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A class of noncooperative games in which the players share a common set of strategies
is described. The payoff a player receives for playing a particular strategy depends only
on the total number of players playing the same strategy and decreases with that number
in a manner which is specific to the particular player. It is shown that each game in this
class possesses atleast one Nash equilibrium in pure strategies. Best-reply paths in which
players, one atatime, shift tobest-reply strategies may be cyclic. Butthere is always at least
one such path thatconnects an arbitrary initial point to an equilibrdoornal of Economic
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1. INTRODUCTION

Rosenthal (1973) introduced a class of games in which each player choo:
a particular combination of factors out of a common set of primary factors. Th
payoff associated with each primary factor is afunction of the number of playel
who include it in their choice. The payoff a player receives is the sum of th
payoffs associated with the primary factors included in his choice. Each gan
in this class possesses at least one pure-strategy Nash equilibrium. This re
follows from the existence of a potential (Monderer and Shapley, 1991)—a ree
valued function over the set of pure strategy-tuples having the property that t
gain (or loss) of a player shifting to a new strategy is equal to the correspondir
increment of the potential function.

The present report is concerned with games in which the payoff functio
associated with each primary factor is not universal but player-specific. Th
generalization isaccompanied, on the otherhand, by assuming these two limiti
assumptions: that each player chooses only one primary factor and that the pa

* E-mail: igal@math.huji.ac.il.

111

0899-8256/96 $18.00
Copyright ©1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



112 IGAL MILCHTAICH

received actually decreases (not necessarily strictly so) with the number of othe
players selecting the same primary factor. These congestion games, while n
generally admitting a potential, nevertheless always possess a Nash equilibriu
in pure strategies.

Such congestion games may have certain realizations in such fields as ec
nomics, traffic flows, and ecology. Milinsky (1979) simulated two different drift
food patches in a stream by feeding six sticklebacks from two ends of a tank
On average, the fish distributed themselves between the two halves of the tal
in the ratio of the food supply rates. Thus no individual could achieve a higher
feeding rate by moving to the other patch. This Nash equilibrium is an exam
ple of an evolutionary stable strategy (ESS) (Maynard Smith, 1982, p. 63) o
more specifically of an ideal free distribution (IFD) (Fretwell and Lucas, 1969).
Where suitability of food patches or habitats decreases with density, and whe
individuals are free to enter any patch on an equal basis with residents, an IF
is said to occur when each individual settles in the patch most suited for it
survival or reproduction (for a review of the effect of competition for resources
on an individual's choice of patch see Milinsky and Parker, 1991). Does such a
equilibrium always exist? The results of the present work suggest that a Nas
equilibrium in pure strategies, that is, an equilibrium assignment of individu-
als to patches, should exist for any number of individuals and any number o
patches, provided that, within each patch, individuals have equal feeding rate
(Theorem 2). This result holds even if patches differ in the kind of food being
offered in them and if individuals differ in their food preferences and in the
additional value they attach to patches (taking, for example, predation risks int
consideration). If, however, individuals also differ in their relative feeding rates,
and if there are more than two patches, then a pure-strategy Nash equilibriul
may not exist. Individual differences in competitive ability orin dominance were
observed, under broadly similar experimental conditions, in sticklebacks (Milin-
sky, 1984), in cichlid fish (Godin and Keenleyside, 1984), in mallards (Harper,
1982), and in goldfish (Sutherlared al., 1988). This case of differential indi-
vidual effect of players upon the payoff of others, which goes beyond the basi
model portrayed above, is modeled in Section 8. Such “weighted” congestiol
games, in contrast with the “unweighted” congestion games considered abov
do not always possess a pure-strategy Nash equilibrium.

