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 תקציר

 כאשר המשוב (online learning)לומדים מודלים של למידה בזמן אמת מציגים ואנו 

(feedback) משוב הוא מורעש על ידי רעש אקראי וכאשר ה ם הלומדי האלגורית"ה עשנצפ

 . (bandit feedback)בנדיט משוב או  (full feedback)מלא  משוב

עם  xorי פעולת "בינארית כאשר היא מורעשת עהפסד  פונקציתאנו מתמקדים במודלים עם 

 . שהוא משתנה מקרי ברנולי ביט אקראי

תפלג לפי י מהביט האקראכאשר  –רעש קבוע : עיקרייםלים אנו מתמקדים בשני מוד

מתפלג לפי  הביט האקראי כאשר – ורעש משתנה, pהתפלגות ברנולי עם פרמטר קבוע 

 . pהתפלגות ברנולי עם פרמטר משתנה 

ליין עם -למידה אוןעבור  (regret)קים על החרטה שלנו הן חסמים הדו התוצאות העיקריות

 . רעש במודל היריבי
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Abstract

We present and study models of adversarial online learning where the feedback ob-
served by the learner is noisy, and the feedback is either full information feedback or
bandit feedback. Specifically, we consider binary losses xored with the noise, which is
a Bernoulli random variable. We consider both a constant noise rate and a variable
noise rate. Our main results are tight regret bounds for learning with noise in the
adversarial online learning model.
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Chapter 1

Introduction

Online learning is a general framework for sequential decision-making under uncer-
tainty. In each round, a learner chooses an action from a set of K available actions
and suffers a loss associated with that action and observes “some” feedback about the
losses. The losses in each round are arbitrary, possibly adversarial, and the goal of the
learner is to minimize the cumulative loss over a fix time horizon T . We measure the
performance of the learner using the regret which is the expected difference between
the cumulative loss of the learner and that of the best fixed action.

Traditionally, there are two main types of feedback: full-information feedback and
the Bandit feedback. In the full-information feedback, often referred to as prediction
with expert advice, in each round the learner observes the losses of all actions. A
typical example of the full-information feedback is a hypothetical stock investor who
invests all of his money in one of K stocks on each day. At the end of the day,
the investor incurs the outcome associated with the chosen stock and observes the
outcomes of all the stocks. In the Bandit feedback the learner only observes the
loss associated with the action played. The typical example of the bandit feedback
is online advertising. Consider an Internet website that presents one of K ads to
each user, and its goal is to maximize the number of clicked ads. Naturally, we know
whether the user clicked on the presented ad, but we have no information about other
ads (whether the user would have clicked on them, if they were presented).

Both models have been extensively studied and received significant practical and
theoretical interest. The regret bound for the full information model is Θ(

√
T lnK),

and for the bandit model is Θ(
√
KT ). (See, Cesa-Bianchi and Lugosi (2006); Bubeck

and Cesa-Bianchi (2012).) However, both models assumes that the observed feedback
is exact. In some real life scenarios, the feedback can be corrupted by noise, which
is the focus of our work. For example, in the web-advertising example, we might
observe an incorrect feedback since a click event might be missing (due to network
connection problem or logging error), recorded incorrectly (due to a browser issue,
such as privacy setting), or alternatively, the user might be misidentified (due to
multiple users using the same computer).

7
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Feedback type \ Noise model Constant noise Variable noise
(Uniform)

Full information (known noise) Θ(1
ε

√
T lnK) Θ(T 2/3 ln1/3K)

Full Information (unknown noise) Θ(1
ε

√
T lnK) Θ(T )

Bandit (known noise) Θ̃(1
ε

√
TK) Θ̃(T 2/3K1/3)

Bandit (unknown noise) Θ̃(1
ε

√
TK) Θ(T )

Figure 1.1: Results summery

In this paper, we present and study settings in which the feedback is corrupted
by random noise. We assume that the losses are Boolean and that the noise is also
Boolean, and the observation is the xor of the loss and the noise. For the noise we
consider Bernoulli random variable with probability p, denoted by B(p). We consider
a few variations of the noise model:

For the constant noise rate, we assume that there is a fixed probability p for the
noise (for all actions and rounds). For the variable noise rate, we assume that there
exists a distribution D such that in each round t we draw a vector of probabilities,
where is pi,t the noise of action i in round t. For both settings, we study both the
case that the noise is known to the learner, and where it is unknown. Our main
contribution is deriving tight regret bounds for those settings, both upper bounds
(algorithms) and lower bounds (impossibility results). In the following we give a high
level view of our results.

The constant noise model has a fixed parameter ε ∈ [0, 1] and for every round t
the loss is xored with Bernoulli random variable with parameter p = 1−ε

2
. For the

full information model we have a tight regret bound of Θ(1
ε

√
T lnK), both when the

noise parameter is known and when it is unknown. For the bandit feedback model
we have a tight regret bound of Θ̃(1

ε

√
TK), both when the noise parameter is known

and when it is unknown.

The variable noise model has a distribution D over [0, 1]K and at each round t,
we draw from D a realized noise vector (ε1,t, . . . , εK,t), where pi,t = (1− εi,t)/2 is the
noise parameter for action i at round t. In the following we describe our results for
the uniform model, where the marginal distribution of D of each action is uniform
[0, 1]. For the full information we have a contrast between the case where the realized
noise is observed, where we have a tight regret bound of Θ(T 2/3 ln1/3K), and the case
where the realized noise is not observed, where we have a linear regret, i.e., Θ(T ).
For the bandit model we have a tight bound of Θ̃(T 2/3K1/3), when the realized noise
is not observed, and linear regret, i.e., Θ(T ), when the realized noise is not observed.
We also discuss the case of a general distribution and derive regret bounds for other
specific distributions. Our main results are summarized in Figure 1.
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Related work

The work of Kocák et al. (2016) generalized a partial-feedback scheme proposed
by (Mannor and Shamir, 2011; Alon et al., 2017), in which the learner observes
losses associated with a subset of actions which depends on the selected action, and
considered a zero mean noise added to the side observations. Their main result is
an algorithm that guarantees a regret of Õ(

√
T ) , where the constant depends on a

graph property.
The work of Wu et al. (2015) studies a stochastic model where the feedback of

an action has the losses of each other action with an additive noise of a zero-mean
Gaussian, where variance depends both on the action played and observed. For this
model they derive problem-depend lower bounds and matching upper bounds.

Gajane et al. (2018) studied a stochastic bandit problem where the feedback is
drawn from a different distribution than the rewards, but there exist a link function
relating them. They provide lower and upper bound for this setting.

Binary sequence prediction with noise was studied by Weissman and Merhav
(2000) and Weissman et al. (2001). They show upper bounds on the regret for binary
sequence prediction with a constant noise rate (the binary sequence prediction model
is implicitly a full feedback model). Their regret bound is similar to our regret bound
(in the full information with constant noise).

There is a vast literature in statistics, operation research and machine learning
regarding various noise models. In computational learning theory, popular noise mod-
els include random classification noise Angluin and Laird (1988) and malicious noise
Valiant (1985); Kearns and Li (1993). The above noise models use the PAC model,
and study the generalization error, while we consider an online setting and study the
regret.
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Chapter 2

Model and Preliminaries

1. The Model

We consider adversarial decision problem with finite actions (or actions) set A =
{1, 2, . . . , K}. On each round t = 1, 2, . . . , T the environment selects a loss vector
~̀
t ∈ {0, 1}K where `i,t is the loss associated with action i at round t. Then, the

learner (or algorithm) chooses an action It and incurs a loss `It,t.
The main difference between our models and the standard online model is that

the learner observes a noisy feedback of the loss (to be specified separately in each
setting). Before presenting our models we start with a general definition of a noisy
feedback of a single loss.

