and therefore Vm
h =

194

Vm(sm
h ,a

m
h). The next lemma bounds the variance within a single interval.

Lemma E.9.11. For any interval m it holds that E
[
∑

Hm

h=1 Vm
h I{Ωm} | Ūm−1]≤ 64D2/c2

min.

Proof. Denote

Zm
h =

(
Ṽ m(sm

h+1)− ∑
a∈A

∑
s′∈S

π̃m(a | sm
h)P(s

′ | sm
h ,a)Ṽ

m(s′)

)
I{Ωm},

and think of the interval as an infinite stochastic process. Note that, conditioned on Ūm−1,(
Zm

h

)∞

h=1 is a martingale difference sequence w.r.t (Uh)∞
h=1, where Uh is the trajectory of

the learner from the beginning of the interval and up to time h and including. This holds
since, by conditioning on Ūm−1, Ωm is determined and is independent of the randomness
generated during the interval. Note that Hm is a stopping time with respect to (Zm

h)
∞
h=1

which is bounded by 2D/c2
min. Therefore, applying Theorem E.12.2 obtains

E

[
Hm

∑
h=1

Vm
h I{Ωm} | Ūm−1

]
= E

[(
Hm

∑
h=1

Zm
h I{Ωm}

)2

| Ūm−1

]
. (E.10)

We now proceed by bounding |∑Hm

h=1 Zm
h | when Ωm occurs. Therefore,∣∣∣∣∣ Hm

∑
h=1

Zm
h

∣∣∣∣∣=
∣∣∣∣∣Hm

∑
h=1

Ṽ m(sm
h+1)− ∑

a∈A
∑

s′∈S
π̃m(a | sm

h)P(s
′ | sm

h ,a)Ṽ
m(s′)

∣∣∣∣∣
≤

∣∣∣∣∣Hm

∑
h=1

Ṽ m(sm
h+1)−Ṽ m(sm

h)

∣∣∣∣∣ (E.11)

+

∣∣∣∣∣Hm

∑
h=1

Ṽ m(sm
h)− ∑

a∈A
∑

s′∈S
π̃m(a | sm

h)P̃m(s′ | sm
h ,a)Ṽ

m(s′)

∣∣∣∣∣ (E.12)

+

∣∣∣∣∣Hm

∑
h=1

∑
a∈A

∑
s′∈S +

π̃m(a | sm
h)
(

P̃m(s′ | sm
h ,a)−P(s′ | sm

h ,a)
)(

Ṽ m(s′)−µ
m
h

)∣∣∣∣∣, (E.13)

where Equation (E.13) is given as P(· | sm
h ,a) and P̃m(· | sm

h ,a) are probability distributions
over S+, µm

h is constant w.r.t s′, and Ṽ m(g) = 0.

We now bound each of the three terms above individually. Equation (E.11) is a tele-
scopic sum that is at most D/cmin on Ωm (Theorem E.9.3). For Equation (E.12), we use the
Bellman equations for π̃m w.r.t P̃m (Theorem E.9.4) thus it is at most 2D/cmin (see proof
of Theorem E.9.7). For Equation (E.13), recall that all states at times h = 1, . . . ,Hm are

195

known by definition of Hm. Hence by Theorem E.9.10,

∣∣∣∣∣ ∑
s′∈S +

(
P(s′ | sm

h ,a)− P̃m(s′ | sm
h ,a)

)(
Ṽ m(s′)−µ

m
h

)∣∣∣∣∣≤ 1
8 ∑

s′∈S +

√√√√c2
minP(s′ | sm

h ,a)
(

Ṽ m(s′)−µm
h

)2

SD

+ ∑
s′∈S +

c2
min

4SD

∣∣∣Ṽ m(s′)−µ
m
h

∣∣∣︸ ︷︷ ︸
≤D/cmin

≤ 1
4

√
c2

minVm(sm
h ,a)

D
+

cmin

2
,

where the last inequality follows from Jensen’s inequality and because |S+| ≤ 2S. There-
fore, ∣∣∣∣∣ ∑a∈A ∑

s′∈S +

π̃m(a | sm
h)
(

P(s′ | sm
h ,a)− P̃m(s′ | sm

h ,a)
)(

Ṽ m(s′)−µ
m
h

)∣∣∣∣∣≤
≤ ∑

a∈A
π̃m(a | sm

h)

(
1
4

√
c2

minVm(sm
h ,a)

D
+

cmin

2

)

≤ 1
4

√
c2

min ∑a∈A π̃m(a | sm
h)V

m(sm
h ,a)

D
+

cmin

2
,

where the last inequality follows again from Jensen’s inequality. We use Jensen’s inequal-
ity one last time to obtain

Hm

∑
h=1

1
4

√
c2

min ∑a∈A π̃m(a | sm
h)V

m(sm
h ,a)

D
+

Hm

∑
h=1

cmin

2
≤

≤ 1
4

√√√√Hm
Hm

∑
h=1

c2
min ∑a∈A π̃m(a | sm

h)V
m(sm

h ,a)
D

+
cminHm

2

≤ 1
2

√√√√Hm

∑
h=1

∑
a∈A

π̃m(a | sm
h)V

m(sm
h ,a)+

D
cmin

,

where we used the fact that Hm ≤ 2D/c2
min.

196

Plugging these bounds back into Equation (E.10) gets us

E

[
Hm

∑
h=1

Vm
h I{Ωm}

∣∣∣∣ Ūm−1

]
≤ E

[(
4D
cmin

+
1
2

√√√√Hm

∑
h=1

∑
a∈A

π̃m(a|sm
h)V

m(sm
h ,a)I{Ωm}

)2 ∣∣∣∣ Ūm−1

]

≤ 32D2

c2
min

+
1
2

E

[
Hm

∑
h=1

∑
a∈A

π̃m(a|sm
h)V

m(sm
h ,a)I{Ω

m}
∣∣∣∣ Ūm−1

]

=
32D2

c2
min

+
1
2

E

[
Hm

∑
h=1

Vm
h I{Ωm}

∣∣∣∣ Ūm−1

]
,

where the second inequality is by the elementary inequality (a+ b)2 ≤ 2(a2 + b2), and
the last equality is by definition of am

h and Vm
h . Rearranging gets us E

[
∑

Hm

h=2 Vm
h I{Ωm} |

Ūm−1]≤ 64D2/c2
min, and the lemma follows.