The players of agame may reach an equilibrium by some sort of an adaptatic
process (see, for example, Kanderal., 1993, and Young, 1993). Perhaps most
simply, “myopic” players may react to the strategies played by the other player:
by deviating to best-reply strategies. Considering the underlying time axis to b
a continuum, such deviations may be assumed to take place one at a time. Dc
such a process always converge? For the congestion games under considerat
the process always converges when there are only two common strategies
choose from (Theorem 1), or when players have equal payoff functions. Bu
in the case of general “unweighted” congestion games counterexamples can |
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found. Assuming, however, a stochastic order of deviators, a convergence alm
surely occurs (Theorem 3).

2. THE MODEL

In the presentreport, noncooperative games satisfying the following conditic
are referred toas (unweighted) congestion gamesnpiieyers share acommon
set ofr strategies; the payoff theh player receives for playing theh strategy
is a monotonically nonincreasing functi@) of the total numben; of players
playing thejth strategy. Denoting the strategy played by ttieplayer byo; ,
the strategy-tuples = (04, 05, . .., 0,) is @ Nash equilibrium iff each; is a
best-reply strategy:

S, () > §j(n;+1)  foralli andj.

Heren; = #{1<i <n| o = j}. (ny,m,, ..., n) is called thecongestion
vectorcorresponding to .

3. THE SYMMETRIC CASE

A congestion game is symmetric if and only if all players share the same set
payoff functions, denoted b$,, S,, ..., $. Rosenthal (1973) defined for such
symmetric games the exact potential function

r Nk

P(@) =YD S(m.

k=1 m=1

When only theith player shifts to a new strategy, thj¢h one, the potential
changes by

AP = ﬁ(nj +1 - Sri(n(ri)’

which is equal to what théth player gains (or loses). Any “local” maximum
of P, a strategy-tuple where changing one coordinate cannot result in a grea
value of P, hence corresponds to a pure-strategy Nash equilibrium.

The existence of an exact potential function further implieditite improve-
ment propertyFIP) (Monderer and Shapley, 1991): Any sequence of strategy
tuples in which each strategy-tuple differs from the preceding one in only on
coordinate (such a sequence is callepla#t), and the unique deviator in each
step strictly increases the payoff he receives i(@provementpath), is finite.
The first strategy-tuple of a path is called finéial point; the last one is called
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theterminal point Obviously, anymaximalimprovement path, an improvement
path that cannot be extended, is terminated by an equilibrium.

For later reference we note that the fact that congestion games with equi
payoff functions possessthe FIP can also be proved without invoking a potentic
function. If there exists an infinite improvement path for such a game then ther
exists an improvement path(0), o (1), ..., o(M) (M > 1), whereo (0) =
o (M). Let (n;(k), n»(k), ..., n,(k)) be the congestion vector corresponding to
o (K) (0 < k < M). Wecan rearrange theindices in such a way $éat; (1)) <
min, §(n;(k)) holds for every strategy for which n;(k) (0 < k < M) is not
constant andin sucha way thmt{1) > n;(0). The latter assumptionimplies that
for the unique deviator at the first step, playes; (1) = 1 buto; 0) = j # 1.

This implies §;(n,(1)) > §(n;(0)), which contradicts the above minimality
assumption.

4. THE TWO-STRATEGY CASE

Nonsymmetric congestion games do not generally admit an exact potenti
function. Nevertheless, in the special case 2 we have

THEOREM1. Congestion games involving only two strategies possess the
finite improvement property

Proof Suppose the contrary, that there exists an infinite improvement pat
o(0), 0 (1), ... for some two-strategy congestion game. It may be assumed tha
for someM > 1,0(0) = o(M). Let (n;(k), ny(k)) be the congestion vector
corresponding tar (k) (0 < k < M). Without loss of generality, it may be
assumed thah,(1) = max nh,(k) holds, and therefora,(1) = n — ny(1) =
min, ny (k). Thisimplies that the unique deviatorin the firststep, playgeviates
from1to 2;henc&,(n,(1)) > §:(n1(1)+1). Bythe monotonicity of the payoff
functions, S,(n,(K)) > §1(ny(K) + 1) holds for all 0< k < M. Hence player
i does not deviate back to strategy 1 in step8,2. ., M. This contradicts the
assumption thad; (M) = 6;(0) = 1. =