Definition 1 Let ` ∈ {0, 1} be a loss, and let ε ∈ [0, 1] be a parameter. We define
the ε-noisy feedback to be the following the random variable

c = `⊕Rε

where Rε is Bernoulli random variable with parameter p = 1−ε
2

(i.e., Pr[Rε = 1] =
p = 1−ε

2
).

Using the above definition we present our four different settings, which are different
in the feedback that the learner observes and the noise parameter selection. The
settings are as follow:

1. Full Information with Constant Noise: In this setting, there exists a con-
stant noise parameter ε ∈ [0, 1], such that for every round t the learner observes
the ε-noisy feedback, ci,t for each action i, i.e., ci,t = `i,t ⊕Rε.

2. Full Information with Variable Noise: In this setting, there exists a dis-
tribution D over [0, 1]K . At the beginning of each round t, we draw from D a
realized noise (ε1,t, . . . , εK,t), where εi,t ∈ [0, 1] is the noise parameter action i at
round t. We assume that the noise vectors are drawn independently from D at
each round t. The learner observes, for each action i, an εi,t-noisy feedback ci,t,
i.e., ci,t = `i,t ⊕Rεi,t .

11



12 CHAPTER 2. MODEL AND PRELIMINARIES

3. Bandit with Constant Noise: In this setting, there exists a constant noise
parameter ε ∈ [0, 1], such that for every round t the learner observes the ε-noisy
feedback of the action he played, i.e., cIt,t = `i,t ⊕ Rε where It is the action
played in round t.

4. Bandit with Variable Noise: In this setting, there exists a distribution D
over [0, 1]K . At the beginning of each round t, we draw from D a realized noise
(ε1,t, . . . , εK,t), where εi,t ∈ [0, 1] is the noise parameter action i at round t. We
assume that the noise vectors are drawn independently from D at each round
t.

The learner observes only the feedback for the action he played, i.e., cIt,t =
`It,t ⊕RεIt,t

, where It is the action played in time t.

Each of the models can have two variants: known noise parameters, where the
learner observes the noise parameters or unknown noise parameters, where the learner
doesn’t observe the noise parameters. In the constant noise, the noise parameter is
ε and in the variable noise, the noise parameters are the realized noise parameters
at each round t, i.e., (ε1,t, . . . , εK,t). For our main results, we assume that the noise
parameters are known to the learner. When we examine the setting where the learner
does not know the noise parameters, we state it explicitly.

We measure the performance of the learner using the (expected) regret of the true
losses, namely,

Regret(T ) = E

[ T∑
t=1

`It,t

]
−min

i∈A
E

[ T∑
t=1

`i,t

]
where the losses are selected by an adversary and the expectation is taken over the
randomness of the algorithm and the randomness of the noise.

The algorithms presented in this paper are variants of the Exponential Weights
Scheme (see Algorithm 1). In the Exponential Weights Scheme (EWS) the algorithm
maintains weight wi,t for each action i (initially wi,t = 1). On round t the algorithm
chooses an action proportional to the weights, based on a distribution qt. After
observing the feedback of round t, the algorithm updates the weights to wi,t+1 using
the previous weights wi,t, the observations (i.e., ci,t) and the noise parameter. Each
noise setting determines how the feedback is constructed and observed (line 8 in the
algorithm template). Each algorithm determines how to construct the loss estimate
ˆ̀
i,t (line 9 in the algorithm). We denote generically ˆ̀

i,t = EST (i, ci,t, ~qt, It), where
EST is the loss estimate function that will be implemented differently in each setting
and for each algorithm.
Notations: Let L̂ON,T =

∑T
t=1

∑K
i=1 qi,t

ˆ̀
i,t and L̂k,T =

∑T
t=1

ˆ̀
k,t the estimated

loss of the online algorithm and of action k, respectively. We denote by LON,T =∑T
t=1

∑K
i=1 qi,t`i,t and Lk,T =

∑T
t=1 `k,t the expected loss of the online algorithm and

the loss of action k, respectively.
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Algorithm 1 Exponential Weights Scheme

1: Initialization: wi,1 = 1 for all i ∈ A
2: Parameters: η > 0
3: r ← a mod b
4: for t = 1, 2, ..., T do
5: Construct the probability distribution qt with

qi,t =
wi,t
Wt

where Wt =
K∑
i=1

wi,t

6: Play a random action It according to qt
7: Incur loss `It,t
8: Observe feedback according to the specific settings
9: Construct loss estimate ˆ̀

i,t = EST (i, ci,t, ~qt, It) for all i ∈ A
10: Update weights for all i ∈ A:

wi,t+1 = wi,t exp(−η ˆ̀
i,t)

We denote by B(p) the Bernoulli distribution with parameter p and by B(n, p)
the Binomial distribution with n trials and parameter p.

2. Preliminaries

The following lemma establishes a well known property of EWS, and for completeness
we give its proof.

Lemma 2 Let η > 0 and a sequence of loss estimates ˆ̀
1, . . . , ˆ̀

T where t ˆ̀
t : {1, . . . , K} →

R such that −η ˆ̀
i,t ≤ 1 for all i and t, then the probability vectors ~q1, . . . , ~qT define in

the Exponential Weights Scheme, for any action k, satisfies

T∑
t=1

K∑
i=1

qi,t ˆ̀i,t −
T∑
t=1

ˆ̀
k,t ≤

lnK

η
+ η

T∑
t=1

K∑
i=1

qi,t(ˆ̀
i,t)

2



14 CHAPTER 2. MODEL AND PRELIMINARIES

Proof The proof follows the standard analysis of exponential weighting schemes: let
Wt =

∑K
i=1wi,t using the algorithm update we can write

Wt+1

Wt

=
K∑
i=1

wi,t+1

Wt

=
K∑
i=1

wi,te
−η ˆ̀i,t

Wt

=
K∑
i=1

qi,te
−η ˆ̀i,t

≤
K∑
i=1

qi,t(1− η ˆ̀
i,t + η2(ˆ̀

i,t)
2) (using ex ≤ 1 + x+ x2 for x ≤ 1)

= 1− η
K∑
i=1

qi,t ˆ̀i,t + η2
K∑
i=1

qi,t(ˆ̀
i,t)

2

Taking logs and using ln(1− x) ≤ −x for all x and summing for t = 1, 2, ..., T yields

ln
WT+1

W1

≤ −η
T∑
t=1

K∑
i=1

qi,t ˆ̀i,t + η2
T∑
t=1

K∑
i=1

qi,t(ˆ̀
i,t)

2

Moreover, for any fixed action k we have Wt ≥ wk,t, thus:

ln
WT+1

W1

≥ ln
wk,T+1

W1

= −η
T∑
t=1

ˆ̀
k,t − lnK

Putting together and rearranging gives:

T∑
t=1

K∑
i=1

qi,t ˆ̀i,t −
T∑
t=1

ˆ̀
k,t ≤

lnK

η
+ η

T∑
t=1

K∑
i=1

qi,t(ˆ̀
i,t)

2



Chapter 3

Full Information Models

In this chapter, we consider the Full Information feedback models. In the first section
we study the constant noise feedback setting and in the second section we study the
variable noise feedback setting.

1. Constant Noise

In the first part, we derive an algorithm that uses the constant noise parameter ε and
obtains regret bound of O(1

ε

√
T lnK). Then, we show how to obtain the same regret

bound when the noise parameter ε is unknown. In the second part, we derive a lower
bound, which shows that the regret of our algorithm is asymptotically optimal.

1.1 Algorithms

In this section we derive the algorithms that establish the upper bound on the regret.
The idea is to construct an unbiased estimator for each loss. Let ε ∈ [0, 1] and let
p = 1−ε

2
be the noise parameter. The unbiased estimator is

EST (i, ci,t, ~qt, It) =
ci,t − p
1− 2p

= ˆ̀
i,t .