Lemma E.9.12. With probability at least 1−δ/6, the following holds for all M = 1,2, . . .
simultaneously.

M

∑
m=1

E[R̃2
m | Ūm−1]≤ 573

DS
cmin

√
MA log2 T SA

δ
+5440

D
cmin

S2A log2 T SA
δ

.

Proof. From Theorem E.9.9 we have that

E[R̃2
m | Ūm−1]≤ 16E

[
Hm

∑
h=1

√
SVm

h Am
h I{Ωm}

∣∣∣∣ Ūm−1

]
+272E

[
Hm

∑
h=1

D
cmin

SAm
h I{Ωm}

∣∣∣∣ Ūm−1

]
,

Moreover, by applying the Cauchy-Schwartz inequality twice, we get that

E

[
Hm

∑
h=1

√
Vm

h Am
h I{Ωm}

∣∣∣∣ Ūm−1

]
≤ E

[√√√√Hm

∑
h=1

Vm
h I{Ωm} ·

√√√√Hm

∑
h=1

Am
h I{Ωm}

∣∣∣∣ Ūm−1

]

≤

√√√√E

[
Hm

∑
h=1

Am
h I{Ωm}

∣∣∣∣ Ūm−1

]
·

√√√√E

[
Hm

∑
h=1

Vm
h I{Ωm}

∣∣∣∣ Ūm−1

]

≤ 8D
cmin

√√√√E

[
Hm

∑
h=1

Am
h I{Ωm}

∣∣∣∣ Ūm−1

]
,

197

where the last inequality is by Theorem E.9.11. We sum over all intervals to obtain

M

∑
m=1

E[R̃2
m | Ūm−1]≤ 128D

cmin

M

∑
m=1

√√√√S

[
Hm

∑
h=1

Am
h I{Ωm}

∣∣∣∣ Ūm−1

]
+

272DS
cmin

M

∑
m=1

[
Hm

∑
h=1

Am
h I{Ωm}

∣∣∣∣ Ūm−1

]

≤ 128D
cmin

√√√√MS
M

∑
m=1

[
Hm

∑
h=1

Am
h I{Ωm}

∣∣∣∣ Ūm−1

]
+

272DS
cmin

M

∑
m=1

[
Hm

∑
h=1

Am
h I{Ωm}

∣∣∣∣ Ūm−1

]
,

where the last inequality follows from Jensen’s inequality. We finish the proof using The-
orem E.9.13 below.

Lemma E.9.13. With probability at least 1− δ/6, the following holds for M = 1,2, . . .
simultaneously.

M

∑
m=1

E

[
Hm

∑
h=1

Am
h I{Ωm} | Ūm−1

]
≤ 20SA log2 T SA

δ
.

Proof. Define the infinite sequence of random variables: Xm = ∑
Hm

h=1 Am
h I{Ωm} for which

|Xm| ≤ 2 due to Theorem E.9.14 below. We apply Equation (E.22) of Theorem E.12.3 to
obtain with probability at least 1−δ/6, for all M = 1,2, . . . simultaneously

M

∑
m=1

E
[
Xm | Ūm−1]≤ 2

M

∑
m=1

Xm +8log
12M

δ
.

Now, we bound the sum over Xm by rewriting it as a sum over epochs (since the confidence
sets update only in the beginning of a new epoch):

M

∑
m=1

Xm ≤
M

∑
m=1

Hm

∑
h=1

log(SANe(m)
+ (sm

h ,a
m
h)/δ)

Ne(m)
+ (sm

h ,a
m
h)

≤ log
SAT

δ
∑

s∈S
∑

a∈A

E

∑
e=1

ne(s,a)
Ne
+(s,a)

,

where ne(s,a) is the number of visits to (s,a) during epoch e. From Theorem E.9.15 below
we have that for every (s,a) ∈S ×A ,

E

∑
e=1

ne(s,a)
Ne
+(s,a)

≤ 2logNE+1(s,a)≤ 2logT.

We now plugin the resulting bound for ∑
M
m=1 Xm and simplify the acquired expression by

using M ≤ T .

Lemma E.9.14. For any interval m, |∑Hm

h=1 Am
h | ≤ 2.

198

Proof. Note that all states during the interval are known. Hence, Ne(m)
+ (sm

h ,a
m
h) ≥ α ·

DS
c2

min
log DSA

δcmin
. Therefore, since log(x)/x is decreasing and since A ≥ 2 (otherwise the

learner has no choices),

Hm

∑
h=1

Am
h =

Hm

∑
h=1

log(SANe(m)
+ (sm

h ,a
m
h)/δ)

Ne(m)
+ (sm

h ,a
m
h)

≤
c2

minHm

D
≤ 2.

Lemma E.9.15 ([RCMK20], Lemma B.18). For any sequence of integers z1, . . . ,zn with

0≤ zk ≤ Zk−1 := max{1,∑k−1
i=1 zi} and Z0 = 1, it holds that

n

∑
k=1

zk

Zk−1
≤ 2logZn.

E.9.6 Proof of Theorem 7.3.1

Theorem E.9.16 (Restatement of Theorem 7.3.1). Under Theorem 5.2.1, running SSP-O-

REPS3 with known SSP-diameter D and η =

√
6log(DSA/cmin)

K ensures that, with probability

at least 1−δ ,

RK ≤ O
(

DS
cmin

√
AK log

KDSA
δcmin

+
D2S2A

c2
min

log2 KDSA
δcmin

)
= Õ

(
DS
cmin

√
AK
)
,

where the last equality holds for K ≥ D2S2A/c2
min.