5. GAMES WITHOUT THE FINITE IMPROVEMENT PROPERTY

The finite improvement property is equivalent tothe existencegeharalized
ordinal potentialfor the game under consideration—a real-valued function over
the set of pure strate gy-tuples that strictly increases along any improvement pa
(Monderer and Shapley, 1991). Indeed, for a game that possesses the FIP t
integer-valued function that assigns to a strategy-taplee number of strategy-
tuples which are the initial point of an improvement path with the terminal point
o is easily seen to be a generalized ordinal potential.
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Here is an example of a two-player congestion game which does not posst
the finite improvement property. Three strategies (a minimal number, by The:
rem 1) are involved, numbered 1, 2, and 3. Assuming §atl) > S;»(n,) >
Sia(N3g) > §1(2) and S (1) > S1(ny) > Sa(nz) > $2(2) hold for allng, ny,
andns, the path(3, 2), (2, 2), (2, 3), (1, 3),(1, 1), (3,1), and back td3, 2) is an
improvement path, involving six strategy-tuples. The existence of such a cyc
demonstrates that the game under consideration does not admit even a gene
ized ordinal potential. Nevertheless, pure-strategy Nash equilibria do exist: the
are the strategy-tupled4, 2) and(2, 1).

Paths in which in each step the unique deviator shifts to a strategy which
a best reply against the strategies played by the other players are loadied
reply paths A best-reply strategy need not be unique. If players deviate onl
when the strategy they are currently playing is not a best-reply strategy then t
path is abest-reply improvement pat&learly, the finite improvement property
implies the corresponding property for best-reply improvement pathéintite
best-reply propertyFBRP), but the converse is not true.

The following argument shows that infinite best-reply improvement path:
involve at least three players. At each step only one playes,changing his
strategy, by deviating to thgth strategy, say. Therefore only one coordinate
of the congestion vector, thgth one, is increased. Hence a second player is
negatively affected—his payoff isreduced—only if he too playsjthestrategy.
Occasionally, such reductions must take place: no player's payoff can increa
indefinitely. If only two players are involved then it is this second player whc
makes the next move, changing frgnto a strategy which is abest reply against
the strategy(j) played byi. As this can only resultin a smallef (and greater
n,, for somek # j) the jth strategy remains a best reply forand thus an
equilibrium is reached.

Thepath(2,1,1),3,1,1),@3,3,1),(3,3,2),(2,3,2), (21, 2), and back to
(2,1,1),where 1, 2, and 3 are three distinct strategies, is a best-reply improv
ment path in a three-player congestion game where the inequaliti€p >
S12(D), $3(2) > 31(2), S(D) > S1(D), S@) > S3(2), $:1(D) > S3(D),
and $;,(2) > $3,(2) hold, andS;’s not listed here are minimal. This path is
shown graphically in Fig. 1. Thus, a three-player congestion game for whic
these conditions hold does not possess the finite best-reply property and the
fore does not admit a generalized ordinal potential. It does, however, posse
two pure-strategy Nash equilibrié3, 1, 2) and(2, 3, 1). Note that this example
involves agenericgame, a game where different strategies yield different pay
offs. The existence of best-reply cycles does not thus depend on multiplicity
best-reply strategies.

It can be shown (by extending the earlier argument concerning best-rep
paths involving two players) that for a generic three-player congestion gan
the above inequalities amecessargonditions for an infinite best-reply path
to occur: everyinfinite best-reply path consists of a finite path followed by
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Strategy First Second Third
Deviator 2
1
Player 1
S12(1)<813(1)
2
1
Player 2

$21(2)<523(2)

2
3
Player 3
S3(1)<S32A1)
2
3 1
Player 1
$12(2)>513(2)
1
3 2
Player 2
S21(1)>823(1)
1
2 3
Player 3
$312)>532(2)