The estimator is unbiased since,

E[ˆ̀i,t] =
p(1− `i,t) + (1− p)`i,t − p

1− 2p
= `i,t .

The following theorem establishes the regret bound when we use the Exponential
Weights Scheme with the above unbiased estimator.

Theorem 3 Let ε ∈ [0, 1], denote p = 1−ε
2

and assume T ≥ 1
4

lnK. Then running
Exponential Weights Scheme under the Full Information with Constant Noise setting
with the following loss estimate

EST (i, ci,t, qt, It) =
ci,t − p
1− 2p

= ˆ̀
i,t

15



16 CHAPTER 3. FULL INFORMATION MODELS

and for η = ε
√

lnK
T

we have,

Regret(T ) ≤ 2

ε

√
T lnK

Proof Since

ˆ̀
i,t =

ci,t − p
1− 2p

∈ { 1− p
1− 2p

,
−p

1− 2p
} = {−1− ε

2ε
,
1 + ε

2ε
},

we have that

−η ˆ̀
i,t ≤ ε

√
lnK

T

1− ε
2ε
≤

√
lnK
T

2
≤ 1

where the last equation uses T ≥ 1
4

lnK. Thus, we can apply Lemma 2 and obtain

T∑
t=1

K∑
i=1

qi,t ˆ̀i,t −
T∑
t=1

ˆ̀
k,t ≤

lnK

η
+ η

T∑
t=1

K∑
i=1

qi,t(ˆ̀
i,t)

2

Taking expectation on both sides and using that the estimator is unbiased (i.e.,
E[ˆ̀i,t] = `i,t) yields,

T∑
t=1

K∑
i=1

qi,t`i,t −
T∑
t=1

`k,t ≤
lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2]

Using the fact that Regret(T ) =
∑T

t=1

∑K
i=1 qi,t`i,t −mink∈A

∑T
t=1 `k,t, we have,

Regret(T ) ≤ lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2]

We bound the second moments of the estimate as follows,

E[(ˆ̀
i,t)

2] = p
(¯̀
i,t − p)2

(1− 2p)2
+ (1− p)(`i,t − p)2

(1− 2p)2
≤ 1

(1− 2p)2
=

1

ε2
,

where ¯̀
i,t = 1− `i,t. Putting it back together and plugging η = ε

√
lnK
T

we obtain

Regret(T ) ≤ lnK

η
+
ηT

ε2
≤ 2

ε

√
T lnK

In Theorem 3, the learner uses the noise parameter ε to derive an unbiased es-
timator. The following theorem shows that the same regret bound can be attained
even when the leaner does not know the noise parameter ε.
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Theorem 4 Let ε ∈ [0, 1] and denote p = 1−ε
2

. Running Exponential Weights Scheme
under the Full Information with Constant Noise setting with the following loss esti-
mate

EST (i, ci,t, ~qt, It) = ci,t = ˆ̀
i,t

and for η = ε
√

lnK
T

, we have,

Regret(T ) ≤ 2

ε

√
T lnK

Proof By applying Lemma 2 and taking expectation on both sides we obtain

T∑
t=1

K∑
i=1

qi,tE[ˆ̀i,t]−
T∑
t=1

E[ˆ̀k,t] ≤
lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2]

Calculating the expectation of the estimator ˆ̀
i,t, and since `i,t ∈ {0, 1}, we have,

E[ˆ̀i,t] = (1− p)`i,t + p¯̀
i,t = (1− 2p)`i,t + p = |`i,t − p|

For the second moment we have (ˆ̀
i,t)

2 = c2i,t = ci,t ≤ 1. Putting things together we
have

T∑
t=1

K∑
i=1

qi,t|`i,t − p| −
T∑
t=1

|`k,t − p| ≤
lnK

η
+ ηT (3.1)

Using the notation of L̂ON,T =
∑T

t=1

∑K
i=1 qi,t

ˆ̀
i,t, L̂k,T =

∑T
t=1

ˆ̀
k,t, LON,T =

∑T
t=1

∑K
i=1 qi,t`i,t,

and Lk,T =
∑T

t=1 `k,t, we can write inequality (3.1) as

E[L̂ON,T ]− E[L̂k,T ] ≤ lnK

η
+ ηT

Denote by Gt,b = {i ∈ A | `i,t = b} the set of actions with loss b ∈ {0, 1} in round
t. Denote by Qt =

∑
i∈Gt,1 qi,t the distribution mass the learner gives actions in

Gt,1. Using this notation we have LON,T =
∑T

t=1Qt. Now calculate the value of the
estimated losses of the online algorithm,

E[L̂ON,T ] =
T∑
t=1

K∑
i=1

qi,t|`i,t − p| =
T∑
t=1

[p
∑
i∈Gt,0

qi,t + (1− p)
∑
i∈Gt,1

qi,t]

=
T∑
t=1

[p(1−Qt) + (1− p)Qt] =
T∑
t=1

[p+ (1− 2p)Qt]

= (1− 2p)LON,T + pT
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Similarly, for the term E[L̂k,T ] we have,

E[L̂k,T ] =
T∑
t=1

|`k,t − p| =
∑

t|`t,k=0

p+
∑

t|`t,k=1

(1− p)

= p(T − Lk,T ) + (1− p)Lk,T = (1− 2p)Lk,T + pT

Putting all together,

E[L̂ON,T ]−E[L̂k,T ] = (1−2p)LON,T +pT − [(1−2p)Lk,T +pT ] = (1−2p)[LON,T −Lk,T ]

Dividing by both sides of inequity by (1− 2p) and using η =
√

lnK
T

we obtain that

Regret(T ) = LON,T −min
k∈A

Lk,T ≤
1

1− 2p
(
lnK

η
+ ηT ) =

2

ε

√
T lnK

1.2 Impossibility result

In this section we derive a lower bound on the regret for the Full Information with
Constant Noise model. Our lower bound matches our upper bound, up to a constant
factor. Specifically, the following theorem gives us a lower bound of Ω(1

ε

√
T lnK) on

the regret.

Theorem 5 Consider the Full Information with Constant Noise setting with noise
parameter ε ∈ (0, 1

2
), T ≥ 2 lnK and K ≥ e18. Then for any algorithm, there exists

a sequence of loss vectors ~̀1, ..., ~̀T such that

Regret(T ) = Ω(min{1

ε

√
T lnK,T})

To prove the theorem we first define the following adversarial loss assignment
strategy:

• the adversary initially picks uniformly a best action i? (∀i Pr[i? = i] = 1
K

)

• at round t: the adversary draws losses for the actions from the following distri-
butions:

1. for i?: `i?,t ∼ B(1
2
− δ)

2. for i 6= i?: `i,t ∼ B(1
2
)
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where δ = min{ 1
6ε

√
lnK
T
, 1
2
}. Now we calculate the distribution of the ε-noisy feed-

back ci,t. Starting with the best action we have

Pr[ci?,t = 1] = Pr[`i?,t = 1]Pr[Rε = 0] + Pr[`i?,t = 0]Pr[Rε = 1]

= (
1

2
− δ)1 + ε

2
+ (

1

2
+ δ)

1− ε
2

=
1

2
− εδ

For i 6= i? we have

Pr[ci,t = 1] = Pr[`i,t = 1]Pr[Rε = 0] + Pr[`i,t = 0]Pr[Rε = 1]

=
1

2

1 + ε

2
+

1

2

1− ε
2

=
1

2

Thus, we have: ci?,t ∼ B(1
2
− εδ) and ci,t ∼ B(1

2
) for i 6= i?.