Proof of Theorem 7.3.1. With probability at least 1− δ , via a union bound, we have that
Theorems E.9.1, E.9.7 and E.9.12 hold and the following holds by Azuma inequality for
every T = 1,2, . . . simultaneously,

M

∑
m=1

Hm

∑
h=1

cm(sm
h ,a

m
h)≤

M

∑
m=1

Hm

∑
h=1

∑
a∈A

π̃m(a | sm
h)c

m(sm
h ,a)+4

√
T log

T
δ
. (E.14)

We start by bounding R̃M and in the end we explain how this yields a bound on RK .

Plugging in the bounds of Theorems E.9.6, E.9.7 and E.9.12 into Theorem E.9.5, we
have that for any number of intervals M:

C̃M ≤
K

∑
k=1

Ṽ πk
k (sinit)I{Ωm(k)}+O

(
DS
cmin

√
MA log

T SA
δ

+
D2S2A

c2
min

log2 T SA
δ

)
.

199

We now plug in the bound on M from Theorem E.9.2 into the bound above. After simpli-
fying this gets us

C̃M ≤
K

∑
k=1

Ṽ πk
k (sinit)I{Ωm(k)}+O

(√
D2S2A

c2
min

K log2 T DSA
δcmin

+

√
D4S4A2

c4
min

log4 T DSA
δcmin

+

√
DS2A
cmin

C̃M log2 T DSA
δcmin

)
.

From which, by solving for C̃M (using that x ≤ a
√

x+b implies x ≤ (a+
√

b)2 for a ≥ 0
and b ≥ 0), and simplifying the resulting expression by applying Ṽ πk

k (sinit) ≤ D/cmin and
our assumptions that K ≥ S2A, A≥ 2, we get that

C̃M ≤
K

∑
k=1

Ṽ πk
k (sinit)I{Ωm(k)}+O

(
DS
cmin

√
AK log

T DSA
δcmin

+
D2S2A

c2
min

log2 T DSA
δcmin

)
. (E.15)

Note that in particular, by simplifying the bound above, we obtain a polynomial bound on
the total cost: C̃M = O

(√
D4S4A2KT/c4

minδ

)
. Next we combine this with the fact, stated

in Theorem E.9.2 that T ≤ C̃M/cmin. Isolating T gets T = O
(

D4S4A2K
c4

minδ

)
, and plugging this

bound back into Equation (E.15) and simplifying gets us

C̃M ≤
K

∑
k=1

Ṽ πk
k (sinit)I{Ωm(k)}+O

(
DS
cmin

√
AK log

KDSA
δcmin

+
D2S2A

c2
min

log2 KDSA
δcmin

)
. (E.16)

Recall that
K

∑
k=1

Ṽ πk
k (sinit)−V π⋆

k (sinit) =
K

∑
k=1
⟨qk−qP,π⋆

,ck⟩,

and thus applying OMD analysis (see Section E.9.7) we obtain

R̃M ≤ O
(

DS
cmin

√
AK log

KDSA
δcmin

+
D2S2A

c2
min

log2 KDSA
δcmin

)
.

Now, as Ωm hold for all intervals, we use Equation (E.14) to bound the actual regret (to-
gether with T ≤ C̃M/cmin) for any number of intervals M, with the bound we have for
R̃M.

We note that the bound above holds for any number of intervals M as long as K

episodes do not elapse. As the instantaneous costs in the model are positive, this means
that the learner must eventually finish the K episodes from which we derive the bound for
RK claimed by the theorem.

200

E.9.7 OMD analysis

This analysis follows the lines of Section E.4, but it is adjusted to extended occupancy
measures.

Lemma E.9.17. Let τ ≥ 1. For every q ∈ ∆̃(M)m(τ) it holds that R(q)≤ τ logτ .

Proof.

R(q) = ∑
s∈S

∑
a∈A

∑
s′∈S +

q(s,a,s′) logq(s,a,s′)− ∑
s∈S

∑
a∈A

∑
s′∈S +

q(s,a,s′)

≤ ∑
s∈S

∑
a∈A

∑
s′∈S +

q(s,a,s′) logq(s,a,s′)

= ∑
s∈S

∑
a∈A

∑
s′∈S +

q(s,a,s′) log
q(s,a,s′)

τ
+ ∑

s∈S
∑

a∈A
∑

s′∈S +

q(s,a,s′) logτ

≤ ∑
s∈S

∑
a∈A

∑
s′∈S +

q(s,a,s′) logτ ≤ τ logτ,

where the first two inequalities follow from non-positivity, and the last one from the defi-
nition of ∆̃(M)m(τ).

Lemma E.9.18. Let τ ≥ 1. For every q∈ ∆̃(M)m(τ) it holds that−R(q)≤ τ(1+log(S2A)).

Proof. Similarly to Theorem E.4.2 we have that

−R(q) =− ∑
s∈S

∑
a∈A

∑
s′∈S +

q(s,a,s′) log
q(s,a,s′)

τ
+ ∑

s∈S
∑

a∈A
∑

s′∈S +

q(s,a,s′)

− ∑
s∈S

∑
a∈A

∑
s′∈S +

q(s,a,s′) logτ

≤−τ ∑
s∈S

∑
a∈A

∑
s′∈S +

q(s,a,s′)
τ

log
q(s,a,s′)

τ
+ τ ≤ τ log(S2A)+ τ,

where the first inequality follows because the last term is non-positive and from the def-
inition of ∆̃(M)m(τ), and the last inequality follows from properties of Shannon’s en-
tropy.

Lemma E.9.19. If Ωm holds for all intervals m, then

K

∑
k=1
⟨qk−qP,π⋆

,ck⟩ ≤ 2D
cmin

√
6K log

DSA
cmin

.