Fic. 1. An infinite best-reply improvement path in a three-player, three-strategy unweighted con-
gestion game. The path is generated by the six strategy-tuples shown, endlessly repeated. The pay
functions satisfyS;3(1) > S;»(1) > S;»(2) > S3(2) > Sj1(ny) (first player),S;1(1) > Sy3(1) >
S$3(2) > $1(2) > Sy,(ny) (secondplayer), ands, (1) > S3(1) > $31(2) > $3x(2) > Sz3(ng) (third
player), foralin4, n,, andn,. Theinequality relevantto each step, the one thatguarantees thatthe uniqu
deviator strictly increases the payoff he receives, is shown on the left. The strategy-3uples and
(2, 3, 1) are equilibria of this game. (Numerical exam;@:(nj) =((j —i)ymod 3- (1/nj — 2/3) for
i #];Sj(m) = —10foralli.)



CONGESTION GAMES 117

an endless repetition of a six strategy-tuple cycle having the form indicate
above.

6. THE EXISTENCE OF A PURE-STRATEGY NASH EQUILIBRIUM

The above examples illustrate a general property of the class of games defir
in Section 2:

THEOREM2. Every(unweightedl congestion game possesses a Nash equi
librium in pure strategies

Before proving the theorem, we prove a lemma. Part (a) of the lemma
concerned with paths where each deviator moves to the next deviator’s pres:
position. Part (b) is concerned with paths where each deviator takes the |
deviator’s previous position.

Lemma. (@) If j(0), j@D,...,j(M) is a sequence of strategies
0(0),0@),...,0(M)is a best-reply improvement patmdo (k) results from
the deviation ofone player from(§— 1) (the strategy which he playeddnk —1))
tojk) (k=1,2,...,M),then M<n (nis the the number of playérs

(b) Similarly, if the deviation in the kth step is froml§) to j(k — 1) (k =
1,2,...,M)then M<n-(r — 1) (r isthe number of strategigs

Proof. (a)Let(n,(k), n,(k), ..., n,(k)) bethe congestion vector correspond-
ing too (k) (0 < k < M), and setn;)min = minn; k) (1 < j <r). Clearly
(N)min < Nj(K) < (N))min + 1 holds for allj andk. Equality on the right holds
for j = j(k); equality onthe leftholds for # j (k). Hence by deviating t¢ (k)
the unique deviator in thith step brings;  to its maximum and all other;’s
to their minimum. Therefore, by the monotonicity of the payoff functioj,)
remains a best reply for that player in all subsequent steps. Thus each pla
deviates at most once.

(b) Here too(n;) min < n;j(K) < (Nj)min + 1, butequality on the left holds for
j = j (k). By deviating fromj (k), the unique deviator in thieh step thus brings
N; & to its minimum. This implies that his payoff i(k) is not only greater than
in o (k — 1) (which is the case by definition of a best-reply improvement path
but also greater than his payoff when he deviatef(19, if he did, or the payoff
he will get by deviating tg (k) at some later stage. Therefore a player will not
return to a strategy he deviated from; each player thus deviates at rmost
times. =

Proof of Theoren2. The proof proceeds by induction on the numbeof
players. Fon = 1the proofis trivial. We assume that the theorem holds true fo
all (n — 1)-player congestion games and prove it fegplayer games. A given
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n-player congestion gamg can be reduced into am — 1)-player gamel’
by “deleting” the last player. The reduced game is also a congestion game; tt
payoff functionsS;; in this game are defined by

Sj(A)=Sj() forl<i<n-—1andallj,

wheren; = #{1 <i < n-1 |0 = j}. By the induction hypothesis, there
existsI" a pure-strategy Nash equilibriuin= (¢,(0), 05(0), . .., 0,,_1(0)). Let
(nq4, Ny, ..., N,) be the congestion vector correspondingstoGoing back to