The following is a standard claim regarding the minimum of i.i.d binomial random
variables.

Lemma 6 Let X1, ..., XK−1 be i.i.d random variables with distribute B(n, p) such
that p ∈ (1

4
, 1
2
), n ≥ 2 lnK and K ≥ e18. Then with probability of at least 1

2
we have

min{X1, ..., XK−1} ≤ np−
√
p

9
n lnK

Proof Denote by Y = min{X1, ..., XK−1} then by interdependency we can write

Pr[Y ≤ np− t] = 1− Pr[∀i ∈ {1, 2, ..., K − 1}Xi ≥ np− t]
= 1− (Pr[X1 ≥ np− t])K−1

(3.2)

Now we want to bound Pr[X1 ≥ np − t]. Rearranging, and using Lemma 5.2 of
Klein and Young (1999), for t ≤ 1

2
pn we can bound

Pr[X1 ≥ np− t] = Pr[X1 − np ≥ −t] = 1− Pr[X1 − np ≤ −t]

≤ 1− exp(−9t2

np
) = 1− 1

K

where in the last equation we take t =
√

p
9
n lnK ≤ 1

2
pn. Plugging it back in (3.2) we

obtain

Pr[Y ≤ np−
√
p

9
n lnK] ≥ 1− (1− 1

K
)K−1 ≥ 1

2

Denoting by Ci,T =
∑T

t=1 ci,t, the sum of the noisy feedback of action i. Note that
this is binomial random variable. In addition, for i? we have Ci?,T ∼ B(T, 1

2
− εδ) and

for i 6= i? we have Ci,T ∼ B(T, 1
2
). By applying Lemma 6 on the noisy-feedbacks we

show the following corollary.
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Corollary 7 With probability at least 1
4

there exist action j 6= i? such that Cj,T <
Ci?,T .

Proof Applying Lemma 6 on the K−1 actions with ci,t ∼ B(1
2
) we obtain that with

probability at least 1
2

there exist action j 6= i? such that

Cj,T ≤
T

2
−
√
p

9
T lnK <

T

2
− 1

6

√
T lnK,

where the second inequality uses p > 1/4.
For the best action i? we have E[Ci?,T ] = T

2
− εδT .

• if δ = 1
6ε

√
lnK
T

we have

E[Ci?,T ] =
T

2
− 1

6

√
T lnK

Using the fact that for binomial distribution, B(n, q), the median is bnqc or
dnqe we have that with probability at least 1

2

Ci?,T ≥
T

2
− 1

6

√
T lnK

• if δ = 1
2

we have that the distribution for the ε-noisy feedback of the best
action, ci?,t is B(1−ε

2
), therefore

E[Ci?,T ] =
T

2
− ε

2
T

δ = 1
2

implies ε ≤ 1
3

√
lnK
T

(as δ = min{ 1
6ε

√
lnK
T
, 1
2
}) thus,

ε

2
T ≤ T

2

1

3

√
lnK

T
=

1

6

√
T lnK

Therefore, we still have that with probability at least 1
2

Ci?,T ≥
T

2
− 1

6

√
T lnK

Putting things together we obtain that with probability at least 1
4

we have

Ci?,T > Cj,T

The following lemma states that the action that has smaller observed noisy-loss
has a higher probability to be the best action.



1. CONSTANT NOISE 21

Lemma 8 Let C1,T , . . . , CK,T be a realization of the noisy-feedbacks, such that Cj1,T <
Cj2,T , where j1, j2 ∈ A. Then,

Pr[i? = j1 | C1,T , . . . , CK,T ] > Pr[i? = j2 | C1,T , . . . , CK,T ]

Proof Using Bayes’ theorem we have for action j ∈ A that

Pr[i? = j | C1,T , . . . , CK,T ] =
Pr[C1,T , . . . , CK,T | i? = j] Pr[i? = j]

Pr[C1,T , . . . , CK,T ]

=
Pr[Cj,T | i? = j](1

2

T
)K−1 1

K

Pr[C1,T , . . . , CK,T ]
=

Pr[Cj,T | i? = j]

Z

=
1

Z
(
1− ε

2
)Cj,T (

1 + ε

2
)T−Cj,T

where Z =
( 1
2

T
)K−1 1

K

Pr[C1,T ,...,CK,T ]
is a constant (not depend on j). Therefore, if Cj1,T < Cj2,T

then
Pr[i? = j1 | C1,T , . . . , CK,T ] > Pr[i? = j2 | C1,T , . . . , CK,T ]

Using the lemma we can show the following corollary.

Corollary 9 consider an algorithm for “predicting the best action” problem: that is,
the algorithm input is a realization C1,T , . . . , CK,T , i.e., for one action i? we have
Ci?,T ∼ B(T, 1

2
− εδ) and for j 6= i? we have Cj,T ∼ B(T, 1

2
) and the output is an

action IT - a prediction for which action is optimal. Then for any algorithm we have,

Pr[IT 6= i?] ≥ 1

4

where the probability is taken over the randomness of the algorithm, the losses, the
noise and the draw of i?.

Proof Lemma 8 implies that the optimal algorithm will predict

IT = arg min
j∈A

{C1,T , . . . , CK,T}

From corollary 7 we have that for the optimal algorithm

Pr[IT 6= i?] ≥ 1

4
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Putting it all together we can now prove the theorem.
Proof of Theorem 5: For any round t we would think of the algorithm as algorithm
for “predicting the best action” problem. Using this we can think of t as the the time
horizon and by applying corollary 9 conclude that for every t we have

Pr[It 6= i?] ≥ 1

4

Therefore the expectation of the regret, when the expectation is taken over the losses,
the noise and the draw of i? (note that the regret itself includes the randomness of
the algorithm) satisfies,

E[Regret(T )] =
T∑
t=1

Pr[It 6= i?]δ ≥ 1

4
Tδ,

where δ = min{ 1
6ε

√
lnK
T
, 1
2
} concludes the proof.

2. Variable Noise

In this section we investigate the Full Information with Variable Noise settings. Re-
call that in this setting we have a distribution D over [0, 1]K . At the beginning of
each round t, we draw from D a realized noise (ε1,t, . . . , εK,t), where εi,t is the noise
parameter for action i at round t. We assume that the noise vectors are drawn in-
dependently from D at each round t (however, there can be correlations between the
noise parameters εi,t of different actions at the same round t). The learner observes
the realized noise (ε1,t, . . . , εK,t) and then picks an action It ∈ A. Then, the learner

observes the εi,t-noisy feedback ci,t for each action i. We denote by pi,t =
1−εi,t

2
.

The section is structured as follows. Initially, we investigate the case of a uniform
distribution over [0, 1], that is, the marginal distribution of D for each action i is
uniform over [0, 1], i.e., εi,t ∼ U(0, 1), where U(0, 1) is the uniform distribution on
[0, 1]. Following that, we generalize the regret bound for a general noise distribution
D. We conclude with a few examples of specific distributions.

2.1 Uniform Noise Distribution

Algorithm

A simple potential approach to the problem is to try to use the Exponential Weights
Scheme with the unbiased estimator

EST (i, ci,t, ~qt, It) =
ci,t − pi,t
1− 2pi,t

as in the constant noise settings. A close examination reveals that there is a problem
when pi,t is close to 1/2 (i.e., εi,t is close to 0). In such cases the estimator is unbounded
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and can give a very high value. An intuitive idea is to avoid using feedbacks with
high noise. This is implemented by the learner by having an additional parameter
θ and ignoring feedbacks where pi,t >

1−θ
2

(i.e., εi,t < θ). More formally, we use the
Exponential Weights Scheme with the following estimator:

EST (i, ci,t, ~qt, It) =
ct,i − pi,t
1− 2pi,t

1{pi,t≤ 1−θ
2
} = ˆ̀

i,t

The algorithm resulting from using the above estimator in the Exponential Weights
Scheme is called EW-Threshold. We prove the following regret bound for EW-
Threshold.