201

Proof. We start with a fundamental inequality of OMD (see, e.g., [RM19a]) that holds for
every q ∈ ∆̃(M)m(D/cmin) for every m (since Ωm holds it also holds for qP,π⋆

),

K

∑
k=1
⟨qk−qP,π⋆

,ck⟩ ≤
K

∑
k=1
⟨qk−q′k+1,c

k⟩+ KL(qP,π⋆ ∥ q1)

η
. (E.17)

For the first term we use the exact form of q′k+1 and the inequality ex ≥ 1+ x to obtain

q′k+1(s,a,s
′) = qk(s,a,s′)e−ηck(s,a) ≥ qk(s,a,s′)−ηqk(s,a,s′)ck(s,a).

We substitute this back and obtain

K

∑
k=1
⟨qk−q′k+1,c

k⟩ ≤ η

K

∑
k=1

∑
s∈S

∑
a∈A

∑
s′∈S +

qk(s,a,s′)ck(s,a)2 ≤ η

K

∑
k=1

∑
s∈S

∑
a∈A

∑
s′∈S +

qk(s,a,s′)

= η

K

∑
k=1

T̃ πk
k (sinit)≤ ηK

D
cmin

, (E.18)

where the last inequality follows from the definition of ∆̃(M)m(k)(D/cmin).

Next we use Theorems E.9.17 and E.9.18 to bound the second term of Equation (E.17).
Recall that q1 minimizes R in ∆̃(M)1(D/cmin), this implies that ⟨∇R(q1),qP,π⋆−q1⟩ ≥ 0
because otherwise we could decrease R by taking small step in the direction qP,π⋆ − q1.
Thus we obtain

KL(qP,π⋆
∥ q1) = R(qP,π⋆

)−R(q1)−⟨∇R(q1),qP,π⋆
−q1⟩ ≤ R(qP,π⋆

)−R(q1)

≤ D
cmin

log
D

cmin
+

D
cmin

(1+ log(S2A))≤ 6D
cmin

log
DSA
cmin

. (E.19)

By substituting Equations (E.18) and (E.19) into Equation (E.17) and choosing η =√
6log DSA

cmin
K , we obtain,

K

∑
k=1
⟨qk−qP,π⋆

,ck⟩ ≤ ηK
D

cmin
+

6D
cminη

log
DSA
cmin

≤ 2D
cmin

√
6K log

DSA
cmin

.

202

E.10 Estimating the SSP-diameter

When D is given, we use it to get the upper bound D/cmin on the expected time of the best
policy in hindsight T π⋆

(sinit). The reason that T π⋆
(sinit) ≤ D/cmin is that D is an upper

bound on the expected time of the fast policy, i.e., T π f
(sinit) ≤ D (see Theorem E.4.1).

Thus, we want to compute D̃(sinit) to be an upper bound on T π f
(sinit).

We would like to use the first L episodes in order to estimate an upper bound D̃(sinit)

on the expected time of the fast policy, and then we can run SSP-O-REPS3 and obtain the
same regret bound as in Theorem 7.3.1 but with D̃(sinit) replacing D.

Notice that π f is the optimal policy w.r.t the constant cost function c(s,a) = 1, and
its expected cost is T π f

(sinit). Thus, we run the SSP regret minimization algorithm of
[RCMK20] with the cost function c(s,a) = 1 for L episodes. Then, we set D̃(sinit) to be
the average cost per episode times 10, that is,

D̃(sinit) =
10
L

L

∑
k=1

Ik

∑
i=1

c(sk
i ,a

k
i) =

10
L

L

∑
k=1

Ik.

We start by showing that D̃(sinit) is indeed an upper bound on T π f
(sinit), given L is

large enough.

Lemma E.10.1. If L≥ 2400D2

T π f
(sinit)2

log3 4K
δ

then, with probability at least 1−δ , T π f
(sinit)≤

D̃(sinit).

Proof. Notice that playing π f during the first L episodes will result in smaller total cost
then running the regret minimization algorithm. Thus, it suffices to prove the Lemma as if
we are playing the fast policy. Define

Xk =
Ik

∑
i=1

c(sk
i ,a

k
i)−E

[Ik

∑
i=1

c(sk
i ,a

k
i) | P,π f ,sk

1 = sinit

]
=

Ik

∑
i=1

c(sk
i ,a

k
i)−T π f

(sinit).

This is a martingale difference sequence, and in order to use Theorem E.12.5 we need to
show that Pr[|Xk|>m]≤ 2e−

m
4D for every k = 1,2, . . . and m≥ 0. This follows immediately

from Theorem E.6.1 since the total cost is equal to the total time for the cost function
c(s,a) = 1.

By Theorem E.12.5,
∣∣∑L

k=1 Xk
∣∣≤ 44D

√
L log3 4L

δ
with probability 1−δ . Therefore we

203

have,
L

∑
k=1

Ik

∑
i=1

c(sk
i ,a

k
i)≥ LT π f

(sinit)−44D

√
L log3 4L

δ
,

and thus,

D̃(sinit)

10
=

1
L

L

∑
k=1

Ik

∑
i=1

c(sk
i ,a

k
i)≥ T π f

(sinit)−44D

√
log3 4L

δ

L
. (E.20)

Since L ≥ 2400D2

T π f
(sinit)2

log3 4K
δ

, we have that 44D
√

log3 4L
δ

L ≤ 9
10T π f

(sinit) and therefore we

obtain from Equation (E.20) that T π f
(sinit)≤ D̃(sinit).

Next, we show that D̃(sinit) is a good estimation of T π f
(sinit), given L is large enough.

Lemma E.10.2. If L ≥ S2A
√

D log2 KDSA
δ

then, with probability at least 1−δ , D̃(sinit) ≤
O(D).