I', let 0,(0) be a best reply of playar againsto. Note thatS,, ) (,,) >

S; (0 + 1) holds for alli and j. Starting withj (0) = 0,,(0) and witho(0) =
(01(0), 02(0), . .., 0,_1(0), 06,(0)), we can findasequeng€0), j (1), ..., j(M)

of strategies, and a best-reply improvement patb), (1), ...,0(M) con-
nected to it as in part (a) of the lemma, such tHag> 0) is maximal. We claim
thato (M) = (061(M), 0o(M), . .., 6,(M)) is an equilibrium. For every player
who has deviated from the strategy he playedl(@), the strategy; (M) is abest
reply against (M —this is shown in the proof of the lemma. It remains to show
thato; (M) = 6; (0) is a best-reply strategy for every playewho has not devi-
ated. Ifo; (M) = j(M) andj (M) is not a best-reply strategy for playiethen by
deviating fromj (M) to a best-reply strategiyM +1) playeri changes (M) into

a new strategy-tuple (M + 1), which may be appended to the above best-reply
improvement path and thus contradict the assumed maximality. ¢f, on the
other handg; (M) # j (M) then the number of players playirg(M) = o;(0)

is the same ir (M) and ing; all other strategies are being played by at least as
many players (fon; (M) > n; holds for allj, and equality holds foj # j(M)).

As remarked abovey; o, (N, 0)) > §; (N +1) holds for allj. In the case under
consideration these inequalities im@y, (v, (N, ) (M)) > §;(n; (M) +1), for

all j, and thusr; (M) is a best reply fof againsto(M). =

7. CONVERGENCE TO AN EQUILIBRIUM

The proof of Theorem 2 is a constructive one: an algorithm is given for finding
an equilibrium in a given-player congestion game—»by adding one player after
the other—in at mos(”zl) steps. The question arises, can an equilibrium be
reached in the given game itself, when the constant presenceroplalyers is
being taken into consideration? The next theorem gives an affirmative answer
this question.

THEOREM 3. Given an arbitrary strategy-tuple (0) in a congestion game
", there exists a best-reply improvement pat{®), o(1), ..., o (L) such that
o (L) is an equilibrium and L< r(”;’l).
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Proof. Suppose first that(0) = (01(0), 02(0), . .., on(0)) is “almost” an
equilibrium:o; (0) is a best-reply strategy againsO) foralll < i < n—1, but
not necessarily far = n. Starting withj (0) = ¢,, (0) and witho (0), we can find
a sequencg (0), j@), ..., j(M) of strategies, and a best-reply improvement
patho (0), o (1), ...,0(M) connected to it as in part (a) of the lemma, such
that M is maximal. Clearly the first deviator in this path is théh player. If
j (M) £ 0,(0) then, starting withj(M) = ¢,(0) and witho (M), we can find a
sequencg (M), 7(M +1),..., 7(N) (N > M) of strategies, and a best-reply
improvement patlr (M), o (M + 1), ..., o(N) connected to it as in part (b) of
the lemma, such thatl is maximal. If j (M) = ¢,,(0) then we seN = M. We
claim thato (N) = (o1(N), o5(N), . .., 6,(N)) is an equilibrium. Suppose the
contrary, that; (N) is not a best reply against(N) for some playei. Suppose
thatj is a best-reply strategy for that players}fN) = 6;(N—1) = - .- = ¢; (k)
andk is minimal (i.e.,k = 0 oro;(k — 1) # 0;(K)), then, by construction of
the above best-reply path; (k) is a best reply for againsto(k). There can
be two reasons why, but noto; (N) = o;(k), is a best reply against(N).
Either (i) n,,ny(N) > ng ) (K), (i)) nj(N) < n;(k), or both. By construction,
(i) can hold only if j = j(N). But this contradicts the maximality dfi: by
deviating fromo;(N) to j(N), playeri changess (N) into a new strategy-
tuple,o (N + 1), which may be appended to the above best-reply improvemer
path. The other possibility, (i), can hold onlydf (N) = j(M) andk = 0O,
ie., if 6;(0) = 6;() = --- = ;(N) = j(M). By the maximality ofM,
0i(N) = ¢; (M) = j(M) mustthen be a best-reply strategy f@gainsto (M)

(the argument is the same as in the proof of Theorem 2). Returning again to t
above two possibilities, the assumption that this strategy is not a bestreply fo
against (N) implies that eithen,, (\,(N) > n,,,(M), which is impossible by
construction, or els@;(N) < n;(M), which is possible only iff = j(N). But,
again, the latter possibility contradicts the maximalityNof Thuso; (N) must

be a best-reply strategy foragainsis (N).