Theorem 10 Let D be the noise distribution, such that for each action i the marginal
distribution εi,t is distributed U(0, 1) (but not necessarily independent for different
actions). The EW-Threshold algorithm with the parameters

η = (
lnK

T
)2/3 and θ = (

lnK

T
)1/3

has, in the Full Information with Variable Noise setting, a regret of at most,

Regret(T ) ≤ 3T 2/3(lnK)1/3

Proof By applying Lemma 2 and taking expectation on both sides we obtain

T∑
t=1

K∑
i=1

qi,tE[ˆ̀i,t]−
T∑
t=1

E[ˆ̀k,t] ≤
lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2] (3.3)

Conditioning on pi,t ≤ 1−θ
2

, the estimator ˆ̀
i,t is biased, however, we can bound the

deviation. Specifically,

E[ˆ̀i,t] = θ ∗ 0 + (1− θ)E[ˆ̀i,t | pi,t ≤
1− θ

2
] = (1− θ)`i,t

This implies that
`i,t − θ ≤ E[ˆ̀i,t] ≤ `i,t

To bound the second moment we have

E[(ˆ̀
i,t)

2] = θ ∗ 0 + (1− θ)E[(ˆ̀
i,t)

2 | pi,t ≤
1− θ

2
] ≤ E[(ˆ̀

i,t)
2 | pi,t ≤

1− θ
2

]

We bound the conditional expectation above as follows,

E[(ˆ̀
i,t)

2 | pi,t ≤
1− θ

2
] = pi,t

(¯̀
i,t − pi,t)2

(1− 2pi,t)2
+ (1− pi,t)

(`i,t − pi,t)2

(1− 2pi,t)2

≤ 1

(1− 2pi,t)2
=

1

ε2i,t
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Computing the expectation, given that the marginal is U(0, 1), we have,

E[(ˆ̀
i,t)

2] ≤ E[(ˆ̀
i,t)

2 | pi,t ≤
1− θ

2
] ≤ Eε∼U(0,1) [

1

ε2
1ε≥θ]

=

∫ 1

θ

1

ε2
dε = −[

1

ε
]1θ =

1

θ
− 1 ≤ 1

θ

Bounding the expressions in inequality (3.3) we obtain

T∑
t=1

K∑
i=1

qi,tE[ˆ̀i,t]−
T∑
t=1

E[ˆ̀k,t] ≥
T∑
t=1

K∑
i=1

qi,t`i,t −
T∑
t=1

`k,t − θT

lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2] ≤ lnK

η
+ η

T∑
t=1

K∑
i=1

qi,t
1

θ
=

lnK

η
+
ηT

θ

Rearranging the terms gives us,

T∑
t=1

K∑
i=1

qi,t`i,t −
T∑
t=1

`k,t ≤
lnK

η
+
ηT

θ
+ θT

Substituting η = ( lnK
T

)2/3 and θ = ( lnK
T

)1/3 concludes the proof.

Impossibility Result

In this section we derive a lower bound on the regret of Ω(T 2/3(lnK)1/3). Together
with the upper bound we obtain that for the Full Information with Variable Noise
we have

Regret(T ) = Θ(T 2/3(lnK)1/3)

For the lower bound we use a specific noise distribution D, denoted by D′. In D′,
all the noise of individual actions are identical, and uniformly distributed. Formally,
we generate the noise parameters from D′ as follows. We draw εt ∼ U(0, 1) and for
every i we set εi,t = εt.

The idea behind the proof is to use adversarial strategy for loss assignment in the
following way: when the noise is low, all the actions will have the same loss, but when
the noise is high, one action, chosen randomly at the beginning, will be superior.

Theorem 11 Any algorithm in the Full Information with Variable Noise setting with
the noise distribution D′, there exist a series of loss vectors ~̀1, ..., ~̀T such that

Regret(T ) = Ω(T 2/3(lnK)1/3)

Proof Let θ = ( lnK
T

)1/3. Initially, the adversary choose an action i? uniformly at
random, and it will be the best action. Then, for each round t after observing εt, the
adversary assigns losses as follow:
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1. If εt ≥ θ then `i,t = 0 for every action i.

2. Otherwise (εt < θ) the adversary draw a loss for each action as follows: for
action i? the loss is drawn from B(1

2
− 1

6
) and for any other action j 6= i? it is

drawn from B(1
2
).

Denote by T ′ the number of bad rounds. Since E[T ′] = θT and the fact that for
Binomial distribution, B(n, p), the median is bnpc or dnpe we conclude that with
probability at least 1/2 we have T ′ ≥ θT . Condition on this event we assume that
T ′ = θT (if T ′ > θT we take the first θT rounds to be T ′) we reduce the bad rounds
to the constant noise setting in the following way:
In the bad rounds we have εt ∼ U(0, θ). If we assume that in the bad rounds we have
εt = θ, namely a constant noise, then we only reduced the noise in the model. We call
the model with εt = θ and T = T ′ the reduced model. Therefore, a lower bound for
the regret in the reduced model is also a lower bound for a model where εt ∼ U(0, θ).
Our reduced model is the Full Information with Constant Noise model with
T = T ′ and ε = θ. Denote by Regret(T ′, θ) the regret in the Full Information with
Constant Noise model with horizon T ′ and noise parameter θ. Now, we can apply
Theorem 5 on the reduced model and obtain that

Regret(T ′, θ) ≥ γ
1

θ

√
T ′ lnK

where γ > 0 is a constant. Setting T ′ = θT = T 2/3(lnK)1/3 we obtain that

Regret(θT, θ) ≥ 1

θ

√
θT lnK = γT 2/3(lnK)1/3

Putting it back in the original model yields,

Regret(T ) ≥ Pr[T ′ ≥ θT ]Regret(θT, θ) ≥ γ

2
T 2/3(lnK)1/3

(We note that the number 1
6

in the distribution B(1
2
− 1

6
) the adversary uses, comes

from the δ = 1
6ε

√
lnK
T

we use in the proof of theorem 5 with ε = θ and T = T ′).

2.2 General distributions

In this section we generalized the result of EW-Threshold to a general noise distri-
bution D. We assume that the marginal distribution of each action i is the same and
we denoting the CDF (Cumulative Distribution Function) of it by F . Then, we use
our generalized bound to derive a sub-linear regret upper bound for distributions D
that satisfies a given condition. We extend the proof of Theorem 5 and obtain the
following general upper bound.
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Theorem 12 Let D be a distribution, such that the marginal distribution over εi,t ∈
(0, 1) has a CDF F . Then, running EW-Threshold algorithm with parameters
θ > 0 and η > 0 satisfies,

Regret(T ) ≤ lnK

η
+ ηTg(θ) + F (θ)T

where g(θ) = E[ 1
ε2
1ε≥θ]. Moreover, for η =

√
lnK
Tg(θ)

we have

Regret(T ) ≤ 2
√
g(θ)T lnK + F (θ)T

Proof We apply Lemma 2, and taking expectation on both sides, obtain,

T∑
t=1

K∑
i=1

qi,tE[ˆ̀i,t]−
T∑
t=1

E[ˆ̀k,t] ≤
lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2] (3.4)

Conditioning on pi,t ≤ 1−θ
2

, the estimator ˆ̀
i,t is biased, and we have

E[ˆ̀i,t] = F (θ) ∗ 0 + (1− F (θ))E[ˆ̀i,t | pi,t ≤
1− θ

2
] = (1− F (θ))`i,t

This implies that

`i,t − F (θ) ≤ E[ˆ̀i,t] ≤ `i,t

To bound the second moment we have

E[(ˆ̀
i,t)