Proof. By the regret bound of the SSP regret minimization algorithm we have, with prob-
ability at least 1−δ ,

1
L

L

∑
k=1

Ik

∑
i=1

c(sk
i ,a

k
i)−T π f

(sinit)≤ O

(
DS
√

A log LDSA
δ√

L
+

D3/2S2A log2 LDSA
δ

L

)
.

Since T π f
(sinit)≤ D we obtain

D̃(sinit)≤ O

(
D+

DS
√

A log LDSA
δ√

L
+

D3/2S2A log2 LDSA
δ

L

)
≤ O(D).

where the last inequality follows because L≥ S2A
√

D log2 KDSA
δ

.

The second place in which the SSP-O-REPS3 algorithm uses D is to determine when
to switch to the optimistic fast policy. The switch happens when we reach a state with ex-
pected time larger than D/cmin. A careful look at the analysis (especially Theorem E.9.6)
shows that we actually need to switch in state s if the expected time is larger than T π f

(s)/cmin.
Thus, we need to estimate an upper bound D̃(s) on T π f

(s) which is done exactly as we
estimated T π f

(sinit), i.e., in the first L visits to s we switch to the optimistic fast policy and
then we can estimate T π f

(s) (by taking the average time to the goal times 10). This just
means that now the threshold for a state to become known is L instead of DS

c2
min

log DSA
δcmin

.

204

Assuming L is large enough we get a good enough estimate, similarly to what we just
proved for T π f

(sinit).

To summarize, the algorithm proceeds as follows. We start by running the regret min-
imization algorithm of [RCMK20] with constant cost of 1 for L episodes and use it to
estimate an upper bound on T π f

(sinit). Then, we run SSP-O-REPS3 (setting η as a func-
tion of our estimate instead of D) with a known state threshold of L. When a state s

becomes known we compute an upper bound on T π f
(s) and in the next episodes we make

the switch in this state using this estimate and not when the expected time is larger than
D/cmin. The following theorem shows that we can set L≈

√
K, and this leads to the same

regret bound (as if we knew D in advance) assuming K is large enough. Otherwise, the
regret is just bounded by some constant that does not depend on K.

Theorem E.10.3. Under Theorem 5.2.1, running SSP-O-REPS3 with η =

√
3log(D̃(sinit)SA/cmin)

K

and

L = 2400max{S2A log2 KSA
δcmin

,
√

K
cmin
√

A
log KSA

δcmin
} ensures that, with probability at least 1−δ ,

RK ≤ O
(

DS
cmin

√
AK log

KDSA
δcmin

+
D2S2A

c2
min

log3 KDSA
δcmin

)
,

for K ≥max
{

c2
minDS4A3 log2 DSA

δcmin
,

c2
minD4A

mins∈S T π f
(s)4

log4 DSA
δcmin

}
. For smaller K, we have

RK ≤ Õ
(

D3S2A
c2

min
+ c2

minD5A+D2S3A2
)
≤ Õ

(
D5S3A2

c2
min

)
.

Proof. First assume that K is large enough. By union bounds, Theorems E.10.1 and E.10.2
and the regret bound of SSP-O-REPS3 all hold with probability at least 1−3SAδ (because
of the O(·) notation it is the same as 1− δ). Therefore, T π f

(s) ≤ D̃(s) ≤ O(D) for all
s ∈S . During the first L episodes our cost is bounded as follows,

L

∑
k=1

Ik

∑
i=1

ck(sk
i ,a

k
i)≤ LD+O

(
DS
√

AL log
LDSA

δ
+D3/2S2A log2 LDSA

δ

)
≤ O

(
DS
cmin

√
AK log

KDSA
δ

+
D3/2S2A

c2
min

log3 KDSA
δ

)
,

and then we bound the regret as in Theorem 7.3.1 to get the final result (the extra regret
that comes from enlarging the known state threshold is at most LDSA which is of the same
order).

205

When K is too small we might encounter an underestimate or an overestimate of some
T π f

(s). In the rest of the proof assume that K > 2400S2A log2 DSA
δcmin

because otherwise we
never go past the diameter estimation phase and the regret is bounded by

RK ≤ Õ
(

D3/2S2A
)
.

By following the proof of Theorem E.10.2, for K > 2400S2Ac2
min log2 DSA

δcmin
we have that

D̃≤ O(D3/2).

Underestimate. The problem with an underestimate is that now our regret bound does
not hold against π⋆, but only against the best policy in hindsight π⋆(D̃(sinit)) with expected
time of at most D̃(sinit). In addition, we may loose D every time we switch to the fast policy
(and the reason was reaching a “bad” state) by the proof of Theorem E.9.6. Thus, the regret
bound of SSP-O-REPS3 (without diameter estimation) gives

K

∑
k=1

Ik

∑
i=1

ck(sk
i ,a

k
i)−

K

∑
k=1

V π⋆(D̃(sinit))
k (sinit)≤ O

(
DS
cmin

√
AK log

KDSA
δcmin

+
D2S2A

c2
min

log2 KDSA
δcmin

+KD
)
.

(E.21)

We can use this to bound the total cost, and therfore the regret of the learner, as follows

RK ≤
K

∑
k=1

Ik

∑
i=1

ck(sk
i ,a

k
i)

≤
K

∑
k=1

V π⋆(D̃(sinit))
k (sinit)+O

(
DS
cmin

√
AK log

KDSA
δcmin

+
D2S2A

c2
min

log2 KDSA
δcmin

+KD
)

≤ O
(

KD̃(sinit)+
DS
cmin

√
AK log

KDSA
δcmin

+
D2S2A

c2
min

log2 KDSA
δcmin

+KD
)

≤ O
(

KD+
DS
cmin

√
AK log

KDSA
δcmin

+
D2S2A

c2
min

log2 KDSA
δcmin

)
≤ Õ

(
D5Ac2

min +D3SA+
D2S2A

c2
min

)
,

where the second inequality follows from Equation (E.21), the third because the expected
time of π⋆(D̃(sinit)) is at most D̃(sinit), the forth because D̃(sinit)≤D as an underestimate,
and the last one is because underestimation may occur when K <

c2
minD4A

mins∈S T π f
(s)4

log4 DSA
δcmin

according to Theorem E.10.1.