The theorem is evidently true for one-player games. To complete the proc
by induction on the number of players, we assume that the theorem holds true
for all (n — 1)-player congestion games and show that it must then hold for all
player congestion games. LIetbe ann-player congestion game and t&t0) =
(01(0), 0,(0), .. ., 0,(0)) be given. The gamE derived fromI" by restricting the
strategy set of thath player to the single strategy;(0) is effectively an(n — 1)-
player congestion game. It therefore follows from the induction hypothesis th
there exists il a best-reply improvement path(0), o (1), .. ., o(L), where
the terminal points (L) is an equilibrium ofl". Clearly inT too this path is
a best-reply improvement path andL ) is “almost” an equilibrium ofl". As
shown above, this path may be extended to reach an equilibrium. By the lemn
the extension need not be more tharsteps long. This givels(”;l) as an upper
bound to the length of the shortest best-reply improvement path that conne
an arbitrary initial pointto an equilibrium. m
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Games in which every strategy-tuple is connected to some pure-strategy Na:
equilibrium by a best-reply path are callagakly acycliqWA). (This defini-
tion is slightly more general than the definition given in Young (1993), where
the equilibrium reached is also required to be strict. The definitions coincide fo
generic games.) Assuming that the number of strategies isfinite, WA games ha
the property that if the order of deviators is decided more-or-less randomly, an
if players do not deviate simultaneously, then a best-reply path almost surel
reaches an equilibrium. More precisely, suppose that the process of formin
a best-reply path, starting from a fixed initial point, is a stochastic process ir
which each player who is not currently playing a best-reply strategy has a posi
tive probability—which may depend on history—of being the next deviator and
that these probabilities are bounded away from zero by some positive consta
¢. If there are several best reply strategies for a player then each one is playe
with a probability of at least. If each strategy-tuple is connected to some equi-
librium by a best-reply path of length or less then the probability that at least
one of the strategy-tuplesk), o(k +1),0(k +2), ...,0(k + L) is an equi-
librium, giveno (0), (1), . .., o (K), is at least", for allk and for all histories
0(0),0(d),...,0K). It follows that the probability that an equilibrium ot
reached within the firsh L (m > 1) steps of a best-reply path is no more than
(1 — ¢-)™M and thus tends to zero asgoes to infinity. In particular, it follows
from Theorem 3 that a best-reply improvement path in an (unweighted) con
gestion game converges to an equilibrium with probability one. For example
an infinite path in the game shown in Fig. 1 can persist only if the order of
deviators is exactly as shown. Any deviation from that order would result in
reaching an equilibrium. Similarly, Young (1993) showed that, in WA games,
an equilibrium is almost surely reached when simultaneous deviations of se\
eral players are allowed, and the strategy played by each player is a best-rey
strategy against sonkestrategy-tuples out of the most recenstrate gy-tuples
played, provided that thedestrategy-tuples are randomly chosen and the sam-
pling by each player is sufficiently incomplete (in the precise sensetimak
(L + 2)).