2] = F (θ) ∗ 0 + (1− F (θ))E[(ˆ̀
i,t)

2 | pi,t ≤
1− θ

2
] ≤ E[(ˆ̀

i,t)
2 | pi,t ≤

1− θ
2

]

We bound the above conditional expectation as follows,

E[(ˆ̀
i,t)

2 | pi,t ≤
1− θ

2
] = pi,t

(¯̀
i,t − pi,t)2

(1− 2pi,t)2
+ (1− pi,t)

(`i,t − pi,t)2

(1− 2pi,t)2

≤ 1

(1− 2pi,t)2
=

1

ε2i,t

Bounding each side of inequality (3.4) we have

T∑
t=1

K∑
i=1

qi,tE[ˆ̀i,t]−
T∑
t=1

E[ˆ̀k,t] ≥
T∑
t=1

K∑
i=1

qi,t`i,t −
T∑
t=1

`k,t − F (θ)T

lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2] ≤ lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[
1

ε2
1ε≥θ]
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Rearranging it all yield

T∑
t=1

K∑
i=1

qi,t`i,t −
T∑
t=1

`k,t ≤
lnK

η
+ ηTg(θ) + F (θ)T

The following corollary gives a general upper bound that depends only on a prop-
erty of the noise distribution D. We assume that all the marginal distributions of D
are identical and with CDF F .

Corollary 13 Let D be a noise distribution, where each marginal distribution has
the same CDF F , and assume F (θ) ≤ θα for a given α > 0. Then

Regret(T ) = O(T
2+α
2+2α (lnK)

α
2(1+α) )

Proof Using Theorem 12 and the assumption we can write

Regret(T ) ≤ 2
√
g(θ)T lnK + θαT

since g(θ) = E[ 1
ε2
1ε≥θ] ≤ 1

θ2
, we have,

Regret(T ) ≤ 2

θ

√
T lnK + θαT

taking θ = ( 2
α

)
1

1+α ( lnK
T

)
1

2(1+α) gives

Regret = O(T
2+α
2+2α (lnK)

α
2(1+α) )

To get an intuition for the bound of Corollary 13 we can consider a few intuitive
settings of the parameter α. The uniform distribution has α = 1, and the theorem
yield Regret(T ) = Õ(T

3
4 ), which is higher than the regret bound computed explicitly

in Theorem 10, of O(T 2/3). When α → ∞ we have Regret(T ) → Õ(T
1
2 ), which

is tight even without any noise. When α → 0, we have no restriction on the noise
distribution, and indeed the theorem yields a linear regret bound.

To give an example for the bound of Theorem 12 we prove a regret bound for
truncated exponential distribution.

Corollary 14 Let D be a distribution, such that the marginal distribution over εi,t ∈
(0, 1) has a PDF f(x) = λ

1−e−λ e
−λx for x ∈ (0, 1) and λ > 0. Then, running EW-

Threshold algorithm with parameters θ > 0 and η > 0 satisfies,

Regret(T ) ≤ 3λT 2/3(lnK)1/3



28 CHAPTER 3. FULL INFORMATION MODELS

Proof Applying Theorem 12 gives

Regret(T ) ≤ 2
√
g(θ)T lnK + F (θ)T (3.5)

To bound g(θ) we calculate

g(θ) = E[
1

ε2
1ε≥θ]

∫ 1

θ

1

ε2
λ

1− e−λ
e−λεdε ≤ λ

1− e−λ

∫ 1

θ

1

ε2
dε

=
λ

1− e−λ
(
1

θ
− 1) ≤ λ

1− e−λ
1

θ
≤ λ

θ

Bounding the second term we use the inequality 1− e−x ≤ x for x > 0 and obtain

F (θ) =
λ

1− e−λ
(1− e−λθ) ≤ λ2θ

Putting it back in (3.5) we have

Regret(T ) ≤ 2

√
1

θ
lnK + λ2θT

setting θ = 1
λ
( lnK
T

)1/3 yields,

Regret(T ) ≤ 3λT 2/3(lnK)1/3

2.3 Importance of knowing the Noise

Until now we assume for the Full Information with Variable Noise that the learner
observes the noise drawn for each action pi,t, before picking an action. In the Full
Information with Constant Noise we showed that this information is not critical and
the same regret bound can be achieved without this information. The following
theorem states that in the Full Information with Variable Noise, a learner cannot
achieve sub-linear regret without observing the noise.

Theorem 15 Fix an algorithm for the Full Information with Variable Noise
model under the uniform marginal distribution and assume that in each round t the
learner does not observes the noise parameters (ε1,t, ..., εK,t). Then, there exist a

sequence of loss vectors ~̀1, ..., ~̀T such that

Regret(T ) = Ω(T )
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We prove the theorem for the case of K = 2. The idea behind the proof is to use
stochastic adversarial strategy for loss assignment such that one action is significantly
better than the other, but after applying noise on both, they look identical to the
learner.
Proof Let the number of actions be K = 2. Assume that initially the adversary
picks the best action uniformly (that is, with probability 1

2
action 1 will be the best

action and with probability 1
2

action 2 will be the best action). Let i? ∈ {1, 2} be a
random variable denoting the best action and j = 3− i? denote the worse action. On
round t, after observing the noise parameters p1,t and p2,t, the adversary selects the
losses as follow:

1. For the best action, i?, the loss is drawn at every round independently from a
Bernoulli r.v. with parameter 1/4, i.e., `i?,t ∼ B(1

4
)

2. For the worse action j: if pj,t < 1/4 then the loss is `j,t = 0, otherwise the loss
is `j,t = 1.

For the learner, observing the feedback ci,t = `i,t ⊕ ri,t, the loss of each action is
a Bernoulli random variable. We will show that both actions will have the same
probability of 1, namely 3/8, and therefore indistinguishable by the learner.

Now we calculate the expected value of the observed feedback, ci,t = `i,t⊕ ri,t, for
each action in a single round. We note that this expectation is taken over the draw
of εi,t ∼ U(0, 1), the draw Ri,t ∼ B(

1−εi,t
2

) and the draw of the losses `i,t. We also
note that if ε ∼ U(0, 1) then p ∼ U(0, 1

2
).

The expected loss of best action, `i?,t is drawn independently from the noise pa-
rameter εi?,t and the Bernoulli noise Ri,t. Therefore, we have

E[ci?,t] = Ep[ER[E`[`i?,t ⊕Ri?,t] | p]] = Ep[ER[
1

4
(1⊕Ri?,t) +

3

4
(0⊕Ri?,t) | p]]

=
1

4
Ep[pi?,t · 0 + (1− pi?,t) · 1] +

3

4
Ep[pi?,t · 1 + (1− pi?,t) · 0]

=
1

4
· 3

4
+

3

4
· 1

4
=

3

8

For the worse action, action j, we have

E[cj,t] = E[`j,t ⊕Rj,t] =
1

2
E[0⊕Rj,t | pj,t < 1/4] +

1

2
E[1⊕Rj,t |

1

4
≤ pj,t <

1

2
]

=
1

2
E[pj,t | pj,t <

1

4
] +

1

2
E[1− pj,t |

1

4
≤ pj,t <

1

2
]

=
1

2
· 1

8
+

1

2
(1− 3

8
) =

3

8

This implies that the feedback of both the best and worse action is a Bernoulli random
variable with parameter 3

8
, i.e., B(3

8
). This clearly implies that the learner cannot
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distinguish between the two actions, and therefore, half the time it will select the
worse action. The best action has an expected loss of T

4
while the worse action has a

loss of T
2
. This implies that the expected regret would be at least T

8
.