206

Overestimate. At this situation our regret bound holds, but its dependence in D̃(s) is
problematic because D̃(s) overestimates D for some s ∈S . However, according to Theo-
rem E.10.2, this may occur only when K < c2

minDS4A3 log2 DSA
δcmin

. In addition, as mentioned
before, D̃(s)≤ O(D3/2). Thus, we have

RK ≤ O
(

D̃(s)S
cmin

√
AK log

KDSA
δcmin

+
D̃(s)2S2A

c2
min

log2 KDSA
δcmin

)
≤ O

(
D3/2S
cmin

√
AK log

KDSA
δcmin

+
D3S2A

c2
min

log2 KDSA
δcmin

)
≤ Õ

(
D2S3A2 +

D3S2A
c2

min

)
.

207

E.11 Zero costs

We can artificially fulfil Theorem 5.2.1 by adding a small ε > 0 perturbation to the costs.
That is, when ck is revealed, we pass to the learner the perturbed cost function c̃k(s,a) =

max{ck(s,a),ε} for every s ∈S and a ∈A .

Notice that changing the cost function does not change the transition function or the
SSP-diameter. However, the bias introduced by our perturbation adds an additional εD⋆K

term to the regret, where D⋆ is the expected time it takes the best policy in hindsight to
reach the goal state.

Choosing ε to balance the algorithms’ regret with the new term yields the following re-
gret bounds for the general case. Theorem E.11.1 matches Theorem 7.2.1, Theorem E.11.2
matches Theorem 7.2.3, Theorem E.11.3 matches Theorem 7.3.1, and Theorem E.11.4
matches Theorem E.10.3.

Theorem E.11.1. Running SSP-O-REPS with known transition function, η =

√
3log(DSA/ε)

K

and ε = K−1/4 ensures that

E[RK]≤ O
(

D⋆K3/4
√

log(KDSA)
)
.

Theorem E.11.2. Running SSP-O-REPS2 with known transition function, η =

√
3log(DSA/ε)

K

and ε = K−1/4
√

log KDSA
δ

ensures that, with probability 1−δ ,

RK ≤ O
(

D⋆K3/4 log
KDSA

δ

)
.

Theorem E.11.3. Running SSP-O-REPS3 with known SSP-diameter D, η =

√
3log(DSA/ε)

K

and

ε = K−1/4S
√

A log KDSA
δ

ensures that, with probability 1−δ ,

RK ≤ O
(

D⋆S
√

AK3/4 log
KDSA

δ
+D2

√
K log

KDSA
δ

)
.

Theorem E.11.4. Running SSP-O-REPS3 with ε =K−1/4S
√

A log KD̃(sinit)SA
δ

, η =

√
3log(D̃(sinit)SA/ε)

K

and

208

L = 2400max{S2A log2 KSA
δε

,
√

K
ε
√

A
log KSA

δε
} ensures that, with probability at least 1−δ ,

RK ≤ O
(

D⋆S
√

AK3/4 log
KDSA

δ
+D2

√
K log2 KDSA

δ

)
,

for K ≥max
{

D2/3S4A8/3 log2 DSA
δ

,
D8/3S4/3A4/3 log10/3 DSA

δ

mins∈S T π f
(s)8/3

}
. For smaller K, we have

RK ≤ Õ
(

D⋆S
√

AK3/4 +D3
√

K +
D5S2A2
√

K
+D2S3A2

)
≤ Õ

(
D⋆S
√

AK3/4 +D3
√

K +D5A+DS3A2
)

≤ Õ
(

D⋆S
√

AK3/4 +D3
√

K +D5S3A2
)
.

Note that for ε ≤ 1 in Theorems E.11.3 and E.11.4, we need K ≥ S4A2. However, if
K < S4A2 (this is something the algorithm can check) we can just stay in the diameter
estimation phase (i.e., assume all costs are c(s,a) = 1) and get a regret of Õ

(
DS4A2 +

D3/2S2A
)

(or tune ε especially for this case for better results).

209

E.12 Concentration inequalities

Theorem E.12.1 (Anytime Azuma). Let (Xn)
∞
n=1 be a martingale difference sequence such

that |Xn| ≤ Bn almost surely. Then with probability at least 1−δ ,

∣∣∣ N

∑
n=1

Xn

∣∣∣≤ 4

√
N

∑
n=1

B2
n log

N
δ
∀N ≥ 1.

Lemma E.12.2 ([RCMK20], Lemma B.15). Let (Xt)
∞
t=1 be a martingale difference se-

quence adapted to the filtration (Ft)
∞
t=0. Let Yn = (∑n

t=1 Xt)
2−∑

n
t=1 E[X2

t |Ft−1]. Then

(Yn)
∞
n=0 is a martingale, and in particular if τ is a stopping time such that τ ≤ c almost

surely, then E[Yτ] = 0.

Lemma E.12.3 ([RCMK20], Lemma D.4). Let (Xn)
∞
n=1 be a sequence of random variables

with expectation adapted to the filtration (Fn)
∞
n=0. Suppose that 0≤ Xn ≤ B almost surely.

Then with probability at least 1−δ , the following holds for all n≥ 1 simultaneously:

n

∑
i=1

E[Xi |Fi−1]≤ 2
n

∑
i=1

Xi +4B log
2n
δ
. (E.22)

Lemma E.12.4. Let X be a non-negative random variable such that Pr[|X |> m]≤ ae−m/b

(a≥ 1) for all m≥ 0. Then, E[XI{X > r}]≤ a(r+b)e−r/b.