If players occasionally make mistakes, deviating to strategies which are nc
best-reply strategies, then the concept of an equilibrium strategy-tuple shoul
be replaced by that of a stationary distribution of strategy-tuples. Such mis
takes can be made at random (Kandetial, 1993; Young, 1993) or may
result from the players’ lack of information. According to the Bayesian ap-
proach applied by €Zilly and Boy (1991), players start with sonaepriori
estimates concerning the payoffs associated with each strategy, these estima
are later modified to best fit the actual gains, and the mod#igubsteriori
estimates are then used for deciding whether and to what strategy the play
should deviate. €Zilly and Boy (1991) simulated a situation similar to that
experimentally studied by Milinsky (1979, 1984). Their model is based on a
two-strategy, six-player game with two types of players. The two types differ
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in competitive ability: players of one type have a relative feeding rate which i
twice that of the other players and thus have a double effect on the congesti
vector. There is a unique congestion vector corresponding to the pure-strate
Nash equilibria of this game, namely the one where the congestion in a patct
proportional to the food supply rate (Parker and Sutherland, 1986). The me
congestion vector, based on 500 independent computer simulations, apparel
quickly converged to this equilibrium congestion vector. The variance of th
congestion vector apparently converged as well, suggesting a convergence
distribution.

In the following section the model introduced in Section 2 is generalized ii
order to allow for such player-specific contributions to the congestion.

8. WEIGHTED CONGESTION GAMES

In the model considered thus far all players have a similar influence upon tl
congestion. This model may be generalized by introdueieights which are
positive constantg,, 8., . .., 5,, and modifying the definition ofthe congestion
vector by setting

=Y A i=l2..r
i=1

[
o =

Inspection of the argument in Section 5, the proof of Theorem 1, and tt
remark at the end of Section 3 shows these three to hold goathtis mu-
tandis for the case in hand. Thuseighted congestion gaméssolving only
two players, involving only two strategies, or where the players have equ
payoff functions possess the finite improvement property or (at least) the fini
best-reply property and therefore possess a Nash equilibrium in pure stra
gies, which may be reached by constructing a maximal best-reply improveme
path.

This, however, is not the case in general. Even a three-player, three-strate
weighted congestion game may not possess a pure-strategy Nash equilibrit
For an example, refer to the game in Fig. 2. For each player in this game the
are effectively only two strategies (the third strategy invariably yields a min
imal payoff). Let the first of these strategies be called the left strategy of tf
player under consideration and the second one the right strategy. Referri
to the inequalities in Fig. 2, it is readily verified that it is always optimal for
a player to play the strategy which is diametrically opposite to the strateg
played by the player who precedes him (in the sense that the second pla
precedes the third one, the first player precedes the second one, and the t
player precedes the first one). For example, if the third player plays left (fir:
strategy) then right (third strategy) is a unique best-reply strategy for the fir
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Strategy First Second Third
Deviator 1
2 3
Player 1
$12(3)>813(4)
1
2 3
Player 2
$22(3)<823(5)
2
1 3
Player 3
§31(3)>533(5)
3 1 2
Player 1
S12(1)<813(3)
1
3 2
Player 2
$22(2)>523(3)
3 2 1
Player 3

$31(3)<833(4)

FiG. 2. Aninfinite best-reply improvement path in a three-player, three-strategy weighted congestiol
game with weight$, =1, 2 = 2, and8z = 3. Assuming that the inequalities on the left hold and
thatS11(n1), S1(n1), andSs2(n2) are minimal, pure-strategy Nash equilibria do not exist. (Numerical
example:Sia(n2) = 1/15np + 1/4, S2(n2) = 1y — 3/20,S31(N1) = 2/3n1, S3(n3) = 1linz (i =
1,2,3), Sj(nj) = —10 otherwise.)
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player, and if he plays right (third strategy) then left (second strategy) is tt
best reply. As the number of players is odd, an equilibrium clearly does n
exist.

Weighted congestion games are compared with unweighted congestion gan
(equal weights) in the table below. Recall that FIP implies FBRP, which implie
WA. No property implies the preceding one. All three properties imply the ex
istence of a pure-strategy Nash equilibrium. In each case, the strongest prope
is given.

Unweighted Weighted
congestion games congestion games
Equal sets of payoff functions FIP FIP
Two strategies FIP FIP
Two players FBRP FBRP
General case WA —
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