Chapter 4

Bandit Models

In this chapter we study bandit models, where the learner observes only the noisy
feedback for the action selected. In our notation, the learner selects It ∼ qt and
observers only the feedback cIt,t.

1. Bandit with Constant Noise Model

1.1 Algorithm

Using our conclusion from the Full Information with Constant Noise setting, we
present algorithm that do not use the noise parameter ε. Clearly, this establish upper
bound for both settings: the known noise setting and the unknown noise setting.

Theorem 16 Let ε ∈ [0, 1] and denote p = 1−ε
2

. Then, running Exponential Weights
Scheme under the Bandit with Constant Noise setting with the following loss estimate

EST (i, ci,t, ~qt, It) =
1

qi,t
ci,t = ˆ̀

i,t

and η = ε
√

lnK
TK

, guarantees

Regret(T ) ≤ 2

ε

√
TK lnK

The proof of Theorem 16 is similar in spirit to the proof of Theorem 4. For complete-
ness, we gives full proof.
Proof By applying Lemma 2 and taking expectation on both sides we obtain

T∑
t=1

K∑
i=1

qi,tE[ˆ̀i,t]−
T∑
t=1

E[ˆ̀k,t] ≤
lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2]

Calculating the expectation of the estimator ˆ̀
i,t, and since `i,t ∈ {0, 1}, we have,

E[ˆ̀i,t] = qi,t
1

qi,t
E[ci,t] = E[ci,t] = (1− p)`i,t + p¯̀

i,t = (1− 2p)`i,t + p = |`i,t − p|

31
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For the second moment, since ci,t ≤ 1 we have

E[(`i,t)
2] = qi,t

1

q2i,t
E[ci,t] ≤

1

qi,t

Putting things together we have

T∑
t=1

K∑
i=1

qi,t|`i,t − p| −
T∑
t=1

|`k,t − p| ≤
lnK

η
+ ηTK (4.1)

Using the notation of L̂ON,T =
∑T

t=1

∑K
i=1 qi,t

ˆ̀
i,t, L̂k,T =

∑T
t=1

ˆ̀
k,t, LON,T =

∑T
t=1

∑K
i=1 qi,t`i,t,

and Lk,T =
∑T

t=1 `k,t, we can write inequality (4.1) as

E[L̂ON,T ]− E[L̂k,T ] ≤ lnK

η
+ ηTK

Denote by Gt,b = {i ∈ A | `i,t = b} the set of actions with loss b ∈ {0, 1} in round
t. Denote by Qt =

∑
i∈Gt,1 qi,t the distribution mass the learner gives actions in

Gt,1. Using this notation we have LON,T =
∑T

t=1Qt. Now calculate the value of the
estimated losses of the online algorithm,

E[L̂ON,T ] =
T∑
t=1

K∑
i=1

qi,t|`i,t − p| =
T∑
t=1

[p
∑
i∈Gt,0

qi,t + (1− p)
∑
i∈Gt,1

qi,t]

=
T∑
t=1

[p(1−Qt) + (1− p)Qt] =
T∑
t=1

[p+ (1− 2p)Qt]

= (1− 2p)LON,T + pT

Similarly, for the term E[L̂k,T ] we have,

E[L̂k,T ] =
T∑
t=1

|`k,t − p| =
∑

t|`t,k=0

p+
∑

t|`t,k=1

(1− p)

= p(T − Lk,T ) + (1− p)Lk,T = (1− 2p)Lk,T + pT

Putting all together,

E[L̂ON,T ]−E[L̂k,T ] = (1−2p)LON,T +pT − [(1−2p)Lk,T +pT ] = (1−2p)[LON,T −Lk,T ]

Dividing by both sides of inequity by (1− 2p) and using η =
√

lnK
TK

we obtain that

Regret(T ) = LON,T −min
k∈A

Lk,T ≤
1

1− 2p
(
lnK

η
+ ηTK) =

2

ε

√
TK lnK
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1.2 Impossibility result

In this section we present a lower bound that matches our upper bound, up to a
constant factor.

Theorem 17 Consider the Bandit with Constant Noise setting with noise parameter
ε ∈ (0, 1). Then, for any learner algorithm there exists a sequence of loss vectors
~̀
1, ..., ~̀T such that

Regret(T ) = Ω(min{1

ε

√
TK, T})

The proof of the above theorem follows the methodology for lower bounds for
multi-arm bandit problems, we follow here the methodology proposed in Slivkins
(2017) and adapt it to our special setting.

The idea is to define a stochastic strategy for loss assignments such that the learner
will have high expected regret, which implies that there exists a realization of a loss
sequence such that on this loss sequence the learner has high regret.

We first define K different problem instances, one per action. Let β ∈ (0, 1) be a
parameter. We denote by Ji the problem instance where action i loss is drawn from
the distribution B(1−β

2
) while the other actions loss is drawn from the distribution

B(1
2
). For problem instance Ji, we refer action i as the best action. The proof will

show that in some sense those instances are indistinguishable for any algorithm.
For the proof, we will think of the online algorithm as a leaner making “prediction”

for the best action at each round t. The main part of the proof is to show that if T
is not large enough the algorithm has to have a constant mistake rate.

We denote by Pr[It = i|Ji] the probability that in instance Ji, at round t the
algorithm selects action i (the best action in instance Ji). The following lemma
shows that for many actions the algorithm will make a mistake.

Lemma 18 Consider a deterministic algorithm for the Bandit with Constant Noise
problem with noise p = 1−ε

2
. There exist a constant γ such that if t < γ K

ε2β2 then there

exist at least dK
2
e actions i such that

Pr[It = i|Ji] <
3

4

Proof Consider the feedback distribution for each problem instance Jj and action i.
First, if `i,t ∼ B(1

2
) then ci,t ∼ B(1

2
) (the noise does not have any influence). For the

best action, i.e., j, we have cj,t ∼ B(1−εβ
2

) since

Pr[cj,t = 1] = Pr[`j,t = 1]Pr[Rε = 0] + Pr[`j,t = 0]Pr[Rε = 1]

= (
1− β

2
)(

1 + ε

2
) + (

1 + β

2
)(

1− ε
2

) =
1− εβ

2

Applying Lemma 2.10 of Slivkins (2017) on the feedbacks ci,t completes the proof.
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Corollary 19 Choose the best action i? uniformly from A and use instance Ji?. For
any algorithm, for any round t < γ K

ε2β2 , we have Pr[It 6= i?] ≥ 1/8.

Proof For a deterministic algorithm the corollary follows since by Lemma 18 with
probability at least 1

2
the selected i? is such that Pr[It 6= i?|Ji? ] ≥ 1

4
. Since a random-

ized algorithm is a distribution over deterministic algorithms that claim hold also for
randomized algorithms.

Proof of Theorem 17: Let β = min{
√
γ

ε

√
K
T
, 1}. By Corollary 19, we have that in

each round t

Pr[It 6= i?] ≥ 1

8

Denote by ∆t = E[`It,t] − E[`i?,t] the regret of round t. Note that if It 6= i? then
∆t = 1

2
− 1−β

2
= β

2
. Therefore, the expected regret at round t is

E[∆t] = Pr[It 6= i?]
β

2

Summing over the rounds we have,

Regret(T ) =
T∑
t=1

E[∆t] ≥
1

16
βT

Since β = min{
√
γ

ε

√
K
T
, 1}, we have

Regret(T ) ≥ min{
√
γ

16

1

ε

√
TK,

1

16
T}

2. Bandit with Variable Noise Model

In this section we investigate the Bandit with Variable Noise settings. We concentrate
on the case where the marginal distribution of D for each action i is the uniform
distribution on [0, 1].