Proof. We have that,

E[XI{X > r}] = r Pr[X > r]+E[(X− r)I{X− r > 0}],

and

E[(X− r)I{X− r > 0}] =
∫

∞

m=0
Pr[X− r > m]dm

=
∫

∞

m=r
Pr[X > m]dm

≤
∫

∞

m=r
ae−m/bdm

= abe−r/b.

Hence E[XI{X > r}]≤ a(r+b)e−r/b as required.

Theorem E.12.5 (Anytime Azuma for Unbounded Martingales). Let (Xn)
∞
n=1 be a non-

negative martingale difference sequence adapted to the filtration (Fn)
∞
n=1 such that Pr[|Xn|>

210

m]≤ ae−m/b (a≥ 1) for all n≥ 1 and m≥ 0. Then, with probability at least 1−δ ,

∣∣∣ N

∑
n=1

Xn

∣∣∣≤ 11b

√
N log3 2aN

δ
∀N ≥ 1.

Proof. Define rn = 2b log 2an
δ

, and note that Pr[|Xn|> rn]≤ δ

4n2 .

Additionally define Yn =XnI{|Xn| ≤ rn}−E [XnI{|Xn| ≤ rn} |Fn−1]. (Yn)
∞
n=1 is a bounded

martingale difference sequence, and by Theorem E.12.1 we have that with probability at
least 1− δ

2 , ∣∣∣ N

∑
n=1

Yn

∣∣∣≤ 4

√
N

∑
n=1

r2
n log

N
δ
∀N ≥ 1.

Therefore, by a union bound, both the above holds and |Xn| ≤ rn for all n ≥ 1 with
probability at least 1−δ . We get that

∣∣∣ N

∑
n=1

XnI{|Xn| ≤ rn}−E [XnI{|Xn| ≤ rn} |Fn−1]
∣∣∣≤ 4

√
N

∑
n=1

r2
n log

N
δ
,

and simplifying using the definition of rn gets

∣∣∣ N

∑
n=1

XnI{|Xn| ≤ rn}
∣∣∣≤ ∣∣∣ N

∑
n=1

E [XnI{|Xn| ≤ rn} |Fn−1]
∣∣∣+8b

√
N log3 2aN

δ
.

It thus remains to upper bound
∣∣∣∑N

n=1 E [XnI{|Xn| ≤ rn} |Fn−1]
∣∣∣. First note that (since Xn

is a martingale difference sequence)

E [XnI{|Xn| ≤ rn} |Fn−1] = E[Xn |Fn−1]−E [XnI{|Xn|> rn} |Fn−1]

=−E [XnI{|Xn|> rn} |Fn−1] ,

211

from which∣∣∣ N

∑
n=1

E [XnI{|Xn| ≤ rn} |Fn−1]
∣∣∣= ∣∣∣ N

∑
n=1

E [XnI{|Xn|> rn} |Fn−1]
∣∣∣

≤
N

∑
n=1

E
[
|Xn|I{|Xn|> rn} |Fn−1

]
≤

N

∑
n=1

a(rn +b)e−rn/b

≤
N

∑
n=1

3ab
(

δ

2an

)2

log
2an
δ

≤
N

∑
n=1

6ab
(

δ

2an

)2(2an
δ

)1/2

=
N

∑
n=1

6ab
(

δ

2an

)3/2

≤
N

∑
n=1

3b
n3/2 ≤ 3b log(N +1)≤ 3b log(2N),

where the second inequality follows from Theorem E.12.4 and and the forth inequality
follows because logx≤ 2

√
x.

212

 ריצקת

 הניבב רתויב תיסיסבה הלאשה תא רקוח)RL(םיקוזיח תועצמאב הנוכמ תדימל לש םוחתה
 ?הביבסה םע היצקארטניא תועצמאב תונוכנ תוטלחה עצבל דומלל ןכוס לוכי ךיא –)AI(תיתוכאלמ

 םיעוציבה ,תורוצת ןווגמב תומישרמ תויריפמא תוחלצה התאר םיקוזיח תועצמאב הדימלש תורמל
 וליפא םהו םינוש םימוחת ןיב יטמרד ןפואב םינתשמ םיקוזיח תועצמאב הדימל ימתירוגלא לש
 לבא תונוש תוביס ןווגמ ךכל תויהל תולוכי .תומיוסמ תוביסב הדימלה ךילהתב לשכיהל םילולע
 :תואבה תוירקיעה תוביסה שולשב דקמתנ ונא תאזה הזתב

 תוקיטסירויה לע םיכמתסמ םוחתב םיירלופופה םימתירוגלאהמ םיבר .היצרולפסקא .1
 םה ,ןכל .תינדמח ןוליספאה הקיטסירויהה לשמל ומכ ,היצרולפקא עוציבל תוטושפ
 .םיבצמה בחרמ לש םימיוסמ םירוזאל עיגהל השק ןהבש תוביבסב לשכיהל םילולע

 הטלחהה לדומ אוה םיקוזיח תועצמאב הדימלב רתויב יראלופופה לדומה .הנתשמ הביבס .2
 ,תאז תורמל .ןמזה ךרואל הנתשמ וניאש ןיטולחל יטסכוטס לדומ .)MDP(יבוקרמה
 .הדימלה ךילהת ידכ ךות וליפא הנתשמו העובק הניא הביבסה ,תובר תויצקילפאב
 .הלא םייונישל לגתסהל םיחילצמ אל םיבר םימתירוגלא

 םיבוקרמ םילדומ רקיעב תרקוח םיקוזיח תועצמאב הדימל לע תורפסה .קיודמ אל לדומ .3
 םיבצמ ,תאז תורמל .עצוממ חוור וא תחפומ לומגת ,יפוס קפוא לש החלצהה ינוירטירק םע
 אל םיבר םימתירוגלא ,ךכיפל .הלא תורגסמל םימיאתמ אל)בותינו טווינ ומכ(םיבר
 .קפסמ ןפואב הלאכש םיבצמ סופתל םיחילצמ