2.1 Algorithm

We use the same idea as in the Full Information settings and ignore “too-noisy”
rounds where the noise is close to 1

2
. More formally, we will run the Exponential

Weights Scheme with the following estimator:

EST (i, ci,t, ~qt, It) =
1

qi,t

ci,t − p
1− 2p

1{pi,t≤ 1−θ
2
}1{It=i} = ˆ̀

i,t ,
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where θ is a parameter. We call the algorithm resulting from using the above estimator
in the Exponential Weights Scheme as the Exp3-Threshold. The following theorem
bounds the regret of the algorithm.

Theorem 20 Let D be the noise distribution, such that for each action i the marginal
distribution εi,t is distributed U(0, 1) (but not necessarily independent for different
actions). The Exp3-Threshold algorithm with the parameters

η =
(lnK)2/3

K1/3T 2/3
and θ =

K1/3(lnK)1/3

T 1/3

has, in the Bandit with Variable Noise, regret of at most

Regret(T ) ≤ 3T 2/3K1/3(lnK)1/3

Proof By applying Lemma 2 and taking expectation on both sides we obtain

T∑
t=1

K∑
i=1

qi,tE[ˆ̀i,t]−
T∑
t=1

E[ˆ̀k,t] ≤
lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2] (4.2)

Conditioning on pi,t ≤ 1−θ
2

, the estimator ˆ̀
i,t is unbiased, since

E[ˆ̀i,t | pt ≤
1− θ

2
] = qi,t[

1

qi,t

p¯̀
i,t + (1− p)`i,t − p

1− 2p
] = `i,t .

However, overall the estimator is biased,

E[ˆ̀i,t] = θ ∗ 0 + (1− θ)E[ˆ̀i,t | pi,t ≤
1− θ

2
] = (1− θ)`i,t

This implies that
`i,t − θ ≤ E[ˆ̀i,t] ≤ `i,t

To bound the second moment we have

E[(ˆ̀
i,t)

2] = θ ∗ 0 + (1− θ)E[(ˆ̀
i,t)

2 | pi,t ≤
1− θ

2
] ≤ E[(ˆ̀

i,t)
2 | pi,t ≤

1− θ
2

]

The conditional expectation of the second moment is bounded as follows,

E[(ˆ̀
i,t)

2 | pt ≤
1− δ

2
] =

1

qi,t
[pt

(¯̀
i,t − pt)2

(1− 2pt)2
+(1−pt)

(`i,t − pt)2

(1− 2pt)2
] ≤ 1

qi,t

1

(1− 2pt)2
=

1

qi,t

1

ε2t

Since the marginal of the noise distribution D is uniform, we have,

E[(ˆ̀
i,t)

2] ≤ E[(ˆ̀
i,t)

2 | pi,t ≤
1− θ

2
] ≤ Eε∼U(0,1) [

1

qi,t

1

ε2
1ε≥θ]

=
1

qi,t

∫ 1

θ

1

ε2
dε = − 1

qi,t
[
1

ε
]1θ =

1

qi,t
(
1

θ
− 1) ≤ 1

qi,t

1

θ

(4.3)
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Bounding each side of inequality (4.2) we have

T∑
t=1

K∑
i=1

qi,tE[ˆ̀i,t]−
T∑
t=1

E[ˆ̀k,t] ≥
T∑
t=1

K∑
i=1

qi,t`i,t −
T∑
t=1

`k,t − θT

lnK

η
+ η

T∑
t=1

K∑
i=1

qi,tE[(ˆ̀
i,t)

2] ≤ lnK

η
+ η

T∑
t=1

K∑
i=1

qi,t[
1

qi,t

1

θ
] =

lnK

η
+
ηTK

θ

(4.4)

Rearranging it all yield

T∑
t=1

K∑
i=1

qi,t`i,t −
T∑
t=1

`k,t ≤
lnK

η
+
ηTK

θ
+ θT

Substituting η = (lnK)2/3

K1/3T 2/3 and θ = K1/3(lnK)1/3

T 1/3 concludes the proof.

2.2 Impossibility result

We show a lower bound of Ω((TK)2/3). The proof is similar to the proof of Theorem
10 for the Full Information settings.

Theorem 21 For any algorithm in the Bandit with Variable Noise setting with D =
U(0, 1) as the noise parameters distribution, there exist a series of loss vectors ~̀1, ..., ~̀T
such that

Regret(T ) = Ω(T 2/3K1/3)

Proof Let θ = (K
T

)1/3. Initially, the adversary choose an action i? uniformly at
random, and it will be the best action. Then, for each round t after observing εt, the

adversary assigns losses as follow: fix β =
√
γ

θ

√
K
T

=
√
γ(K

T
)1/6 and at round t do

1. if εt ≥ θ then `i,t = 0 for every action i.

2. Otherwise (εt < θ) the adversary draw a loss for each action as follows: for
action i? the loss is drawn from B(1

2
− β) and for any other action j 6= i? it is

drawn from B(1
2
).

Denote by T ′ the number of bad rounds. Since E[T ′] = θT and the fact that for
Binomial distribution, B(n, p), the median is bnpc or dnpe we conclude that with
probability at least 1/2 we have T ′ ≥ θT . Condition on this event we assume that
T ′ = θT (if T ′ > θT we take the first θT rounds to be T ′) we reduce the bad rounds
to the constant noise setting in the following way:
In the bad rounds we have εt ∼ U(0, θ). If we assume that in the bad rounds we have
εt = θ, namely a constant noise, then we only reduced the noise in the model. We call
the model with εt = θ and T = T ′ the reduced model. Therefore, a lower bound for
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the regret in the reduced model is also a lower bound for a model where εt ∼ U(0, θ).
Our reduced model is the Bandit with Constant Noise model with T = T ′ and
ε = θ. Denote by Regret(T ′, θ) the regret in the Bandit with Constant Noise
model with horizon T ′ and noise parameter θ. Now, we can apply Theorem 15 on the
reduced model and obtain that

Regret(T ′, θ) ≥ γ
1

θ

√
T ′K

where γ > 0 is a constant. Setting T ′ = θT = T 2/3K1/3 we obtain that

Regret(θT, θ) ≥ 1

θ

√
θTK = γT 2/3K1/3

Putting it back in the original model yields,

Regret(T ) ≥ Pr[T ′ ≥ θT ] ∗Regret(θT, θ) ≥ γ

2
T 2/3K1/3

(We note here that the choice of β is according to the proof of Theorem 15 with
ε = θ and T = T ′ = θT ).

2.3 Importance of knowing the Noise

In Theorem 15 we showed that in the Full Information with Variable Noise setting, a
learner cannot guarantee a sub-linear regret bound without observing the noise drawn
for each action pi,t at each round t. Since in the Bandit with Variable Noise setting
the feedback is a restriction of the feedback in the Full Information with Variable
Noise setting, the same lower bound still holds, as stated in the following corollary.

Corollary 22 Fix an algorithm for the Bandit with Variable Noise model under
the uniform marginal distribution and assume that in each round t the learner does
not observes the noise parameters (ε1,t, ..., εK,t) before picking an action It, then there

exist a sequence of loss vectors ~̀1, ..., ~̀T such that

Regret(T ) = Ω(T )
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Chapter 5

Discussion

In this paper we investigated adversarial online learning problems where the feedback
is corrupted by random noise. We presented and study different noise systems that
apply to the full information feedback and the bandit feedback. We provided efficient
algorithms, as well as upper and lower bounds on the regret.

This work can be extended in many ways. In our settings we apply the noise
system on the classic full information and bandit. Similar noise system can be applied
on intermediate models such as the one proposed by Mannor and Shamir (2011); Alon
et al. (2017). A different corrupting settings can be consider too. For example, a
settings in which an adversary is corrupting the feedbacks under some restrictions.

39
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