 ונלש םימתירוגלאה .ליעלש םיאשונב לופיטל תושדח תוירואיתו םישדח םימתירוגלא הגיצמ וז הזת
 תועצמאב תדדמנ םהלש החלצהה ןכלו ,תוביבס ןווגמב היצרולפסקא לש םירגתאה םע םידדומתמ
 לש דספהה תלחות ןיבו הדימלה ךילהת ךרואל ןכוסה לש ללוכה דספהה ןיב שרפהה – הטרחה
 .דבעידב רתויב הבוטה תוינידמה

 םילאירסרבדא םיבוקרמ הטלחה יכילהת :םיירקיע רקחמ יווק ינשמ תבכרומ הזתה
)adversarial MDP(תויטסכוטס רתויב םילק םילולסמ תאיצמ תויעבו)SSP(. ונחנאש רחאל

 םילק םילולסמ תאיצמ תויעב ,שדח לדומ ףסונב םירקוח ונחנא ,וללה םילדומה ינש תא םירקוח
 ידכל םהינש תא בלשמש ,)adversarial SSP(םילאירסרבדא םיריחמ םע תויטסכוטס רתויב
 .רתוי יללכו יטסבור וניהש לדומ

 דוגינב .תונתשמ תוביבס םע דדומתהל איה םילאירסרבדא םיבוקרמ הטלחה יכילהת לש םתרטמ
 הטלחה יכילהתב ,ןמזה םע םינתשמ אלו םייטסכוטס םהש םיליגר םיבוקרמ הטלחה יכילהתל
 תייצקנופ רשאכ(ירארטיברא ןפואב תונתשהל הלוכי םיריחמה תיצקנופ םילאירסרבדא םיבוקרמ
 םיבוקרמ הטלחה יכילהתמ רתוי הברה יללכ אוה הז לדומ .)תיטסכוטסו העובק תרתונ םירבעמה
 ךותמ תלרגומ תויהל םוקמב ,בירי ידיב רחביהל םיריחמה תייצקנופל רשפאמ אוהש ןוויכמ םיליגר
 .יתועמשמ ןפואב הז לדומ לש הנבההה תא םימדקמ ונא וז הדובעב .יהשלכ העודי אל תוגלפתה
 הטלחה יכילהת רובע ההובג תורבתסהב םניהש םינושארה הטרחה ימסח תא םיגיצמ ונחנא
 full-information(אלמ קבדיפו העודי אל םירבעמ תייצקנופ םע םילאירסרבדא םיבוקרמ

feedback(, ונחנא ,ףסונב .הנתשמ איהש רחאל םיריחמה תייצקנופ לכ תא האור ןכוסה רמולכ
 הטלחה יכילהת לש רתוי הברה יתואיצמה לדומה רובע םינושארה הטרחה ימסח תא םיגיצמ
 האור ןכוסה רמולכ ,)bandit feedback(יקלח קבדיפו העודי אל םירבעמ תייצקנופ םע םיבוקרמ
 היצזירלוגר תויגולדותמ לע םייונב ונלש םימתירוגלאה .עציבש תולועפה רובע םיריחמה תא קר
 .לעופב דואמ תוליעיכ תועודיש ,תיפורטנא

 תועצמאב הדימל לש רתויב יסיסבה לדומה ןה תויטסכוטס רתויב םילק םילולסמ תאיצמ תויעב
 הלא תויעבב .םייטרפ םירקמכ יפוס קפואו תחפומ רזחה לש םילדומה תא תוליכמ ןה .םיקוזיח
 הז לדומ .תילאמינימ דספה תחלותב שארמ רדגומש הרטמ בצמל עיגהל איה ןכוסה לש הרטמה

 תומישמ רמולכ ;םינפחר תסטהו םיקחשמ ,תוינוכמ טווינ ןוגכ ,םייתואיצמ םיבצמ לש ןווגמ ספות
 םינושארה הטרחה ימסח תא םיגיצמ ונא וז הדובעב .תומייתסמ ףוסבלש תודוזיפאב תועצבתמש
 ,ןכמ רחאל .םילמיטפואל םיבורק םניהש תויטסכוטס רתויב םילק םילולסמ תאיצמ תויעב רובע
 םתירוגלאש םיחיכומו ,יפוסה קפואה לדומל היצקודר לע ססובמש רפושמ םתירוגלא םיחתפמ ונא
 .)םימתירגול םימרוגמ םימלעתמ רשאכ(ילמיטפוא הטרח םסח גישמ הז

 ביבא-לת תטיסרבינוא
 רלקאס ילרבבו דנומייר ש"ע םיקיודמ םיעדמל הטלוקפה

 קינטוולב ש"ע בשחמה יעדמל רפסה תיב

 הטלחה יכילהתב הטרח רועזמל םימתירוגלא

 םייבוקרמ

 בשחמה יעדמב "היפוסוליפל רוטקוד ךמסומ" ראותה תארקל רקחמ תדובעכ שגוה הז רוביח

 ידי לע

 גרבנזור ביבא

 בשחמה יעדמל רפסה תיבב התשענ הדובעה

 רוצנמ ישי 'פורפ תייחנהב

 ב"פשת לולא

 ביבא-לת תטיסרבינוא
 רלקאס ילרבבו דנומייר ש"ע םיקיודמ םיעדמל הטלוקפה

 קינטוולב ש"ע בשחמה יעדמל רפסה תיב

 הטלחה יכילהתב הטרח רועזמל םימתירוגלא

 םייבוקרמ

 בשחמה יעדמב "היפוסוליפל רוטקוד" ראותה תארקל רקחמ תדובעכ שגוה הז רוביח

 ידי לע

 גרבנזור ביבא

 ב"פשת לולא

